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ABSTRACT

This report addresses the prediction and analysis of solar eclipse circun-
stances of interest to atmospheric, ionospheric, and solar studies. In the first
section. specific algorithms for use in pre-eclipse planning and post-eclipse analysis
are presented. In the second section, appendices present The calculation of solar
and lunar cphcrnerides of requisite accuracy for prediction purposes, the calcula-
tion of ephemeris sidereal time, the prediction of the shadow outliae on and
a'ovc the cearth. the calculation of Iocal eclipse circuumstances, and the develop-
ment of solar coordinate systems, to provide the background for and the founda-
tion of the preceding algorithms.
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1.0 INTRODUCTION

This report addresses the prediction and analysis of solar eclipse circum-
stances of interest to atmospheric. ionospheric, and solar studies. In the first

* section, specific algorithms for use in pre-eclipse planning and post-eclipse analysis
Sare presented in a form suitable for manual or machine calculation. In the second

section, five appendices provide the background for and the foundation of these
algorithms.

Although much of the material in this report is familiar to the astronomical
community, its dispersion in the literature or its rendition in a variety of forms do
not make it immediately useful to the non-astronomer. This report's first section
is, therefore, a compilation of familiar results; the second section is tutorial in
nature.

Appendix A presents algorithmis for calculating the geocentric coordinates of
the sun and moon. In the solar case, the algorithms are based primarily upon the
Newcomb Tables [71 and secondarily upon the more recently published Tables of
Jean Mecus 151. In the lunar case, the algorithms are based primarily upon the
"Improved Lunar Ephemeris" (31 and secondarily upon Meeus. The series
developments of solar and lunar longitude, latitude, and distance (parallax) have
been truncated in view of the relaxed accuracy requirements. In all other respects,
however, the developments of the solar and lunar ephemerides are identical to
those given in the fundamental references.

Appendix B outlines the calculation of Ephemeris Sidereal Time.

Appendix C develops algorithms necessary to predict the outline and motion
of the lunar shadow on an earth spheroid of arbitrary radius and flattening. It is
based upon the exposition of Chauvenet I11 and the authoritative summary in
The Explanatory Supplement... 121. It is repeated here because the summary of
requisite formula in 12] , with a different ordering from that of I I1, lacks both

the justification and seeming inevitability with which elements related to the
flattened spheroid and the shadow motion thereon were originally introduced.
Furthermore, it seems appropriate to show that the relationships pertaining to
ionospheric center line position and duration follow naturally from a develop-
ment in which scale factors are explicitly employed.

Appendix D develops the algorithms required to predict all circumstances of
an eclipse at a locale once the coordinates of the locale have been specified. to
adjust these circumstances by means of differential correction procedures for
modest departures from the locale specified, and to calculate other topocentric
parameters of interest.

Finally, Appendix E describes various coordinate systems applicable to solar
astronomy and defines their interrelationships. Particular attention is directed to
the development of "pointing instructions" for observation of phenomena both

on and above the solar surface.



2.0 PRELIMINARY REMARKS

Ephemeris Time (F-.T.), which is related to Universal Time (UT.) by means
of tile expression

ET. = U.T. +AT (I)

will be employed throughout this report, except where indicated. Similarly. tlh
ephemeris longitude of a location X,, which is related to the geodetic longitude N
(West taken as positive) by means of the expression

X, = X + 1.002738 AT, (2)

will also be utilized, except where indicated.

In either instance, conversion irom one "system" to the other requires tile
explicit assignment of a value for AT. For the past years, values of AT are given in
The A,,merican Epheincris and Nautical .4hnianac, page vii, 7Thh/ ,J linTic'-
Difference AT. For the 1970's Table I - extracted from Table ( 7 a., e'ductim,
from Universal to Ephemeris Time ol J2/ - provides a useful extrapolation.

TABLE 1

LT VALUES FOR 1969-1980 INCLUSIVE

1969.5 + 42' 1975.5 + 513

1970.5 441 1976.5 53s

1971.5 45s 1977.5 54s

1972.5 47s 1978.5 56s

1973.5 43'; 1979.5 57"
1974.5 50W 1980.5 59' 1

31
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3.0 CALCULATION OF BESSELIAN AND AUXILIARY ELEMENTS

This section will follow the development presented in Appcndix C and is
based on the assumption that the following quantities arc available at the timeos)
of intercst

Sa® 60 .=. ziparent right ascension and declination of sun
Icf (A21)1

R the solar radius vector in A.U. [cf (A1 4)]

cca , • .=. apparent right ascension and decimation of moon

I IcflA46)]

,7rr .=. the horizontal equatorial parallax of the moon
(cf(A45)]

E.S.T. .. Ephemeris Sidereal Time lcf (B3)I.

3.1 SHADOW AXISPARAMETERS

Calculate tile shadow axis right ascension a and declination d and the solar-
lunar separation g (in terms of R) from

Sg cos d cos a = cos.b® cos a® - b cos 6 mos a (3)

gcosdsina = cos ® sina® - bcos81 sina, (4)

gsind = sin&- -bsin6€ (5)

where
b[=0.000 042 664Sb = (6)

I R sin ff.

3.2 "FUNDAMENTAL" RECTANGULAR COORDINATES OF MOON

Calculate the rectangular coordinates x, y, z of the moon with respect to the
fundamental plane(in unitsof the earth's equatorial radius a. = 6378.160 kin)
fro x = r, Icosb. sin(aO - a)] 

(7)

y = rc f sin6, cosd-cosb6 sin dcos (a4 -a)] (8)

z = r4 Isin 6. sin d + cos bg cos d cos (a4 - a)] (9)

5



where

re= l/sin wa (10)

3.3 EPHEMERIS HOUR ANGLE OF SHADOW AXIS

Calculate p, the ephemeris hour angle of the shadow axis, from

L = E.S.T.-a (II)

3.4 SHADOW CONE GENERATORS

Calculate fI , the generator of the pentunbral cone, and f2, the generator of
the umbral cone, from *

sin J, = 0.0046 64018/gR (12)

sin '2 = 0.0046 40783/g R (13)

3.5 SHADOW CONE VERTEX DISTANCES

Calculate cl, the distance of the penumbral cone vertex above the fundamen-
tal plane, and c2 , the distance of the umbral cone vertex above the fundamental
plane, from

c, = z + 0.272.4 880 cosecf 1  (14)

c 2 = z - 0.2724 880 cosec 2 . (15)

3.6 SHADOW RADII ON FUNDAMENTAL PLANE

Calculate Q1 , the penumbral radius on the fundam-ntal plane, ar, d •2, the
wilbiUal ldad I or, tit•11 - liUiI•Ui4i'. k j.hI%,, £iiIII

If, as in tne discussion leading to (E46), we wish to consider the radio sun whose radius is If A

times the optical radius where K.= (1 + JCR ), then

sin fl,R = (0.0046 64018 + 0.0046 52367 J(R)/g R

sin f., R - (0.0046 40783 + 0.0046 52367 JCR)/g R.

6
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- c, tanf1  (16)

£2 = c2 tan f2  (17)

where Q• > 0; V2 < 0 for totality, V-2 > 0 for annularity.

3.7 HOURLY VARIATIONS

Calculate the hourly variationsid, x, yP, i,1 and £2 by appropriate numerical
differentiation of the Besselian elements sin d, cos d, x, y, p, £j and £2.

3.8 AUXILIARY ELEMENTS

Cal-ulate the auxiliary elements P,, P2 , sin d,,sin d 2 ,sin (d I d 2 ) anl,
Scos (d -da) from

P, (1 -e cos'd)Y' (18)

P2  = (I -e 2 sin 2 d)P (19)

sind 1  = sin d/P1  (20)

cosd, = (I -- e2)', cos d/P, (21)

sin (d1 -d 2 ) = e 2 sind cosd/P1 P 2  (22)

cos(d I-d 2 ) = (I -e' /PI P2  (23)

where the ellipticity e is given by e = (0.0066 9454)"' for the earth spheroid.

Als, calculate the additional auxiliary elements a, . a,. b. c, and c, from

I a1 = -_ xtanf, cosd (24)

a2 = - -A xtanf 2 cosd (25d

Sb -y+ x sin d (26)

x + u ysind+ ý £1 tanf, cosd (27)

c2 x+ Pysind + P £ 2 tanf 2 cosd (2d)

7I



4.0 CALCULAI ION OF IONOSPHERIC CENTRAL LINE, DURATION.
AND SHADOW OUTLINE

"I 1W lollov0%Mg dcvelopeniC1t. exccpt where indicaited.is based upon Sections C.9
and (.I I ol AtppInldi\ (.

4.1 IONOSPHEtfIC CENTRAL LINE POINT

I roin the relationw,

I = y/pI (29)

= I'" -- - V; Iv' (30)

where

'k = I +0.15678503 x 10-3 h (31)

in which hI is the ionospheric center line height above sea level in kilometers,* cal-

culatc a point in the Lentral line from

tan F --- x (32)

C eosd 1 - yl sin T

and

ýj sin d, 4 yI cos d,
sinl 1  (33)

"lhc codctic latitude P ot the point is given by

tan 0 = 1.003364 tanh0, (34)

the ephemeris longitude X. is given by

x =p - OP (35)

in which (6-4 ikthe lII , l ilr :invie of the shadow axis, and the loneitude is given by

X X- 1.00 2138 ,aT. (36)

SNote the toomnote tollowing (D2'.



4.2 ECLIPSE SEMI-DURATION ATCENTER LINE POINT

Calculate the bemi-duration of totality at the ionospheric central line poll. ¢
and X of (34) and (36) from

s = L:/n (37)

whierc

L= - 'o tanf., (38)

in which

'0 = P3 I', cos (d, -- d2)-- y sin (d, -d.) (39)

and where

n = [(c2 - t J o cos d) 2 + (-. b )2 ]. (40)

4.3 SHADOW OUTLINE APPROXIMATION

The shadow outline, centered at the point specified by (34) and (36), can be
approximated* by an ellipse whose semi-major axis is oriented toward the sun
along azimuth Azo. The semi-minor axis is given (in kilometers) by

semi-minor axis = L2 (Kae) (41)

where ae .=. the equatorial radius of the earth 6378.160 kmn; the semi-major
axis is given by

semi-major axis = L2 (K(ae)/sin EC® L2 (Jfae)/" (42)

in which EQ® is the solar elevation. The approximation is derived in (D991).

Explicit formulae for the solar azimuth and elevation are given by (D90) and
will be repeated in Section 11.3.

This approximation, avoids the tedious point-by point, albeit more precise, outlined trace

method developed (primarily for illustrative purposes) in Section C.8 of Aipendix C, cf

Comrie, L. J., "Some Computational Problems Arising iii Eclipses," M N.R.A.S. 87 483 (1927).

I0



5.0 CALCULATION OF OBSERVER COORDINATES

Ilw oblscrvcr is assutiv;d to be located at geodetic latitude 0, longitude X
(Wt taken a posdtivc) and lh.'gilt above sea level It (in meters).

5.1 CEOCENTRIC COORDINATES OF THE OBSERVER

(a!cu! ;re the geocentric coordinates 0 sin 0"' nd p cos 0' from

p sin 0' = (S + 0.15678503 x 10- 6 h) sin 0 (43)

p cos '= (C + 0.15678503 x 10-6 h) cos (44)

where

S = 0.9949 7418 - 0-0016 7082 cos 20 + 0.0000 0210 cos 40 (45)

C = 1.0016 7997 - 0.0016 8208 cos 20 + 0.0000 0212 cos 4¾ (46)

5.2 "FUNDAMENTAL" RECTANGULAR COORDINPATES
OF THE OBSERVER

Calculate the rectangular coordinates i,r,q of the observer with respect to the

fundamental plane from

= P cos Q' sin ®) (47)

= Psin 0' cos d - P cos 0' sin d cos H (48)

= P sin 0' sin d + P cos 0' cos d cos OH (49)

where (D. the local hour angle of the shadow axis. is g;,en by

= Z= - X - 1.002738AT. (50)

E.3 SHADOW RADII AT HEIGHT

Calculate the pcntumbral and umbral radii at the l,-4ght • above the funda-
nietalpla,•frowfL

Ij- = - tar. (51f

Lj t2 - tan f2 . (52)

I



5.4 OBSERVER COORDINATE VARIAMiONS

Calculate the hourly variation of t and 77 from

A* p cos 0 cios 5

P= t sind- •d • isin d. (54)

and c•.lculate tht following combinations:

U X - V y - 71; m- =u
2 + v 2  (55)

S• ,; =x * ';_; n2 : ,2 (6)-

D = uu + vv. (57)

12



6.0 CALCULATION OF THE TIME OF MAXIMUM ECLIPSE
AND OF CONTACT TIMES

Iii this scction, which deals with calculation of the maximum eclipse and con-
tadt times for a specified observation site, an iterahive procedure is used which is
fuly described in Sections D.I and D).2 of Appendix 1) and then applied in

Sections D)2. D).3 and D).4 of that appendix. In essence, one selects an ephemeris
tImc "close to" the time of interest, ai.d then calculates a formulated correction
to this selected time. If necessar\, this corrected time is employed as the value
",lu ose to" the time of interest, the cycle repeated and the time of interest ultimately
esta bl i•,'dtlI.

6.1 TIME OF MAXIMUM ECLIPSE

Select a time To and - using etements appropriate to this time - calculate the

correction.

= -- D/n2 (58)

Iterate where necessary until La vaiue has been settled upon; the maximum
eclipse time, so determined, is designated t.

6.2 PENUMBRAL (FIRST AND FOURTH) CONTACTS

Select a time T, and - using eic.mcnts appropriate to this time - calculate

the correction

n 2 T1

in which

sin u v - vU u (60)
LI n n

and where the negative sign is selected for first contact (immersion) and the posi-
tive sign is selected for fourth contact (emersbion). Iterate where necessary.

i 3



6.3 UMBRAL (SECOND AND THIRD) CONTACTS

Employing elements appropriate to the time of maximum eclipse coniputed
following (58), calculate

- _ D± L2  cos 'tU (61)

in wbich

.i uv-vu ] K (62)

note that L2 lcos 4, I/n is the semi-duration Su as given in (D23). The positive sign
is selected either for second contact (immersion) in the case of a total (L2 < 0)
eclipse or third contact (emersion) for an annular (L2 > 0) cclipscý the negative
sign is selected either for third contact in a total eclipse or second contact in an
annular eclipse.
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7.0 CALCULATION OF POSITION ANGLES

('alculatc the position angle Q, of the ith contact point on the solar limb
mcasurcd eastwards from the north point (i.e., from the hour circle passing through
the solar center) by means of

u,

tanQ i = v (63)*

where we note that for i = 1,4 the algebraic sign of sin Q is that of u, whereas for
i = 2,3 it is opposite that of u, .

For sonic observational purposes, the position angle Vi measured eastwards
from the vertex (zenith point) of the solar limb may prove more useful. This is
given by

V, = Qi - Ci (64)

where the parallactic angle Ci is given approximately by

tan Ci 71, (65)

in which the sign of sin C, is that of ti.

I

* A! any time prior to, during, or after the eclipse, expresion (63) yields the position angle 01
of the line ioining the solar and lunar centers and thus, the position angles of the contact
points at the contact times
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8.0 CALCULATION OF DIFFERENTIAL CORRECTIONS

8.1 PRELIMINARY COEFFICIENTS

Calculate

A, = --P cos 0' cos( (66)

A2  = -(SC 2 +0.1568h x 10-')sinesin® (67)

A3  = cos sin 0 (68)

B, = - tsin d (69)

B2  = (SC' +0.1568hx lO-6 )(cos cosd
+ sin € sin d cos (3 ) (70)

B3  = sin cosd -cosesindcos ) (71)

8.2 CORRECTION TO CALCULATED TIME OF MAXIMUM EC LIPSE

Apply the differential correction (in hours) to the time of maximum eclipse
tm (calculated in Section 6.1 ) in the form

6tto = Pm 6), + qm 60 + rm 6h (72)

in which 6X anti 50 are expressed in minutes of arc, 6h is expressed in meters and
where*

P, (uA, +v B)/n' -sin ' (73)

q,= (6 A, +v B,)/n2 -sin 1' (74)

"fi. =(u A 3 + v B3 )/n 2 aB; (75)

a, - 638 x 10' meters and sin I' = 0.000 290).

p and qm are written with sin 1' in the coefficients of 6X and 50 in order to illustrate a con-

venient way of coping with both the "radian" nature of pm 6X and q &0 in the differential

expression, on the one hand, and the requirement of having convenient units for the measure

of differential displacements. This is done by noting that since 1 radian = F.7 17'45" = 3437.75

= 206,265", then 1' k 1/3438 radian and 1" = 1/206,265 radian. Further, we note that to a

good approximation, sin 1 = 1/3438 and sin 1" = 1/206,265. Hence, if 0" denotes the num-

ber of arc seconds in 0 (radians) then 8 lradians),. 0"/206,265 = 0" sin 1" = sin 0", and sim-

ilarly, 0 (radians) = 6"3438 = 0' sin 1' = sin 0'.
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8.3 CORRECTIONS TO CALCULATED TIMES OF FIRST AND
FOURTH CONTACTS

Apply the diffcrcntial corrections (in hours) to the times of first and fourth
contacts (calculated in Section 0.2) in the form

6t = pX -+ q60 + rbh (76)

in which 6X and 50 are expressed in minutes of arc, 6h is expressed in mcocrs and

where

p = (u A, + vB, )/D -s~n V (77)

q = (u A., + vB2 )/D -sin 1' (78)

r = (u A3 + vB,)VD a,. (79)

8.4 CORRECTIONS TOCALCULATED TIMES OF SECOND AND
THIRD CONTACTS

Apply the differential correction (in hours) to the times of second and third

contacts (calculated in Section 6.3) in the following way. Calculate

6 K = p, 6N + q, 60 + r, Ah (80)

in which
p, =(u B, -vA,)/n .sin I' (81)

q, = (u B2 - v*A2 )/n -sin 1' (82)

r, =(u B 3 - ' A3 )/na,. (83)

Next compute
(K * 6K)sin -( K (84)L2 :

where, as in (62), K and L2 are evaluated at tm and compute the corrected semi-
duration S. from

Uu

S' = L2 Icos ý' I/n. (85)

Apply (85) to the maximum eclipse time as corrected by (72). 1
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9.0 CALCULATION OF ECLIPSE MAGNITUDE AND OBSCURATION

9.1 MAGNITUDE

The magnitude is defined as the fraction of the solar diameter covered by
the lunar disc at the time of gre'alest phase in units of the solar diameter. Thus for

a partial eclir c the magnitude M ,* is given by

-in
M - (86)L, + L2

* or, if L2 is unavailable, by

M, = In-m (87)
2L, - 0.5464

For a total eclipse (L2 < 0) or ar. annular eclipse (L 2 > 0),

NI2 = L, - L2  (88)
L, + L2

' 9.2 OBSCURATION

Calculate the fraction S' of the solar disc obscured by the moon from

S' 2(s A+B - ssinC)/ir (89)

in which

cos C (L'i +L4 --2m')/(L -14) 0 <C <ir (90)

cosB = (L1 L2 + l)/m (L, +1L) 0 B B<tr (91)

A =r - (B + C) (02)

s = (LI - L2)/(L, + L2);, (93)

and where S' = S2 during the annular phase and S' = I during totality.

