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ABSTRACT

»

This report addresses the prediction and analysis of solar eclipse circum-
stances of interest to atmospheric, ionospheric, and solar studics. In the first

Y section. specific algorithms for use in pre-cclipse planning and post-cclipsc analysis
arc presented. In the second section, appendices present the calculation of solar
and lunar cphemerides of requisite accuracy for prediction purposes, the calcula-
tion of ephemeris sidercal time, the prediction of the shadow outline on and
atove the carth, the caleulation of lecal eclipse circumstances, and the develop-
ment of solar coordinate systems, to provide the background for and the founda-
tion of the preceding algorithms.
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1.0 INTRODUCTION

This report addresses the prediction and analysis of solar eclipse circums-
stances of interest to atmospheric. 1onospheric, and solar studies. In the first
section, specific algorithms tor use in pre<clipse planning and post-eclipse analysis
are presented in a form suitable for manual or machine calculation. In the second
section, five appendices provide the background for and the foundation of these
algorithms.

Although much of the material in this report is familiar to the astronomical
community, its dispersion in the literature or its rendition in a variety of forms do
not make it immediately uscful to the non-astronomer. This report’s first section
is, therefore, a compilation of familiar results; the second section is tutorial in
nature.

Appendix A presents algorithms for calculating the geocentric coordinates of
the sun and moon. In the solar case, the algorithms are based primarily upon the
Newcomb Tables (7] and secondarnily upon the more recently published Tables of
Jean Meccus [5]. In the lunar case, the algorithms are based primarily upon the
“Improved Lunar Ephemeris” {3} and secondarily upon Meeus. The series
developments of solar and lunar longitude, latitude, and distance (parallax) have
been truncated in view of the relaxed accuracy requirements. In all other respects,
however, the developments of the sclar and lunar ephemerides are identical to
those given in the fundamental references.

Appendix B outlines the calculation of Ephemeris Sidereal Time.

Appendix C develops algonithms necessary to predict the outline and motion
of the lunar shadow on an earth spheroid of arbitrary radius and flattening. It is
based upon the exposition of Chauvenet [1] and the authoritative summary in
The Explanatory Supplement:. . .[2]. It is repeated here because the summary of
requisite formula in (2], with a different ordering from that of [1], lacks both
the justification and seeming inevitability with which elements related to the
flattened spheroid and the shadow motion thereon were originally introduced.
Furthermore, it seems appropriate to show that the relationships pertaining to
jonospheric center line position and duration follow naturally from a develop-
ment in which scale factors are explicitly employed.

Appendix D develops the algorithms required to predict all circumstances of
an eclipse at a locale once the coordinates of the locale have been specified. to
adjust these circumstances by means of differential correction procedures for
modest departures from the locale specified, and to calculate other topocentric
parameters of interest.

Finally, Appendix E describes various coordinate systems applicable to solar
astronomy and dcfines their interrelationships. Particular attention is directed to
the development of “pointing instructions™ for observation of phenomena both
on and above the solar surface.




2.0 PRELIMINARY REMARKS

Ephemeris Time (E.T.), which is related to Universal Time (U.T.) by means
of the expression

ET. = UT. + 4T (H

will be employed througinout this report, except where indicated. Similarly. the
ephenieris longitude of a location A, which is related to the geodetic longitude A
(West taken as positive) by means of the expression

A, = A+ 1.002738 AT, )
will also be utilized, except where indicated.

In either instance, conversion irom one “‘system’ to the other requires the
explicit assignment of a value for AT. Tor the past years, values of AT are given n
The American Ephemceris and Nautical Almanac, page vii, Table of Time-
Difference AT. For the 1970°s Table 1 — extracted from Table 67a, Reduction
from Universal 1o Ephemeris Time of [ 2] — provides a useful cxtrapolation.

TABLE 1

AT VALUES FOR 1969-1880 INCLUSIVE

1968.5 +42° 19755 +51%

1970.5 44' 1976.5 53*

19715 45! 18775 54°

1872.6 47 1978.5 56*

19735 Ay’ 19795 57"

19745 50* 1980.5 59
3
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3.0 CALCULATION OF BESSELIAN AND AUXILIARY ELEMENTS

This section will follow the development presented in Appendix C and is
based on the assumption that the following quantitics arc available at the timegs)
of interest:

gy 8 = zpparent right ascension and declination of sun
fcf (A21))

R .=. the solar radius vector in A.U. [cf (A14)]
@ . & .= apparent right ascension and dechination of moon
[cf (A46)]
ne .= the horizontal cquatorial parallax of the moon
(cf (A45)]
ES.T. =.  Ephemeris Sidereal Time {cf (B3)].

3.1 SHADOW AXISPARAMETERS

Calculate the shadow axis right ascension a and declination d and the solar-
lunar separation g (in terms of R) from

gcosdcosa = cosSG) cosag — b cosbe cos o (3
geosdsina = c0s g sinag — b cos g, sinag 4
gsind = sin g —bsing, , (5)
where
p = 0.000042664 (6)
Rsinm,

3.2 "FUNDAMENTAL"” RECTANGULAR COORDINATES OF MOON

Calculate the rectangular coordinates x, y, z of the moon with respect to the
fundamental plane (in units of the earth’s equatorial radius  a 5 = 6378.160 km)
from

X = 1, lcos b, sin(a, ~ a)] (]

y = 5¢ [ sin &g cosd — cos & sin d cos (ag - a)) (8)

z = 1g [sin ¢ sind + cos &g cos d cos (wg — a)] &4
5

e A




where
Te = l/sinmg 10)

3.3 EPHEMERIS HOUR ANGLE OF SHADOW AXIS
Calculate u, the ephemeris hour angle of the shadow axis, from
u = EST.-a (1)
3.4 SHADOW CONE GENERATORS

Calculate f,, the generator of the penumbral cone, and f;, the generator of
the umbral cone, from *

0.0046 64018/gR )

1

sin f,

n

sin f; = 0.0046 40783/g R 13)

3.5 SHADOW CONE VERTEX DISTANCES

Calculate ¢, the distance of the penumbral cone vertex above the fundamen-
tal plane, and c¢;, the distance of the umbral cone vertex above the fundamental
plane, from

¢, =z +0.2724 880 cosec f, (14)

Cq z — 0.2724 880 cosec ;. (1%

3.6 SHADOW RADII ON FUNDAMENTAL PLANE

Calculate ¢,, the penumbral radius on the fundam=ntal plane, and £;, the

Y [} PR 3 P, Lo Frvem Tmonns e
wnbial fadiis on the fundanicnt

* {t, as in the discussion leading to (E46)}, we wish to consider the radio sun whose radius is J(R
timas the optical radius where 3= (1 + J(‘R }, then

sinfi,R = (0.0046 64018 +0.0046 52367 }()/g R

sinfy, R = (0.0046 40783 + 0.0046 52367 3}/ g R.

=




I

o

g, ¢ tan f, (16)
£; = ¢y tanf, (7
where £, > 0,2, < 0 for totality, £, > 0 for annularity.

3.7 HOURLY VARIATIONS

..... .

Calculate the hourly variationsd, x,y,u, ¥, and €; by appropriate numerical
differentiation of the Besselian elements sin d, cos d, x,y, 4, £, and &,.

38 AUXILIARY ELEMENTS

Cal:ulate the auxiliary elements P, P, sind,,sind,,sin (d, — d;) and

-

e m

£

cos (d;, —d;) from

P = (1 —eloos?d)® (18)

P; = (1 —elsinid)? (19)

sind, = sind/p, 20)

cosd, = (I —e?)” cosd/P, @n

sin (d, —d;) = e? sind cosd/p, P, Q)
cos(dy —dy) = (1-e))" /p, p, (23)

where the ellipticity e is given by e = (0.0066 9454)" for the earth spheroid.

