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ABSTRACT 

An experimental investigation of supersonic flow around cones 

was conducted in the Supersonic Wind Tunnel at the University of California, 

Berkeley, at a free stream Mach number of 2.72 and Reynolds number per foot 

of 1.66 x 10 . Three cones of semi-apex angles of 10°, 15° and 20° were 

investigated at relative incidences a/6  up to 3. In addition to 

measuring surface pressure, a detailed study of the flow in the plane of 

symmetry <j> = 180° was made by means of a pi tot-hot wire probe. The 

shape of the outer shock wave as well as of the imbedded shocks were 

determined. Oil and vapor screen techniques and a Schlieren system were 

used to visualize the flow field. 

For moderate angles of yaw a/9 < 1, good agreement is found 

between the theoretical and the experimental results. At higher angles 

of attack imbedded shocks are formed and two symmetrical vortices are 

shed on the leeward side of the cones. The concept of the "lifting off" 

of the vortical singularity appears to be meaningful in real flow and 

its location is determined. 
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1.0 INTRODUCTION 

In the design of present day supersonic aircraft, a pointed cone or 

a cone-like shape is a common part in the system. It is of great impor- 

tance to understand and to be able to predict the flow field structure 

of a supersonic flow past a yawed cone. The calculation of the inviscid 

flow field around a cone at an angle of attack has occupied the interest 

of many research workers for the past two decades. From the point of 

view of inviscid analysis the flow field is conical, there is no length 

scale and there are only two independent variables, <j> and 6, see 

Fig. 1. Since the differential equations are nonlinear and the boundary 

conditions are not known (at the outer shock) a priori, one has to appeal 

to numerical methods in order to obtain solutions. 

Solutions for slightly yawed cones obtained by Stone (1948, 1952) 

turned out to require modification at the cone surface. When a cone is 

exposed to supersonic flow at an angle of attack an elliptical like shock 

wave is formed and its strength decreases from the far windward side 

toward the leeward side. Consequently, streamlines entering the disturbed 

region through the shock at different meridian angles experience different 

entropy gains. When these streamlines with different entropy converge on 

the cone surface they form an "entropy layer" (Fig. 2). Ferri (1951) was 

the first to introduce the concept of the entropy layer where a narrow 

region near the cone surface sustains a large entropy gradient. Also, he 

noted that the entropy would be constant on the surface of the cone and 

multivalued in the plane of symmetry on the surface; this brought about 

the concept of vortical singularity. Ferri suggested that when the angle 

of incidence is increased the vortical singularity would "lift off" from 

the cone surface. 



The behavior of the vortical singularity has been studied intensively 

by Melnik (1966). He showed that for large angles of yaw either the vorti- 

cal singularity lifts off in the plane of symmetry or it is shifted on the 

cone surface off the plane of symmetry (Fig. 3). Moretti (1967) also, in 

his analysis of the flow on the leeward side of a cone, proved that there 

is a possibility for the vortical singularity to be detached from the cone 

surface. 

Since then quite a few numerical methods have been devised, such as 

Holt and Ndefo (1970), and the inviscid conical field has been solved. 

Tables for a wide range of Mach number and for relative incidence a/6 

less than one are given by Babenko et_ al_. (1966) and by Jones (1969); the 

latter even solved for a/6  slightly larger than unity. 

For angles of attack less than the semi apex angle of the cone 

(a < 9 ) the velocity of the cross flow is less than the local speed of 

n—1 sound, /v +w /a < 1, which results in elliptic type differential equa- 

tions. When a/6  exceeds one there are regions in the leeward side of 

the cone where the cross flow Mach number exceeds one and therefore, in 

this region the governing equations are hyperbolic and the whole region 

is of mixed type. When this kind of flow exists the cross flow component 

which is supersonic is slowing down to subsonic toward the most leeward 

meridian <j> = 180°. This leads to the formation of imbedded shocks within 

the overall disturbed region. The flow is then very difficult to treat 

theoretically because one does not know a priori the location of the im- 

bedded shock and the location of the cross flow component sonic line. 

Bazzhin (1968) tried to solve the problem by using experimental results 

for assuming the location and the shape of the imbedded shock. His calcula- 

tions also showed that when the angle of incidence is increased the entropy 



distribution can be qualitatively different from the one at small incidence. 

The constant entropy lines will not then converge and no entropy layer will 

be formed. 

Relatively few experimental investigations of the cone flow field have 

been made although several measurements on the surface itself, such as 

pressure and heat transfer, are available [Conti (1961), Guffroy et al_. 

(1968), Holt and Blackie (1956), Julius (1959)]. Tracy (1963) was the 

first to make extensive measurements of the flow field around a yawed cone 

and to describe the flow on the leeward side, especially the viscous effects, 

and he claimed to observe the formation of a single vortex at high angle of 

incidence. This description of a single vortex has turned out to be erron- 

eous according to later studies, including the present one. 

The development of an inviscid theory which will adequately describe 

the flow field on the leeward side of the cone at high angles of attack is 

very  complicated, not only due to the existence of the mixed region but 

1 ^ also due to the important role of viscosity. The only way to learn about  • * 

this flow is to perform experimental investigations. Because of the rota- 

tional character of the flow field and its three dimensional behavior (the 

entropy varies from one streamline to the other), a survey with a pi tot 

probe alone is not sufficient. These factors make it difficult to survey 

the flow field and indeed very  few people have made experimental studies. 

Feldhuhn (1968,1969) investigated the slender cone 6C = 5° at hyper- 

sonic speeds at very  high angles of attack. Rainbird (1968) studied in 

addition to the external flow the growth and the separation of a turbulent 

boundary layer on a cone e = 12.5°. George (1969) studied the flow field 

of a sharp cone 9 = 10° at moderate yaw. Most of the available data are 

in the hypersonic range (except Rainbird M = 1.8, 4.25). Besides a pitot 



probe Feldhuhn used a five hole cone and an equilibrium temperature probe 

and Rainbird used a similar cone probe and a Preston surface pitot tube. 

George used a pitot probe only. All these reports give a similar qualita- 

tive picture of the flow field on the leeward side of the cone although 

there are some differences depending on the angle of attack and way of 

interpretation of the results. 

The purpose of this work is to investigate cone surface conditions 

experimentally as well as the flow field around the cone at supersonic 

speeds, with M^ = 2.72 for various cones (0 = 10°, 15°, 20°) at angles 

of attack up to 30°. A comparison is made with theoretical results for 

relative incidences a/0 < 1. It is hoped that further clarification will 

be provided about the possible existence of a vortical singularity and its 

lifting off. The role of viscosity in determining the external flow field 

will be discussed in order to help to construct an inviscid theory. 