*W e 'te ht"L . 1. as given in. (86), and/or (,87). is a uset•l expremei-n for the fracoinn of the
solar diameter eclipsed at any time prior to second contact and following third contact,
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10.0 CALCULATION OF HELIOGRAPHIC COORDINATES
". OF ARBITRARY POINTS

10.1 HELIOGRAPHIC COORDINATES OF SUB-TERRESTRIAL POINT

The heliographic latitudc B0 and Ioniitudc Lo of the sub-terrestrial point
(ccntcr of solar disc) arc gotten fiom

sin160 sin (X.) -) (94)

cos Bo cos (L, - M)=- cos (> - $2) (95)

cos B, sin (Lo - M)-- 0.99200 sin -- O 2) (96)

in which
i i 2 = 730 40' + 50"25t (97)

M = 292" 766 t 14018439716 (243 0000.5 - J.D.) (98)

where

XG . the longitude of the sun which is given either by (A. 16) or (A.1 8),

t .. the time in years from 1850 A.D. to tile date of observation,

J.D.=. the Julian Day number of the date and time of observation.

10.2 POSITION ANGLE OF SUN'S AXIS OF ROTATION P

Ca',culate P, the Positic~n ang,!e measured .astwarids . from rs norh pui,,i) otih /

sun's rotation axis from

P = X + Y (99)

in which

tan X = -- cos XG tan e (100)

tan Y = -0.12722 cos (X0®- 12) (101)

whecre

c .=the obliquity of the ecliptic given by (A8)-

21
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10.3 HELIOGRAPHIC COORDINATES OF ARBITRARY POINTS

The heliographic longitude 1. and lalitudc B of any rpoint at position angle 0
and linear radial distance r on the solar disc of lineam radius ro* and can bc cal-

culated term

sin B = sin B,, cos P + cos 1o0 sin Pcos tP - 0) (102)

cos B sin tL -- L.) = sin Psin (11 - 0) (103)

where p can be calculated from

sin(P+ _ rS (104)

in which SD. the solar semi-diameter (in minutes of arc), is given by (A23).

Conversely, if L and B are given, 0 and r can be calculated trorn the inversion
of ( 02) in the form

cos P = sin B, sin B + cos Bo cos (L - LO) cos B, (105)

and from the application of (103) and (104).

10.4 HELIOGRAPHIC COORDINATES OF CONTACT POINTS

The ith contact poini at position angle Q, and radial distance r = rO, such

that p = 7r!2 - So and cos p : So sin 1' and sin p 1 1, has the heliographic coor-

dinates B, and L, given by the good approximation

hil B (S s, I I" Pb •, Vo ' •:x,. r --\ h 13(

cos B, sin (M - Lo) - sin (P - Q,) (107)

r and ro are meant (see Figure E-2) as linear measures in some convenient scale on, say, a
photograph.
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11.U TOPOCENTRIC LUNAR AND SOLAR QUANTITIES

11.1 TOPOCENTRIC RIGHT ASCEINSION DECLINATION AND
SEMI-DIAMETER OF MOON

11w 1topccitttik light ascension aty, declinaiion 6j, and distance rý of the

niorn are given I) the following exact rclations

rý cob 5i cos = Ft CON bc COS C P :o5s 0, Cos r•, (108)

rj cos 6j sin a =rz cos b5 sil - P cos 0' sin 7-, (109)

rj. sin 6j = rI sin 6( Psin ¢ (110)

in whilch oc and 6( arc the geocentric right ascension and declination, respcctiveh'
r., is the local sidereal time (L.S.T.) at r hours F.T. as given by (B4) and rg is the
geocentric lunar distance given by

Srt = a.,sin rr, (111)

where the luInr parallax i( comes from (A45).

The topocentric lunar seni-nianieter St is gotten from

S~r.
S sinS (112)

where the sine of the geocentric lunar semi-diameter is given by (A48).*

11.2 TOPOCENTRIC RIGHT ASCENSION AND DECLINATION OF SUN*"I

T=]he to,)o,'ejtric right ascension a- and declin'.tion ,5 of the sun are given
by the following approximate relations

cC__ =o - Aac)® (113)

6"0= 6® - A® (114)

[he difterence Sý - S, is called the augmentation

* The semi-diameter of the sun is essentially indifferent to topocentric distance variations.

23



in which

" "AO = 70 Ipcos0'sec6Csin(r,-c®)1 (115)

A-o =:i bo [Psin7'1 s 6 ® -pcoso'sin 8 0(rTV-®o)j (116)

where the solar parallax t® is given by (A22).

11.3 SOLAR OR LUNAR AZIMUTH AND ELEVATION;
SOLAR-LUNAR ANGULAR DISTANCE

The azimuth Az (measuwed east from north) and the elevation E2 of either
the sun or moon can be calcuiated from

,;os EQ cos Az sin 8' cos 0 - cos 8' sin 0 cos (r, - a') (117)

cos EV sin Az -cos 6' sin (%, - a') (118)

sin EQ = sin 6'sin 0+ cos 6'cos Oros (r, - a') (119)

in which (ar,' - a') is recognized as the hour angle of the body in question.

The solar-lunar angular distance (tne great circle separation of the centers of
the sun and moon) p, is given b%

cos P; = sin 68 sin 6j + co 8cos bi cos (ais- ax) (120)

or from (D.71) by
2m _ 2

+2 S (121)
L + L2
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-12.0 PREDICTION OF SUN SPOT IMMERSION!EMERSION

SIn this section, three alter,1 ztive methods will be presented !or deterrinramng
those times at which a particular point on the solar su.fa.e (a sun sp%. f

i example) is immersed by the leading edge and emerges from the trailing edrge of the
moon. The first method emp!oys the geocentric right ascension and deciini of

t the solar location as coordinates of a fictitious star and proceeds aith a "standard"
stellar occultation calculation. The s, ortid method is based c). !he Li .hvt at
immersion or emersion the separation of the point on the sý.n a.id *.un•, c.-iter 1s

* equal to the semi-diameter of the moon. The third alto.rativ• ;.cibes a 61ne-
rmatic simulation composed from a temporal sequence of stil." ,, th. conse-
quent "visual" observation of rot only the occultation of selected colar poiats but

F also the visual determination of other local circumstances as well.

12.1 "STANDARD" OCCULIATION

I If the neliographic coordinates of the spot Lt, B, are given, these must be
converted i. - the geocentric coordinates p,, and 0 by means of the relations

cos p, = cos B0 cos Bcos (Ls- L0 ) + sin B0 sin B, (122)

sin P, sin (P-6) = cos B, sin (L,-. L0) (123)

F and AS
sin (p, + P1 =) - (124)• '. S®

The right ascension a, and declination hI. of the spot are calculated according
S to

a ote® +p,, sinO sec ® (125)

F_[.~5( 4s P 1; "l•Cos 0.(126)

1 Calculate the rectangular coordinates x, y, z of the moon (in units of the

equatorial radius o,' the earth) with respect to that fundamental plane, whose axis
is maintained parallel to the earth center-sun spot vector, from

Sx = re (cos br sin (ac - a)d (127)

I y = r, [sin 6c cos 6, - cos 6t sin 53 cos ((Yr - a)] (128)

z = r. Isin 6.sin6 +cos6cscos ,cos(c(- )] (129)
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in which

r( I/sin;-rT (130)

Calculate the ephemeris hour angle 1A of the axis from

p, = E.S.T.-oas (131)

Calculate the hourly variations ,, •,ji 5 and 6s of the Besselian elements x, y,
y, and %s, respectively.

Calculate the rectangular coordinates of the observer with respect to the fun-
damental plane from

p= cosP' sin (132)

p7 = p sin c' os 6, - p cos 0' sin 6, cos (133)

= psin 'sin 6,+ p cos 'cos e cos (134)

in which the local hour angle of the axis, is given by

®_.• ua- )7.-1.002738 AT (135)

Calculate the hourly variations of t and r7 from

SP cos0' cos (E)s (136)

- p, t sin 6, (137)

and clculate the following combinations

u x-t; ;vMy- • m 2  u 2 -v 2  (138)

u : = ;- v•- 7; n' u v (139)

D uu + vv. (140)
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teIn the spirit of Section 6.0 make an "educated guess" as to the occultation
Stime To and calculate (138), (139), and (140) at that time. Next calculate the
correction T to To from

r = +_ 0.2724880 :cos'P I (141)
n2 Co'(

in which

sin u - V-(4
0.2724880 [ n

tie negative sign is selected for immersion and the positive sign selected for
emersion. The occultation time is then given by To + r which can be used to
recalculate (138), (139), and (140) in preparation for a second "run" ti~rough
(141) and (142) if higher precision is required.

The position angles, measured eastward from the north point of the moon
(i.e., from the hour circle passing through the lunar center), of immersion 'nd

!.. '-:on on the lunar limb are given by

Pý = N + 0, (143)

where
tan N=uv (144)

in which the sign of sin N is that of u.

.2 SUN. ,, •r.LUNAR CENTER SEPARATtON METHOD

Given a spot having a position angle 0s and a linear radial distance from the
solar center of r,, the spot's distance from the center of the moon 6? is given at an
arbitrary time following first contact and prior to fourth conitact by

1 = [p hb2 -2Ip,,bcos(0,-Qc) 1 (145)

in which

b ( L1 +L 2  S)® (147)
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and where Qr, tie position angle of the lunar center, is given, as in (63), by

tan QC =u/v (148)

The condition for immersion or for emersion is given by the condition that the
spot-lunar separation 63 is equal to the lunar radius r1 , or that

6Z-L, - L2 )S® 1= ( + (149)

Hence, in order to determine the times at which the ,pot is occulted and then
reappears, I is calculated at appropfiate intervals over the time span of interest,
followed by inverse interpolation to those times when the condition expressed in
(149) obtains.

Along these same iies, it is interesting to note that the heliographic longitude
and latitude of that portion uf the lunar limb outlined on the solar disc can be
readily calculated at any time as follows. For values of 0 such that p1 < S®,
calculate

p, = b cos (0 --- Q1) -- r - b2 sin' (0 - QG)]1. (150)

"Tne (p, ,0) pairs, so calculated can then be employed via (146), (104), (102) and
(103) to determine the corresponding (L, B) pairs of the lunar limb outline.

12.3 CINEMATIC SIMULATION METHOD

In this method the eclipse is cinematically simulated by a temporal sequence
of "stills" which can be drawn following calculation of the colar and lunar, topo-

centric right ascensions and declinations (or azimuths and elevations) and of the
lumar semi-diameter (the solar semi-diameter assumed constant). If topocentric
right ascensions and declinations are employed, the north point of the sun is easily
identified by means of the hour circle "grid." If azimuths and elevations are
employed, on the other hand, the north point is fixed by constructing the parallel
of declination tangent to the "northern" limb of the sun from the apparent diurnal
motion of the sun and by noting that the north point on each "still" is this tangent
point. Then, from the appropriately scaled value of r, (where the scale is deter-
mined by the selected right ascension!declination or azimuth/elevation grid) and
the value of 0, the spot (.;dl bt: Ut• l 011 eýill sils solar dis and. ti " o- ..... -

tion visualized.

i
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13.0 MISCELLANEOUS ALGORITHMS

13.1 ANGLE OF SHADOW CONE SURFACE AT OBSERVATION SITE

Tile angle which the shadow (penumbral or umbral) cone surface makes at an
observation site is, in fact, the angle which a generating ray of the cone (connec-
ting the observation site to the appropriatc contact point on the sun) makes at the
observation site.

Thus, from the calculation of the ith contact position angle Qi in (63) and
the fact that Plj, the topocentric angle subtended at the earth by the contact point
and the solar center, is the solar semi-diameter SO, the topocentric right ascen-
sion and declination of the point are given, following (125) and (126), by

cc aiý + S® sin Qi seco 0  (151)

6'; = 6-+ S®cosQ, (152)

where a'® and 66 are the topocentric right ascension and declination of the sun
calculated in (113) and (114). The azimuth and elevation of the point, and thus
of the shadow cone surface,are then readily calculated from (117), ( 18) and (119).

13.2 CENTROID OF THE UNOBSCURED SOLAR DISC

Pointing instructions for tracking the centroid of the unobscured solar disc
follow directly from the development in Section D.9 of Appendix D. There (the
solar semi-diameter being employed as the unit of distance), (D.83) gives as the
angle subtended at the observation site by the centroid and the solar center

S"- s2 (A - sin A cos A) ( 2m
P soS' (153)

where the symbols are those of Section 9.2. Furthermore, the position angle 0. is
given by

6. = QC - 7r (154)

where QC, the position angle of the solar-lunar center line, is given by (148). Deri-
vation of pointing instructions from (153) and (154) now follows the discussion of
Section 13.1.
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13.3 COORDINATES OF BORE-SIGHT VECTCR/GPHEROID
"LAYER" INTERSECTION POINT

Tihe following iterative procedure has been designed to calculate the latitude
and longitude of that point in a "layer" at height h L(in meters) above the earth
spheroid, which is bore-sighted along a line of azimuth Az and elevation Ek from
a location at latitude 0, longitude ), and height h (in meters) above the spheroid.

Step 1: Calculate

X = (p cos 4') ae (155)

Y = 0 (156)

Z = (p sin 0)a. (157)

from (43) and (44) and calculate

p = X2 +Y2 +ZlV" (158)

Step 11: Calculate the nth approximation of slant range 6t from

, = 6j,,- 1 + A(.- 1) (159)
L L

where

63(o = (p+0.15678503 x 10-6 h - c2 s2 I

- p sin ER (160)

,10)= 0 (161)

Step III: Calculate the nth approximation to the intersection
point coordinates from

X•n) = (a)
() X-+, - cos EQ cos Az sin 0 + sin ER cos ] (162)

y +fnn6 [cos ER sin Az1 (163)L - •L

7n)= 7.+41 W¶Icos EU cos Az cos 0 + sin EQ sin 01 (164)
-LL

and the nth approximation to its geocentric radius from

P(n) I(X(n))2 +(y1n) 2 + (Z(n))2 !" (165)
L (165
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Step IV: Calculate the nth approximation to the geocentric latitude of
the intersection point 01(n) from

In)= tan (L(16)

Step V: Calculate the nth approximation to the geodetic latitude of
the intersection point 4)(n) from

Otn)O =tan-' • tan Ot (n) (167)
L 10.9933054 + 1.1 x lO- (6

Step VI: Calculate the nth approximation to the geocentric radius of

the sub-i itersection point p") from

(n) = 0.99832707 + 000167644 cos 20(n)

- 0.00000352 cos 401n) (168)

and calculate the nih approximation to the geocentric latitude
of the sub-intersection point V'n) from

tan -' 10.99%3054 tan L n (169)

Step VII: Calculate nth approximation to layer height hL{n from

h(", = 1kpLny _ (- nY sin2 (si, ) -_ ,(n))]

L
preselected, calculate

st~l in= -(171)

sin [E + (p - On)]

-and retumrr, to Step Ui for (n + I )st approximation: if X'• < E

proceed to Step IX.
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Step IX: Calculate lonigitude change from nth approximation as

tar,-' (172)

U > 0 is in an eastward direction. Hence, if original longitude
is west, write XL = X (W) - W'n); if east, write XL = X (E) +

Step X: Final results, assuming nth approximation satisfactory, are:

S L; XL = XL 6?L L= 6n)

13.4 COORDINATES OF BORE-SIGHTED OBJECT OF KNOWN SLANT
RANGE

The following iterative procedure has been designed to calculate the latitude,
longitude and height above the spheroid of an object with azimuth Az, elevation EQ,
and slant range 6? observed from a location at latitude 0, longitude X, and height h
(in meters) above the spheroid.

Step 1: Calculate

X = (p cos 0') ae+ 1- cosEQ cos Az si 0
+ sin EQ•cos ] (173)

Y = 63 [cos El sin Az] (174)

Z = (p sin 0') a, + 6?1 cos EV cos Az cos 0
+sinEQ sin 0I (175)

Step 11: Calculate the longitude change b6 from

6X = tan-1 Y (176)
X

and, as in Step IX of preceding section, note that if original
longitude is west, write X = X(W)- 5X; if east, write X = M(E) + RX.

Step Ill: Calculate the geocentric latitude of object 0; from

0 tan Z (177)
t [X2 +Y 2 ]'
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and calculate the geocentric distance of object ro from

ro x= 2 + y 2 + Z 2 i(17)

Step IV: Calculate the nth approyintation to geocentric latitude of sub-

object point 0.') from

(179)

where A(O) =0

Step V: Calculate the nth approximation to the geodetic latitude of the

sub-object point On) from

O~n) an-l tan P'(n)
.t-n 1 (180)

O-)ta 0.9933054 .J(80

Step VI: Calculate the nth approximation to the geocentric radius of the

sub-object point from

p (n) = 0.99832707 + 0.00167 644 cos 20in)

-0.00000352 cos 4,0,e) (181)

Step VII: Calculate the nth approximation to the height Wn) from

hi") = r2 - (p•"n))2 s;l2 __(O~n) - 0, )) 1"

S 0 S S S-(n•) Co OS (n) - ,tn)) ' )

Step VIII Calculate

[ h11"1 sin(4s(n) - 6,(n))1
= sin-' (183)

ro

If IA(n) A-a~n* I) I e, return to Step IV for (n + I)st approxi-
mation; if I A( - A"n)I + <.E, proceed to Step IX.