Also, calculate the additional auxiliary elements :;, B PO b, ¢, and ¢, from

a, = —{, —# xtanf, cosd (24)
52 = -ﬁ, -n x tan f, cosd (25
b = —§+;1xsind 20)
¢, =x‘+;;ysind+le, tan f, cosd (2N
¢; =x+pysind +pu € tanf, cosd (28)




4.0 CALCULATION OF IONOSPHERIC CENTRAL LINE, DURATION,
AND SHADOW OQUTLINE

The following development, except where indicated, is based upon Sections C.9
and C. L of Appendin C

4.1 IONOSPHEHRIC CENTRAL LINEPOINT

From the relations

Y, = yip (29)

§ = 110G —xT -y (30)
where

H = l+0.le71‘§503>.|0'3hI 30

in which h, is the ionospheric center line height above sca level in kilometers,* cal-
culate a point on the central line from

tan (= - (32
{, cosd, — ¥, sind, )
and
$y sind, 4y, cosd,
sing, = : (33)
ki)

The geodcetic tatitude ¢ ot the point 1s given by
tan¢ = 1.003364 tan ¢,, (34)
the ephemeris longitude A is given by

A= k- ® (35)

in which Q-b is the local hour angle of the shadow axis, and the longitude is given by

A = A, - 1.00 2738 aT. (36)

* iNote the footnote tollowing (D2}

...LA...A‘
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4,2 ECLIPSE SEMI-DURATION ATCENTER LINE POINT

(Calculate the semi~duration of totality at the jonosphenic central line pont ¢
and X of (34 and (36) from

s = Ly/n N
where

L, =& ¢ tanf, (38)
in which

§o =03 (8, cos(d, --d;) - yysin(dy - d;)] (39)
and wherc

n o= (€ —Ho cosd)? +(-b) ", (40)
4.3 SHADOW OUTLINE APPROXIMATION

The shadow outline, centered at the point specified by (34) and (36), can be
approximated® by an ellipse whose semi-major axis is oriented toward the sun
along azimuth Azg. The semi-minor axis is given (in kilometers) by

semi-minor axis = L, (Hay) 41) .
where ag .= the equatonal radius of the earth = 6378.160 km; the semi-major
axis is given by
semi-major axis = L, (Hag)/sin E€g = Ly(Hag)/§ (42)

in which E€g, is the solar elevation. The approximation is derived in (D91).

Explicit formulae for the solar azimuth and elevation arz given by (D90) and
will be repeated in Section 11.2.

* This approximation, avoids the tedious point-by-point, albeit more precise, outlined trace
method developed {orimarily for illustrative purposes) in Section C.B of Anpendix C, «c¢f
Comrie, L. J., "Some Computationsl Problems Arising in Eclipses,” MN.R.A.S. 87 483 (1927}

1N
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5.0 CALCULATION OF OBSERVER COORDINATES

The observer is assuried to be located at geodctic latitude ¢, longitude A
(West tuken a positive) and heigitt above sea level h {in meters).

5.1 CLCOCENTRIC COORDINATES OF THE OBSERVER
Calou!lste the geocentric coordinates g sin ¢” and o cos ¢’ tfrom
psin @ = (S+0.15678503 x 107 °h) sin ¢ (42)

p cos o= (C+0.15678503 x 10" %h) cos ¢ (44)
where

$=0.9949 7418 -~ (.0016 7082 cos 2¢ + 0.0000 0210 cos 4¢ 45

C=1.0016 7957 ~ 0.0016 8208 cos 2¢ + 0.0000 0212 cos 4¢ (46)

(3]

"FUNDAMENTAL' RECTANGULAR COORDINATES
OF THE OBSERVER

s,ﬂ

Calculate the rectangular coordinates £,m,¢ of the observer with respect to the
fundamental plane from

¢ = pcos¢ sin (W) 47
n = psing’ cosd — P cos ¢ sind cos (H) (48)
¢ = Psing sind+ P cos ¢’ cosdcos (H (49)

wherc@. the local hour angle of the shadow axis. is g.ven by
(M =u-A = p- - 1.002738AT. (50)
£.3 SHADOW RADIi AT HEIGHT ¢

Calculate the penumbral and umbral radii at the F.-ght § above the funda-

mental plane {rom

L, = £, - ¢tanJf, (51

L, = & —¢tanf,. (52)

(e il AMOIAD M. 04 44, GWALS Pt ¢ o il w0
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5.4 OBSERVER COORDINATE VARIATIONS

Calculate the hourly variation of ¢ and 7 from

£ = 1pcoso cosh (53)
7 = pgsind ~ $d=p§sind. (54)
and cilculate the following combinations:
u = X —fv=y -7 m’ =u? +? (5%)
YR A S B I (56)
D =uu+vv. (57)




6.0 CALCULATION OF THE TIME OF MAXIMUM ECLIPSE
AND OF CONTACT TIMES

I this section, which deals with calcutation of the maximum eclips: and con-
tact times for a speciticd observation site, an iteradive procedure is used which is
fully described in Sections 9.1 and D.2 of Appendix D and then applied in
Sections D.2, D.3 and 1.4 of that appendix. In ¢ssence, one selects an ephemeris
time “close 0™ the time of interest, atd then calculates 2 formulated correction
to this selected time.  If necessary, this corrected time is employed as the value
“close to' the time of interest, the cycle repeated and the time of interest ultimately
establishicd.

6.1 TIME OF MAXIMUM ECLIPSE

Selectatime T, and - using clements appropriate to this time — calcuiate the
correction.

7=--D/n? (58)

lterate where necessary until @ vaiue has been settled upon; the maximum
echipse time, so determined. is designated t .

6.2 PENUMBRAL (FIRST AND FCURTH) CGNTACTS

Select a time Ty and — using elemenis appropriate to this time - calculate
the correction

o= - %:_‘lamwpl (59
in which - 7
siny, = 1‘ [”L;—‘“J (60)
]

and where the negative sign is selected for first contact (immersion) and the posi-
tive sign is selected for fourth contact (emersion). lterate where necessary.
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6.3 UMBRAL (SECOND AND THIRD) CONTACTS

Employing elements appropriate to the time of maximury eclipse computed
following (58), calculate

ro=- L b sy (61)
u nZ n
in which
: - l U\.I'Vl.l - K : -
sny = - [——-— = D (€2)
"TLU ] L,

note that L, cos ¥, I/n is the semi-duration S as given in (D23). The positive sign
is selected either for second contact (immersion) in the case of a total (L; < 0)
eclipse or third contact (emersion) for an anrular (L, > Q) eclipsc; the riegative
sign is selected eitner for third contact in a total eclipse or second contact in an
annular eclipse.

14




7.0 CALCULATION OF POSITION ANGLES

Caleulate the position angle Q of the ith contact point on the solar lunb
measurcd castwards from the north point (i.e., from the hour circle passing through
the solar center) by means of

_
tanQ, = -g- (63)*

i

where we note that for i = 1 4 the algebraic sign of sin Qi is that of u, whereas for
=231t is opposite that of u, .

For some observational purposes, the position angle V, measured eastwards
from the vertex (zenith point) of the solar limb may prove more useful. This is
given by

V. =Q -C (64)
where the parallacric angle C, is given approximately by

tanC, ~¢ /n (65)

in which the sign of sin C; is that of §,.

* At any time prior to, during, or after the eclipse, expressian (63) yields the position angle Q
ot the line joining the solar and tunar centers and thus, the position angles of the contact
points at the contact times.

13
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8.0 CALCULATION OF DiFFERENTIAL CORRECTIONS

8.1 PRELIMINARY COEFFICIENTS

Calculate
A, = — poos¢ cos (1) (60)
A; = —(8C? +0.1568h x 107¢) sin ¢ sin (A) (67)
A; = cos¢sin () (68)
B, = —¢sind (69)
B, = (SC? +0.1568h x 107%) (005 ¢ cos d

+sin ¢ sind cos (W) ) (70)
B, =sin¢oosd—cos¢sindoos® n

8.2 CORRECTION TOCALCULATED TIME OF MAXIMUM ECLIPSE

Apply the differential correction (in hours) to the time of maximum eclipse
t. (calculated in Section 6.1) in the form

8t =p, OA+q 69 +r Sh (72

in which 8\ and 8¢ are expressed in minutes of arc, 8h is expressed in meters and
where*

P, = (UA, +vB,)/n? ‘sinl’ (73)
qQ, = A, +vB;)/n? -sinl’ 74)
o = WA; +VBy)/n? ag; (75)

ag = 638 x 10* meters and sin 1’ = 0.000 290.

P, 8nd q_ are written with sin 1" in the coefficients of 5\ and 5¢ in order to illustrate a con-
venlent way of coping with both the "“radian” natureof p_ dAand q__ 3¢ in the differential
expression, on the one hand, and the requirement of having conventent units for the measure
of differential displacements. This is done by noting that since 1 radian = 57°17°45" = 343775
= 206,265", then 1" ~ 1/3438 radian and 1" = 1/206,265 radian. Further, we note that 10 a
good approximation, sin 1° = 1/3438B and sin 1" = 1/206,265. Hence, if 0" denotes the num-
ber of arc seconds in § (radians) then 8 (radians),= 6"/206,265 = 0" sin 1" =sin 8", and sim-
ilarly, 0 {radians} =6°/343B=0"sin 1" =sinf".