2.0 EXPERIMENTAL APPARATUS 

2.1 Wind Tunnel 

The experiments were carried out in the Aeronautical Sciences 

Division 6" x 6" supersonic wind tunnel at the University of California in 

Berkeley. The tunnel is of continuous flow type with an adjustable nozzle 

which allows a range of Mach numbers of 2.4 to 3.0. Stagnation pressure 

and stagnation temperature can be varied in the range of 1.3 < p.< 30 psia 

and 50° < I < 150° F, which allows a variation of the Reynolds number of 

5 6 1.5 x 10 < Re/ft < 6.6 x 10 . This facility is equipped with a Schlieren 

and a shadowgraph system which make it possible to observe density gradient 

regions and to take pictures, and with a multi-manometer board which uses 

mercury as well as oil. A detailed description of the wind tunnel and its 

performance is given by Bossel (1967). 

2.2 Models and Supports 

Three model cones were built in which the semi apex angles of the 

cones were e = 10°, 15°, 20°. The models were fabricated from brass and 
c 

polished thoroughly. Pressure taps of 0.030" diameter are around the cones. 

A sketch of the model showing location of the taps is given in Fig. 4 and 

the table attached. All the angular sizes are correct within ±0.05°. Each 

tap is connected to a copper tube on the base of the cone and from there 

the pressure is picked up by a plastic tube as shown in Fig. 5. 

The models were supported by a hollow arm (through which the 

pressure tubes passed) disturbing the flow only on the downstream side of 

the models. An adaptor (Fig. 6) which fixed the cone at an angle of inci- 

dence was fitted between the supporting arm and the cone. Seven such 

adaptors were built in order to set the cones at angles of attack of 0°, 5°, 

10°, 15°, 20°, 25°, 30° where the accuracy was within ±0.1°. The pressure 



taps were connected to a multi-valve manifold system and the pressure was 

read on a mercury micromanometer with an accuracy of 0.001" Hg. 

2.3 Probe 

A special probe was designed and built, as shown in Fig. 7. It 

consisted of a pi tot tube and of a rotating hot wire. The pi tot tube was 

made from a 0.040" O.D. stainless steel tube. The tube was glued with 

epoxy to a part which housed the hot-wire probe. This part could be rotated 

in the vertical plane from outside the tunnel by a flexible speedometer 

cable though a gear of 1:28 ratio. The cable was mounted outside the tunnel 

to a counter and one could get an inclination of the probe of ±50° with an 

accuracy of 0.5°. The hot wire probe body was built from stainless steel 

and it could be rotated around its own axis from outside the tunnel by means 

of another flexible speedometer cable. A ratchet-like device made it possible 

to fix the probe at eight angular positions within an accuracy of 2°. The 

wire supports, made of sewing needles 0.022" in diameter, were mounted on 

the probe body through a teflon part so as to keep them isolated. One 

support needle was longer than the other so that the wire mounted on the 

tips formed, instead of a 90°, a 76.6° angle, c^ (measured under a micro- 

scope), with the probe axis, Fig. 8. 

The wire used was a 0.0002" diameter Wollaston wire (Pt, 10% Rh) 

and 0.040" long. It was soft soldered, under a microscope, on the tips of 

the needles. 

The mouth of the pi tot tube was set a small distance downstream of 

the hot wire and about 0.040" to one side, so that there would not be any 

interference between the two. 

The pi tot probe pressure signal was connected to a Wianko ±5 psi 

pressure transducer which was calibrated against the mercury micromanometer. 



The electrical signal was recorded on a chart recorder. 

The hot wire was connected to a Thermo-System Heat Flux System 

which maintained the hot wire at a constant resistance (constant temper- 

ature). The resistance of the wire could be measured with an accuracy 

of better than ±0.01 ü  and the wire current could be computed with an 
_5 

accuracy of better than ±5 x 10  Amp. 



3.0 EXPERIMENTAL PROCEDURE AND DATA REDUCTION 

3.1 Free Stream Flow Conditions 

All the experiments were run under one nominal tunnel condition. 

The stagnation pressure was set to 8.5 psia which resulted in stagnation 

pressure of 8.75 psia and with repeatability deviation of less than 1%. 

The stagnation temperature was set at 70° F and it varied very little 

during the experiments (within 1° F). 

The stagnation pressure was measured at the stagnation chamber 

of the wind tunnel and the static free stream pressure at the bottom of 

the test section. Both pressures were measured with the multi mercury 

manometer. 

The Mach number was 2.72, which resulted in free stream Re/ft 

of 1.66 x 10 . Based on cone height H (see Fig. 3), the Reynolds number 
5 

was always less than 5.5 x 10 where the boundary layer was assumed to be 

laminar. 

3.2 Model Setting and Alignment 

Each cone was aligned at zero angle of attack by means of the 

supporting arm which could be rotated up to ±5°. The alignment was achieved 

when the pressure all around the cone was the same. All the data were then 

taken and the cone adaptor was changed to set the cone at higher angle of 

incidence, up to 30°, in increments of 5°. The 20° cone was set only up 

to 25° because it would vibrate at 30° as a result of introducing blockage 

into the tunnel. 

Because of the limited size of the wind tunnel and the desire to 

test as large models as possible, careful preliminary tests were made in 

order to determine the size and position of models needed to avoid inter- 

ference with tunnel wall boundary layers and reflected shocks. 



3.3 Surface Pressure Measurements 

In measuring the surface pressure use was made of the symmetry 

of the flow field about <j> = 0°, 180° planes. Most of the pressure taps 

were distributed on one side of the cones, namely, from <j> = 0° through 

<J> = 180°. There were a few pressure taps, however, on the other side at 

<f> = 202.5°, 225°, and 270°, by means of which the symmetry was checked. 

There were also taps at <J> = 0°, 180°, and 270° at a closer station to 

the tip, located at approximately half the distance from the other taps 

to the cone apex. These taps helped to determine if the flow was really 

conical. From the taps that were in the region 0° < 4> <_ 180°, those that 

were in the interval 90° < <j> £ 180° were placed at an angle of 11.25° 

from each other. Due to technical difficulties, the taps at $  = 101.25°, 

123.75°, 146.25°, and 168.75° were stationed 0.125" upstream from the 

others. This should not have caused any problem since the flow was conical 

anyway. 

The surface pressure was measured with the mercury micromanometer 

where the free stream static pressure p was used as the reference. Because 

of the time lag, it took about two minutes for each reading. The accuracy, 

however, was within ±0.001" Hg. 

In some cases, for example, near the primary and the secondary 

minima the surface pressure measurements were repeated with very good con- 

sistency, thus establishing the reliability of the pressure values at these 

points. 

3.4 Flow Field Survey 

The disturbed flow field around the cone was surveyed by the pi tot- 

hot wire probe described earlier. Again the symmetry of the field was 

utilized and often checked with the pi tot tube. The probe was mounted on 
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an existing traverse mechanism by which the probe could be moved up and 

down, upstream and downstream and sideways. The position of the probe was 

indicated by three counters, where the smallest displacement that could be 

read was 0.001" for the vertical travel, 0.1 mm for the traverse travel, 

and 0.2 mm for the axial travel. 