Step ;X: Final results assuming nth approximation satisfactory are:

o = -+ 3X; ho hr.
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13.5 SOLAR/LUNAR VISIBIL!TY

The following simple criteria can be employed to determine whether the earth

either partia!ly or totally blocks the view of the sun or moon from a high-altitude

platform (such as a rocket or satellite). We will assume that the right ascension a&P

declination 5., and gcocentric radius rp of the platform are known functions of

timc;ttut the earth spheroid can be approximated by a sphere whose radius is that

of the actual earth spheroid at latitude 450 (i.e., 0.998331 a,); that the earth's

atmosphere has the effect of increasing the earth radius by 2%; and that augmenta-

tion of the moon's semi-diameter is neglected. Further, let 0, 6, S and ir represent
the right ascension, declination, semi-diameter aud parallax, respectively, of either

the sun or the moon.

Calculate

x= -cc,5 ,sin (a-a) (184)

y + cos 5 sin 6P - sin 6 cos 6P cos(ar -ca), (185)

an ire,' sin-' 09931• , (18,) -

and

A,= 1.02 (zr1 +0.998331 ir + S) (187)

A2 = 1.02 (rp + 0.998331 7r - S). (188)

Then, if

x2 + y2 > sin2 A, - no blocking, (189)

sin 2 A2 < x' + Y' < sin' A, - partial blocking, (190)

x 2 + y 2 <sin2 A2  - total blocking. (191)
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APPENDIX A

SQL. AR AND LUNAR EPrtEMEMULLS

A.0 INIRODUCTICON

This appendix prcments dI~oritlmi-s byý which geocen-rtric coordinates of boni
the sun and the moon can b~e cajlculated given the date (Julian D)i *v numb cr) and
ephemneris time (.)of int-ercst. These algorithms, in thle case of the sun, are
based primar-ily' upon the "lables" of Simon Newcomb 1

7 1 and, secondarily, upon
thle more recently pub!ishied "Tables" of Jean Meeus [51 In the case off the mioonl
the algoritlinis arc based primarily upon the "Improved Lunar Ephemer-is"i 31 and
secondarily upon Mieeus.

In Newcomb, the celestial Ic-igitude. lati, ~de and distance of thle sun is
developed to high accuracy in a lengthy series of! Cuilar and periodic terms, in the
"Improved Lunar Ephenmeris" the celestial longitud.,. latitude and parallax of the
muon is developed to high accuracy - following the Brown lunar theory - in an
even more extensive series of secular and periodic terms. For the pui poses of the
current work, however, where the accuracy requirements are less demanding.
conceptually modest, but numerically significant simplificaiions have been super-
imposed on these developments. These are:

a) All periodic terms with coefficients less than O'1O have
been, eliminated from both the solar and lunar longitude
d e VelopITim nt5

b) All periodic terms with coefficients less than 0'025 have
been eiiminatiad from both, the solar and lunar latitude
developments.

.."I rz."o-ic term-s itacocifficients less than '20 units in
".1C 8th decimal pi-ee 1,'ave been eliminated from thle solar
distance development;

d) All periodic ttrmis with coefficients less than 0'1005 have
been eliminated fromn thle lunar paraliax developmnent; and
finally,

c) The corrections to coeffricins of periodic termns givcn iin
1 able IN" of 13! have bMen eliminated.
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In al! other respects.* the developments of the solar and lunar tphemerides
of this work are identical to those given in these fundamentFi references and thus

could readily yield - at the expense of increased computational effort - the high
accurac, associated with their presentation in The American L-pemcris and
Aautical .lmanac by restitution of the terms eliminated in a) through e).

A.1 PRELIMINARY CALCULATIONS: DATE AND TIME OF: OBSERVATION

Given the Julian Day number of the date of observation J.D., calculate the
number of days that have elapsed since January 0.5 E.T., 1900, the funaamental

epoch with J-..ian D.y number 2415020.0. This is denoted by d and is given by

d=J.D.- 2415020,0 (A.1)

Next, convert thc Ephemeris Time of the observation into the decimal
fraction of a day by meaos of the relation

-.T. (A.2)
86,400

in w",ich E.T.. the ephemeris time of the observation, is expressed irn seconds.

Using (A.1) and (A.2). calculate the fraction of a Julian century of 36,525

days corresponding to the interval between the fundamental epoch and the date
and time of observation by ineans of

I - 0 _A.3)

36,525 A3

t d + T (A.4)

For multi-compoient terms, the retention of any component justifies retention of th6 ,',tire,
mult i-component term.
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A.2 PRELIMINARY CALCULATIONS: FUNDAMENTAL ARGUMENTS

Calculate the fundamental arguments L, f2, L, V, J, M, Sn, T], L0 , Q, Q', F and
D of Table A-I, in which

L .=. geocentric mean longitude of the moon

U .mean longitude of the moon's -scending node
L' geocentric mean lonitude of the sun
V heliocentric mean longitude of Venus*
J .=. heliocentric mean longitude of Jupiter
M heliocentric mean longitude of Mars

nS .heliocentric mean longitude of Saturn
T, heliocentric mean longitude of Earth
Lo .=.modified geocentric mean longitude of thie moon
S .=. mean anomaly of the moon

mean anomaly of the sun
F mean distance of the moon from the ascending node
D .-. mean elongation of the moon from the sun.

In Tatle A-1 all of these arguments are given in the form a + bt + ct 2 + dt 3 ; t is
given for the date and time of observation by (A.4) and the coefficients a, b, c and
d are given in terms of rcvolutionz'* (denoted by a superscript, lower case r).

A..I PRELIM INARY CALCULATIONS: NUTATiON AND THE OBLIQUITY

A.3.1 Calculation of Nutation in Lorngitude and Nutation in Obliquity

Calculate the nutation ii, longitude ak, from

Af = (- 17"'2327 - 00! 737T) sin •2 +
i, -O'2ai 4 0'00002 T, sin :12 4

+ I- 1 '2729 - C'.'00013 T) sin (212 + 2F - 2D) +
+ (0'.1261 - 0"09031 I) sin £'+

+ (- 0'2037 - 0'.00002 T) sin (2w + 2F) , (A.5)

V, , , M, Sn. Te, and Lo refer to the fixed equinox of 1850 in conmradistinction to a;; 01-,er

arguments which refer to the mean equinox of date; cf 131 p. 288 and 151 p. 14 regarding
this point.
We note that: 1° = 0'0027? 77778; 1' 000004 62963, "r OrO00 07716.
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TABLE A-1

FUNDAMENTAL ARGUMENTS

b cx 10 2 0  
d x 102

L Cr75120 601080 + 0'03660 17014 63356 - 235980r + 1077r
Q .71995 354167 - 14 70942 28332 + 432630 + 1266
L' .77693 521605 + 273 79092 64963 + 63044 -
V .95019 202160 + 445 03624 51095

J 65931 199845 + 23 08089 70898
M .81402 687500 + 145 56470 68007
e .73852 6V1233 + 9 29437 29984
Te .27499 653549 + 273 78030 94025

L .74926 733024 + 3'60 09952 62418

0 .82251 280093 + 3629 16456 84716 +1913865 +8203.99576 620370 + 273 77785 19279 - 31233 -1900
F .03125 2469s4 + 3674 81956 91688 - 668609 - 1.0
D .97427 079475 + 3386 31921 98393 - 299023 + 1077
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I
and calculatc the nutation in obliquity from

A( (9. 1 00 + 0:00091 T) cos IZ +
+ (-0'70904 + 0'00004 T) cos 2f2 -
+ (0"'5522- 0'.00029 T) cos(2M + 2F - 2D)+
+ (0"0884 -- 0'00005 T) cos (2f'S + 2F) (A.6)

in which all coefficients are given in arc seconds. It should be noted in passing that
64 smalier terms associated with A•' and 36 smaller terms associated with AI in
the complcte developments of these quantities (cf. 121 pp. 44 and 45) have been

: eliminated.

A.3.2 Calculation of Obliquity

Calculate the mean obliquity of the ecliptic EM from

%,= 23027'08'26 - 46"845T - 0.0059T2 + 0"00181T, (A.7)

Calculate the true obliquity of the ecliptic c from

4E = v + Af (A.8)

A.4 SOLAR RADIUS VECTOR, LONGITUDE AND LATITUDE

A.4.1 Calculation of LongPeriod Inequalities

Calculate the long period inequalities from

6L' 6"a0 sin (231 0 19 + 20 0 2T) +
-t (1882 - 0'016T) sin (57 0 24 + 150027T) +

0 " 2U1"• 6sin(3.8 i1n(3
+ 0"202 sin (315'6 + 893?3T) (A.9)

Apply long period inequalities to the geocentric mean longitude of sun L' and
mean anomaly of sun 2' to yield

= L'+&L' (A.10)

I_
t and

CC ( '+ L A.] I)
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A.4.2 Calculation ot the Solar Radius Vector

Calculate the unlpcrturl',d solar radius v:,xto R." froth

R = 1.00(,1 2033 0.0000 0070 T +

4 ( 0 (17 40 28 + 0.0000 4179 T + 0.0000 0126 T2 ) cos R'. +
+ ( 0.0001 4027 + 0.0000 00 70 T) cos 2R'

+ 0.0000 0176 + 0.0000 0001 T) cos .3Q (A.12)

Calculate the planetary perturbations in the solar radius vector from the

cos:n, terms presented in Table A-2. Each term is of the form

II K cos (iK, + T - Planet) + Angle)

in which the coefficient K is given in units of the 8th aecimal place, i and j are

"tabulated positive or negative integers, Planet stands for V, M. J or Sn, and Angle

is the tabulated phase angie in degrees. The sum of these planetary terms is

denoted by ARp.

Calculate the lunar perturbations in the solar radius vector ARR from

AR( = 3076 cosD+85 cos(D+() - 306 cos(D-- i)--

- 32 cos () + V') + 83 cos (D - V') (A.13)

where the coefficients arc given in units of the 8th decimal place.

Calculate the solar radius vector R from the expression

R=Ru (I +ARp+ARk). (A.14)

A.4.3 Calculatios, of the Apparent Solar Longitude

Caiculate the equation of the center from the expression

C =(6910.'057- 17"240T -0052T 2 )sinQ' +
+ (72"338 - 0''30l T ) sin 2'N +

+ (I 'u54 - 0.001 T) sin 3R (A.I 5)
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TABLE A-2

PLANETARY PERTURBATIONS IN SOLAR RADIUS VECTOR

CoefficientP 11TO - V) Angle

"543.2 0 - 1 1800
1575.4 0 -2 0.12
204.6 0 - 3 0.27

86.6 0 -4 - 0.11
37.5 0 -5 -

21.6 + 1 - 1 175.9
36.8 + 1 -2 0.2

200.1 - 1 -2 168.5
344.7 - 1 -3 167.95
45.1 - 1 -4 348.8
"44.7 -2 -3 322.2
21.6 -2 -4 138A4
32.5 -2 -5 319.9

!Te -M)

34.5 0 + 1 0,6
473.6 0 +2 - 0.3

38.7 0 +3 +182.3

34.8 -1 +2 + 40.9
49.5 -1 +3 +227.8

110.1 -1 +4 226.92
24.6 -1 +5 49.3
24.2 -2 + 4 277.6
20.5 -2 + 5 95.7
32.0 -2 +6 94.9

(Te -- J)

1627.3 0 + 1 1.10
927.0 0 + 1 180.22
64.7 0 + 3 175.9
47.9 + 1 + 1 23.6
23.7 + 1 + 2 173.6
56.2 - 1 + 1 250.2

336.0 - 1 + 2 202-58
184.9 -1 +3 87.23

40.1 -2 +3 103.3
26.0 -2 + 4 353.9S~(T - Sn)

98.8 0 + 1 0'36

37.3 0 +2 180.1
5.. -1 + 2 182.6

*in units of the 8th decimal place.
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Calculate the planetary perturbations in the solar longitude from the cosine

terms presented in Table A-3 in which the coefficient of each term is given in arc

seconds: the suni of these cosine terms is denoted by ALp.

Calculate the lunar perturbations in the solar longitude Ai- from

AL-v = 6(454 sin 1) + 0'.177 sin (D + 2) - 0o'424 sin (D - 2)
+ 0"172 sin (D - 'C) (A. 16)

Calculate the solar longitude referred to tVe mean equinox of date L',r from

L L4-C +ALp+ALV (A.]7)

Calculate th, apparent solar longitude (referred to the true equinox of date

and corrected for aberrc ion) from

V = L' + A ý - 20.496/R. (A. 18)

A.4.4 Calculation of the Apparent Solar Latitude

Calculate the planetary perturbations in the solar latitude from the cosine

terms presented in Table A-4 in which the coefficient of each term is given in arc

seconds; the sum of these terms is denoted by AO'p.

Calculate the lunar perturbations in the solar latitude Ao;, from

Ap1 = 0'.576 sin F - 0"047 sin (F - Q). (A.19)

Calculate the apparent solar latitude from the following expression"

ýT = AA4+ AN (A.-20)

The expression (A.131 yields the latitude for the mean ecliptic of date directly; since the

aberrative correction is negligible and the latitude is unaffected by nutation, the expression is

also the apparent latitude.
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TABLE A-3

PLANETARY PERTURBATIONS IN SOLAR LONGITUDE

Coefficient Rr (To - V) Angle

41858 0 - 1 2700
5.526 0 -2 90.12
0.666 0 -3 90.41
0.210 0 -4 89.8
0.116 + 1 -2 90.7
2.497 - 1 -2 257.75
1.559 - 1 -3 257.96
0.144 - 1 -4 79.0
1.024 -2 -3 230.85
0.152 -2 -4 227.4
0.123 -2 -5 49.8
0.154 -3 -5 214.1

(Te - M)

O.ý73 0 + I 90r6
2.043 0 + 2 89.76

0.129 0 +3 273.0
1.770 - 1 +2 306.27
0.425 - 1 +3 317.70
0.500 - 1 +4 316.94
0.585 -2 + 4 185.82
0.204 -- 2 + 5 185.5
0.154 -2 + 6 185.0
0.101 -3 +6 53.9
0,106 -3 + 7 53.3

(To - J)

7.'208 0 + 1 9iTO0
2.731 0 + 2 270.25
0. : .-4 0 +3 265.2
0.163 + 1 + 1 110.2
2.600 - 1 + 1 174.77
1.610 - 1 +2 292.60
0.556 - 1 +3 177.31
0.210 -2 + 3 193.2

(T8 - Sn)

0.419 0 + 1 90'34
0. 108 0 +2 270.1
0.320 -1 + 1 259.22
0.112 -1 +2 273.1

TABLE A-4

PLANETARY PERTURBATIONS IN SOLAR LATITUDE

Coefficient Q, (Te - V) Angle

03b29 + 1 - 1 296'
0.092 - 1 - 1 244.6
0.067 -1 -- 2 244.8
0.210 -1 -3 244.5
0.031 -1 -4 654

(Te - J)
+2

S071'66 -1 26816
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A5 SOLAR RIGHT ASCENSION, DECLINATION PARALLAX
AND SEMI-DIAMETER

A.5-1 Calculation of Solar Right Asce.,sion and Declination

Caic'ulate the so!ar right ascCnsion11 and declination 6® from

Cos he COS CO 1 COS X,

COS 6®sin txC• =-sin N' cos - 1).2• x 10- (A.21)

sil bcW ) = sin X' sin + 44.48 0' x 10'.

A.5.2 Calculation of Solar Parallax and Semi-Diameter

Calculate the ,olar parallax 7r® from

rr® = %!R = 8"794/R. (A.22)

Calculate the solkr semi-diameter appropriate frr eclipse calculations* from

s® = Su!R = 15'59"63/R (A.23)

A.6 LUNAR LONGITUDE, LATITUDE AND PARALLAX

A.6.1 Calculation of Additive Terms

Calculate the, additive terms" of Table A-5; these are designated as:

6L =. the sum of the 8 sine terms in L,

6 .. the sum of the 6 sine terms in t,

6I. the sum of the 5 sine termn in P,

bT,=- 6V' . the sum of the 4 sine terms in T1,>',***
S.1 .=. the single sine term of J,

6Sn .. the single sine term of S,.
6-y .=.the sum of the 3 cosine terms in -V.

* For other than eclipse ca~culations, the adopted value of the semi-diameter at unit distance

So is 16"01'18.

Each term ;s of he form K s'a, 4 bt + Ct'2' with its coefficient K listed both in arc seconds
and revolutions; when applied to the fundamental arguments of Table A-i, the latter unit is

the more useful.

These are, in fact, the long period inequalities of (A.9).

46•



TABLE 11-5

ADDITIVE TERMS

Coeff.•.er1
Ad b x10 12  c x10

to: Serial No. 
x 1012

L 16Z8 4 0'. 4 64 8148' 0'.1422 2222 4 15j 6233' +

L 1629 + 0.31 239197 .23363774 + 1232723 * 191'

L 1636 1 14.2- 1101 0802 53733431 - 10104982 4 191

L 1638 + 7.261 5602623 .71995354 -1 47094228 + 43

L 1639 + 0.282 21 7592 .48398132 -1 47269147 4 43

L 145 U 0.237 182870 84536324 - 11459387

L 1646 * 0.108 8 3333 .40353088 - 21488317

L 1648 + 0.126 9 7222 .6tb4 4893 7864 5335

S1631 
- 2"10 16-;0370' .14222222 + 153 6238'

S1663 
- 0.118 91049 .53733431 - 10104982 +191

1664 2.076 160 1851 .7199 5354 - 1 4709 4228 + 43

1865 -- 0.840 648148 .48398132 -1 47269147 • 43

S1666 -- 0.10 77160 .58750000 9 9051 i8

S1667 02593 457562 .84536324 - 1145 9387

1632 - 0.•3 486111f .14222222 + 153 V3• '

1669 + 0.17 13 1172 .5373 3431 - 1010 4fj82 4 191

1670 +95.96 7404 3210 .7199 5354 -147094228 4 43

1671 + 15.58 1202 1605 .48398132 -i 47269147 4 43

1672 + 1.86 1435185 .52453688 -147i62675 + 43

"Te, Q' 1633 - 6"40 493 8271' .14222222 + 153 6238'

Te, ' 1673 - 0.27 208333 .58750000 + 90-,O18

TeR' 1674 - 1.89 1458333 .94536324 - ;145 9387

Te, q' 1675 + 0.20 154321 .6104 3085 - 6/71 8733

7 1676 -,-3 33 179f' .71995354 - 147094228 4 43166 -- 3.,2 - 1.. 47694 43

1677 - 0.698 538580 .48398132 1 4726914

1678 - 0.083 64043 .52453688 - 1 47162675 3

1634 + 033 9 1666 6667' .3'f29 1r-67 + 292 7979'

Sn 1635 - 0•3 230555 5556' .3729116? 292 7979'
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Apply these terms to the fundamental arguments as follows:

L = L+6L (A.24)
V•,. = V+ 6 (% T,• T, + '1• (A.25)

J, = J + SJ (A.26)

S", = S. + 6S (A.27)

¢ = ý -t6L- 65L(A.28)

F, = F +4L- 612 (A.29)

and

D, D+6L (A.30)

A.6.2 Calculation of the Apparent Lunar Longitude

Calculate the Code 0: Solar Terms in Longitude from Table A-6. Each term
is of the form

Kq sin [i Q+A +j F+k + nm D,

in which the coefficient K in arc seconds is given in column 1, 'he multiples of the
fundamentalarguments lil < 6;j < 4. IkI -< 5 and Iml < 8 are given in columns 3
through 6, respectively, and

q - (1 + 2.208 x 10"6)121 (0 - 6.832 x 10"st)UI

(I + 2 .708 x 10-6 + 139.97 8 8 YC )lkI (A.31)

where 6-y. (expressed in revolutions) comes from Section 6. i. The sum of the 117
sine terms will be denoted by AL..