17




8.3 CORRECTIONS TO CALCULATED TIMES OF FIRST AND
FOURTHCONTACTS

Apply the differential corrections (in hours) 1o the times of {irst and fourth
contacts (calculated in Section 6.2) in the form

5t = pdh + qbg + rbh (76)

in which 6A and 8¢ are expressed in minutes of arc, 6h is expressed in mefers and
where

p =(uA, +vB,)/D -sin ]’ (77
qQ =(u A} +VB; }/D -sin 1’ (78)
I =(uA; +vB; /D ag. (79)

8.4 CORRECTIONS TOCALCULATED TIMES OF SECOND AND
THIRD CONTACTS

Apply the differential correction (in hours) to the times of second and third
oontacts (calculated in Section 6.3) in the following way. Calculate

8K = p 6N+q, 6¢ +1_bdh (80)
in which . .
p,=(uB; —vA)/n - sinl’ (81)
g, =(uB, —vA,)/n sin |’ (82)
1, =(uB; — vA;)/nag. (83) ;
i
Next compute _ ; i
sin §/, = K+8K) (84) i
L, 3
3
2
:
where, as in (62), K and L, are evaluated at t | and compute the corrected semi- ”
duration S, from %
. §
S, = L:lcos wul/n (85) 5

Apply (85) to the maximum eclipse time as corrected by (72).

18
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9.0 CALCULATION OF ECLIPSE MAGNITUDE AND OBSCURATION

9.1 MAGNITUDE

The magnitude is defined as the fraction of the solar diameter covered Ly
the lunar disc at the time of greatest phasc in units of the solar diameter. Thus for
a partial eclir ¢ the magnitude M, ,* is given by

M, = oM (86)
YL, 4L
or,if L, is unavailable, by
= L-m (87)
2L, - 0.5464

For a total eclipse (L, < Q) or ar. annular eclipse (L; > 0),

_ L -L

~
!

(88)

9.2 OBSCURATION

Calculate the fraction S’ of the solar disc obscured by the moon from

S =(s? A+B - ssinO)/n (89)
in which
cosC =(L; +1; ~2m¥)/(L? -1})  0<C<n (90)
cosB = (L,L; +m’)m(L, +1,) 0<B<n o“n
A =1 -(B+C() 92)
s = (L, - L)AL, +L,); (93
and where S’ = s? during the annular phase and S’ = | during totality.
* We noie tiat My, a5 given in {88} and/or {87}, is 2 usetul expressicn for the fraction of the

solar diameter eclipsed at any time prior to second contact and following third contact.
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10.0 CALCULATION OF HELIOGRAPHIC COORDINATES
OF ARBITRARY POINTS

10.1 HELIOGRAFHIC COORDINATES OF SUB.-TERRESTRIALPOINT

The heliographic latitude By and longitude Ly of the sub-terrestrial point
{center of solar disc) are gotten from

sin By = 0.12620 sin (Ag - £2) (94)
00s By cos (Lo — M)=~ cos (Ag ~ ) (95)
cos By sin (Lo - M} = - 0.99200 sin (Ag - ) (96)
in which
Q= 73° 40" + 50725t 97)
M = 2927766 + 14°18439716 (243 0000.5 — J.D.) (98)
where
)\Q =. the longitude of the sun which is given either by (A.16) or (A.18),
t .=, the time in yeers from 1850 A.D. to the date of observation,
J.D. .= the Julian Day number of the date and time of observation.

10.2 POSITION ANGLE OF SUN’'S AXIS OF ROTATION P

Ca'culate P, the position ang

sun’s rotation axis from

S R
le {me wards fToim noirth puini) olthe

P=X+Y (99)
in which
tan X = -- c0s Ay tan ¢ (100)
tanY = -0.12722 cos (Ag ~ §2) (1on)
where

€ .= the obliquity of the ecliptic given by (A8).




10.3 HELIOGRAPHIC COORDINATES OF ARBITRARY POINTS
The heliographic fengitude L and latitude B ot any point at position angle 0
and hinear radial distance 1 on the solar disc of lincar radius rG‘and can be cal-
culated from
sin B =sin B, cos p+ ¢cos By sin Peos (P - 0) (102)
cos Bsin (L - Lg)=sinpsin(P - 8) (103)
where £ can be calculated from

sin(p + F- 550 = (104)

I
e Te
in which Sg, the solar semi-diameter (in minutes of arc). is given by (A23).

Conversely. if L and B are given, 6 and r can be calculated trom the inversion
of (102) in the form

cos P = sin By sin B+ ¢cos By cos (L — L) cos B, (105)
and from the application of (103) and (104).
10.4 HELIOGRAPHIC COORDINATES OF CONTACT POINTS

The ith contact point at position angle Q, and radial cistance r = rg. such

that p = 7/2 — Sgand cos p = S sin 1" and sin p = 1, has the heliographic coor-
dinates B, and L, given by the good approximation

sit B & (Saystn 1 ysim Bg v e if -G Hoeus B {150)
i R(C] ! 0 = % o
cos B sin (L, — L) = sin (P - Q) (107)

‘¢ and re 8re meant {see Fiygure E-2) as linear measures in some convenient scale on, say, a
photograph.
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11.0 TOPOCENTRIC LUNAR AND SOLAR QUANTITIES

11.1 TOPOCENTRIC RIGHT ASCENSION DECLINATION AND
SEMI-DIAMETER OF MOON

The topocentric right ascension ag, declination b¢, and distance re of the

moon are piven by the following exact relations

Te €03 O¢ COs O = Tg CUs B¢ vOS Qg — P oS O €O Tp, (108)
Te COs B¢ sinag = r1g cos B¢ sinag — P ¢cos 9 sin T, (109)
Te sin 8¢ = 1g sin 8¢ Lsin ¢ (110)

in which ag and §¢ are the geocentric right ascension and declination, respectively;
7, is the local sidereal time (L.S.T.) at 7 hours F.T. as given by (B4) and 1 is the
geocentric lunar distance given by

T¢ = agfsinmg (1D

where the Junar parallax m¢ comes from (A495).

The topocentric lunar semi-diameter Sg is gotten from

r
sinS¢ = T(‘ sin S¢ 12)
[ §

where the sine of the geocentric lunar semi-diameter is given by (A48).*

11.2 TOPOCENTRIC RIGHT ASCENSION AND DECLINATION OF SUN**

The topoventric right ascension ag, and declination 8 of the sun are given
by the following approximate relations

a'g=og — Aag, (113
6'g=08p— Adg (I

The difference Sy — S is called the augmentation.

** The semi-diameter of the sun is essentially indifterent to topocentric distance variations.




in which

5 =T [pcosé'secﬁ@sin(rqs—cvz@)] (115
Ady = mg lesing s §g —peosg’sin dglmy —ag))  (116)

where the selar parallax 75 1s given by (A22).

11.3 SOLAR OR LUNAR AZIMUTH AND ELEVATION,;
SOLAR-LUNAR ANGULAR DISTANCE

The azimuth Az (measured east frecm north) and the elevation ER of either
the sun or moon can be calcuiated from

cos EQ cos Az =sin 6’ cos ¢ — cos &' sin ¢ cos (rp, — &) (17
cos EC sin Az = -cos &' sin (17, — o) (118)
sin E¢ = sin &'sin ¢+ cos 8 cos ¢cos (1y — ) 119)

in which {7 - o) is recognized as the hour angle of the body in question.

he solar-lunar angular distance (the great circle separation of the centers of
the sun and moon) p is given by

cos p, =sin bgy sin g + co Igc0s 8¢ cos (ag — ag) (120)

or from (D.71) by

py= -2 5. . (121
L+, =
24
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-12.0 PRED!CTION OF SUN SPOT IMMERSION/EMERSION

I this seciion, three alternztive methods will be presented for determining
those times at which a particular point on the solar suface (a sun spo.. fr;
example) is immersed by the leading edge and emerges from the trailing edge of the
moon. The first method employs the geocentric right ascension and deciinatisn of
the solar location as coordinates of a fictitious star and proceeds with a “ctandard™
stellar occultation calculation. The s .ond method is based on the it that at
immersion or emersion the separation of the point on the sunaad iunar conter s
equal to the semi-diameter of the moon. The third alte;mative Se-cribes a cine-
matic simulation composed from a temporal sequence of ~stille” and the conse-
quent *“visual” observation of rot only the occultation of selected sclar poiats but
also the visual determination of other local circumstances as well.

12.1 “STANDARD” OCCULTATION

If the neliographic coordinates of the spot Ly, B, are given, these must be
converted i. . the geocentric coordinates p,  and 6, by means of the relations

cos p; = cos By cos Bicus (L Lg) +sin By sin By (122)
sin pg sin (P —0 ) = cos B_ sin (L - Lo) {123)
and ' oy.s i
sin(p, + 05} = —— (124)
Se
The right ascensior a, and declination &, of the spot are calculated according
to
Ols = a@ +P|'5 sin@s sec 6@ (125)
8s 2 5® +py; oS 05. (126)

Czlculate the rectangular coordinates x, y, z of the moon ‘in units of the
equatorial radius o. the earth) with respect to that fundamental plane, whose axis
is maintained parallel to the earth center-sun spot vector, from

>
|

= 1¢ [cos b¢ sin (ag —a)! (127)

-«
!