Since all theoretical results are given in body coordinates, 

either in polar or reduced coordinates (£,n)> all the data in the present 

work were transformed to these coordinates. The location of the probe was 

determined by bringing the pitot tip to a known point on the model surface, 

reading its position on the traverse mechanism counters and then, when in 

the flow field, recording its relative position to the reference one. 

The survey of the flow field was in two parts. One was the 

detailed study of the flow in the plane of symmetry <j> = 180° where both 

the pitot and the hot wire were used and the second one, covering the rest 

of the field, where the pitot probe only was used. In the plane of symmetry, 

the Mach number M, pitot pressure P. , and the total temperature T., were 

determined from the hot wire and the pitot measurements. With the aid of 

the tables in NACA Report No. 1135 the static pressure and temperature could 

be computed. 

3.4.1 Pitot Survey 

The purpose of the pitot tube survey was to determine the 

location and the shape of the outer shock as well as of the imbedded shock 

when this exists. The pitot pressure gradient as well as the density grad- 

ient that characterized the edge of the vortex determined the size of the 

lobe of the vortical fluid. 

In determining the shock position, the pitot probe was 

always moved from the disturbed region towards the free stream region. The 

location of the shock was determined at the mid-way point of the pressure rise. 
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Although Bannik and Nebbeling (1968) showed that this definition may not 

be accurate, this procedure was adapted for the present work and agreed 

very well with observations from the shadowgraph. It is estimated that 

the error in determining the shock angle 8„ in the 6-d> surface is s 

less than 0.2°. 

To survey the flow field on the leeward side of the cone, 

the pitot probe was moved in the transverse direction and using what is 

essentially Tracy's criterion, i.e., a small jump in the pitot pressure 

when moving toward the <f> = 180° plane, to determine the existence and 

location of imbedded shocks. Travelling in the vertical direction also 

was carried out especially to locate the vortex. 

In surveying the flow in the plane of symmetry <j> = 180° 

the probe was aligned approximately with the flow direction and since the 

pitot pressure is insensitive to flow direction within ±10°, no correction 

was made due to misalignment. 

3.4.2 Hot Wire Measurements 

The hot wire is capable of providing two thermodynamic 

properties: 1. the wire recovery temperature when no heat is dissipated 

in the wire, 2. the heat transfer from the heated wire to the surrounding 

stream. In addition, the hot wire is sensitive to the flow direction. 

By using an oblique wire it is possible to determine the velocity direc- 

tion in a two dimensional flow field. 

3.4.2.1 Hot wire data reduction. The heat loss from the 

hot wire to the surroundings can be expressed in a nondimensional form 

Nu  -       ^ 
m " tTwm - Tem) k0to 

where Nu  is the Nusselt number, i the electrical current in the wire, 
m 
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R  the wire resistance when it is heated, Tw  the measured temperature 

of the heated wire, Te  the cold (adiabatic) temperature of the wire 

when it is not heated, k  the thermal conductivity of the surroundings 

at the stagnation condition and £ the wire length. (The subscript m 

stands for "measured"). 

The temperature T measured by the wire is given by meas- 

uring its resistance R and by using the linear relation T = T [1+a (R-R )] 

where R  is the wire resistance at some reference temperature T , and 

a  is a constant coefficient. 

The measured Nusselt number Nu  is corrected for end 

losses, since the wire has finite length and is soft soldered at each end 

to the two needles. The aspect ratio Z/d    of the wire is of order 200 and 

the correction may be appreciable. A derivation of this correction is given 

by Kovasznay (1956) and Dewey (1965). A parameter S is introduced which 

is 

d f kw Rw  1 

' * *' ^ Re Num 

where d is wire diameter, k, the thermal conductivity of the wire material w 
and R  the cold resistance of the wire. Once S is found, it is possible 

to determine two correction factors C.,  and CR. Thus the Nusselt number 

Nu  and the temperature recovery ratio n for an infinitely long wire are: 

o    Nu m 

CRnm 

where   n = yTt   ;   nm = Tem/T m'  t 

T, is the total temperature of the surrounding flow. C-  is a function 

of S alone and CR is a function of S and the recovery temperature of 
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the needle supports. More details are given in the Appendix. 

When the measurements are corrected to the case of heat 

loss from an infinite cylinder (wire), many experimental investigations 

showed that the Nusselt number is a function of Mach number M and Re , 
o 

where Re = pUd/y. , i.e., Reynolds number based on wire diameter and 

condition behind a normal shock, y. is the viscosity at the stagnation 

temperature. Dewey (1961,1965) has formulated an empirical equation which 

represents a curve fit of existing experimental data. This formula has the 

form: 

Nu (Re .M) - Nu (Re ,«>)$(Re ,M) 
Q\  o 0   0       0 

where    Nu (Re  ,°°)    represents the dependence of   Nu     on    Re     when    M -+ °° oo o o 

and   $(Re  ,M)    is the departure from this relation when   M   is finite. 

These relations are given in the Appendix. 

The recovery temperature ratio   n(= T /T.)    is a function 

of   M    only in a continuous flow and also a function of Knudsen number    Kn^ 

in the transition region, where, as in the present case, the hot wire 

diameter is of the same order of magnitude as the molecular mean free path 

(Kn^,   approximately 0.15).    Dewey has proposed an empirical  formula which 

takes into account the effect of free molecule flow on the recovery tem- 

perature.    The recovery temperature ratio is: 

n   =   nco + n*(nf - nco) 

where n  and nr are the values of n at the continuum limit and the 
'co      T 

free molecule flow limit, respectively, and are functions of M only. The 

coefficient n~* is represented as a function of Kn^. The formulas for 

n , rif and n* are given in the Appendix. 
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As one notices from the formulae, the algebraic equations 

are coupled in such a way that an iteration scheme is required in order to 

solve for M and T.. Although the description of the hot wire measure- 

ments and data reduction procedure are not yet complete, it would be 

appropriate at this point to describe the computational scheme which was 

programmed and computed on the CDC 6400 at the University of California, 

Berkeley. It runs as follows: 

1. Assuming n = 1 the values of T , k , and Nu  are computed. 
Ill C        \J 111 

S is determined and hence Nu . Since Re  can be expressed as o o r 

Re   = Re (M,T.,P,   ),    using Sutherland's viscosity law, then    Nu (Re  ,M) 

can essentially be written as    Nu (M,T.,P.   ),    hence   M   is found. 

2. Kn^   is computed,    Kn^ = Kn00(MJt,Pt ).    Also   nco,    nf - nc0    and 

rf*   are determined, and hence   r). 