Calculate the Code 0; P~anctary Terms in Longitude from the sine terms
presented in thl, latter section of 'fable A-6. The sum of the 26 sine terms will be
denoted by ALPI

Calculate the lunar longitude referred to the mein equinox of date from

Lm = L + ALs+ AL. (A.32)

Calculate the apparent lurna longitude (referred to the true equinox of date)*
from

NA = Lm + Aý - 0'.189 sin 02 +0"'168 sin D. (A.33)

"To within the accuracy of th's •.'•mris, (A.33) also includes aberration; for higher accuracy,

specific aberrative correctionls liured in [2] p. 109 are required.
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TA11.E A-#

CODE 0; SOLAR TERMS IN LONGITUDE

Sm. NO. Coeff." k' f'€ F

1 + 0.127 0 0 0 :6
2 + 13.902 0 0 0 +4.

3- + 2369.912 0 0 0 12

5 + 1.979 +1 0 0 +4

6. + 191.953 +1 0 0 ,2

7 +22639.500 +1 0 0 0

C - 4586.465 +1 0 0 -2

9. - 38.428 +1 0 a -4

10 - 0.393 +1 0 0

13 - 0.289 0 +1 0 +4

14" - 24.420 0 +1 0 +2

15" - 668.146 0 +1 0 0

16* - 165.145 0 +1 0 -2

17 - 1.877 0 +1 0 -4

20 + 0.403 0 0 0 +3

21" - 125.154 0 0 0 .1

23 + 0.213 +2 0 0 +4

24 + 14.387 +2 0 0 t2

25" + 769.016 42 0 0 0

26 - 211.656 +2 0 0 -2

27 - 30.7-13 +2 0 0 --4

28 - 0.570 +2 0 0 --6

31 - 2.921 +1 +1 0 +2

32* - 109.673 +1 + 0 0

33 - 205.962 +1 +1 0 --2

34 - 4.391 +1 +1 0 -4

38 + 0.283 +- - 1 0 +4

39 + 14.577 +1 -1 0 +2

40 147.687 +1 -1 0 0

, 8.475 +! -1 0 -2

42 0.636 +4 -I c

45 - 0-189 u +2 0 +2

46 - -!.486 0 A2 0 0

47 - -096 0 +2 0 -2

48 - 0.151 0 +2 0 -4

52 - 5.41 0 02 +2

532 - 411606 0 0 +2 0

53 - 55.103 0 0 +2 -2
55 - 8.466 4 1 0 0 + I

59 + 18.609 +1 0 0 -1

60 + 3.215 +1 0 0 -3

63 + 0.150 0 +1 0 +3

54 + 18.023 0 +1 0 +1

6• + 0560 0 +1 -1
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TA8•L- A-4 (COttI.

Sra. No, Capl., 2c c F, Dc

".O 03 0 0 12

70 ,+36.124 +3 0 0 0

71 -13193 13 0 0 -2

72 - 1.187 +3 0l 0 -4

73 - 0.293 +3 0 0 -6

76 - 0.290 +2 -1 0 +2

77 - 7.649 +, +1 0 0

78 - 8.627 +9 +1 0 -2

79 -- 2.740 +2 +1 0 -4

83 + 1.181 +2 -1 V +2

84 + 9.703 02 -1 0 0

85 - 2.494 +2 -1 0 -2

86 + 0.360 +2 -1 0 -4

89 - 1.167 +1 +2 0 0

90 - 7.412 +1 +2 0 -2

91 - 0.311 +1 +2 0 -4

94 0.757 +1 -2 0 +2

95 i2,580 +1 -: 0 0

96 + 2.533 +1 -2 0 -2

98 - 0.103 0 +3 0 0

99 - 0.344 0 +3 0 -2

102 - 0.992 +1 0 +2 +2

103 -45.099 +1 0 +2 0

104 - 0.179 +1 0 +2 -2

105 - 0.301 +1 0 +2 -4

108 - 6.382 +1 0 -2 +2

10" +39.628 +1 0 -2 0

110 + 9.366 +1 0 -2 -2

M 4 0.202 +1 0 -2 -4

115 + 0.415 0 +1 +2 0

116 - 2.152 0 41 +2 -2

118 - 1.440 0 .1 -2 +2

120 + 0.384 0 +1 -2 -2

123 - 0.586 +2 0 0 +1

124 + 1.750 +2 0 0 -1

125 + 1.225 +2 0 0 -3
129 + 1,267 +1 +1 0 +1

130 + 0.137 +1 +1 0 -1

131 + 0.233 +1 +1 0
134 -0.122 +1 -1 0 +1

135 - 1.089 +1 -1 0 -1

136 -0.276 +1 -1 0 -3

143 0.255 0 0 +2 +1

144 + 0.584 0 0 +2 -1

145 + 0254 0 02 -3

149 + 1.938 +4 0 0 0
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TABLE A4 ((Wnt.

Set No. F D

150 - 0.952 +4 0 0 -2
155 - 0.551 13 41 0 0
150 - 0.482 43 -t 1 0 -2
157 - 0.100 13 41 0 -4
162 + 0.681 13 -1 0 0
163 - 0.183 +3 -1 0 -2
167 - 0.297 -t2 42 0 -2
168 - 0.161 +2 42 0 -4
172 + 0.197 +2 -2 0 0
173 t 0.254 +2 -2 0 -2

177 - 0.250 41 +3 0 --2
186 - 0.123 2 0 +2 +2

187 - 3995 +2 0 +2 0
188 4 0.r57 +2 0 +2 -2
192 - 0.459 +2 0 -2 +2
193 - 1.298 +2 0 -2 0
194 + 0.538 +2 0 -2 -2
195 + 0.173 +2 0 -2 -4
198 + 0.263 +1 +1 +2 0
205 + 0.426 +1 +1 -2 -2

209 - 0.304 +1 -1 +2 0
213 - 0.372 +1 -1 -2 +2
224 + 0.418 0 0 +4 0
227 + 0.130 +3 0 0 -1
237 - 0.352 +2 -1 0 -1
264 + 0.113 +5 0 0 0
295 - 0.330 +3 0 +2 0

CODE 0:. PLANETARY TERMS IN LONGITUDE

Ser. No. Coeff." ý Dc Angle Tec Planet

986 0.822 0 0 0T +1 -IV
987 0.307 0 0 1798 +2 -2V

1001 0.348 0 0 272.9 +3 -2V

1002 0.176 0 0 271.7 +4 -3V
1021 0.129 +1 0 180 -1 +IV
1022 0.152 +1 0 0 +1 -1V

1024 0.127 -1 0 180 +3 -3V
1061 0.136 0 +2 179.5 +2 -2V
1(#97 0.662 -1 +2 180 -3 +3V
1099 0.137 -1 +2 0 -2 -2V
1101 0.133 -1 +2 0 +1 -1V
1102 0.157 -1 +2 179.6 42 -2V

" ~51



TAPLI: A4 ICcAt.)

Se. No. C04" Ancc DI Pbione

1172 0.643 0 0 1786% -1 41J

1173 0187 0 0 31).6 -2 4 2J

1178 0. 16F) 0 0 241.5 -1 +2J

1187 0.144 + 1 0 1.0 +1 -1.

1188 0,158 +I 0 179.0 - I ÷ij

1189 0.190 41 0 180 -2 423

120e 0.167 0 +2 178.5 -1 +1J

1225 1.137 -1 +2 180.3 +2 -2J

1227 0.211 -1 +2 178.4 -1 +1!

1236 0.436 -1 +2 7.5 +2 -3.1

1269 0.240 +2 -2 179.9 -2 +2J

1270 0.284 +2 -2 172.b -2 +3J

1279 0.195 0 0 180w2 -2 +2M

1283 0.327 0 0 224.4 -1 +2M

'In Tables A-6, A-7 and A -8, the coefficients of those terms whose serial numbers

carry asteisks are subiect to small corrections given in Table IV of 131 theme

corrections have t-een eliminated in this report.
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A,6.3 Calculatiun of the Apparent Lunajr Latitude

( i' i ll., ic O 'lt,- .%I 'l) r It fill% III l i t d('. S f Ilil t| |,.h A "7 ',• i.h r%' v. tl,
ti nl, j~ll 1wI h'it'. •I

K,I S I V 1iK,, 4 ' 4 4k in 11 1

a.nd againl q is picii 1.) tA 31). h11 sum ot tiL. 1 7S " S1'11 cri•, will bC dcnot,'d
Iry Ak]

(ICahItlIIL'

5~~ 3~ -t

and calculatc sill S. sin 3is and ,,in 5S.

Ncvm. c.I'latI.

Isill SI = 7 Sil S i lls

I i 3Sm z tl7q ,' sill 3S (A. 3(6)

and
Ism 5SI ( A .sin 55 "I.'V i

,W'here

1 = (1 + 2.708 x \0" + 13)Q'78 6•1 tA.1 3S)

(.'.iiljte hc ( I ,dc I So ,ar Tc-r Ii s iIn I,:ti t'c. Y IC tron 3I le A-7 wk, c

I e'ach tcrml ha,,s the form

Kq Cos Il +jv'. + kF. + nl) I1

1 lhc .,m o1 fhie 00 o•i•i-, tcrnms will lie denoted bv -Y, C.

Next calcut*

A 18,519' '700 C-)
B 33 (r')Q) s 10 'A
C" 4 21(, N 10 "A t.411

1 ) 5 3)9)f, 10 " A.

- - )- "•,I
We not inpassmnqthat A 1 4,CB -A. C Aand i -,Awhet,,)I.t: In v..

Mhe values ol the cotflicients given in Table A 7 Code 6 Solar Tervs it? Laritut '. Pt thpI

Terms having Senial Numbefs 797, 798 and 799. iepectively

4 1'
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TABLE A-7

CODE 1: SOLAR TERMS IN LATITUDES

Ser. No. Coeff. V. F De

397 - 112.79 0 0 0 +1

398 + 2373.36 0 0 0 +2

399 - 4-01 0 0 0 +3

400 4 14.06 0 0 0 +4

401 - 0.13 0 0 0 +5

402 + 0.60 0 0 0 +6

404 + 0.25 .1 0 0 +6

406 + 6.98 +1 0 0 +4

407 - 0.74 4 1 0 0 +3

408 + 192.72 +1 0 0 +2

409 - 13.51 +1 0 0 +1

410 +22609.07 +1 0 0 0

411 + 3.59 +1 0 0 -1

412 - 4578.13 +1 0 0 -2

413 + 5.44 +1 0 0 -3

414 - 38.64 +1 0 0 -4

415 + 0.25 +1 0 0 -6

416 - 1.43 +1 0 0 -6

417 - 0.03 +1 0 0 -8

418 + 0.03 +2 0 0 +6

419 + 1.02 +2 0 0 +4

420 - 0.10 +2 0 0 +3

421 + 14.78 +2 0 0 +2

422 - 1.20 +2 0 0 +1

423 + 767.96 +2 0 0 0

424 + 2.01 +2 0 0 -1

425 - 15253 +2 0 0 -2

426 0.9i _2 0 0 -3

427 - 34.07 42 0 0 -4

428 + 0. ;-'1&')L 0

429 - 1.40 +2 0 0 -6

4 V - 0.07 +2 0 0 --6

431 + 0.16 +3 0 0 +4

432 + 2.96 +3 0 0 +2

433 - 0.09 +3 0 0 +1

434 + 50.64 +3 0 0 0

435 + 0.19 +3 0 0 -1
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TABLE A-7 iCont.)

ar. No. Co." c VC Fc Dc

436 - 1640 +3 0 0 -2

437 + 0-05 * 3 0 0 -3

438 - 0.74 43 0 0 -4

439 + 0-03 *3 0 0 -5

440 -- 0.31 43 0 0 -6

443 + 0.30 44 0 0 44

444 + 3.60 44 0 0 0

445 - 1.58 44 0 0 -2

447 - 0.03 -44 0 0 -6

448 + 0.04 +5 0 0 +2

"449 + 0-28 +5 0 0 0

450 - 0.14 +5 0 0 -2

452 - 0.06 0 +1 0 +6

454 - 1.59 0 +1 0 +4

455 + 0.53 0 +1 0 +3

456 - 25.10 0 t1 0 +2

457 + 17.93 0 +1 0 +1

458 -126.98 0 +1 0 0

459 + 032 0 +1 0 -1

460 -11 o.06 0 +1 0 -2

461 + 0.29 0 +1 0 -3

462 - 6.46 0 +1 0 -4

463 - 0.22 0 + 1 0 -6

464 - 0.04 0 +2 0 +4

465 - 1.68 0 +2 0 +2
466 -- 0.04 0 +2 0 + I

467 -0.66 0 +2 C 0

468 -0.04 0 42 0 -1

469 - 16.35 0 +2 0 -2

471 0.65 0 +2 0 -4

472 - 0.51 0 0 -2

475 - O.b0 +1 - 0 +4

476 + 0.08 +1 +1 0 +3

477 - 11.75 +1 +1 0 +2
478 +1.52 +1 +1 0 +1

479 -115.18 +1 +1 0 0
S480 - 0.12 +1 +1 0 -1

481 -182.36 +1 +1 0 -2

482 + 0.36 +1 +1 0 -3

483 .- .66 + I +--

S485 - 0.37 -f +1 0 -6

_ 486 - 0.09 +2 +2 0 0

487 - 0.27 +2 +2 0 -2

488 - 0.16 42 +2 0 -4

490 - 0.09 -1 41 0 +6

492 - 2.27 -1 .1 0 +4
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TAb'.E A-7 (Cont.)

Ser. No. Conff." VC i°€ Fc De

493 038 -1 +1 0 +3

494 - 23.59 - 4 1 0 +2

495 - 0.55 -1 +1 0 +1

496 -13876 -1 +1 0 0

497 + 0.33 -1 +1 0 -1

498 - 31.70 -1 +1 0 -2

499 * 0.04 -' -f 1 0 -3

600 - 1.53 -1 +1 0 -4

501 - 0.06 -1 41 0 -6

502 - 0.04 -2 +2 0 +4

503 - 0.21 -2 +2 0 +2

504 - 0.22 -2 +2 0 0

505 - 0.2: - -2 +2 0 -2

506 - 0.07 +2 +1 0 +4

507 - 1.45 +2 +1 0 +2

508 4 0.14 +2 +1 0 +1

509 - 10-56 +2 +1 0 0

511 - 7.59 +2 +1 0 -2

512 + 0.07 +2 4-1 0 -3

513 - 2.54 +2 +1 0 -4

514 - 0.25 +2 +1 0 -6

615 + 0.22 +2 -1 0 +4

516 + 3.32 +2 -1 0 +2

517 - 0.04 +2 -1 0 +1

618 + 11.67 +2 -1 0 0

519 - 0.37 +2 -1 0 -1

520 - 1.17 +2 -1 0 -2

521 + 0.04 +2 -1 0 -3

622 + 0.20 +2 -1 0 -4

523 + 0.06 +2 -1 0 -6

524 - 0.17 43 1 0 +2

526 - 0.94 +3 +1 0 0

527 - 0.67 +3 +1 0 -2

528 - 0.08 +3 +1 0 -4

529 - 0.06 +3 +1 0 -6

531 + 0.36 +3 -1 0 +2

532 + 0.96 +3 -1 0 0

533 - 0.23 +3 -1 0 -2

542 - 0.13 +1 +2 0 +2

543 - 1.25 +1 42 0 0
544 - 6.12 -rl +2 0 -2

545 - 0.65 + 1 +2 0 -4

546 - 003 . +2 0 -6

547 - 0.07 -1 +2 0 +4

548 - 2.40 -1 +2 0 +2

b49 - 2.32 -1 +2 0 0
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I
TABLE A-? (Cont.)

Sw. No. Cosf." f c fc F Dc

550 - 1.82 -1 42 0 -2

651 - 0.12 -1 +2 0 -4

553 - 0.22 f1 43 0 -2

656 - 0.04 -1 43 0 0

65,8 -- 006 -1 4,3 ) -2

560 - 0.04 0 0 42 42

561 - 020 0 0 42 0

562 . 0.84 0 0 42 -1

563 - 52.14 0 c +2 -2

564 . 0.25 0 0 +2 -3

565 - 1 67 0 0 42 -4

566 - 0.02 0 0 *2 -6

669 + 0.07 +1 0 +2 -1

570 - 9.52 +1 0 +2 -2

571 4 0.04 +1 0 +2 -3

672 - 0.33 +1 0 +2 -4

674 - 0.04 +1 0 '2 "-6

677 - G.'r1 -1 0 +2 +2

578 + 0.06 -1 0 +2 + 1

579 - 85.13 -1 0 +2 0

580 + 0.04 -1 0 42 -1

581 + 3.37 -1 0 +2 --2

583 + 0.04 -1 0 +2 -,4

585 -- 0.75 +2 0 +2 -2

588 - 1.14 -2 0 +2 +2

589 - 0.74 -2 0 +2 0

590 * 0.38 -2 0 +2 -2

593 - 0.04 +3 0 +2 0

594 - 0.07 +3 0 +2 -2

595 - 0.08 -3 0 +2 +4

597 - 0.11 -3 0 +2 0

58 +. -J3 , 2 2

603 + 0.10 0 +1 +2 0

604 - 2.26 0 +1 +2 -2

606 - 0.11 0 +-1 +2 -4

607 + 0.04 0 -1 +2 +2

608 + 0.16 0 -1 +2 0

609 - 0.06 0 -1 +2 -1

610 + 1.30 0 -1 +2 -2

611 + 0.08 0 -1 +2 -4

612 - 009 0 +2 +2 -2

617 0.35 +1 +1 +2 -2

618 0.03 +1 +1 +2 -4

619 - 0.07 -1 -1 +2 42

620 + 0.31 -1 -1 +2 0

624 + 0.03 +1 -1 +2 0
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TABLE A .7 (Cont.)