= 14 [sin ¢ CUS &, — cOs bg sin § cos (ve — )] (128)

2 = re Isin 8¢ sin &+ cos 8¢ cos & cos (g —a) ] (129)




in which
r¢ = l/sinwg (130)
Calculate the ephemeris hour angle u, of the axis from
u, = EST. ~a (131)

Calculate the hourly variations X, y, 4, and 55 of the Besselian elements x, vy,
# and &, respectively.

Calculate the rectangular coordinates of the observer with respect o the fun-
damentaj plane from

¢ = ocos¢’ sin (), (132)
n = psing’ cos & — p cos ¢'sin b cos (H), (133)
§ = psing’sind + p cos¢'cos ¢ cos (H), (134)

in which (H) . the local hour angle of the axis, is given by
@)= B, — - 1.002738 AT (135)

Calculate the hourly variations of § and n from
£ =H, poos’ cos (s (136)

9 =p, §sind, (137

and calculzte the following combinations

u=x-—§ veay—n; m=ut+y? (138)
U=x-FEvey—n nt=ud+y? (139)
D=ul+vy. (140)
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In the spirit of Section 6.0 make an “educated guess' as to the occultation
time T, and calculate {138), (139), and (140) at that time. Next calculate the
correction 7 to Ty from

T :'.[_)i_ + EE@Q lcos ‘bs i (141)
n n
in which
sin = 1 uv W ; (142
0.2724880 n

tne negative sign is selected for immersion and the positive sign 2 selected for
emersion. The occultation time is then given by T, + 7 which can be used to
recalculate (138), (139), and (140) in preparation for a second “run’’ through
(141) and (142) if higher precision is required.

The position angles, measured eastward from the north peint of the moon

fi.e., from the hour circle passing through the lunar center), of immersion and
¢r. reion on the lunar limb are given by

P o= N+y, (143)

where ..
tan N = ufv (144)

in which the sign of sin N is that of u.
12.2 SUN SPOT-LUNAR CENTER SEPARATION METHOD
Given a spot having a position angle 8 ard a linear radia) distance from the

solar center of r_, the spot’s distance from the center of the moon & is given at an
arbitrary time following first contact and prior to fourth contact by

0= [p}; +b* = 2p, (bos (B, - Q™ (145)
in which .

- r\
P \ v /S (146)

(O]
b = _____:ﬂ__) S A
( L, +1, (O] (147
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and where Qg , the position angle of the lunar center, is given, as in (63), by
tan Qq =u/v (148)

The condition for immersion or for emersion is given by the condition that the
spot-lunar sepzration & is equal to the lunar radius ry, or that

L, —L,)
a:- = . S - (}"
¢ (L1+L; ©® (149

Hence, in order to determine the times at which the spot is occulted and then
reappears,  is calculated at appropriate intervals over the time span of interest,
followed by inverse interpolation to these times when the condition expressed in
(149) obtains.

Along these same hinies, it is interesting to note that the hetiographic longitude
and latitude of that portion of the lunar limb outlined on the solar disc can be
readily calculated at any time as fcllows. For values of 6 such that p, < Sg,
calculate

P = boos (@ - Q) — [1d — b?sin? (0 — QUI* . (150)

Thne (p, ,0) pairs, so calculated can then be employed via (146), (104), (102) and
(103) to determine the corresponding (L, B) pairs of the lunar limb outline.

12.3 CINEMATIC SIMULATION METHOD

in this method the eclipse is cinematically simulated by a temporal sequence
of “stills” which can be drawn feollowing calculation of the colar and lunar, topo-
centric right aszensions and declinations (or azimuths and elevations) and of the
lunar semi-diameter (the solar semi-diameter assumed constani). If topocentric
right ascensions and declinations are employed, the north point of the sun is easily
identified by means of the hour circle “grid.” 1If azimuths and elevations are
employed, on the other hand, the north point is fixed by constructing the parallel
of declination tangent to the “northern” limb of the sun from the apparent diurnal
motion cf the sun and by noting that the north point on each “still’’ is this tangent
point. Then, from the appropriately scaled value of r,  (where the scale is deter-
mined by the selected right ascension/declination or azimuth/zlevation grid) and

the vaiue of 8, the spoi can be drawn ot €ach “still’s” solar disc and the occulta-

tion visualized.
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13.0 MISCELLANEOUS ALGORITHMS
13.1 ANGLE OF SHADOW CONE SURFACE AT OBSERVATION SITE

The angle which the shadow (penumbral or umbral) cone surface makes at an
obscrvation site is, in fact, the angle which a gencrating ray of the cone (connec-
ting the observation site to the appropriatc contact point on the sun) makes at the
observation site.

Thus, from the calculation of the ith contact position angle Q; in (83) and
the fact that # ; , the topocentric angle subtended at the earth by the contact point
and the solar center, is the solar semi-diameter Sg, the topocentric right ascen-
sion and declination of the point are given, following (125) and (126), by

Qi = a'® +S®SinQi secC Bb (151)
8, = 85t S cos Q. (152

where o' and 8 are the topocentric right ascension and declination of the sun
calculated in (113) and (114). The azimuth and elevation of the point, and thus
of the shadow cone surface, are then readily calculated from (}17),(118)and (119).

13.2 CENTROCIC OF THE UNOBSCURED SOLAR DISC

Pecinting instructions for tracking the centroid of the unobscured solar disc
follow directly from the development in Section D.9 of Appendix D. There (the
solar semi-diameter being employed as the unit of distance}, (D.83) gives as the
arigle subtended at the observation site by the centroid and the solar center

— g2 — si 2
P - s?(A —sin A cos A) 2m > S 153
he T(1-S) L+L, /) @ (153

where the symbols are those of Section 9.2. Furthermore, the position angle 6 _ is
given by

8, = Q¢- (154)
where Qg, the position angle of the solar-lunar center line, is given by (148). Deri-

vation of pointing instructions from (152)and (154) now follows the discussion of
Section 13.1.
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13.3 COORDINATES OF BORE-SIGHT VECTCR/SPHEROID
“LAYER"” INTERSECTION POINT

The following iterative procedure has been designed to calculate the latitude
and longitude of that point in a “layer™ at height h (in meters) above the earth
spheroid, which is bore-sighted along a line of azimuth Az and elevation ER from
a location at latitude ¢, longitude X and height h (in meters) above the spheroid.

Step1:  Calculate

X = (pcose)ag (155
Y=0 (156)
Z=(psind)ag (157)

from (43) and (44) and calculate
p = IXT+Y 422" (158)

Step II:  Calculate the nth approximation of slant range &, from

&M = /P-V + a0 D (159)
where ) ]
&® = [(p+0.15678503 x 107® h, )* — p? cos? EQ]"
— psin ER (160)
A® = 0 (161)

Step I1I: Calculate the nth approximation to the intersection
point coordinates from

X(L")= X+62(L")[—cosEQ cos Az sin ¢ + sin E cos ¢] (162)
Y M= Y+ & (cos ELsin Az) (163) !
zi“) =7+ o?(.L")[cos EQ cos Az cos ¢ + sin E€sin ¢] (164) ’ :

and the nth approximation to its geocentric radius from .

pi-n) = l(x(n))z +(Y(n))2 +(Z(n))2!‘-’: (165)
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Step 1V

Step V:

Step VI:

Step VII:

Step VIIl:

Calculate the nth approximation to thec geocentric latitude of
the intersection point ¢;‘“) from

(n)
¢"L(“): (an"-‘ 2 l
(X + (Y

(166)

Calculate the nth approximation to the geodetic latitude of
the intersection point ¢{™ from

tan ¢y |

o™ = tan"!
' {0.9933054 + 1.1 x 10-%h |

(167

Calculate the nth approximation to the geocentric radius of

the sub-iitersection point i from

p™ = 0.99832707 + 0.00167644 cos 26!
- 0.00000352 cos 4¢{™ (168)

and calculate the nih approximation to the geocentric latitude
of the sub-intersection point ¢'l(,") from

¢p™ =tan "' [0.9933054 tan ¢\ (169)
Calculate nth approximation to layer height h(L") from

h(Ln) = [(p(l—n))z _ (p(Pn))z sin? (¢:—nl _ ¢;)(n))]',-"1

- 8" cos (@™ — op™) (170)

Calculate '™ = h, — hi™. I H™ > ¢, where € is
preselected, calculate
(n)
Al = K (171
sin [EC+ (0 - ¢™))

and retury to Sten 11 for (n + 1)st approximation: if '™ < ¢
proceed to Step IX,
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Step IX:

Step X:

Calculate longitude change from nth approximation as
(n)

Yi
(n)

Xy

M = tan !