3. With the value found for   M,    the support recovery ratio   n (= T /T.) 

is computed, and hence the end loss recovery ratio    CR. 

4. From the computed    CR   and   r\,    one computes    n»    which is then 

substituted back in step 1. 

The iteration converges very rapidly and no significant 

variation is observed after the third iteration. 

3.4.2.2    Determination of the velocity direction.    When a 

hot wire is placed at an oblique angle    (6-,  - ou.   in Fig.  8)    to the flow 

rather than normally, the heat loss of the wire is related to the velocity 

component which is perpendicular to the wire; the heat loss due to the 

tangential  component is negligible. 

The measurements with the hot wire probe were confined to 

the plane of symmetry    <j> = 180°   where the flow was two-dimensional,    w = 0. 

At each point the hot wire was set at position    I    (Fig.  8) where the probe 
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was in the vertical plane <j> = 180° and the output was related to Mn, 

the normal-to-wire component of the Mach number. Then the probe was rotated 

about its axis at 180° to position II and the output was related to the 

corresponding Mn2. Knowing Mn, and Mn2, one can then find the velocity 

direction a», which is the angle between the velocity vector and a horizon- 

tal line. From the geometry in Fig. 8 it is found that 

Mn, - Mn2 
tan(el -aM> = Mn-, + Mn2 

tan % 

where 6, is the angle between the probe axis and the horizontal line. If 

one writes: 

A = 9, - a» 

then 
Mn, 

M        ' sinCo^ + A) 

Knowing M and ou, and the position of the probe relative to the cone, it 

is possible to find the cross flow (in the direction of e) Mach number M„. 

With this method M and M. can be determined within an accuracy of about 

7%. 

3.4.2.3 Hot wire experimental procedure. Each wire, mounted 

on the support needles, was annealed to a dull glow for several minutes and 

brought back to room temperature before calibration. This was done in order 

to avoid great changes in the electrical resistivity coefficient after each 

heating. The wire was then calibrated in water and the relation 

T = T [1 + a (R - R )] was established. Since the range of temperature was 

small, no second order correction was needed for determining T; a  was a 

constant independent of temperature. The manufacturer's data for the wire 
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were taken for granted, i.e., wire diameter 0.0002" and its resistance per 

foot at 20° C 2760 ft/ft. This last figure was used to compute the wire 

length. 

The probe was aligned in the free stream flow so that the 

9-j = 0° position was achieved by rotating the probe about its axis and 

verifying that the hot wire output is the same for each angular position 

(the angle between the free stream velocity vector and the wire should not 

change while the probe is rotated). The probe was then brought into the 

disturbed region in the plane of symmetry <j> = 180°. Then, by means of 

the flexible cable and its gear it was positioned approximately parallel 

to the cone wall and its exact inclination e, was determined by the 

counter. 

At each point the cold resistance was measured, i.e., the 

wire resistance when it was not heated. Then the wire was heated using an 

excess heat ratio (R - Re)/Re of 12% in order to get good sensitivity 

to velocity direction. By measuring the wire voltage output and R , the 

temperature Te and the measured Nusselt number could be computed. This 

procedure was repeated twice at each point for positions I and II of 

the wire (see Fig. 8). 

3.4.3 Flow Visualization 

In order to get a better understanding of the flow field 

it was desirable to use some flow visualization techniques; no quantitative 

studies were made apart from some rough estimates, and the results obtained 

were mostly qualitative. 

Three methods were used: 

1. Schlieren System. The Schlieren system was used in the usual 

manner. The light that passed the test section was perpendicular to the 
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<j> = 0°, <J> = 180° plane. Colored Schlieren pictures could be taken with 

a Polaroid camera, Fig. 9. 

2. Vapor Screen Technique. For high angles of attack the vapor screen 

technique was used to visualize the flow field. This was done by adding 

water to the wind tunnel through the diffusion part and when sufficient 

water was added to the air, condensation would occur in the test section. 

Using the point source light of the Schlieren system, one of its parabolic 

mirrors and a black dark paper with a slit cut in it, all the light was 

blocked out except for a narrow beam that passed through the slit and the 

region of interest in the test section. Regions with high density would 

appear bright and those with low density - dark. Thus shock surfaces and 

vortices were visible. 

3. Surface Oil Flow. In order to visualize skin friction lines and 

detect possible separation, it is common to spread the model surface with 

oil and observe its flow. In the present investigation the oil was intro- 

duced from outside the tunnel through the front pressure taps on the model. 

The oil was heavy (SAE 50) and was colored with lamp black. 
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4.0 RESULTS AND DISCUSSION 

The reduced experimental data will now be discussed. Since there are 

no theoretical results for relative incidences a/6 > 1, no comparison 

can be made, which makes it harder to analyze the results. For the 

a/9 < 1 range there are no theoretical calculations for the present Mach 

number, M = 2.72. However, a comparison with Jones' (1969) tables is made 

for this range. A linear interpolation has been used to obtain his results 

for M = 2.72. 

The present experimental results are also compared with other experi- 

mental data, but since those results were obtained under different flow 

conditions, the comparison is of a qualitative nature only. 

Before going into details, it is worthwhile firstly to describe in 

general what happens to the flow field about a yawed cone. When the angle 

of attack is increased the encircling shock gets stronger on the windward 

side of the cone and weaker on the leeward side. For moderate yaw angles 

a/6 w 1 the boundary layer may separate on the leeward side, but the 

separation region is very thin-~it is washed out by the main stream and 

does not affect the outer inviscid flow. For higher angles of attack, 

imbedded shocks are likely to form and the separated boundary layer builds 

itself into a lobe of vortical fluid of significant size. In fact, two such 

symmetrical lobes are formed on the leeward side of the cone. 

A remark about three dimensional boundary layer separation. 

The concept of boundary layer separation is used in a three dimensional 

boundary layer on a cone by analogy with two dimensional separation. It 

should be noted, however, that no real separation occurs and the skin fric- 

tion does not vanish at the point (in fact, a line) of separation; only its 

component in the circumferential direction <J> vanishes. 
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4.1 Surface Pressure Distribution 

The surface pressure distributions for all the cones that were 

investigated are shown in Figs. lla-e, where the pressure coefficient is 

pc " p° C_ 
'P    1  n 2 

2 P°°U«> 

As the angle of attack is increased the pressure on the windward 

side rises very rapidly and decreases moderately on the leeward side.    When 

the yaw is small, i.e., the relative incidence is small    a/9   < 0.5,    dp /d<j> 

is negative throughout, the minimum pressure occurs on the most leeward 

meridian    <J> = 180°    and there is no boundary layer separation of the cross 

flow.    As the relative incidence is further increased, the minimum pressure 

2 2 point is shifted off the    <j> = 180° line; this first happens when    d p /d<J>   = 0 

at the    <j> = 180° line.    The minimum is then rapidly shifted to about    <j> = 135°. 