Ser. No. Coef." kV c e

625 + 0.07 +1 -1 -2 -2

627 - 0.33 -. +, +2 0

029 + 0.19 -+ +2 -2

CODE 2: SOLAR TERMS IN LATITUDE, -iC

641 - 0.725 0 0 0 +1

642 + 0.601 0 0 0 +2

643 + 0.394 0 0 0 +3

646 - 0.042 G 0 0 +6

650 - 0.445 -1 0 0 +4

651 + 0.0,8 +1 0 0 13

652 + 02i +1 0 0 +2

653 + 0.455 +1 0 0 +1

K[4 0.079 +1 0 0 0

£55 - Otpj4 41 0 0 -1

656 J.077 +1 0 0 -2

657 -0.192 +1 0 0 -3

660 - 0.092 + 0 0 -6

663 - 0,074 +2 0 0 +4

666 + 0.054 +2 0 0 +1

667 + 0107 +2 0 0 0

669 + 5.679 +2 0 0 -2

670 - 0.030 +2 0 0 -3

671 - 0.308 +2 0 0 -4

673 - 0.074 +2 0 0 -6

676 - 0.166 +3 0 0 +2

f678 - 1.300 +3 0 0 0

680 +3 0 0 -2

682 + 0.042 +3 0 0 -4

697 - 0.145 +4 0 0 0
688 + 0.062 +4 0 0 -2
696 + 0.123 0 +1 0 +4

697 - 0.032 0 +1 0 +3
698 + 0.040 0 +1 0 +2

700 - 1.302 0 +1 0 0
70"V + 0.054 0 + 1 0 -2

703 + 0.031 0 +1 0 -3

704 - 0.416 v + 0 -4

707 + 0.131 0 +2 0 +2

708 - 0.037 0 .r2 0 0

709 - 0.740 0 +2 0 -2

7 1- 0.044 0 +2 0 -4

712 - 0.C25 0 43 0 -2

715 + 0.041 +1 +1 0 +4
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TABLE A-7 (Cont.)

Ser. No. Coeff." R, F D

717 4 0.787 41 +1 0 +2
719 + 0.461 --1 41 0 0
721 4 2.056 +1 +1 0 -2

723 - 0_-'i +1 +1 J -4
725 - 0.027 +1 +1 0 --G
731 + 0.14, -1 +1 0 +4

733 - 0.443 -1 +1 0 +2
735 + 0.670 -1 +1 0 0
737 - 1.540 -1 +1 0 -2
"i39 - 0.111 -1 +1 0 -4
744 + 0.116 +2 +1 0 +2
746 + 0.259 +2 +1 0 0
747 + 0.078 +2 +1 0 -2
752 - 0.212 +2 -1 0 +2

753 - 0.151 +2 -1 n 0
760 + 0.032 +3 + 1 0 0
766 - 0,026 +3 -1 0 0
777 + 0.117 +1 +2 0 -2

778 - 0.032 +1 +2 0 -4
782 + 0.027 -1 +2 0 0
783 - 01J5 -1 +2 0 -2

CODE 3: SOLAR TERMS IN LATITUDE, N

787* -526.089 0 0 +1 -2
788 - 3.352 0 0 +1 -4
789* + 44.297 +1 0 +1 -2
790 - 6.000 +1 0 +1 -4
791 + 20.599 -1 0 +1 0
792 - 30.598 -1 0 +1 -2

793 - 24.649 -2 0 +1 0
794 - 2.000 -2 0 +1 -2
795 - 22.571 0 +1 +1 -2
79C + 10.985 0 - +1 -2

CODE 6: SOLAR TERMS IN LATITUDF, PRINCIPAL TERMS

797 + 18518Y,11 sin S
798 + 1-189 sin S
799 6.241 sin 35
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TABLE A-7 (Cont.)

CODE 4. PLAiETARY TERMS IN LATITUDE

Ser. No. Coeff.' c F, cc LO • Angle Tec Planet©

1428 +0.045 0 -1 +2 0 0 00 -3 -V

1437 +0.068 0 -1 +2 0 0 270 -6 +5V

1442 +0.029 - 1 +1 +2 0 0 180 -3 +3V

1450 +0.031 -1 -1 +2 0 0 680 -3 +3V

1468 +0.027 0 0 0 +1 0 285 -1 +IV

1472 +0.077 0 0 0 +1 0 215.6 +5 -3V

1476 +0.025 0 0 0 +1 0 255 -6 +4V

1477 +0,074 0 0 0 +1 0 51.6 -6 +3V

1483 +0.030 0 0 0 +1 0 125 +8

1534 +0.051 +1 +1 -2 0 0 0e -2 +2J

1535 +0.051 +1 -1 -2 0 0 0 -2 +2J

1546 +0.035 0 0 0 +1 0 168 0 +2J

1552 +0.083 0 +1 , 0 +2 0 0 0
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Calculate the (ode 3: Solar Terms in Latitude, N from Table A-7 where each

term has the form

Kqsin(it j+ +k FC+mD].

The sun, of the 10 sint terms will be denoted by N.

Calculate the Code 4. Planetary Terms in Latitude from Table A-7; the sum

of the 13 sine terms (each similar in form to the planetary perturbations of

Section A.4.2) will be denoted by -Ap.

Calculate the apparent lunar latitude (referred to the true ecliptic of date) of

the center of mass of the moon from

0 = A Isin SI + B [sin 3S] + C [sin 5ss + DN + aO p+ (A.43',

+ 0'215 sin L

I-or use in eclipse calculations onl), calculate the apparent latitude of the
center of figure of the moon 0 (F) from the expression

j3 (F) - 06 (A.44)

A.6.4 CALCULATION OF THE LUNAR PARALLAX

Calculate the Code 5: Solar Ternis in Parallax and the Code 5. Planctarli

Terms in Parallax from Table A-8. The sum of the 70 cosine solar terms and the
2 cosine planetary terms will be denoted by sir, -,r (in arc seconds).

Calculate the horizontal parallax of the moon 7rL from

ire sin 7r JO.9999 53253 + (3.9168 x 10 -: (sill n) 2 I

- 0'0890 - 0'0049 cos Q. (A.45)

where ire is in arc seconds.

A.7 LUNAR RIGHT ASCENSION, DECLINATION AND SEMI-DIAMETER

A.?.! Calcuiation Lurwr of Right Ascnsion and Declination

Calculate the lunar right ascension ac and declination Se from

cos 6 coscte = cos cos?
Cos sin c = cos sinf),cos e - sinl3sinc

sin be =cos sin )X sine +-sino3cose (A.46)
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TABLE A-8

COLUE 5: SOLAR TERMS IN PARALLAX

Se. Nz CoOKf." RC Fc c

802 + 0.2?C47 0 0 0 +4

803' ý 28.2333 0 0 0 +2

804 +3422.70-n0 0 0 0 0

806 + 0.0433 +1 U 0 +4

807 + 3.•06• +1 0 0 +2

80.8 + 186.5ý9,t w- 1 0 0 0

809" + 34.3117 4 1 0 0 -2
81si + 0.600-3 0 0 -4

811 + 0.0086 + 1 0 0 -6

83 -O.0OE3 0 + 1 0 +4

814 - 0.3000 0 +1 0 +2

81S - C.3997 0 + 1 0 0

816 - 1.9178 0 + 1 0 -2

817 + 0.0339 0 + 1 0 -4

820 -- 0.9781 0 0 0 + 1

821 + 0.0054 +2 0 0 +4

822 + 0,2833 +2 0 0 +2

823 + 10.1657 +2 0 0 0

824 - 0,3039 +2 0 0 -2

825 + 0.3722 -2 0 i -4

826 + 3.0109 +2 0 0 -6

829 - 0.0484 +1 +1 0 +2

830 - 0.9490 + 1 + 1 0 0

831 + 1.4437 + I + 1 0 -2

832 + 0.0674 + 1 + 1 0 -4

834 + 000630 +1 -1 0 +4

835 + 0,2302 +1 -1 0 +2

836 + 1,1523 + 1 - 1 0 0

837 - 0.2257 +1 -1 0 -2

838 - 0.0102 + 1 -1 0 -4

841 - 0.008C 0 +2 0 0

842 + 0.0(I b 0 +2 0 -2

04b - 0.0124 0 0 +2 0

846 - 0.1052 0 0 +2 -2

849 - 0.1093 + 1 0 0 + 1

850 + 0.0118 + 1 0 0 - 1

851 - 0.0386 + 1 0 0 -3

854 + 0.1494 0 + 1 0 + I

858 + 0.0243 +3 0 0 +2

859 + 0.6215 +3 0 0 0

860 - 0.1187 +3 0 0 -2

861 + 0.0074 +3 0 0 -4

864 - 0.00 51 +2 + 1 0 +2

88a - 0.1038 +2 + 1 0 0

866 - 0.0192 +2 +1 0 -2

867 + 0.0324 +2 +1 0 -4

870 + 0,0213 +2 -1 0 +2

871 + 0.1268 +2 -1 0 0

875 - 0.0106 1 +2 0 0

876 + 0.0484 + 1 +2 0 -2
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TABLE A-8 (Continued)

Ser. No. Coeff." ' F D
8 -2 0

880 +0.0112 +1 -2 0 +2
",881 +•0.0196 + 1 - 2 0 0

882 -0.0212 41 -2 0 -2

888 -0.0833 41 0 +*2 -2

892 - 0.04b1 1 0 -2 +2
893 -0.7136 + 1 0 -2 0

894 -0.0112 + 1 0 -2 -2

896 -0.0066 0 + 1 +2 -2

900 -0.0100 +2 0 0 + 1

901 +0.0155 +2 0 0 - 1

902 -0.0088 +2 0 0 -3

905 t 0.0164 4" i.1 0 +I

911 +0.0071 0 0 +2 -1

914 +00.0401 +4 0 0 0

915 -0.0130 +4 0 0 -2

918 -0.0097 +-3 + 1 0 0

923 +0.0115 +3 - 1 0 0

939 -0.0090 +2 0 +2 -2

941 -0,0053 +2 0 -2 +2

943 -0.0141 +2 0 -2 -2

* CODE 5: PLANETARY TERMS IN PARALLAX

Se. No. Cosft" 2 c Dc Angle Tec Plmet

1 58 +0.0055 -1 +2 1800 -3 +3V

1610 +0.0095 -1 +2 180'.3 +2 -2J

IL
i
I
I
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il which i is giOwn either by (A.43) or (A.44) depending ujin whether -usual"

or eclipse caletilations are 4eont cmtplated.

A.7.2 Calculation of Lunar Semi-Diameter

Calculate the lihmar seki-diameter (in arc seconds) from the expression

Sa = 0.0791) + 0.272453 w4 (A-47)

or Irom

sin Sc = 0.272489 sin vrr (A.48)

Ij
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APPENDIX B

EPHEMERIS SIDEREAL TIME

Th -111 pciiwris sitdcircxi I1111k (x.. the right .iscviision ot the I phcmcris, ktcri-
dimaul 0t 1' . 1. kil 111Cwt kIit, oli tillotscirvation1I i,.clculated fromi tle o\prcssionl

1:.S. -Vj V =027(01 93)71(,5 40!002-7 71)l 53 97,$4'd

mwhut c J is. givecn I,\ (A.1 I),1lic ilicreuwii Lit'o sidercalittlue r.'soc ialck\ I'l t lie
jute ru l e \teudiugt Iroiw 0 1h [I. to Ilhe (itle tit ol'smr-at olt is gi~ cii 1

I V00 I '.)73 7Q09) 0' + 1f.~ oI -,i 10 k' T B.

where r is d-tined by (A. 2).

'Fle' ''etilttion l (A 11C equinowes- (.W co" t i\ addedt IClu It, the slim tit'o

I1.) and (It. ) t o idw fiapparmtt ephemeris sidecreal little on thec date and at1 the

tephenicris) timew ot obser'ationt

I . I. =E. S. 1. (ol"t + A 1I.S]. 1' t ,)174 L 3

where .141 is given 11w (A.5).

Iinallv, fer m:iui lservcr at tlongitiude X tWest poistli~kc Fast negat i~c) thie I.
mderval tin ic . .S.l1.) al T hours Y.T. is given by

I- = I:.S. 1 X. 14t

WVe note that the Ephemieris Sidereal Timeot JB-31 at 1 i~i p~1' sIri'i llirIdI

equal to Grivenwich Sideteal T ime (I e-, the right ascension ot the (Sitenyvich Mer ginltl .11I hours Univet st T ime, the same womient obtains tot iR 41 ailso
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APPENDIX C

PREDICTION OF SHADOW OUTLINE AND
MOTION ON THE SPHEROID

C.0 INTRODUCTION

This appendix develops the algorithmsi necessar-y to predict the outilinec and
motion of the moon'sshadow onl an earl Ii sphecroid 01 mihil rary radius and flat ten-
ing. The development is based upon (iiauvenet\ es~positon of Becssel's original
treatment [I] and later summiarized autliorilati~cly inl "rue Lx pliana1tory

Supplemtient" 121

The development is being repeated here in detail because the summinary of
requisite formula in [21 With an1 ordering, quite different froml that (if [I1I lacks
both the justification and seeming inevitability with which elements related to the
flattened spheroid and the shadow motion thereon were originallN introduced.
Furthermore, it seems appropriate to show (in) viewk of today's interest iniLipper

j atmospheric arnd ionospheric research and the cinplo menti of high altitude and
orbiting instrument platforms) that thle relationships pertaining to center line posi-

t tion and duration in the ionosphere - originally cited by Lewis* in 1940 - follow
naturally from a development in which scale factors are explicitly employed.

t C.1 SHADOW AXIS COORDINATES AND THE FUNDAMENTAL PLANE

Given the right ascension a& declination 6C., and parallax 7r(. of tile sun and
thle right ascension a,, declination bc (calculated from thle lunar la-titude of the
center of figure) and parallax lrc, of the moon, we wIl calculate thle right ascension
a and declination d of the solar-lunar shadow axis from the equations.

G cos d uisa to rcos 60 00s QG- 17 COS 64 COS Q'

Licosd sm a -D rcos 6 ~in Q,F -r TjCOS 6 Sin Q

G sin d re rsin 6G) - ri sin bq (Cl )

where G is the solar-lunar separation. Followving division by r*,& (C. I) can be
written in the form,

g Cos dcos a =cos6(D cos ct -becos 1 biCos etc

g cos d cos a = cos 60 sin ot® -b Cos 6c.sin ar (C.:)

g sin d = sin6(D-~ b sin br

L~ewis, 1.M. "Formulas flor the Ionospheric Track in Eclipses." Astron- J. 40. 4, (1940)
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in Ahich g = 6/r., is gi~vn by

r aQ.sin 7rt Sill n®
t J= ,-.-- _ - (C.3)

, a.,isili 7n sil 7,T

and a, is the cquatorial radius ot Ilt. carth.

C.2 COORDINATES OF THE MOON RELATIVE TO THE
FUNDAMENTAL PLANE

Next, following Bessel, we iitroduce a right handed cartesian system with its
origin at the earth's center and its z-axis maintained parallel to the (moving) shadow
axis of right ascension a and declination d as determined by (C.2) and (C.3). The

xy-plane, so determined, is the fundamental plane; the x-axis, which is positive to
the c.,st, is traced out by the intersection of this fundamental plane and the equa-
torial plane; the y-axis, which is positive t( ward the north, completes the right

handed triad of this system portrayed in Figure C-I.

The cartesian coordinates of the moon in this system follow immediately
froin application oian Euler Angle transformation* to the lunar coordinates in the
geocentric equatorial system. After some trigonometric reduction, these coordin-

ates become

X = xam

y =ya,

(C.4)
z =-a

in which

X = !Cos , sin (a,,q - a)]/sin r,•

Y = (sin 6c cos d - cos 6, sin d cos (c, - a)]/sin r,

z = [sin 6, sin d + cos 6c cos d cos (or, - a)]Jsin fr (C.5)

In this transformation we successively rotate positively (counterclockwise) about the original

z-axis by 0, positively about the new x-axis by 6, and positively about the new z-axis by •,;

the rotation matrix R(i,.O,0) so obtaine1 relates the old (x,y.z) system to thr new (x',y',z')

system via the matrix equation

X° "

for thecaseathand • 0, 0 -d, and =a a-

2 2
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;,tnd \s.' it should be noted that tC'e ";%,i y coordinates are the coordinates of

the shadow axis. intersection with the imndamental plane.

C.3 PENUMBRAL ANDUMBRAL RADII ON!HE FUNDAMENTALPLANE

!n Figure ( 2 two shadow cones liave" bec'i drawn in cross section, the interior

tangent cone defining the penumbra :,od ;Aaving the vertex V. a aistance c, above
the fundamental pl2ne and the extericr tangem cone defining the umbra and
haNving a vertex VU a distance c2 above the fundamer.tal plane. We may write

immcudiate~y that

sin f, (it (C.6)

G

d®D -,;16
nin: (C.7)

G

where f a:'d f, are the penumbral and umbral cone half-angles, respectively, and

where d® and d, are the linear semi-diameters of the sun and moon, respectively.
But, we not' from ((.2) and (A.22) that

.G= gra g - a+ R, (C.8)
sin =f® sin Iro

ýoni the definitcon of the solar semi-diameter thý.t sin S®= d®/r®, and fur-

"-Ibe erorrl (A.23) thzt

do = r® sir. SC_ (sin S3/sini'jr 0 ) ao; (C.9)

hence, (C.6) and (C.7) -an be written in the usual form as

sin f (sin So + k sin ir,, )/gR (C.10)

sinf 2  (sin So - k sin iro)lgR (C.1 1)

where k dt/a. is an adopted corstant.
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From AVpBC we may write that

c, = z+dc cosecf, (C.12)

and similarly from AV B'C'

c2 = z - d, cosec f 2. (C.l 3)

hence,
h c = (z+k cosecf,)a9 

(C. 14)

and

c2  (z - k cosecf"2 ) a, (C.15)

where, from (C.4)* and (C.5) respectively,

z= z=

and

z = sin 6,, sin d - cos 6, cos d cos (oý - a)]/sin r(.