(172)

86X >0 is in an castward direction. Hence, if original longitude
is west, write A; =X (W) —~ AL if east, write A FA(E)+ ALY

Final results, assuming nth approximation satisfactory, are:

6, =N = A 2R =@y

13.4 COCRDINATES OF BORE-SIGHTED OBJECT OF KNOWN SLANT

RANGE

The following iterative procedure has been designed to calculate the latitude,
longitude and height above the sphercid of an object with azimuth Az, elevation EX,
and slant range & observed from a location at latitude ¢, longitude X, and height h
(in meters) above the spheroid.

Step I:

Step 1L

Step HI:

Calculate

X = (pcos9) ag+ & [~ cos EQ cos Az sin ¢
+ sin E€ cos ¢] (173)

-
n

& {cos ER sin Az] (174)

~N
It

(psin ¢')agy + & {cos EL cos Az cos ¢
+sin ER sin ¢} (175)

Calculate the longitude change dA from
S\ =tan"! L. 176)
X (

and, as in Step IX of preceding section, note that if original
longitude is west, write A = A(W)— 3X; if east, write A = A(E) + 6\,

Calculate the geocentric latitude of object ¢ from

|z !
C 2 pan-l (177)
o tan }[xz +Y?)% |

R il
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and calculate the geocentric distance of object 1y rom
o= |X2+Y2+2Z |7 (17R)

Step 1V: Calculate the nth approximation to geocentric Lititude of sub-
object point ¢.™  from

¢;(n) = ¢y — Aln- 1) (179)
where A0 = Q.
Step V: Calculate the nth approximation to the geodetic latitude of the

sub-object point ¢! from

tan ¢'(®)
(M = tap ! [____.‘ 180
o T 0.9933054 J (180)
Step VI: Calculate the nth approximation to the geocentric radius of the
sub-object point from
p{™ =0.99832707 + 0.00167 644 cos 2¢™
- 0.00000352 cos 4¢f“’ (181)

Step VII:  Calculate the nth approximation to the height hi“’ from

hgn) = [r; — (pgn))l sn? (¢;n)_ ¢;(n))]‘.:

- o™ cos (¢M - ;'™) (182)

Step VIII: Calculate

(183)

) o (n) __ 4(n)
hs' sm(q)s ¢>s )]

At = gip™! [
To

If ™ — A"+ D> ¢ return to Step IV for (n + 1)st approxi-
mation; if |A™ — A'"*D | <¢ proceed to Step 1X.

Step 1X: Final results assuming nth approximation satisfactory are:

$o =0\ 1 Ng =N % 8X hy = h{M.
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13.5 SOLAR/LUNAR VISIBILITY

The following simplke criteria can be employed to determine whether the earth
cither partia'ly or totally blocks the view of tie sun or moon from a high-altitude
platform (such as a rocket or satellite). We will assume that the right ascension a,
declination §,,, and geocentric radius rp of the platform are known functions of
time; that the earth spheroid can be approximated by a sphere whose radius is that
of the actual earth spheroid at latitude 45° (i.e., 0.958331 ag); that the earth’s
atmosphere has the effect of increasing the earth radius by 2%; and that augmenta-
tion of the moon’'s semi-diameter is neglected. Further, iet a, 6, S and n represent
the right ascension, declination, semi-diameter and parallax, respectively, of either
the sun or the moon.

Calculate
X = -ccs&l, sin {a, —a) (184)
y = +cos8sind, —sin & cos &, cos (o —a), (185)
and 0.998331 2
Ap= sin”! (—-—— > , (186)
Tp
and
A=1.02 (mp + 099833l n+8) (187)
A= 1.02(m, + 0.998331 #—9). (188)
Then, if
x? +y?>sin? A, — n¢ blocking , (189)
sin’ A, € x* +y? < sin? A, — partial blocking, (190)
x* +y? <sin?! A, — total blocking, (191)
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APPENDIX A
SOL AR AND LUNAR EPHEMERIDES

A.0 INTRODUCTICN

This appendix presents algorithns by which geocentric coordinates of bon
the sun and the moon can he caleulated given the date (Quiian ey number) and
ephemeris time (E.T)) of interest. These algorithms, in the casc of the sun, are
based primarily upon the “Tables” of Simon Newcomb!”! and, secondarily, upon
the more recently published “Tables™ of Jean Meeus (3] In the case of the moon
the algorithms are based primarily upon the “Improved Lunar Ephemeris™ 3! and
secondarily upon Mecus.

In Newcomb, the celestial Icagitude. lativ .de and distance of the sun is
developed to high accuracy in a lengihy series of ¢« .cular and periodic terms; in the
“Improved Lunar Ephemeris™ the cclestial longitud:. latitude and parallax of the
moon js develnped to high accuracy - following the Brown lunar theory ~ in an
even more extensive series of secular and periodic terms. For the purposes of the
current work, however, where the accuracy requirements are less demanding,
conceptually modest, but numerically significant simplificaiions have been super-
imposed on these developments. These are:

a) Al periodic terms with coefficients less than 0”10 have
beer eliminated from both the solar and lunar longitude
developments;

b) All periodic terins with coefficieiits less than 07025 have
been eliminated from both the solar and lunar latitude
developments:

AN periodic terims with coefficients less than 20 umits in
+Yie 8th decimal plice have been eliminated from the solar
distunce development;

d)  All periodic terms with coefficients less than 0005 have
been climinagted from the lunar paraliax development; and
finally,

¢)  The corrections to coefficients of pericdic terms given in

Tatle IV of [31 have been eliminated.
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In al! other respects.* the developiments of the solar and lunar ephemerides
of this work are identical to those given in these fundamentsi references and thus
could readily vield - at the expense of increased coniputational effort - the high
accuracy associated with thewr presentation in The American Ephemeris and
Nawtical Almanac by restitution of the terms 2liminated in a) through e).

A1l PRELIMINARY CALCULATIONS: DATE AND TIME OF DBSERVATION

Given the Julian Day number of the date of observation J.D., calculate the
number of days that have ¢lapsed since January 9.5 ET., 1900, the funaamental
epoch with Julian Doy number 2415020.0. This is denot2d by d and is given by

d=J.D. - 24150200 (A1)

Next, converi the Ephemeris Time of the observaiion into the decimal
fraction of a day by means of the relation

in which E.T. the ephemeris time of the observation, is expressed in seconds.

Using (A.1) ana (A.2) calculate the fraction of a Julian century of 36,525
days corresponding to the interval between the fundamemal epoch and the date
and time of observation by ineans of

r=—_t (A3
36,525 A-3)

W'll".lc
t=d+7 (A.4)

* For multi-component terms, the retention of any component justifies retention of the .-atire,
muliti-<component terim.
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A2 PRELIMINARY CALCULATIONS: FUNDAMENTAL ARGUMENTS

Calculate the fundamentalarguments L, Q, L)V, JL M, S . T, L,, ¢, &, F and
D of Table A-1, in whicn

=. geocentric mean longitude of the moon

.=. mean longitude of the moon’'s ascending node

.=. geocentric mean longitude of the sun

=. heliocentric mean longitude of Venus*

. heliocentric mean longitude of Jupiter

=. heliocentric mean longitude of Mars

.=. heliocentric mean longitude of Saturn

.=. heliocentric mean longitude of Earth

.=. modified geocentric mean longitude of tle moon
. mean anomaly of the moon

. mean anomaly of the sun

.=. mean distance of the moon from the ascending node
=. mean elongation of the moon from the sun.

e LSl S e ol o
0

<o
i

o

In Tatle A-1 all of these arguments are given in the form 2 + bt +ct? +dt?;tis
given for the date and time of observation by (A.4) and the coefficients a, b, ¢ and
d are given in terms of revoluiiens** (denoved by a supcrscript, lower case 1).

AR PRELIMINARY CALCULATIONS: NUTATION AND THE OBLIQUITY
A.3.1 Calculation of Nutation in Longitude and Nutation in Obliguity
Calculate the nutation ir longitude A from

Ay (— 1772327 -0"01737T)sin Q2 +

{02076 + 0"00002 T) sin 252 ¢

(— 172729 — C"00013 T) sin (22 + 2F - 2D +

(071261 — 0700031 T)sin O +

(— 072037 = 0700002 T) sin (282 + 2F) , (A.5)

+ + + 4

TV, UM, Sn, T, and L refer to the tixed equinox of 1850 in consradistinction to aii Oiheér
arguments which refer to the mean equinox of date; cf [3] p. 288 and (5] p. 14 regarding
this point.