Although the pressure gradient becomes adverse, the pressure does not change 

very much in the leeward region. 

The pressure coefficient agrees quite well with Jones'  results 

for   a/9    < 1.    The slightly higher pressure found on the windward side can 

be attributed to viscosity where the boundary layer thickness actually 

increases the effective cone angle    9„.    The small  deviation in the leeward 3 c 

region may also be due to viscous effects, but since the disagreement is 

not systematic, it is impossible to pin-point the cause exactly. 

At larger angles of attack    a/9   > 1,    the minimum pressure point 

moves slightly further towards the windward side to around    <j> = 125°.    At 

that point it seems that increasing the relative incidence does not sig- 

nificantly affect the location of the pressure minimum, at least as it is 

observed for the 10° and 15° cones.    The pressure coefficient becomes 
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negative for   <f> > 100°    and a plateau region of almost constant pressure 

is observed approximately at    135° < <j> < 170°.    There most of the separated 

vortical fluid can be found.    It is worthwhile noting that this plateau 

is similar to that which appears at the separated bubble in the two dimen- 

sional supersonic flow around a compression comer. 

For relative incidences    a/6    > 2,    the two vortices that are 

formed from the rolling up of the separated flow are quite distinct.    In 

the region    170° < <j> < 180°    the adverse pressure gradient is pronounced, 

which causes a strong boundary layer out-flow from the most leeward 

generator. 

Rainbird (1968a,b) has observed for   a/9. > 2    that a second 

pressure minimum is at   <J> = 166°.    Since in the present investigation the 

surface pressure has not been recorded continuously with    <j>   but rather at 

a discrete number of stations, it is difficult to locate this minimum very 

accurately.    It can be seen, however, from Figs.  11 a,d that there exists 

a second pressure minimum around    <f> = 170°,    for    9   = 10°, 15°,    a = 25°, 

30°. 

Rainbird measured the surface pressure coefficient for a 5° cone 

at relative incidences of 2.1  and 2.5 and for   M     of 1.79 and 4.25.    His 
00 

circumferential pressure distribution differs considerably in the qualitative 

sense from the present one, by the fact that his two minimum pressure points 

are very distinct and low, followed by a rather large positive pressure 

gradient compared to the quite flat minimum observed here. As has been 

pointed out by Rainbird, the existence of an imbedded shock might give a 

sharp rise to the pressure following the first minimum. This has not been 

observed and indeed, as will be noted later, the imbedded shock turns out 

to be weak. 
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As previously mentioned, the surface pressure was measured at 

some stations which were closer to the cone apex. If there were some 

dependency of the pressure on viscosity, i.e., on Reynolds number, it 

would show up in different pressure readings at two taps on the same 

generator. The Reynolds number Re  based on the distance from one tap 
A 

to the cone apex was approximately twice as large as the Re  of the 
A 

other.    In particular, for the most leeward generator   <j> = 180°    for high 

relative incidence one would expect a strong viscous effect and therefore, 

a strong dependency on    Re .    Indeed, as observed by Feldhuhn et al.   (1968, 
A • '       ' 

1969), there is a significant pressure decrease along the    <j> = 180° 

generator, which means that the pressure is reduced when    Re     is increased. 
A 

In the present investigation no significant difference in the pressure was 

observed. This only verified the assumption about the conical nature of 

the flow field. 

4.2 Oil Flow 

The streamline pattern on the cone could be seen very well with 

oil (Fig. 10). For high angles of attack, a streamline originating on the 

windward side of the cone would extend around the cone to the leeward side 

up to the separation line. From the angle the streamline made with the 

cone generators one could see that in certain regions the cross flow velocity 

was of the same order as the radial one. The streamlines would turn sharply 

toward the separation line where oil accumulation was observed. The separa- 

tion line coincided with a cone generator. Thus the separation phenomenon, 

although undoubtedly associated with viscosity, has a conical behavior. 

The separation line would always occur close (within 5°) to the 

primary pressure minimum. This agrees \/ery well with the fact that a com- 

pressible boundary layer would separate immediately when it is under adverse 
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pressure gradient. For large relative incidence, the flow of the boundary 

layer away from the most leeward meridian, could be observed. The secondary 

separation could not be seen, but this could be due to the unevenness of 

the oil spread on the model surface. 

4.3 Static Forces 

From the measured surface pressure the axial force C» and the 

normal force Cw coefficients were computed, where 

CA " I   f  Cp «+ 
and 

o  P 

cot 6   IT 
—^ / C cos <j> d<j> 

0 

The integrals were approximated by the trapezoidal rule. 

The axial force coefficient is plotted in Fig. 12, and is compared 

with Jones' computations for a/6 <_ 1. For relative incidence up to unity, 

the axial force does not vary much as the angle of attack is increased. For 

a/6 > 1 it becomes increasingly large and even more so when the cone angle 

9 is larger. The agreement with Jones' results is quite good, consider- 

ing the experimental errors and approximate integration. 

The normal coefficient is shown in Fig. 13. For the present range 

of model inclination, C,, is growing in a rather linear fashion with the 

relative incidence. The slopes of the normal coefficient (SC^/aa) _Q 

based on Sims (1964) are shown also. For the 10° cone the measured CL 

is higher than the Sims slope would indicate. For the other cones the agree- 

ment is very good. 

The drag coefficient is 

Cp = CM sin a + C*  cos a 
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and is shown in Fig. 14. Due to the increasing viscous effect for large 

yaw, represented by Cp,, the drag coefficient is increasingly large when 

the angle of attack is increased. 

The lift coefficient is 

C,  = C»| cos a - C» sin a 

and is shown in Fig. 15. There is not much difference between the C. for 

the various cones. The lift coefficient grows in a rather linear fashion 

but it will probably level off for very  large yaw and even go down, as noted 

in Feldhuhn and Pasiuk (1968). 

To complete this part, the lift to drag ratio C,/CD is plotted 

in Fig. 16. Maximum values of C,/CD are achieved at relative incidence 

of approximately 1 for the 15° and 20° cones and of approximately 1.5 for 

the 10° cone. It is also seen that the slenderer the cone the higher is 

the C,/Cj-j ratio achieved. 

4.4 Outer Shock Wave 

The shape of the outer shock which separates the free stream from 

the disturbed region is shown in Figs. 17a-e. The results are plotted on 

the spherical <j> - 9 surface. Again a comparison is made with Jones' 

results where it is seen that in general there is good agreement regarding 

the shock shape and often the 6  of the experiment is slightly higher than 

that of the theory. This is due to the viscous effect of the boundary layer. 