Thus, the penumbral radius on the fundamental plane can be found from

ýj = cl" tanyf (C.16)

and the umbral radius can be found from

V2 = c2 tan (C.17)

The sign convention introduced in (C.15) is such that R2 is negative for total

eclipses and positive for annular eclipses.

C.4 SUMMARY - THE BESSELIAN ELEMENTS

In the developments of the prior sections the geometric position of the

shadow axis and radii of the penumbral and umbral cones on the fundamental
plane have been described. The elements appropriate to this description are the
Besselian elements: x, y, sin d, cos d, RI, 22 and i, the ephemeris hour angle of the
chadow axis. This hour angle is used in place of the a, the right ascension of the
shadow axis, and is calculated from

p = E.S.T.- a (C.18)
where the ephemeris sidereal time E.S.T. is given by (B.3).

We note that a,, the earth's equatorial radius is generally set equal to unity. In such instances,

of course, (C.4) immediately reduces to the trivial identity z = z.
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These elements and their hourly variations, which arc independent of posi-
tion on the spheroid, are tabulated in the major almanacs and the major eclipse
canons, such as 14])

C.5 COORDINATES OF THE OBSERVER RELATIVE TO
THE FUNDAMENTAL PLANE

'We will consider a spheroid of flattening f (or, equivalently, of ellipticity or
first occentricity e)* centered at the geocenter and halving an equatorial radius a,
where

a, = X a,, (C.19)

with If an arbitrary constant; positions will be specified on the spheroidal surface
by assignment of longitude (West taken positive) and geodetic latitude. Hence, by
employing the same transformation used to effect (C.4) and (C.5), an observer
at ephemeris longitude X, and latitude 0 will have the fundamental plane
coordinates

[pcos0'sin R ] Wa(

S= [p sin O'cos d - p cos 0' sin d cos R ] fae

= [p sin 0' sin d + p cos 0' cos d cos ( 1 3faB (C.20)

The hour angle® is given by

)= - Xe (C.21)

where the ephemeris longitude X. is related to the longitude X by means of the
relation

X = X + 1.002738 AT. (C..22)

AT is the difference (either extrapolated, in the case of the future or distant past,
or measured, in the case of the immediate past) between Ephemeris Time and
Universal Time. The geocentric latitude 0' and geocentric distance of the observer
p are related to the geodetic latitude 0 through

p sin'Ssin ; Pcos ' C Ccos (C..23)

* We note from the definitions f = (a - b)/a and e = [1 b2 / a] 2, where a is the equatorial

radius and b the polar radius of the spheroid, that e 2 =2 - .f2
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where

S=(I f2 CC- cos2 0+( _f)2 sin2 -V, (C.24)

or, equivalently

S = (I - e 2 )C; V = (I - e 2 Sill 2  1-, (C.25)

C.6 PENUMBRAL AND UMBRAL RADII ON THE OBSERVER'S PLANE

We now construct a plane through the observer parallel toand at a distance "
above the fundamental plane. Referring once again to Figure C-2, it is seen that
the penumbral and umbra] radii on this plane are given by

L, = (c -) tanf= - "tan f (C.26)

and

L2 = (c2 -) tanf 2 = 2- tan f 2  (C.27)

respectively.

With these two equations and some !clditional analysis, it becomes possible

to calculate all circumstances of the eclipse appropriate to the locale of a specified
observer; these calculations will be discussed extensively in a subsequent appendix.
But, if one wishes to predict the observation site or sites appropriate for a given
circumstance - such as the outline of the umbra on the spheroid - then, the
spheroidal flattening introduces the complication that, in order to calculate L2
from (C.27), for example, " must be known which requires, in turn, that 0' and 0,
a desired end result, must be known. This difficulty is minimized by the following
treatment of Bessel.

C.7 INTRODUCTION OF THE AUX!LIARY ELEMENTS

The development is initiated by introduction of the parametric latitude 01,
through the relation

cos 0 P -= P cos 0'= cos 0/(0- e2 sin 2 
0V)ý (C.28)

from which. using (C.25),

sin0 = 1I -cos
2 01 ]½ -(1 -e 2 - Psin ' . (C.29)
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Consequently, (C.20) becomes

= Icos0, sin • ] ;a•

17 = ((I -e 2 )V' sin 01 cosd-cos 1 sind cos c3l"a"

= [(I - e2)6 sin 01 sin d + ,os 0, cos d cos (DH X pfa (C.30)

We now make the following substitutions in r7,

sind =P ,sind ;(1 - e2 )'" cosd = P, cosd1  ((C.31)

and the following substitutions in ',

cos d = P2 cos d 2 ; (I - e2 )'½ sin d P2 sin d2  ((..32)

so that (C.30) now becomes

[cos€2 sin ® 1]Xae

i •= i•/Pj = [sinO, cosd, - cos0, sind, cos 3(Pa.

P2 I sin 01 sin d. + cos 0 cos d2 cos ® l3fa•. (C.33)

Next, we define the variable ýj from

" •l-( ae)2 2 _• -n 2 (C.34)

a useful form of which - after substitution of • and 77 from (C.33) and some

reduction - is

I sin ¢1 sin d + cos,€ 1 cos d cos UH I A a,,,,

Further, we note from (C.33) that ý' and 171 may be readily manipulated to yield,

3(aB (sin e, 17,r/ cos d, + •', sin d, (C-36)

and

•aB( cos0 1 cos C ) -1, sin d, +' cos d, (C.37)

which upon insertion into " of (C.33) yields

p =, 2 •ýIcos (dI -- d2•)- , sin (d1 - d2 ). (('.38)
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This form ol " has the -- eful property that the assitinment of specific values
to t and n - Nllih (J which art, in the fundamental piane- allows the immediate
calculation of ý, by (C.35) and thus the third coordinate ý by (C.38).

Finally. from the first equation of (C.33) wriv:'. in the form

Ifaq (Los 01 sil ( ) (C. 39)

and front (C.30) and C. 37), it follows that

tan OH = (CA,)
ý, os d, -i7, sin d,

and

sin , = _ (0 sin d, + 7, cos d,). (C.41)
Wjap)

Thus, if definite values of E and i? are available from the application of specific
geometric conditions, 1, il and ý, can be calculated and, hence t\ (and thus X)
and Ol (and thus 0, can be obtained from (('.40) and (C.41), respectively.

These calculations, and the calculation for t in (('38), fully incorporate the
flattening and are based upon the auxiliary elements P,, P2 , sin a,, sin d2.
sn (d, - d2 ) and cos (d, - d2 ) which, after manipulating (C.31) and (C.32),
follow directly from the Besselian element d and the ellipticity of the spheroid e
in the form

P, = (I - e2 Cos 2  d) "

P2 =(l -0 2 sin' d)'"

sind, d/PsI

cos d, = (I ---e')" cos d/Pt

sin(d, -d2 ) = e2 sindcosd!/D P2

cos(d, - d2 ) =(I -e 2 )IP, P, . (C.42)
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C.8 OUTLINE OF THE SHADOW

In g;'1cri . c*,,li•pse phenomena are described by siecifying tCe dis'an•cc aitd
posit ion angle Q uteasm,.ed Cast fronm Itorth) of the shadow axis witli resiv.", t-)
the -ohbserv-ation" point ini questiion. Thus, ill (i' pla.ne drawnt throup'h t 1w
"-observer" and Iulailntalmd perp'ndicular to the shadow axis, we van write tI al
the rn-planc •.mIIliInts of lhe obscrver coordinatvs Q•. ii) arc related t.., t1:-"
shadow axis coordinates x, v) ly nleais ot

X ni sillQ

and

tI y S Int L'os Q (C.44)

whe.re

2fit = X 4 (Y T)

spheroidal surf'ace at ,i slw.,•il'ic time is given by' those" Q•.7) pairs which cirtcum-

scibe (x.y) at the distance Ii = L.

Hlowever. before allowing Q to assume all values ftrom 0 to 30'" in %-lcu-
Lating the shadow outline, it is useful to determine whether the entire umbral cone
intersects the spheroidal surface or, equivalently, whether the entire umbral circle
falls within a circle of (nearly ,&-instant) raditls Wa, on the fundamental plane.

Figure C'-3 ixprtrays the situation when a portion of the unibral circle fall,
outside this circle.

If we now set x = ' sin in and y = " cos In twhere N is the lposition anglc of
the shadow axis) and note that at the extreme points L. = V (sinc-C these points
are in Ihe fundamental plane aid 0) O. then

a + C 2fl . cos tQ - M)

or

cos (Q MN) =(C'.40'

* The outlline ut the lienurnbta can be calculated by replalcing and L: -by k and L

r eapectively.
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t

where y'9 x1 + y 2 . When the evaluation of the right-hand member of ((.40)

* leads to the condition that cos (Q - M) ,, 1, the two consequent values of Q
define two circumferential segment•: one within th1L fundamental plane circle and

(running) values of Q producing ý > 0; the other outside the fundamental plane
circle and (running) values of Q leading to ý < 0. When (W.40) results in

cos (Q - N) > 1, the entiv" shadow lies within thC fundamental plane circle and
all values of Q frorm 00 to 3600 are pel missible.

Assuming that the appropriate range of vjhncs has been ,stablished, t1,
shradoA outline can now be calculated by tie following iterative procedure for each

of the permissible Q.

Step l: Assume L2 V2 and calulate

t"l) = x - sinQ

7ý°) =(y - cos Q)i

o) [(, (a,,)2 
- (C)_ (n(o) l2 ((.47)

Step II: From n(t°) and •o) calculate o from

p2 =p j cos (d, - d2) -_r()sin (d- d2 )1 ((C.48)

and Lý`, from

L° 2, - tan f 2  (('.49)

Step 111: Using this value of L2 calculate

() =x - LT) sin Q

*1) (y L Q, cosQ)/p1

•1){[W1a, )2 - (t1 1 1 2  (l7•" V, (('.50)

Step IV: Assuming that an additional iteration of Step 11 is
not required by the results of (C.50), use (C.50) to

calculate - following (C-40) and (C.41) -

tan (C)= (. 51)
•a cosd- d. sin d,
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and

•.j'•sin d1 + nI) cosd1

sin , sn d(C.52)

which ledds, following (C.21) to

X, =P- (C.53)

and, following (C.23), (C.25), (C.28) and (C.29) to

tan€ = (I - t')- tan 1  (C.54)

C.9 THE CENTRAL LINE

Sirce the central line is tile locus of points of intersection of the shadow axis
with the spheroid, it follows immediately that the results of the previous section
may be utilized by shrinking the shadow radius q2 to zero. Thus, the equations of
(C.50) become

S=x

t 1, Y/Pi = Yl

I(fa) -- - y• !• (C.55)

which leads immediately, upon substitution in (C.51) and (C.52) to

x

tan S (C.56)

and

sin - sind, y cosd (C.57)
XKae

where again from (C.54)

tang 0 (I - e'Y- tan1 (C. 588)
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If (('.4) and (C.34) eic employed, then (C.50) and (C-57) aic transformed to

ta 2 x (C.59
,7(- at.• Cos d i- ,' sip. dl

t 1 sand( •l sin d, + , cos d, )(C'00)

which is the form employed by Lewis* in calculating the ionospheric central line.

C.10 NORTHERN AND SOUTHERN LIMITS OF THE SHADOW -

ADDITIONAL AUXILIARY ELEMENTS

Froin the discussion immediately following (C.45), it is readily seen that the
examination of the time variation of the observer/shadow-cone separation mn2 - L`
(where L is either the penumbral or umbral radius) can be employed eitmer to
calculate circumstances given the observation location or, conversely, to calculate
the observer location given the circumstances. Here we are ccncemed with the
latter type and, more specifically, with calculating the northern and south;c t

limits of the shadow directly rather than by inferring these values from the coin
plete shadow outline calculated in Section C.8.

In Figure C-4, a hine variation of mn2 - L2 has been hypothesized 'or two
locations. At location A the particular phase of the eclipse under consideration
(partial for L -. L, , total for L -+ L2) begins at t0') and ends at 0f), i,e., at the
two solutions of mn - Ll = 0. At location B, on the other hand, the eclipse both
begins and ends at the sane time, an occurrence identified by the coalescence o'
the two roots of rn' - Ll = 0 to t. and t- presence of the horizontal tangent at
tu. Hence, at tB we havc that

(x - t)' + (y - nt)' •_• tan f)' = 0 (.1

and, using dots to signify differentiation with respect to time, that

v,-•(, - + (Y - 17) (y 1-7) ( -0 tan f) V - ta,, f) 0 ,'•2

where f, given by (C- i0) or (C. i 1), i scasiby constant.

"Lewis, op. cit.
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FIGURE C-4 HYPOTHETICAL TIME VARIATION3 OF m' = L2 FOR TWO LOCATIONS

We now note that differentiation of (C.20) lkads,aftera modest reduction, to

St: (- tsin d+ 'cosd)

= #psind -d

p= pt cos d +idl (C.63)

and d are presented as hourly variations in the literatwre) which become, upon
ubstitution of (C.43 and (C.44)

= ;(-ysind+ cosd+insindcos Q)

?= p (xsind -msindQ)-d_

j,( -xosd + m cos d sin Q) +J (y - m cos Q). "C.64)

Hence, (C.62) becomes, upon substitution of (C.64), and upon noting that at
t t m tan f,
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sin Q {i +A y sin d +42 taif f cos d -4 "cos d (I + tan' f+I -

I cos Q |y --p x sin d +d d - d tar if (9 - " tan )] +

+ -- --pxcosdtart f+ dtanfy] =0. (C.65)

or, unon defining the auxilh:.-v elckents

•=- x-- xtanfcos d

: . b = y +p .x sila d

c x+4ysin d + Etan f cos d (C.66)

(where a and c, are penumbral auxiliaries; i2 and c 2 are umabral auxiliaries)

"sinQ ic-Pdcosd (i +tan 2 f)] +

cosQ f-b+dý -dtanf(k- 3tanf)] +a+i'tan.fy=0. (C.67)

However, following Chaivenet, terms involving tan -1 and d tan f will be neglected
so that we have

:-~~ "- Id "-a sec Q
tan Q - e(C.68)

c-4~ :os d

as the condition for the northern and southern limits. For umbral limits, cos Q is
positive for the norihern limit of a total eclipse and the southern limit of an annu-
lar eclipse, cos Q is negative for the seuthern !imit of a total eclipse and the
inorthern limit of an annular eclipse. F r penuimbral limits. cos Q is positive for
the southern limit and negative tor the nortliein limit.

The calculations for the limits are similar to those of the shadow outline

Step I: Assume L. = Q; (or L, = 2 ) and calculate

tan QIO) - U (C.69)
c
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from which

x= x- k sin Q(O)

'= - k2 cosQ,)')/p,

[-a0) = a - (o))l - (,(O))2 ]' (C.70)

Step II: From 17,() and ý-•o1, calculate {4o)

Po) P [•](O) cos(d, - d 2 ) --n°) sin (d, - d 2 )] (C.71)

and thence

b - 6 VO) - a, sec Q(O)tan Q( 1) = ___________

62 -g.(O) cos d (C.72)

and

L = Q2 - Vo) tan f 2  (C.73)

Step III: Using these values of Q(I) and L,1), calculate

t(l) = x -L 1( sin Q(1)
17l =(yL Q') cos Q(J) )fpj

W)= [aa)2 - ( -(I)) (7i1))2 ]" (C.74)

Step IV: Assuning that an additional iteration of Step if k nn,
required by the results of (C.74), pr-ceed as in (C.51 ),
(C.52), and (C.53).

C.11i DURATION ONCENTRAL LINE

Given an observation point to, % and a center line point xo, Yo both evalu-
ated at the time To, the two compon~ents of the position of the shadow axis
reLvve to th-is observation =rt can be expandcd to fi--st orde at t1re thiie
To + r as

(x8-4)=xo+xr + ...T msinQ (C.75)
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and
i •(y - q) ; yo + ; y + ..! - 1 [110 r rn.] cos Q (C '. 76)

or, upon squaring and adding the components to yield the relative separation,

m2 (Xo to)' + (Yo n- o',2 + 21(x 0 - to) (x - E) + (Yo - o) (y - 77)]r +

+ (x- +(y -) 2 ] rT +... (C.77)

We will now place the observer on the center line, such that to = x0 and
y 0 yo and such that the time r To - Ti will b- taken as the beginning of the

umbral eclipse when m L2 .

Thus (C.77) becomes

L ,X t. x 2 + (y-771-.i] (To -T) 2  (C'.,7 8)

and hence, the semi-duration s = To -- T, of the eclipse is immediately given by
the solution of (C.80) in the form

n- (C.79)
n!

where n, the speed of the shadow relative to the observer, is giver, byi
I L2 is assumed to be constant throughout the calculation and is evaluated from

i i whic = k2 - 1o tan (C.81)

,• in which

ý =' P +2 [J+t cos (d, - d2) - nt sin (d, - d2 )](C.82)

where ýj and rn are evaluated from (C.5;) with xo and yo replacing x and y.
""q can be evaluated by noting that since t = x and 17= y. (C.63) can be manipulated
to yield

ty -l +ysin d -,cosd 
(.83)

y -7 --y- x sin d + d' (C. .84)

or, by employing the auxiliary elements of (C.66).
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S-- •=c - cosd( +ktanff) (C.85)

y - n -- d S' (C.86)

which, consistent with the Ic,,cl of approximation of (C.75) through (C.80),

reduce to the approximate relations,

x - c - • cos d (C.87)

y -r -b. (C.88)
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APPENDIX D

LOCAL CIRCUMSTANCES

D.0 INTRODUCTION

As pointed out in Section C.5 of tile previous appendix, it is possible to pre-
dict all circumstances of an eclipse at a locale once the coordinates of that locale
have been specified. The purpose of this appendix is to develop tile basis of algo-
rithms employed to calculate these circumstances, to develop differential correc-
tion pi~cedures for adjusting these circumstances to modest departures from (lie
specified locale and to develop the calculations of other topocentric pararreters of
potential interest to solar,* atmospheric and ionospheric research.

0D.1 PRELIMINARY CONSIDERATIONS

Following (C.20) we may write immediately for a site with geodetic latitude
-', longitude X (West taken positive) and height Ii (in meters) above the spheroid
that

p cos 0' sin

17 = p sin 0' cos d- p cos 0' sin d cos

= p sin 0' sin d + p cos 0' cos d cos (H. (D. 1)

in which the equatorial radius of the earth a, will be assumed henceforth as the
unit of distance and where

psinO'=(S+H)sinO; pcos€'=(C+H)cosO (D.2)

with H = 0.15678503 x 10- 6 h;** S and C are given by (C.24) and (C.25). The
hour angle r' is, following (C.21) and (C.22).