** We notc that: 1° = 000277 77778; 1° = 0700004 62963, 1+~ = 070000C 07716.
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TABLE A-1

FUNDAMENTAL ARGUMENTS

a b cx 10?° d x 103
L Cf75120 501080 + 0103660 11014 63356 - 235980" +1077°
19} 71995 354167 - 14 70942 28332 + 432630 + 1266
L 77693 52160% + 273 79092 64963 + 63044 -
\% 95019 202169 + 445 03624 5109%
J 65931 198845 + 23 08083 70898
M 81402 687500 + 145 56470 68007
S" 73852 641223 + 9 20437 29984
Te .27499 653549 + 273 78030 94025
L0 74926 733024 + 3£60 09952 L2418
£ 82251 280093 + 3629 16456 84716 + 1913365 + 8203
< 99576 620370 + 273 77785 19279 - 31233 =100
F 03125 246934 + 3674 81956 91688 - 663609 - 190
D 97427 079475 + 3386 3132148393 - 299023 + 1077
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and calculate the nutation in obliquity from

Ae

(972100 + 0700091 T) cos §2 +

+ (-070504 + 000004 T) cos 2§ +
+ (075522 — 0700029 T) cos (22 + 2F - 2D) +
+ (070884 - 000005 T) cos (2§t + 2F) (A.6)

in which all coefficients are given in arc seconds. It should be noted in passing that
64 smalier terms associated with Ay and 36 smaller terms asscciated with Ae in

the complete developments of these quantities (¢f. [2] pp. 44 and 45) have been
climinated.

A.3.2 Calculation of Obliquity
Calculate the mean obliquity of the ecliptic €,, from
€y =23°27°08726 — 467845T — 070059T? + 6001817 (A7)
Calculate the true obliquity of the ecliptic € from
€ = €y + A€ (A.8)
A4 SOLAR RADIUS VECTOR, LONGITUDE AND LATITUDE
A.4.1 Calculation of LongPeriod Inequalities

alculate the long period inequalities from

sl 6740 sin (231719 + 2072T) +
(17882 — 0"016T) sin (57724 + 150°27T) +

N"Nrg il (2190 100 ATy
C.266sin {31784 119 | Ry

+ 07202 5in (31576 + 89373T) (A9

“ 4

Apply long period inequalities to the geocentric mean longitude of sun L' and
mean anomaly of sun £’ to vield

L= L +&L (A1
and
£ o=+5L" (A1
41
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A.4.2 Calculation of the Solar Radius Vector
Caleulate the unperturtcd solar radius vector R from

1.0061 Y033 0.0000 0070 T +

+ (001674928 +0.0000 4179 T + 0.0000 0126 T?) cos € +
+ (0.0001 4027 +0.0000 00 7C T) cos 2¢.

+ ( 0.0000 0176 +0.0000 0001 T) cos 3¢’

R

1)

(A12)

Calculate the planetary perturbations in the solar radius vector from the
cosine terins presented in Table A-2. Each term is of the form

K ocos (16, +j [Te ~ Planet] + Angle)
in which the coefficient K is given in units of the 8th aecimal place, i and j are

tabulated positive or negative integers, Planet stands for V, M, Jor S_, and Angle
is the tabulated phase angic in degrees. The sum of these planetary terms is

denoted by AR,

Calculate the lunar perturbations in the solar radius vector ARy from

AR = 3076 cos D + 85 cos (D + ¢) — 306 cos (D - €) --
- 32cos(D+L)+83 cos(D—Q:) (A13)

where the coefficients are given in units of the 8th decimal place.
Calculate the solar radius vector R from the expression
R=R, (1+AaR,+AR). {(A.14)
A.4.3 Calculatic:s of the Apparent Solar Longitude
Caiculate the equation of the center from the expression
C =€69107057 — 177240 T — 07052 T?)sin ¢, +

+(727338 — 0361 Ty sin 2 +
+(17054 - 07001 T) sin 3¢, (A.15)
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TABLE A-2

PLANETARY PERTURBATIONS IN SOLAR RADIUS VECTOR

Cosfficient® Q'c (T . V) Angle
543.2 0 -1 180°
1575.4 0 -2 0.12
204.6 4] -3 0.27
86.6 G -4 - omn
375 o} -5 -
216 +1 -1 175.9
36.8 +1 -2 0.2
200.1 -1 -2 168.5
344.7 -1 -3 167.95
451 -1 -4 3488
44.7 -2 -3 3222
216 -2 -4 138.4
325 -2 -5 3199
!_Te - M)
345 0 +1 0’6
473.6 0 +2 - 03
38.7 0 +3 +182.3
348 -1 +2 + 408
495 -1 +3 +2278
110.1 ~1 +4 226.92
246 ~1 +5 493
24.2 -2 +4 2776
205 -2 +5 957
32,0 -2 +6 94 .8
(T, -3
1627.3 0 +1 1”10
9270 0 +1 189.22
64.7 0 +3 175.9
479 +1 +1 23.6
237 + +2 1736
56.2 -1 +1 250.2
336.0 -1 +2 202 58
i84.9 -1 +3 87.23
401 -2 +3 103.3
260 -2 +4 3538
(T, - S,
98.8 o} +1 0736
37.3 4] +2 180.1
258 -1 +2 1826

*In units of the 8th decimal place.
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Calculate the planetary perturbations in the solar longitude from the cosine
terms presented in Table A-3 in which the coefficient of each term is given in arc
scconds; the sum of these cosine terms is denoted by ALp.

Calculate the tunar perturbations in the solar longitude Aly from

ALy = 674545 D + 07177 sin(D + 2) — 07424 5in (D - 9)
+0'172 sin (D—Qé) (A.16)

Calculate the solar longitude referred to t"e mean equinox of date L) from
Lj\l = L:+C+ALP+ALQ (A]-’)

Calculate the apparent solar longitude (referred to the true equinox of date
and corrected for aberrstion) from

No=LyvAy - 207496/R. (A.18)
A.4.4 Calculation of the Apparent Solar Latitude
Calculate the planetary perturbations in the solar latitude from the cosine
terms presented in Table A4 in which the coefficient of each term is given in arc
seconds; the sum of these terms is denoted by AS),.
Calculate the lunar perturbations in the solar latitude Af3;, from
Afp = 0°576 sin F — 0047 sin (F — Q). (A.19)

Calculate the apparent solar latitude from the following expression*

B = AB, + AB;. (A.20)

* The expression (A.13) yields the latitude for the mean ecliptic of date directly: since the
aberrative correctiorn is negligible and the latitude is unaffected by nutation, the expressionis
also the apparent latitude.
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L

Coefficient
4858
5.526
0.666
0.210
0.116
2.497
1.559
0.144
1.024
0.152
0.123
0.154

073
2043
0.129
1.770
0.425
0.500
0.585
0.204
0.154
0.101
0.10%

7'208
2731
0.:64
0.163
2.600
1.610
0.556
0.210

0419
0.108
0.320
0.112

Coefficient

0029
0.092
0.067
¢.210
0.031

07166

PLANETARY PERTURBATIONS IN SOLAR LONGITUDE

-1
-1

PLANETARY PERTURBATIONS IN SOLAR LATITUDE

Q
C

+1
-1
-1
-1
-1

TABLE A-3

TABLE A-4

45

(T, -V

-1
-2
-3
-4
-2
-2
-3
-4
-3
-4
-5
-5
(T'—M)
+ 1
+2
+3
+2
+3
+4
+4
+5
+6
+6
+7

(T, -4

+1
+2
+3
+1
+1
+2
+3
+3
(Te—Sn)

+1
+2
+1
+2

Angle

270°
90.12
90.41
89.8
90.7
257.75
257.96
79.0
23085
2274
498
2141

90%
89.76
273.0
306.27
317.70
316.94
185.82
1855
185.0

539

53.3

91709
270.2%
2652
116.2
174.77
292.60
177.31
193.2

20°34
270.1
259.22
2731

Angle

296°
244.6
2448
2445
654

2687
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A.> SOLAR RIGHT ASCENSION, DECLINATION PARALLAX
AND SEMI-DIAMETER

A.5.1 Calculation of Solar Right Asceasion and Declination
Caiculate the solar right ascension e and dechnation (5@ from

Ccos 5® COS Gy = 08 N

cos 8 sinag =sin A cose - 19.29 8 x 107 (A.2D)

sin 8y =sinA'sinc + 4448 8 A 1077,
A.5.2 Calculaticn of Sotar Parallax and Semi-Diameter
Caleulate the rolar parallax g tfrom
o = Me/R = 87754/R. (A22
Caiculate the soler semi-diameter appropriate for eclipse calculations* from
S = Se/R = 1559763/R (A.23)
A6 LUNAR LONGITUDE, LATITUDE AND PARALLAX
A.6.1 Calculation of Additive Terms

Calculate the additive terms® * of Table A-5; these are designated as:

SL .=. the sum of the 8 sine terms in L,
8§ .=. the sum of the 6 sine terms in @,
d§2 .=. the sum of the 3 sine terms in 82,
8T, = 8¢ .= the sum of the 4sine terms in T, &',***

8) .= thesingle sine term of J,
8S_ .= the single sinc term of S_,
8y, .= thesumof the 3 cosine terms in 7.