The outer shock on the leeward side of the cone is very weak and 

cannot be seen by means of the Schlieren system. However, the signal from 

the pi tot tube, when passing through the shock wave, although small, was 

quite distinct. A pi tot signal (and a hot wire signal as well) could be 

observed on the leeward side even for the large incidences. The 9 of a 
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Mach wave for a/6c > 1 (eMW =  a + 21.57°) fell short of the observed 

9  at <j> = 180° by one to three degrees. The difference grew with the 

angle of attack because then, the effect of the displaced vortices was 

larger. It is widely thought that for large yaw the outer shock degenerates 

into a Mach cone on the leeward side. This will not happen immediately when 

a exceeds 9  but for some a greater than 6 . Indeed the shock strength, 

although observable, is practically zero in terms of Ap./p. , and the apex 

of the Mach cone is shifted due to viscous effects. 

In Bazzhin (1970) it is found from shock wave computations that 

there can be another possibility. That is to say, for thicker cones or 

greater Mach number the shock wave intensity may be non-zero all along its 

length. This result is still to be verified experimentally, and this pre- 

sents a problem, because it is difficult to distinguish between a Mach wave 

signal, the effect of bluntness of even a very sharp cone and a very weak 

shock. 

4.5 Imbedded Shocks 

The internal or the imbedded shocks are so called because they 

are formed within the disturbed region between the outer shock and the cone 

surface. The location of the internal shocks as determined by the pi tot 

tube is shown in Figs. 18a-e. As is expected, the imbedded shocks start to 

appear when the angle of attack exceeds the cone angle. The shock is then 

very weak and very short. The imbedded shock appears near the separation 

point. It is as yet undetermined if the imbedded shock results from an 

interaction between a compressible inviscid flow with the boundary layer, 

or just from the inviscid flow where the flow must be turned through a 

shock. It is probably a consequence of both requirements. 

The imbedded shock is not actually observed until a/6c > 1.3, 
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and for the 20° cone, a =  25°, it is not detected at all. If the shock 

exists at this moderate yaw, it is very weak and very short and is swallowed 

up by the boundary layer. This agrees with the experimental results of 

George (1969) and Tracy (1963) for hypersonic flow. 

At higher incidence the strength of the internal shock as well 

as its length grow. There appears a second and weaker branch of the imbedded 

shock, which points toward the symmetry plane <j> = 180°. The appearance of 

a second branch is to be expected for larger yaw, since one shock will not 

be sufficient to turn the flow so that w = 0 condition will be attained 

at the plane of symmetry. This was also observed by Feldhuhn (1969) and 

Tracy (1963). 

The strength of the internal shock (i.e., the pi tot probe signal) 

is rather weak and decreases when moving away from the surface of the cone 

until it disappears. Thus, not a very sharp pressure increase would be 

expected on the cone surface, as indeed has been observed. Because of 

their weakness the imbedded shocks could neither be seen with the Schlieren 

system nor detected by the vapor screen technique. 

4.6 The Viscous Layer and the Vortex System 

In employing inviscid theories to solve the flow field around the 

cone, it is important to know how thick the boundary layer is in order to 

estimate the accuracy of the theory when boundary layer thickness is ignored. 

For small yaw the viscous layer is very thin, within the order of the probe 

size; it is not measurable with the present probe and can be ignored. For 

larger yaw, because of the increasingly adverse pressure gradient on the 

leeward side of the cone, the boundary layer is thickening and separates 

there. The separation region stays thin for a/9 < 1. The boundary layer 

on the windward side (<j> < 100°) remains thin even for very high incidence. 
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The two separated shear layers would roll into two symmetrical lobes of 

vortical fluid. As is shown in Figs. 18 and 19, the size of the vortex 

is increasing with the angle of attack. 

The outer boundary of the vortices has been observed very  clearly 

for high incidence with the Schlieren system (Fig. 9). The whole vortex 

system was made visible by the vapor screen technique. The density of the 

flow inside the vortex system is much smaller than in the surrounding 

fluid. The vortex flow appears as a dark region in the vapor screen while 

the surrounding flow is bright; the boundary between the vortical fluid and 

the outer flow is very  distinct. 

Before proceeding further, it is worth noting that although the 

formation of the vortex system is due to viscosity, once it is formed, the 

role of viscosity in the vortex system is important only at its boundary. 

The dissipation of energy due to viscosity will take place in the very  thin 

shear layer which surrounds the vortical fluid. However, when dealing with 

the overall effect of viscosity on the outer flow, the size of the vortex 

system (sometimes called viscous hump) is the characteristic viscous length 

which one has to compare to the local body dimension in order to decide 

whether it is important or not. 

The relation between the maximum vortex height, expressed in terms 

of the angle 9 , and the cone angle 6  is given in Fig. 19a as a func- 

tion of the relative incidence. It is seen that 9/9  grows almost 

linearly with a/9 . In Fig. 19b the same data are shown in terms of the 

reduced coordinate E   =  (tan 9W - tan 9.)/(tan 9 - tan 9 ). It is seen 

that E     is nearly a constant in the range of a/9  between one and three. 

In Figs. 18a-e the outer boundary of the viscous layer is shown. 

At this boundary there exists a large pi tot pressure gradient; the pi tot 
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signal drops when moving from the outer flow towards the cone surface. 

Since the same pitot pressure behavior is found when entering the vortical 

flow, no distinction is made between the outer shear layer and the outer 

boundary of the vortex. In fact, for moderate yaw the vortical field is 

swallowed altogether into the boundary layer. Thus as far as the outer 

flow is concerned, the region between the outer layer and the cone surface 

is a region where the viscous forces are important. One sees clearly that 

this region grows with angle of attack but for a/9c < 1 it is quite thin. 

These results differ from those discussed by George (1969) and 

Tracy (1963), where for hypersonic flow quite a large viscous region was 

observed for smaller relative incidences. 

Although the role of viscosity is important in the boundary layer 

separation as well as in the formation of the vortices, one obtains similar 

flow structure for higher Reynolds number (Re, = 6.8 x 10 , (Rainbird, 1968b)), 

It is noticed also that as the distance x from the cone apex increases, the 

value of Re  is increased but the flow field structure maintains its com'- 
A 

cal behavior. However, as shown in Feldhuhn (1969), the surface pressure 

might be dependent on Re . It has also been observed by Rainbird that 
A 

for large yaw   a/0    > 3.1    the two vortices formed on the leeward side of 

the cone are not so stable and do not keep their symmetrical appearance. 

4.7   The Leeward Meridian Plane    <fr = 180° 

4.7.1    The Vortical Singularity 

The vortical  singularity mentioned in the Introduction is 

first discussed from a theoretical  point of view.    This singularity is a 

point on the    <J> - 6   surface which, for moderate yaw    (a/6   < 1),    lies on 

the cone surface at   <j> = 180°.    For higher angles of attack it is shown in 

Melnik (1966) and Moretti   (1967) that this point may lift off the surface 
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to some point in the plane of symmetry   <J> = 180°. 