H = u - X - 1.002738 AT (D.3)

""Appendix E is devoted to the development of various coordinate systems (and their inter-
relationships) for use 'n observation of optical and radio phenomena on and above the solar
surface.

'We recognize, witn reference to (C.20), the difference between thp change of scale implied
by *a. of (C.20), on the one hand, and the addition of the height term in D.2 normal to the
spheroid, if added at each point of the spheroid, on the other. However, for a scale change
(or height addition) of 0.ta,, the difference between the two approaches leads to a difference

of - 2km at the poles and will be neglected.
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where p, the ephemeris hour angle of the shadow axis, is given by (C. 18) and AT,
is the difference of Ephemeris Time and Universal Time for the year in question.

If these coordinates and Iheir time variations. given by (C.63) as

n (-v•sin d +•" cos d)

7 sind-d

i = --p cosd+dcir, (D.4)

are combined as

u =x-Z; v yy-n; m2 =u 2 +vv2  (D.5)

and

S-- xt-; v y -r; n =u" +v2 
, (D.6)

then (C.77), the first order expression relating the distance m between the sladow
axis (x,y) and an observation site (Q, 7n) at the time To + r to the shadow axis and
observation site positions (xO, Yo; to, iio) and velocities (k, b; &, 1) at the time To,
becomes

m2  'mo + 2(u.Ii+vvo)T+n nr 2  (D.7)

This equation has the solution

± = _i__k D (m' - in) (D.8)n- 2 - n 2 2. D 0

wheTe D=u + vo - or, ,fOllowin rearrangement of the second term

n 2 n MT ( n

which leads to the to. rn commonly encountered in the literature

. .D_ cos- (D.9)
ni n

where sin d (uo voiiVn m.
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Thus, to determine the time Lt which rn assumes a specified value, one csti-
mates an Ephemeris Time To "reasonably" close to the desired time, evaluates all

component quantities of (D.5) and (D.6) and solves - after insertion of the sl)cci-
flied value of m - either ().8) or (D.9) for the correction r to the estimatcd t i1m,.

If great accuracy is required, a second iteration may be required in which
(D.5) and (D.6) are re-evaluated at T, + -r T, and the correction 7' to T•) is cal-
culated from (D.8) or (D.9).

Similarly, by differentiating (D.7) and rearranging the result to yicld

ni D

T =(--) T n (I).10)

one can determine the increment T to the time To at which 61 assumes a specified
value, all other -coinponent" quantities of (D. 10) being evaluated at the "reason-

ably" close time To.

D.2 TIME OF GREATEST PHASE

The time of greatest phase occurs when the eclipse magnitude MN = (L, - )'

; (L1 + L2 ), derived in Section D.7, is precisely a maximum. But since the shadow
radii variations L, - L2 = L are small,* the time of greatest phase is usuallh taken

as the time at which the distance n, between the shadow axis and the observer is
minimum, or when ri =0.

If this specified value of rn is substituted in (D.10), then the correction 7 to
the "reasonable" time of greatest phase To is immediately given by

D (D .1 I)

L which leads to the interpretation of the first terms in both (D.8) and (D.9) as that
correction to the assumed time T, which effects the minimum separation between

the shadow axis and the observer.

If, on the other hand, accuracies of tens of milliseconds are required, then

the maximum magpitude definition employed by Gossner**

• d / L, - in \ -I
dt t LI'+ L, ;

cf. (D.39) and asociated foo.note.
"Gossner, S. D., "A Correction to the Time of Maximum Obscuration in Solar Eclipses,"
A, J. 60, 383 (1955).
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which can be written, following substitution of LI Lz , in the form,

_(L. *L 2 ) L, 3 -(L -n(L +L;) f (L2 -L, +2m) L (D.13)

(L, +I.2) LI +L 2

leads, upon substitution of (D. 13) in (D. 10) to Gossner's Eq. (5)

r LI + L2 n•T (D. 14)

which reduces immediately to (D. I 1 ) when shadow radii variations are neglected.

D.3 PENUMBRAL (FIRST AND FOURTH) CONTACTS AND DURATION

In the case of the penumbral (first and fourth) contacts we std m = LI in
(D.9), following the choice of some initial time To, and write immediately that

n2 D ± (D.15)

in which 1
SL Uo v - Vo U (D, 16)

L,~ j
the negative sign is selected in calculating the correction to the Ephemeris Time To
for first contact (immersion) and the positive sign is selected for fourth contact

(emersion). Since LI lcos iPp, I/n is either added to or subtracted from the time of
maximum eclipse To - D/n1 to give either the first or fourth contact, then assum-

ing To has been selected to be reasonably close to maximum, LI ;cos 4p 1/ii -aa '--

regarded as the semi-duration of the partial phase.

Because the times of penumbral contacts are generally not required with

great accuracy, one can dind the square root of (D.8) and keep only the first
term, thus yielding as the approximate correction

S t± 2(L1 _ mo) (D.17)2 D

where again the negative and positive signs are selected for first and fourth con-
tacts, respectively.
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D.4 UMBRAL (SECOND AND THIRD) CONTACTS AND DURATION

For the second and third (unmbral) contacts in L2 and (1).9) becomes

Tu n) ±. COS (1)n18)

in which

pi 5 Lz- n (1) 19)

The positive sign is selected citl•fr brsccond Contact (ilniersion) in the case
of a total eclipse (1 2 <- 0) or third contact te(nersion) for an annular eclipse. the

negative sign is selected either tor third contact (tinersion) for a total eclipse or
second contact (immersion) for an annular eclipse. Because of accuracy require-

ments a second iteration is often required.

The semi-duration of the unibral phase is given ininiediately a.

-. 1"2 1D)20)

which reduces, as expected, to the center line value of 1,2 !n given by (C.81) when

uo = vo = 0 and cos Via = 1.

D.5 POSITION ANGLES

The angle Q which can be calculated -- following W.43), (C.44), (D.5) and
(D.6) - from

tan Q (D.21)v

is at all times the topocentric position angle of the moon's center measured east-

ward from the north point of the solar limb. * When u and v aie cvaluated at the
contact times of (D.15) and (D.18), Q is the angle of the points of contact of
the apparent disc of the moon with the apparent disc of the sun.

In instances when altitude-azimuth instrumentation is being employed, the

position angle with respect to the vertex (defined as that point of the solar limb

nearest the zenith) may prove more useful. This angle is determined by noting that

The north point of the sun is readily determined observationally as that point on the apparent

solar disc tangent to the disc's apparent (diurnal) anotion since it is the intersection point of
the northern limb and the hour circle ihrou.h the solar center.
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the distance from the north point of the iol.. limb to the vertex is equal to the

xirallactic angle q which can b, gotten from the equation

cos 0 sin 0tan q -"(1). 22)

sin 0 cos d - cos 0 sin d cos 0

or, since cos 0 . p cos 0' and sin 0 - P smi 0' in (D.I), fiom the approximate

relation

tan q -z L(D.23)
17

Hence, the position angle V, as measured from the vertex, is given by

V =Q- q (D.24)

D.6 DIFFERENTIAL CORRECTIONS TO LOCAL CIRCUMSTANCES

In this section all differential cerrections requires to adjust calculated lo,.al

circumstances to modest changes in locale will be developed.

D.6.1 Development of Differential Coefficients

We begin by casting the spatial variation of a function in the operator form

6 = .a a+ + 6Ha (D.25)l a = aTX-•+¢ a ll

where 6X and 60 Pre variations in longitude and latitude, respectively, and are

expressed in radians while 6H is the variation in height expressed in units of the
earth's radius.

From (D.3), (D.5) and (D.6) it follows that

bu =-6, 6v b-r, 6 () =- 6X (D.26)

and from (C.25) that

ac as ac =as =0 (D.27)

aH aH ax ax
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and

" " _ (I "-e
2  

0 s '1 (A'C Sill (1 Cos)8 18)

-3>-S- = M . Sc 2C n n>cos (P).2 )

consequently, by applyini" ().25) to t of (1). I) we have

SA, 6X + A2 60 + A3 611 (D)30)

in which

A, = pcos0' Cos®

A2  -= (S(': +11) sinlsiln

A 3  cos 0 sin O (D.31)

and, similarly, for r1of (1.I)

b B, 6X + B ,260 + B3 6H (1)321

in which

B, - tsind

""B2 - !I = (SC. + H)(cosoCosd+ sil0sind cus (cHu

B3  = sin Ocos d - cos 0 sin d cos (l)33"- 3H

However, since many calculations do not require the accuracy of (D).31) and

(D.33), the following approximations are sometimes used,

A, -C P sin 0' sin (Hi

Aj, p cos ,' sin (1 = (l).'4)
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andl

B, CSPcos 0'cosd+C 2 Psin0' sindcos®

B .1 sin O'cos d - p cos 0' sin d cos ( (D.35)

In the balancc of this sub-section, those differential coefficients associated
with 6., 4L; bt bi, 6E, 6 (02) and 6n will be developed for completeness.

We begin by applying ,D.25) to " of (DA.) thereby yie!ding

& - C, R + C2 6o + C, 6H (D.36)

in which

Cl = = cosd

C2  - - (SC 2 +H)(cos sind-sin cosdcos )

C3 sin 0sin d+cos cosd ccs ® (D.37)

which, like the approximations of (0.34) and (D.35), can be approximated as

CS o cos-'sind-C 2 psin0' cosd cos ®
C3 - psin*' sin d -pcos 0' cos d cos ) =" (D.38)

Further, by employing (C.26) or (C.27) which define L, and L2 , respectively, we
note immediately t! at

bL - tan fb" - tar, f {C, 6+ C 2 60 + C3 8H-] (D.391*

Next, we apply (D.25) to i given by

= ji(C + H) cos 0 cos CH)

* 8• is usually ignored for the simple reason that -.variatiuns can enter Ioca! circumstances
only through the shadow radii and thus through (S L of (D.39). Hp.nce, even thouO O(l) =O(1)
S0(0', tan J % O.CO5 and thus 6 L is smadI hy comparison.
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and find that

A; •X + A,2. 6 + A'3 61 'D.-0)

in which (recalling that 6 C, X)

A,ýPpcoOs' sin CH

A'2  + _ - '(SC 2 +H) sin co,

A3 = C--os H (D.41)

Similarly, (D.25) applied to of (D.4) yields

B'i= B6 •+ b'2 50+B 6H (D.42)

in which

B,' = -i = sindA1 -- dC,ax

B2 = jisindA 2 -dC 2

B; " isin d A3 - d C (D.43)

aH

and when applied to • of (D.4) yields

= C' 6X + C; 60 + C, 6H (D.44)

in which

C, =_a -ax cosd A, +dB,

C, =-•= --4 cosdA 2 +dB,

C:= -4cosd A3 +dU B, gD.45)
3 iH
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Hence, we can write immediately (noting that 66- - d E and that = -
that

S(n ) = N, 6N. + N2 So + N3 6H (D.46)

in which

N, = -2(dA, +'B' 1 )
N2 = -(A+••

N3  -2(ý A; +vB') (D.47)

and that

6(n 2 )
S(n, (D.48)

2n

D.6.2 Development of Differential Cn, '.ctions to LocW' rircumstances j

In subsequent calculations of the differential corrections to local circum-
•:'ances, 6L, 6j = - Sj, 6• = - 56, 6(n)and S(n 2 ) will be neglected.

Because as stated previously, the penumbral contact tunes are not required
with great accuracy, the correction will be based on (D.20) and thus

bt = S - -(m) .)SD (D.49)
k 2D /2D 2D'2

or, since near the contact time (L' - m2 ) •= 0,

6t 6- m2) u6l+v62 (D.50)
2D D

Hence, the correction to the penumbral contact time can be written as

bt = P6x + q 60 + r+ ., (D.51)

in which
P = (uA, + vB1 )/D

q = (A 2 + vB2 )/D

r = (uA 3 + vB3 )/D (D.52)
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Similarly, the correction to the time of greatest phase from (D.14) becomes

( 6 D - 1 + 6v (D.53)
nn

or

6tm = pm n0, + qw 60 + r, 6It (D.54)

in which

Pm= (6Aý + vB1 )/n
2

(i•A 2 + 1'B2 )/n 2

rm = (6 A3 + ,B3 )/n2  (D.55)

The correctior, to the umbral contact times will be calculated, under the

assumption that (D.54) has been calculated, by correcting the semi-duration S. of
(D.20) for changes in locale. This is accomplished by noting, from (D.19), that

Ir

sin~ 1, = - (D.56)
L2  n L2

and that

SK= ps, X+qq5; +rs6H (D.57)

in which

P, = (iB1 -" A1 )n

qs= (iB 2 -vA 2 )/n

rs (B 3 - A3 )/n (D.58)

Hence, we recalculate the semi-duration Su from the formula

S". .L A osh vI (D.59)

where
sin• K +K (D.60)

9L2
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Finally, we note that a change in AT from AT to AT + 6T can be readily

incorporated within the existing framework by noting its complete equivalence to
a fictitious changc in longitude (60 = 6 11 = 0) c. the form

6X = 1.002738 6T (D.61)

and thus can be accommodated via p, p,,, and p, (the differential coefficients of
RX) in computing it, 61m and su, from (D.50), (D.54) and (D.57), respectively.
The corrections to these previous times (when expressed in U.T.) will be 6t - 6T
and btm - 6T.

D.7 ECLIPSE MAGNITUDE

The magnitude of an eclipse is defined as the fraction of the solar diameter
covered by the moon at the time of greatest phase. Consequently, referring to

Figure D-1 - a redrawn and simplified version of Figure C-2 - we see that for an

observer Op located in the penumbral shadow PP' that the magnitude M, of the
partial eclipse is given by

S'ASIS

which, employing the similarity of triangles PMO% and S'MA; and PMU and S'MS

leads to

POP PX - XOp
PU PX - XU

But PX = L, , the penumbral radius, XOp= mand XU - L2 during totality (as

pictured), hence

n= - m (D.62)
L, + L

which is the desired result valid for any time during the eclipse.

Similarly for an observer located within the umbra at 0u the magnitude

is giver , by

S's
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But B'B = SB + SB" and from the similar triangles UMO. and SMB; and PMOu and
S'MS we have SB/S'S = UOu[PU - UO /P'U, from the similar triangles SM'B' and
P'M'Ou. and S'M'S and U'M'P' we have S'B/SS' = P'OU /P'U', hence

SB+SB _ Ou +P'Ou _ P'U = P'X+XU
SS P'U' P-U' -P~x-xU'

or

M2= L (D.63)
L,+ L2

Alternatively, we can write that

BB B'B/ xz M'M /_' 2 2 /X sin S4, S f,

S/ XZ L-/ 7XZ sin S, So

where S4. and SC are the semi-diameters of the moon and sun, respectively. Hence

=-- M M2 (D.64)SC)

D.8 DEGREE OF OBSCURATION

The degree of obscuration at a particular location is defimed as that fraction
of the solar disc obscured by ýhe moon during the partial phase and is - in the
notation of Figure D-2 and based upon the treatment in 12] - given by

S'= +as) (D.65)
2 TO

To develop S' in a form suitable for calculation we note first that

a=2f f dydx
rr cos B 0

or
a.o x,,'r2 , 2 +rQsin-' (-x )]'I O

10o



Sun Moon

0

r r

10(

B A

B F E D A

FIGURE D-2 OBSCURATION GEOMETRY

101

F



which becomes

a.~ hr® cos B +Q rl +sin- I(cos B)]

and, since A= '- - A,

a. -r B - r' sin B cos B. (D.66)

Similarly, we can write that

aA = rA - r2. sin A cos A (D.67)

and hence that (D,65) becomes

S,= [( ) A +B( -~ ) sin Acos A -sin Bcos Blhz. (D.68)

Second, we note from (D.1 3) that

ro So.

Hence, if we set the solar semi-diameter* r® = BC = 1, we can write - referring
once again to Figure D-2 -

-- (L,- L?)
r,, = AC zs

(L, +L 2 ) (D.69)

From (D.1 1) we note, since the solar semi-diameter is the unit of distance, that

S-2M 
L

(L, +L 2 ) (D.70)

and thus that BA t BF + AF - BD - FD + AF = I - 2M, + s, or that

B 2m (D.71)
Ll + L;

* It should be noted that the semi-diameter of the sun can either be -that of the "usual" optical

sun or that of a specific radio sun, the particular semi-diameter chosen will manifest itself
through the value of L2 .
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Next, application of the law of cosines twice, yields

AC' BCI + BA' - 2BC BA cosB

and

BA' = AC 2 +BC' -2A(" BCcos C

or, using (1).69), D.70) and (D).7 1)

cos B (L, L2 + ')/i(L + L) (D.72)

and

cosC (L' + L -2m')/(L, + L2) (D.73)

from which

A = 7r - (B + C). (D.74)

Thus, S' of (D.68) becomes

S, = Is2 A + B -_ s2 sin AcosA+sin Bcos B)]/7r (D.75)

or, since the third term is twice the area of ABCA, which is readily shown to be

1A s sin C,

S' = (s'A+B- ssinC]ir (D.7I)

where, during he annula phasc, 50' = S' s nd during the, total phase q' I

D.9 CENTROID OF UNOBSCURED SOLAR DISC

From symmetry it is seen that the position of the unobscured solar disc

centroid lies on an extension of the line joining the solar and lunar centers which,
as in the previous section, is taken as the x-axis of a system having its origin at the
solar cernter. Hence, we may write - referring to Figures D-2 and D-3 - that the.. .. IJ _," ) , ;,vn hv
Ctnutflu IjD areIa - &-- -... -,

aB = 2f f dyxdx
recos B 0

10
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or
3B 2 -- X2]3/2(r®a u3 "r xX3r c s

which becomes

x = (r(sin B)3/a, (D.77)

Similarly, we cn write that

xA = BA -2 (r•, sin A) 3/aA (1)78)

Next, we ilotc hat the centroid of the combined areas x A B is given by

(aA +a) 'XA+B =aA' x A+aB "X.B (D.79)

or

(aA +a -). = B " aA -3 (rsinA)3 + - (r®sin B)3

which, since r•. sin A =r0 sin B,, reduces to

x+ =BA aA
A 3 (C).80)8 A + a B

Furthermore, we note that

A +B a A+B+C taA +a B" A+6 ac (

or since xA+B+C 0,
(aA +aB) XA4B

"C a.

which reduces, upon substitution of (D.80) to

irr -(aA +aB)
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or, it IOw rc'ults titf the prcvious section arc employed

S 2 (,A sinAcosA) (/.2m8
x t . . . |)( D .8 3 )

7rTl - S')-L, -+L2

lhence, by specilying its position angle 0(. P -.ir and radial distance relative to
the solat center x(., the centroid may be located easily on the solar disc.