*  For other than eclipse caiculations, the adopted vatue of the semi-diameter at ur.it distance .

Sp 15 16'01718.

** Each term is of the form K {3 + bt + ct?} with its caefficient K listed both in arc seconds

and revolutions; when applied to the fundamentsl arguments of Table A-1, the latter unit is
the more useful.

*** These are, in fact, the long period inequalities of (A.9).
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Serial No.

1628
1623
1636
1638
1639
1645
1646
1648

1631
16€3
1664
1665
1666
1667

1632
1669
1670
1671
1672

1633
1673
1674
1675

1676
1677
1678
1634

1635

YTABLE A-§

ADDITIVE TERMS

Coeffzyidﬂ‘
x 0%

+ 684 64 3148'
+ 0.3 239197
+1427 1101 0802
+ 7.281 560 2623
+ 0.282 217592

0.237 18 2870

0.108 8 3333
+ 0.126 917222
- 2M0 167 0370
- 018 9 1049
- 2076 160 1681
- 0.840 648148
- 010 7 7160
- 0553 45 7562
+ O3 48 6111
+ 0.7 131172
+95.96 7404 3210
+ 1558 1202 1605
+ 1BE 1435185
- 640 493 827V
- 027 208333
- 189 145 8333
+ 0.20 15 4321
- 4318 322 1700
- 0.698 53 8580
- 0.083 64043
+ 0933 9 1666 6667"
- o®Z 230555 5556'

0

47
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1422 2222
2336 3774

5373 343

.7169 63564
48398132

84536324
4035 3088
6bH4 48493

14222222
5373 3431

.7199 5304
48398137
5875 0000
8453 6324

1422 2222

53733421
71998 5354

4839 8132

5245 3688

14222222
5875 QC00
8453 6324
6104 3085

7199 5354
4839 8132
5245 3688

3729 1767

.3729 1667

b x10%

R

4+ 1536238
+ 1232723
- 1010 4982
-1 4709 4228
- 14726 9147
— 11459387
- 21488317
7864 5335

1

+ 153 6238
1010 4982
1 4709 4228
14726 9147
605 0118
1145 9387

1

+

+ 153 €222
~ 1010 4982
14709 4228
- 14726 9147
14716 2675

153 6238’
905 0118
145 9387
- 67718733

+ o+

t

_ 14709 4228

14726914/
14716 2675

+

292 7979'

+ 2927979

¢ x 10%®

+ + + +

+ + +

4+ + + 4

191

191
43
43

191
43
43

19!
43
43
43




Apply these terms te the fundamentai arguments as follows:

L, = L+5L (A.24)
U, =0+ 80T, =T, +ET, (A.25)
3=+ 8 (A.26)
S,. =S, + 58S (A.27)
£ =f9€+6L- 5w (A.28)
F, = F+8L-5Q (A.29)
and
D, =D+5L {A.30)

A.6.2 Calculation of the Apparent Lunar Longitude

Calculate the Code 0: Solar Terms in Longitude from Table A-6. Each term
is of the form

Kgsin i € +j2 +kf_+mD_}
in which the coefficient K in arc seconds is given in column 1, *he multiples of the
fundamental arguments il < 6;j < 4. |ki<5and I[m} <8 are given in columns 3

through 6, respectiveiy, and

g=(1+2208x10°%)¥ (1 — 6.832x 1073
(1+2.708 x 1076 +139.978 5 v,) &I (A.31)

where by, (expressed in revolutions) comes from Section 6.:. The sum of the 117
sine terms will be denotec by AL,.

Calculate the Code 0. Pianctary Terms in Longitude from the sine terms
presented in the latter section of Table A-6. The sum of the 26 sine terms will be
denoted by AL,.

Calculate the lunar longitude referred to the mean equinox of date from

L, =L + AL+ AL,. {A.32)

Calculate the apparent lunar longitude (referred to the true equinox of date)*

from
A, =Ly vaAy —0"189sin 2 +0"168 sin D. (A.33)

" Yo within the accuracy of ti:s ¢, 1iemeris, (A.33) also includes aberration; for higher accuracy,

specific aberrative correstions lisced in (2] p. 109 are required.
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! TABLE A

CODE 0: SOLAR TERMS iN LONGITUDE

Ser. No. Coeff. %, i'c F G,
1 + 0.127 [v] 1] 0 +6
2 + 13.902 Q (4] 0 +4
3 + 2369.912 0 c v} 42
5 + 1.979 +1 0 G +4
6* + 1919563 +1 0 ¢ +2
7 +22638.500 +1 0 ] 0
8¢ ~ 4586.465 +1 )] 0 —<
9° ~ 38.428 +1 0 0 -4
10 - 0.393 +1 0 0 -
13 - 0.285 V] +1 0 +4
14° - 24420 0 +1 (s} +2
i6° - 668.146 (1] +1 0 0
16° - 165.145 0 +1 0 -2
17 - 1877 G +1 4]
20 + 0.403 ¢ 4] 0 +3
21" - 126.154 Cc 0 0 1
. 2 + 0.213 +2 0 ¢ +4
24 + 14.387 +?2 7] G +2
25° + 769.016 42 0 0 0
26* - 211.656 +2 0 0 -2
b z7 - 30773 +2 ¢] 0 -4
28 - 0.5670 +Z 0 0 —-€
31 - 2.921 +1 +1 0 +2
32° - 102.673 +1 +% o] 0
33 - 205962 +1 +1 0 -2
34 - 4.391 +1 +1 0 -4
K + 0.283 +1 -1 (1] +4
39 + 14577 +1 -1 0 +2
ap°* 147.687 +1 -1 ¢ 0
as ‘ 18 475 +1 -1 4] -2
a4z 0.636 +1 -1 < —4
45 - 0.188 ¥} +2 0 +2
46 - 7.486 0 +2 0 V]
47 - 8.096 0 +2 [} -2
48 - 0.151 0 +2 (4] -4
Eo 52 - 574 0 0 +2 +2
' 53* ~ 411608 0 (i +2 )
54 - 5347 0 2 +2 -2
5] - 8.466 41 0 0 +1
t ¢ 59 + 18.609 +1 0 (4] -1
! 60 + 3215 + 0 0 -
! 63 + 0.150 0 +1 0 +3
! &4 + 18.023 ] +1 0 +1
63 + 0.550 0 +1 G -1
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Sat. No.

39
70
A
72
73
76
77
78
79
83
84
85
86
89

9
94
95
96
8

102
103
104
105
108
109°
110
it
1185
116
118
120
123
124
125
129
130
131
134
135
136
143
144
145
149

-

Coe¥.

2 5.060
+35.124
-12.183
- 1.187
- 2.293
- 0.290
- 7.649
- 8.627
2.740
+ 1.8
+ 9.703
- 2464
+ 0.360
-~ 1.187
- 7.412
- 0.3

0.757
+ 2,580
+ 2533
- £.103
— 0.344
- 0.992
—45.092
- 3179
- 0.301
- 6.382
+39.5628
+ 9.366
g.2C2
0.415
2.152
- 1.440
0.384
0.586
1.750
1.225
1.267
0137
0.233
0.122
- 1.039
0.276
1 0.255
+ 0584
+ 0.254
+ 1.938

P+ P+ -

I+ + + + +

|

TaBLE A€ (Contd

+3
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Ser. No.

150
165
156
1867
162
163
167
168
172
173
177
186
187
188
192
193
184
196
198
205

~

<

213
224
227
237
264
265

Ser. No.

986
987
1001
1002
1021
1022
1024
1061
1097
1099
1N
L R1174

Coaft.”

+

1

1+ 4+

0.952
0.551
0.482
0.100
0.681
0.183
0.297
¢.161
0.197
0.254
0.250
0.123

- 3.995

+

T I I S

+

0.657
0.459
1.298
0.538
0.173
0.263
0.426
0.304
0.372
0.418
0.130
0.352
0.113
0.330

TABLE A-8 (Cont.;

[3

<
+4
3
+3
+3
43
+3
+2
+2
+2
+2
+1
<2
+2
+2
+2
+2
+2
+2
+1
+1
+1
+1

0
+3
+2
+5
+3

OC0O0OO0CODOCOOO0OO0C0C

+ | o+ 4 A+ 44
QOO OHNNRNNRNNMPNDNPODNON

+2

CODE 0. PLANETARY TERMS IN LONGITUDE

Coeft.”