From the inviscid standpoint the vortical singularity is char- 

acterized by the following properties: 

1. It lies in the plane of symmetry   cj> = 180°. 

2. The different constant entropy streamlines in the neighborhood 

of the singularity are pointing toward it and meet there. Therefore the 

entropy is multivalued at this point. 

3. Consequently, the stagnation pressure as well as the radial velocity 

u    are multivalued, but the static pressure is single valued (Holt, 1954). 

4. The singular point is a "stagnation" point in the    <j> - 6   surface, 

which means that the velocity there is directed along the radial  line and 

v    and   w   are zero. 

In reality singular points do not exist. The multivalued stagna- 

tion pressure at the vortical singularity will tend to be smeared out by 

viscous effects over some finite, though small, distance. For moderate yaw 

when the singular point lies on the cone surface or very close to it, there 

will exist an entropy gradient due to the viscous boundary layer. Thus if 

any other gradient exists as a result of an inviscid theory, it will be 

swallowed by the boundary layer and there is no way it can be detected 

experimentally and identified as such. 

Even for large angles of yaw when the singularity is supposed to 

be somewhere above the cone, it is still difficult to detect the singular 

point only by observing large stagnation pressure gradients. This is 

because of the existence of large gradients due to the vortices. Thus, if 

one tries to locate, within experimental limits, the vortical singularity 

some other or additional criteria should be taken into account such as 

v = 0. 



29 

In his experiments Mro = 5, a/8 = 4.8, Feldhuhn (1969) found 

the singular point for which v = 0 to be very  far (a/8 » 4.5) from 

the cone surface. Another attempt to prove experimentally the existence 

of the vortical singularity was made by George (1969). He did this with 

the aid of a pi tot probe only and by assuming constant static pressure 

within the viscous layer. This enabled him to locate the small region of 

a steep stagnation pressure gradient and to assign the singular point to 

this region. At his flow condition (MM = 7.35, a/8 = 0.8, 1.2) the 

singular point was found approximately, on the edge of the viscous hump. 

Before proceeding further, one must bear in mind that the experi- 

ments just referred to were carried out in hypersonic flow under different 

free stream conditions. The same relative incidences also do not guarantee 

good comparison because the thickness of the cone (8 ) is by itself 

important. Nevertheless, it is worthwhile to compare the results qualita- 

tively. 

In the present investigation the main criteria used to establish 

the location of the vortical singularity is that v = 0 or M = 0, Fig. 

20. However, this by itself is not sufficient, because by the time a 

vortical-singularity-!ike stagnation point is formed, another stagnation 

point off the cone surface is formed also, in the plane of symmetry. This 

is due to the formation of two recirculation regions (vortices). This last 

stagnation point is a near-wake-like stagnation point and the streamlines 

at the plane of symmetry are pointing away from the point. At the same 

time, of course, there is a stagnation point on the cone surface itself. 

Up to relative incidences of 1.5 no stagnation point is found off 

the cone surface. Rainbird (1968a,b) estimates the relative incidence at 

which the vortical singularity lifts off by 2(a/ec)a, where (a/ec)a is 
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the minimum relative incidence for separation.    At higher yaw the recircu- 

lation regions build up, and also, one would expect a "lift off" to occur. 

There will be two stagnation points where the vortical singularity has to 

be above (in the   <j> - e   surface) the near-wake-like stagnation point.    It 

is seen in Figs. 20 a-c that there is a small  region where   MQ   is about 

zero.    In this range, the two stagnation points are very close to each 

other and within the present experimental measurements cannot be dis- 

tinguished. 

At still higher angles of attack a rather more pronounced dis- 

tinction seems to exist between the two points, where   MQ is clearly posi- 
ö 

tive in that region.    Note that   MQ   is in the direction of   e   and is 
ü 

negative in most of the flow field. There is an indication that the 

distance between the two stagnation points will grow when the angle of 

incidence is increased. 

It can be seen from Figs. 21a-c that the vortical singularity 

point lies in a region of high stagnation pressure gradient which corres- 

ponds to large entropy gradient. But since this point is very close to 

the viscous region and the measurements are by no means that accurate, 

this pressure gradient may be due to viscous dissipation as well. As 

long as the singularity lies close to the viscous hump, some of the total 

pressure drop is probably due to viscosity. Considering, however, the 

above discussion concerning the behavior of Mfl, it is believed that part 

of it is due to the existence of the vortical singularity. 

4.7.2 The Flow Field in the Plane of Symmetry <fr = 180° 

Before going into a detailed discussion of the results, it 

should be noted that the probe used in the survey is by no means a boundary 

layer probe. Thus, there was a significant probe-wall interaction when the 
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probe was brought very  close to the cone surface. It was estimated that 

this effect was dominant in the range 8 < 6 < 8 + 1°, 

In addition to the MQ graphs already discussed above, the dis- 

tributions of stagnation pressure shown in Fig. 21, static pressure shown 

in Fig. 22 and static temperature in Fig. 23 in the plane of symmetry 

<J> = 180° are plotted. Since stagnation temperature variation throughout 

the flow field was less than 1% and equal to the free stream T. , there 

was no real significance in plotting it. 

For relative incidences up to one, the stagnation pressure is 

almost constant throughout the plane apart, of course, from the still 

thin viscous boundary layer. The flow in the plane of symmetry can be 

regarded then as essentially isentropic. In the static pressure distri- 

bution there is a general good agreement between Jones' calculations and 

the experiments. The experimental results seem to have a more level 

pressure distribution. The static temperature in the theory as well as 

in this experiment changes very  little in the plane of symmetry. The 

theory shows a high temperature gradient very  close to the wall. This 

could not be picked up by the present investigation. 

When the relative incidence is increased a stagnation pressure 

gradient starts to build up. The region of lower total pressure is spread- 

ing out as the angle of attack is increased. This pressure gradient is, 

as discussed above, associated with the existence of the entropy singu- 

larity and the viscous hump. Above the vortical singularity point the 

stagnation pressure is practically the same as its free stream value. It 

should be noted that stagnation pressure jump across the outer shock in 

the neighborhood of the <J> = 180° plane is practically zero even if a more 

pronounced static pressure jump prevails. 
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The static pressure drops rather smoothly at high angles of 

attack. The flow experiences an isentropic expansion over part of the 

plane. It is noticed that close to the wall the pressure is nearly a 

constant. 

The static temperature is dropping down where the flow expands. 

The appearance of the viscous hump, however, tends to increase the tem- 

perature and eventually, near the wall, the temperature rises quite 

sharply. 