D.10 TOPOCENTRIC PARAMETERS

The topocentric right ascension CtZ declination 6' andi aistance rý of the
moon can be calculated from the following exact relaticnships

r•1 cos os a, = r, cos6,. cos c6 - p cos 0' cos TR,

r cos 6  in a, = r, cn, 6,sin aW- p cos 0' sin rqs

rý, sin 6, = r,, sin i4, - p sin ¢' (D.84)

in which u, and &,, are the geocentric lunar right ascension and declination of
(A.46), respectively, r, is the geocentric distance given by

r, = ae/sin 7r, (D.85)

where the lInar parallax ire, -'omes from (A.45); and rf, is the local sidereal time
(L.S.T.) at r hours E.T. given by (B.4).

Nt xt, the aLzIIItI- A z(measured east from north) and the elevation EV, of
the moon can be calculated from

cos EVO, cos Az-,, + sin 6ý, cos 0 - cos 5ý sin 0 cos (rR,- -,)

cOs 1[(L#. sin Az, - cos 6, sin ( -r

J;r, k'• =+ sin 6 , sin 0 + cos 6L cos 0 cos(7Q - at) (D.86)

in which (T•, - au) is recognizcd as the hoL-- angle of the moon.
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And finally, the topotentnc lunai be-. er T, can be calculated from

the expression

rlk
SiS & in (D.87)

where the sine of t : geocentric lunar seii-dianwter S6, cai be otten directly

from (A.48) Wc. note in pass!ng that S' - S, is known is the augment.. --in.

In the case of th, sun, an approximate form of (D.84) suffices thus, the

topocentric right ascension at and the declination 66 are given by

- 6 -- A6® (D.88)

in which

Ao® = 1P® lpcoso'sec 6®sin (rr, -0,®)

A6® it® [p sin 0' cos 5® - p cos Qsin 5® cos (r, - aC)] (D.89)

and where 7T® is given by (A.22). As in (D.86). the azimuth Az® and EH® are

given by

cos EQ® cos Az® = + sin bb cosq - cos 66 sin 0 cos(7k- ck)

cos EU® sin Az = - cos 66 sin (rh- a'®)

sin EVO = 4 sin 6N sin 0 + cos O'® cos 0 cos (rk -a)
(I).90)

,\here it should be noted, for locations near the center line and at or around

cJ:iipse maximum, that the useful approxi mation

sin EU®• I (D).91)

follows from an examination of (C.20).

Since the solar semi-diameter is almost totally insensitive to topocentric

variations; the value given by (A.23) can be used throughout the eclipse.
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APPENDIX E

SOLAR COORDINATE SYSTEMS AND RELATIONSHIPS

E.0 INTRODUCTION

In this appendix various coordinate systems applicable to solar astronomy
will be described and their interrelationships defined. Particular attention will be
directed to the development of both precise and approximate "pointing instru&-
tions" for observation of phenomena both on and above the solar surface.

E.1 PRELIMINARY DISCUSSION OF SOLAR COORDINATE SYSTEMS

Points are located on or above the solar surface by specifying both their
heliographic longitude L and heliographic latitude B, once the prime meridian of
the rotating* sun (the x-axis of the heliographic system) and the rotation axis of
the sun (the z-axis of the heliographic system) have been specified for the date
and time of interest.

This specification uses as reference an ecliptic plane having no secular
motion and furthermore, the latitude of the sun is neglected. Hence, one requires,
first, th2 inclination of the solar equator with respect to the ecliptic 1, or,

equivalently, the angle hetween the ecliptic nrth pole zc and the north pole of
the sun z H (this is shown in Figure E-1); second, the longitude of the ascending
node of the solar equator on the ecliptic 2; and finally, because of the gaseous
nature of the sun and, hence, the lack of a recognizable reference point on the
solaw equator with which to measure longitudes, the location of the prime
meridian by specification of the heiiographic !ongitude of the ascending node as a
given function of time, M. These zre given by

I = 7015'

f = ! 4' + 50`7_5 (t - 1 850.0)

M - 180° = 112 766 - 14018439716 (J.D. - 243 0000.5) (E.l)

in which t represents the number of years since 1850 and J.D. represents the
Julian Day number of the date and time of observation.

In "actual" appearance, of ,ourse, the sun resembles a disc onto which
points both on and above the solar surface are apparently projected. The normal
:o the disc (x: x" in Figure E-1) lies along the earth-sun line at the -elestial
iuxgitude 7.- -rm• w "I•r ý ) is given by ( A.17) ou (AlA). A projected point is
located on the disc by specifying two polar coordinates: first, its radial distance

In what follows we neglect the differential (heliographic latitude dependent) rotation of the
sun. Longitude is measured westward (in the direction of rotation) from the prime meridian
and ranges from 0" to 360W; latitude is measured from the solar equator, positive towards the
north.
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from the disc center, equivalent to the angle p subtended at the center of the sun
by this point and the earth's center; and second, its position angle 0 measured

eastward fhora the north point (the z" axis of Figure E-I) which is the projection

of the earth's rotation axis zL on the disc*. The relationship betw.ecn this
"observational" disc coordinate system and tile heliographic system.i can be fixed

by specification of the position angle 1) of the projection of the solar rotation axis

z,, on to the disc

E.2 PRELIMINARY CONSIDERATIONS

In the remainder of this appendix we assume that a positivt, rotation with

respect to an axis proceeds i, the right handed sense, and furthermore, in the
following three relations, we assume that the rotation opcralor operates upon the

coordinate basis x, y, z to pioduce the transformed x', y', z' basis.

By positive rotations with respect to x, y and z axes we mean

X R11 R,~ R1 X 1 0 0o

R21 R 22 R23 y 0 cos 0 sin0

R 3 1 R 32 R33 z 0 -sirn,0 cos O

(E. 2)

x cosO0 0 -- sin 0 x

y 1 0) 0

zan sin 0 0 cos 0 z (E.3)

and

y' = -sin0 cos0 0 y

z 0 0 )z E.4)

respectively.

"As discussed in Appndix D, the noith point is observationally defined as that poin! on the

solar limb which ;s the tangent point of the parallel of declination defined by the apparent

(diurnal) motion of the sun.
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E.3 THE HELIOGRAPHIC/ECLIPTIC COORDINATE TRANSFORMATION

The heliographi,: system (x1 , , I Y11 , z) is transformed into the ecliptic system
(x,. y.. z I by tlit, following sequence of rotations: first, a rotation around Zli by

; second, a rolatihn around the new x-axis by - 1; and finally, a rotation around
the new z-axis by &Z. This leads to

(II) IRCII (A )
zC zli (E.5)

in which

RcLH cos 12 cos M + sin E2 sin M cos 1

R(12 = -[sin.2cosMcost-cos2s~nM]

R(I'. = sin S2 sin I

R C•H7 = sin P cos M - cos 2 sin M cos t

K211= cos R cos M cos I + sin S2 sin M

R"' =- cos 2 sin 1

R( 11 - ;inIsinM

R(111 = sin I cos NI

R~l -- cos I (E.6'l

E.4 THE 'DISC'/HELIOGRAPHIC COORDINATE TRANSFORMATION
AND RELATIONS

The 'disc'/heliographic transformation can be developed by either of two
mutes, namely: that the ecliptic system (x,, y,, z) is transformed into the 'disc'
system (x', y', z') by a rotation around z, through (X® + 7r) and, in turn, that
the ec•iptic systemn is tr by usee of (12. 5) or, quivalently that the s
deveiupment as that leading to (E.5) isused but with -.Q replaced by -Q + (X® +Hr
in the third rotation. In either case,
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Y = IR FHI Y--

\zH/ (E.7)

with

R'.• I - cos (®-2) cos M + sin (XG -2) sin M cos I

- [sin(X®- 2) cos M cos I + cos (A® - 2) sin M]

R',3 sin (?® e 2 sin I

R;H sin (X®- )in

21 = sin U R2) cos M + cos(?%® -X 2) sin M cos I

'H
R22  -cos (X® -E 2) cos M cos I + sin (Xr - f2) sin M

R'HR23  cos(® -- 2) sin I

'HR 31  -sin I sin M

R32  sin I cos M

R33 cos1 (E.8)

Next, we note that the x'-axis of the 'disc' system, i.e., the 'disc' center,
defined by the subterrestrial point located at heliographic longitude L0 and lati-
tude Bo, can be specified by transposing (E 7) in the form

/ \- \ H(COS 1c0 CUS LO

cos BO sinL
0  

) - lT 0 = (0R2
sin BO K13 (E.9)

or

cos Bo cos Lo = - cos (X-) - Q2) cos M + sin (X® - £2) sin MI cos I

cos Bo sin Lo - [sin (O0 - ý2) cos M cos I + cos% - £2) sin M I

sinBo- sin(Xe -f2) sin I (E.10)
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"These, in turn, can be transformcd, by means of some stiaightforward manipu-
lation into the more commonly employed form for calculating Lo and Bo,

sill B, sin (N0 - 1) sin I

cos B, cos (L•0  = -I 0 So -S( )

cos B0 sin (L - M) -sin (X), -t,2 ) cos 1. (E. 1)

Finally we have that the angle Y between the projection onto the 'disc' of
the sun's rotation axis z,, and the ýchiplic pole can be gotten in two steps: fru-st
acquire the disc coordinates of z, through

•x' o /R;•H

'HSi( (E.12)
or

' = sin (Xe - a2) sin I

Vc = Cos (X, - 11) sin I

Z' Cos (E.13)

and second, note that

tan Y - Y -cos (X® - )tan 1. (E.14)
2

E.5 THE 'DISC'/EQ"2ATORIAL COORDINATE TRANSFORMATION
AND RELATIONS

The 'disc'/equatorial transformation is developed by noting that the equato-
rial system is transformed into the ecliptic system by a rotation around xj! through
the obliquity c and that, in turn. the ecliptic system is transformed into the disc
system by a rotation around z, by the angle (X(.) + r). Hence,

x/

z IZR K ,) (E.15)
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with

W ill = - co s X o.

R -sin Xo cos c

RWill = sin Xo sin c

R '211: sin NO
- cos ),.cos E

R'23  -cos XG sin c

W•ll -= 0

E

RE = -sine

R'3 3 cos e (E. 16)

Furthermore, we also note that the angle X between the north point defining
the projectian of the earth's rotation axis zL on the 'disc' and the ecliptic pole
can, like the angle N be gotten in two steps: first, acquire the disc coordinates of

Z. through

y' 0 RR' i ,;

\z /i \R" (E 17)

or

x sin X. sin e

y = - cos X® sin

z cos C (E.18)

and second, note that

tanX -' cos X® ane. ([.19)
z
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I i1ally, wA see that the lxosition angle P of the solar rotation axis is given by

V P X + Y (E.20)

where Y A;,s dclfine•d in (F.14).

E.6 THE 'DISC'/"DISC" COORDINATE TRANSFORMATION

The disc'p"disc" transformation is developed by rotating the ecliptic pole (the
z'-axis) around the x'-axis by the angle - X into the north point (the z"-axis),or that

y' = I os X -snX

7' 0 sin X cos X zx" E.1

E.7 THE HELIOUPAPH.H/"-IbC'" COORDINATE TRANSFORMATION
AND RELATIONS

This "disc" system (x:' y,' z") is transformed into the iheliograplhic system

(Xl Y" " zi ) l y the following rotations: first, a rotation around x" by P; second, a
rotation around the new y-axis by Bo; anri finally, a rotation around the zH axis
by - L•. This leads to

Y = [Rw"" (
H' (E.22)

in which

R III" -US B0 Cos,

R1,2" -cosPsin Lo -sin P os Lo sin B0

R',13' = sin P -sin Lo + cos P cos Lo sin B0I
= cos B, sin Lo

Rz'' "I cos P cos Lo + sin P sin Lo sin B,

Rll' = _in .P ,•s L6 -- ,csPsi"• •n

3R11 I = sin Bo

R1 -sin P cos Bo

R1313" Lcos P cos Bo- (F23)
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ar Coa nu,:i , I~y.a I'Qht (lie stirlace of the sun (of radius Re ) at latitude Barnd 'onfttudc l., tIhc( ¢y lIax-ng til heliographic coordinates

, :IR " l cos L

•'Ix, R cosB Sill I

zi IN.c sin 13, (F.24)

will be transformed into a poinlt in the "disc-" Systl with Jhcliocentric ansk' p
and position angv,. 0 thereby having the "disc" coordinates

=- Rq COS p

Y" R®sinlp sin 0

R sin p cos 0E.25)

If these are substituted in (F.22), and appropriai.e oecrations and malipulation'
performed. we havc that

sin B =sin Bo cos p + cos B0 sin p cos (P- 0) !L26)

cos B sin (L -- I-) sin p sin ((P- 0) .2

which permits the immediate calculation of tlhe heliographic latitude and longi-
tude of a point once its disc coordinates p (whose determination wilil be discussed
in Section E. 10) and 0 have been specified. Equivalentl , we have

cos p = cos Bo cos B cos (L - Lo ) + sin U. sin B (0.L2S)

s h a p si i ( i` - ,) •- c s B sin t L - - L , , .

if B and L are specified and p ind 0 are cquired.

E.8 RIGHT ASCENSION AND DECL.,,•ATIU OF AN OBSERVED POINT
ON THE "DISC"

This development is initiated by employing tle transpose ofi 21 ) opcratling
oil thie 'disc- m e ...... , - C Ai 10u11

S'= R cosp

-RD sinpsii(0 - Xi

R® sin pcos(0 - X) W1 30
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to yiCld

X,= P-. - cos p cos,® - sinp sin Xsin (0 -- X)i

Y, = R [-cos P sin X® cos c + sin p cos X®0cos e sin (O - X)

- sin p sine cos (0 - X)J

zr. = R<- [ -cos P sin XO sin e + sin P cos X® sin f sin (0 - X)

+sin p cos e cos (0 - X)]. (E.31)

Next, because the geocentric, equatonal x, y, z components of the solar center
(neglecting the solar latitude) are given by (A.21) as

x(D= R cos 6® cos a® = R cos X,

y ®= R cos 6( sin ci® = R sinX•X cos e

z® =Rsin 6® = RsinXo sin e (E.32)

then the geocentric, equatorial components of the disc point can be written by

xx +xF R [(I R® Cos Cos X

= r® = -- .• 0.iOS nAcos

R 

-
R sin() sin (0 - X) sin ne)]

Y -- Ye F . R 1( -.3 •? •sin ý, Cos e

z +z2  R sin( - X cos ecsi N O - cos (0- X) sine® eo

Z=CZ'=R I Cos sin Xe Sir. ( +
R

+( sin p)(cs( Ocos(E+Oin( - X)sie cos X0+

(E. 3)
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(brnsequiently, if we employ the reasonablc zpproxinatwon fhat -x +G

-• RI, w can wrytc immediately that the right ascension a, and declination 6, of
the point are given by

R coS, cos c. x

R cos& siPt s = y

R sin 6, z (E.34)

where x, y, and z are given by (E.33).

But (E.34) and (E.33) can be transformed into a more familiar form hy
expanding the sin (0 - X) and cos (0 - X) terms and identifying sin x and cos x

with the eclipticand equatorial coordinates of the sun. For from (E. 18) and (E.32)
we have that

W)" + (z') 2 = (- cos X® sine )' + cos2 
C = cos2  (E.35)

so that

y'
sin X - _ - cos X ® sin e/cos b® (E.36)

and

xs X - cos /Cos S® (E.37)
(y2 (z',

which, when employed - together with (E.32) - in (E.34), yield (after consider-

able manipulation)

cosb cosa$ (i- R® co. cs®coa
Cin p Csi Cos os be cos in -

R

sin p~ sinn 0 si a, osos eo s si a C inb

R®

+ -i sin [ sin 0 cos O cos 0 sin sinbe

S~R

sin 6 =(- - Cos p sin + silPCos9 co [
S R R

(F.38)



01

sinnpsin0 sill(oa -a.))os8
R

R•. R sin )COS 0 :- COS 6- sin -sn0os sc. -®

- o - sin 6® sil 6, + co; cos 6 cos (, - a>). (E.39)

But reference to Figure E-2 shews thit

sin, - sinf P . sin (E.40)

6? R

and

R - R® cot P Rocosp, 1  I - - cosp (V.41)
6? R

so that (E.39) reduces to the familiar set of relations

sinp, sin0 0 sin(a --ao) cos 6 ,

sin P, Los 0 cos S® cos 5, - sin 60 sin is cos (a 5- O)i

cos p, sin So sin 6, + cos So cos S cos (a0-1a ) (F3.42)

which also follow directly from Figure E-3 and the solution of the astro, mica!

triangle on the celestial sphere of infinite radius (wherein the approxim. *ons of
(E.40) and (F.41) are rendered unnecessary).*

If the separation of (ao, 6@'j and (a,. 6) is sufficiently small that square and
higher order terms can be neglected, then

p1 sin U -a®')Cos

p, cosO sin b, - 6h --

See 191 pp. '5-26.
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or, t-) witllh thi, kýcl o1 approYimation

a - a • pn sinksc-6• (E.43)

6-, - pk , cos 0. (E.44)

E.9 DETERMINA'IHON OF p FROM OBSERVATIONS

The determination of p is based on the geometry of Figure E-4, a more
detailed ¢erýion of Figure L-2, which also provides for a radio sun of radius
R = HR R•. with "(It > 1 as well as for the optical sun of radius R. r and re
arc meant to symbolize linear observational measures in some convenient scale on
say. a photogaph.

lBecause of its small magnitude t- 16") we can write that the solar semi-
diameter of A.23 is given by

R®

and, to the same level of approximation that

Pi9 (E.46)SO ro

FHence, p, can be determined from the three known or measured quantities SO,
rand ro.

But we see that

sin A _ sin (p1  + p) sin p , (E.P4

R R R RG(E.47)

or, employing (E.45), that

sin (pI + p) : p /S (E.48)

where it should be pointed out that the optical radius has bee- tacitly employed.

If on the other land we wish to calculate the p appropriate to a radio sun of
radius R. = K R® from the same pn, we modify (E.48) such that

sin (p , + P R P , I Sk - ( ) (o
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