In surveying the flow in the plane of symmetry and making com- 

parison with Feldhuhn (1969), an important difference has been observed 

with regard to the flow field structure. It has been observed there, with 

the Schlieren system as well as with the pi tot tube, that for high angle 

of attack, two regions of high density gradient exist in the plane of 

symmetry, whereas in the present investigation only one such region could 

be detected. Since in Feldhuhn (1969) the free stream conditions were 

different (M = 5) as well as the cone thickness (5°), it is believed that 

as far as the inviscid field is concerned the flow field structure depends 

on free stream conditions and on the cone angle as well as on the relative 

incidence. 
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5.0 CONCLUSIONS AND SUGGESTIONS 

An experimental study of the flow field on and around sharp yawed 

cones has been conducted with free stream Mach number of 2.72 and Reynolds 

number 1.66 x 10 Re/ft. The following conclusions have been reached: 

1. For a relative incidence a/6  up to one, there is a very  good 

agreement between the (Jones) theoretical results and the experimental 

ones. The boundary layer is thin and although separation takes place on 

the leeward side of the cone around a/6 =0.8 the separation region stays 

very thin and close to the wall; thus, the viscous effect can be ignored 

(at least to the first order) in the inviscid calculations. 

2. As the relative incidence is increased a/6 > 1.3 imbedded shocks 
c 

are formed. The strength of those shocks is very weak. The separation line 

moves upstream, in the direction of decreasing <j>, with the increasing 

angle of attack. The two symmetrical separated shear layers roll up into 

two symmetrical lobes of vortical fluid. 

3. For still higher angle of attack a/6 > 2, a second pressure 

minimum is observed which indicates the existence of a secondary separation 

flow on the leeward side of the cone. The primary separation line moves 

very little or not at all upstream toward the windward side when the angle 

of incidence is increased. The angular extent of the vortices increases 

significantly but still maintains its conical behavior. The size of the 

imbedded shock increases also, and a second branch is developed. A pro- 

posed flow field structure is shown in Fig. 24. 

4. At this large yaw the viscosity effect can no longer be ignored. 

On the leeward side of the cone the viscous layer interacts sharply with 

the inviscid flow field and together with the vortices modifies signifi- 

cantly the inviscid flow. Account of these effects can be taken while 
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constructing an inviscid theory, by introducing a vortex sheet and modify- 

ing the cone shape on its leeward side. 

5. The outer shock wave neither vanishes completely nor degenerates 

into a Mach cone on the leeward side of the cone, even for large yaw. Its 

strength, however, is very  small, and its location is probably very  much 

affected by the viscous hump. 

6. The vortical singularity point can be determined experimentally, 

when it is not on the cone surface. It lifts off the wall and can be 

detected when the relative incidence is about 1.5. Because of the nearness 

of the vortical singularity to the near-wake-like stagnation point, it is 

impossible to detect a "lift off", if any, at a smaller angle of attack. 

Further investigations and suggestions. Since different investi- 

gations resulted in different flow field structures at different free stream 

conditions, it seems that a comprehensive experimental study should be made 

for various cone thicknesses, for felative incidences of one to a very large 

yaw, and for a wide range of Mach numbers. 

Still more work is to be done to develop a good, reliable and 

small probe to measure a three dimensional flow in order to survey the whole 

flow field and to investigate the vortex system. 

Since the flow field structure on the leeward side of the cone is 

quite complicated and changes over small distances, it is suggested that 

flow field as well as the cone surface measurements should be taken in a 

continuous manner and not just at a discrete number of points. 
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FIG. I   COORDINATE    SYSTEM  AND VELOCITY COMPONENTS 
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FIG. 3    STREAMLINE   PATTERN ON A CIRCULAR  CONE 
AT MODERATE TO  LARGE   ANGLES OF ATTACK 

(FROM   R.E. MELNIK , 1966) 
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NOTE:   POSITION U IS ACHIEVED AFTER ROTATING THE HOT- 
WIRE  PROBE   180° ABOUT ITS AXIS FROM POSITION I 

FIG. 8    RELATIVE POSITION BETWEEN THE VELOCITY 
VECTOR   AND THE HOT-WIRE  IN  THE   PLANE 
<t> = 180° 
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FIG. 9      COLOR  SCHLIEREN  OF 10° CONE AT o< = 30° 

FIG. 10    OIL FLOW OVER   10° CONE  AT <X =30° 
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APPENDIX 

1. END LOSS CORRECTION FACTORS 

The Nusselt number end loss correction factor is given by: 

(Kovasznay, 1954) 

,   _ \     }  + aw* Nu " \ ^T w     w 
_  * 

where a,/a..  is given in Fig. A-l as a function of S, and w w 

\s%-  Re>/Re- 
The recovery temperature correction factor is given by: 

(Dewey, 1961) 

CR = Cl - a) ( ^ )] (1 - a)"1 R nm 

where w/(l - w) is given in Fig. A-l as a function of S. 

The recovery factor used for the recovery temperature of the 

support needles was 0.851 (Schlichting, p. 319). The temperature of the 

needles was computed from 

T  = T   1 + 0-17 M2 
n    *  1 + 0.2 M2 

2. HEAT LOSS AND RECOVERY TEMPERATURE 

The empirical formulas as were derived by Dewey and as used in 

reducing the hot wire data were as follows: 

lu (Re .M) = Nun(Reni-)*(Ren,M) 0   0 0   0       0 
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where 

with: 

Nu0(Reo,oo)    =    Reo
n[0.14 + N-, + Ng] 

Re 0.6713 

n    =    1 
5.142 + 2 Re 

0.2302 Re 

0.6713 
o 

0.7114 

15.44 + Re 0.7114 
o 

and 

0.01569 w 5 x 
2 0.3077 + Re °-7378        15 + Re„3 

0 0 

$(ReQ,M)    =    1 + ^ x (j,2 x (j)3 

with 

0.6039 + 0>5701   [(        H1;2"    ?1.569 
M 

(j»9    =    1.834 - 1.634  ( 

1.222 1  + M 

Re 1.109 

- 1] 

2.765 + Re 1.109 
0 

«j,     =   1 + (0.300 - VÜK 
Re. 

M1.67 " 4+ ReQ 
) 

The relations giving   n*,    nf   and   nco   are the following: 

1.193 Kn. 
n*   = 

0.4930 + Kn 1.193 

nco =    1 - 0.05 ( M 3.5 

1.175 + M 3.5 
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and 
2.8 

nf-nco = °-2167 < r^rr^s> 0.8521  + W 

As is noted in Section 3.4.2.1, Re  can be expressed in terms 

of M, Tt, Pt , 

Pa. M 
Re. = £-iM = /T_i_(1 +I^M2}-3 

^t ^ 

using the relation for    P.  /P.    from NACA Report No.  1135 and   y = 1-4, 

one gets, 

P.    M d 

Re. ^   A^   (, + 0.2 M2)-3 (    «t yW ( 4- )' 
K       yt  't M^+5 7fT-l 

5/2 

and   uu(Tt)    is given by Sutherland's viscosity law. 
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FIG.A-I     END  LOSS  CORRECTION   FACTORS 