0.822
0.307
0.348
0.176
0.129
0.152
0.127
0.136
0.662
0.137
0.133
0.157

QOO0 O0OO0O0O0

+2

+2
+2
+2

51

Angle

0(‘
1798
2729
2117
180

180

1795
180

179.6

T.l:
+1
+2
+3
+4
-1
+1
+3
+2
-3
-2
+1
42

Plsnet
<

-1V
-2V
-2V
-3V
+1V
-1V
-3V
-2V
+3V
2V
-1V
-2V




Sec. No.

1712
"3
1178
187
1188
1169
1208
1225
1227
1236
1269
1270

1279
1283

Coeft

0.643
0.187
0.165
0.144
0.158
0.1980
0.167
1137
0211
0.436
0.240
0.284

0.196
0327

"

TARLE A8 {Cont.)

o000 QO

Angle

1788
e 6
2415
10
1790
180
1785
180.3
178.4
75
17199
1729

18072
2244

carry ssterisks are subject to small corrections given in Table 1V of [3] ; these

corrections have teen eliminated in this report.

) Planet
1) ' h

+2)

+2)

. ~1J

+1J

423

+1J

~2J

+1!

. -3

+2J

- +3

+2M

+2M

*In Tables A-6, A-7 and A-8, the coefficients ot those terms whose sarial numbers .
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A.6.3 Calculation ot the Apparent Lurar Latitude

Calvubate the Cado 1 Sodar Ferms i Fatitude, S trom Table A T where cach
toom has the tonm

Kersm v 40 kb 4 m D

and agam g ois given DY G 3T The sum of the 178 sine terms will be denoted
by Ag.

Calculate
S = lf‘ + A8 (A3
and caleulate sin 8, sin 38 and sin S8,

Neat, arlculate

[sin 8] =1 sin 8§ (A1)

[sin 38 =, ¥ osin 38 7 (A3
and

[sin S8 = (0, ) sin §8 (A3
where

Moo= (L4 2708 107 + 139978 67 ) (ALIR)

Caiculate the Code 2 Salar Termy in Latitude, Y1 C trom Table A-7 wheie
sieh term has the torm

Kgeos LV +)¢ + RE o+ ml |
The sum of the 60 cosire terms will be denoted by 1, C,

Neat caleulate®

A = IRS197700 + ¢ (A3
B = 3loud2n10 A LA
C= 4210210 YA (A4
D= S§396210 Y AL (A4

- T - Y 3 !
* We note npassingthat A 7, +7,C. 8B 5 A C 7—‘A and D 5, A whete 3, .7: and )y, ae
1 ' 1

the values of the coetticients given in Table A 7 Code 6. Solar Terrm:s in Latitade, Frincipal
Terms having Serial Numbers 797, 798 and 799, respectively

R}




TABLE A-7

CODE 1: SOLAR TERMS IN LATITUDE, &

Ser. No. Coeff. Qc S‘.'c Fc Dc ,
397 - 1279 0 0 G +1
398 + 2373.36 0 0 0 +2
399 - 401 0 0 0 +3
400 + 14.05 0 0 0 +4
401 - 0.13 4} 0 0 +5
402 + 0.60 0 0 0 +6
404 + 025 +1 0 0 +6
406 + 6.98 +1 0 0 +4
407 - 0.74 +1 0 0 +3
408 + 19272 +1 0 0 +2
409 - 13.51 +1 0 0 +1
410 +22609.07 +1 0 0 0
an + 3.69 +1 0 0 -1
412 - 4578.13 +1 0 (o] -2
413 + 6.44 +1 0 0 -3
414 - 3864 +1 0 Y -4
415 + 0.25 +1 0 0 -5
416 - 1.43 +1 e 0 -6 .
417 - 0.03 +1 0 0 -8
418 + 0.03 +2 0 0 +6
419 + 1.02 +2 4] 0 +4
420 - 0.10 +2 0 0 +3
41 + 14.78 +2 0 0 +2
422 - 1.20 +2 0 0 +1
423 + 767.96 +2 0 (s} 0
424 + 2.01 +2 0 0 -1
425 - 152863 +2 0 0 -2
430 4 [aR 2] +2 0 0 -3
427 - 3407 +2 0 0 -4
428 + 0.\.- +2 ‘- 0 -5
429 - 1.40 +2 0 0 e ]
40 - 0.07 +2 0 0 —-
431 + 0.16 +3 0 0 +4
432 + 296 +3 0 0 +2
433 - 0.09 +3 0 0 +1
434 + 5064 +3 0 0 0
435 + 0.19 +3 0 0 -1 -
!
54
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Ser. No.

436
437
438
439
440
443
444
445
447

449
450
452
454
455
456
457
458
459
480
461
462
463
464
465
466
467
468
468
an
472
475
476
477
478
a79
480
481
482
483
485
486
487
488
490
492

1

16.40
0.05
- 074
0.03
- 0.3
0.30
3.60
- 158
0.03
0.04
0.28
0.14
- 0.06
- 159
0.63
256.10
+ 17.93
-126.98
+ 032
-1f.0.06
+ 0.29
- 646
- 0.22
- 0.04
- 1.68
- 004
- 066
- 004
- 16.3%
- 0.65
- 057

} + + +

1+ +

t o+

+

0.08
11.75
+ 152
-115.18
- 012
-182.36
+ 0.36
- 8.60
- 037
- 009
- 027
- 0.6
- 0.09
- 227

TABLE A-7 {Cont)
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TABLE A-7 (Cont.)

Ser. No. Cosff. Ec £ ¢ Fc De
433 + 038 -1 +1 0 +3
494 - 2359 -1 +1 0 +2
495 - 055 -1 +1 0 +1
496 ~138.76 -1 +1 0 )]
497 + 033 -1 +1 0 -1
488 - 31.70 -1 +1 0 -2
499 + 004 -1 +1 0 -3
600 - 183 -1 +1 0 ~4
501 - 0.06 -1 +1 0 -6
602 - 004 -2 +2 0 +4
0k} - o -2 +2 0 +2
504 - 022 -2 +2 0 0]
605 - 0l =2 +2 0 -2
506 - 007 +2 +1 0 +4
607 - 145 +2 +1 0 +2
508 + 014 +2 +1 0 +1
509 - 1056 +2 +1 0 0
B - 759 +2 +1 0 -2
512 + 007 +2 +3 0 -3
513 - 254 +2 +1 0 —~4 '
614 - 0256 +2 +1 0 -6
615 + 022 +2 -1 0 +4
516 + 332 +2 -1 0 +2 '
517 - 004 +2 -1 0 +1
618 + 1167 +2 -1 0 0
519 - 037 +2 -1 0 -3
620 - 117 +2 -1 ] -2
621 + 004 +2 -1 0 -3
622 + 020 +2 -1 0 —4
523 + 006 +2 -1 0 -5

4 bza - 5.7 i3 +1 0 +2

J 526 ~ 094 +3 + 0 0

" 527 - 087 +3 + 0 -2
528 - 0.08 +3 +1 0 -4
520 - 0.06 +3 +1 0 -6
531 + 036 +3 -1 0 +2
532 + 096 +3 -1 0 0
6§33 - 023 +3 o 0 -2
542 - 013 +1 +2 0 +2 *
543 - 125 +1 +2 0 0
544 - 6.12 +1 +2 4] -2
54% -~ 065 +1 +2 0 -4
546 - 003 +1 +2 0 -6
547 - 007 -1 +2 0 +4
548 - 240 -1 +2 y] +2
549 - 232 -1 +2 o] 0

i
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Ser. No.

550
651
653
656
6538
660
561
Ba2
B62
664
6565
666
669
B670
671
672
674
677
67¢
579
580
681
683
585
688
689
690
693
594
595
697

Qo
o

610
61
812
617
618
619
620
624

I+ + 1

i+ o+ |

4+ 4+

1.82
0.2
0.22
0.04
0.06
0.04
020
0.84
52.14
0.28
1.67
0.0c
007
952
0.04
0.33
0.04
c.M
0.06
85123
0.04
3.37
0.04
0.76
1.14
0.7¢4
0.38
0.0¢
0.07
0.08
0.1
0.04
0.10
226
0.1/
0.04
0.16
0.06
1.30
0.08
0.09
0.35
0.03
0.07
0.
0.03

TABLE A-? {Cont.}

E‘ Q“ F D,
-1 42 0 -2
-1 +2 0 -4
+1 +3 0 -2
-1 +3 0 0
-1 +3 [ -2
0 0 42 42
0 0 12 0
0 0 +2 -1
0 C +2 -2
0 0 42 -3
0 0 +2 —4
0 0 +2 -6
+1 0 +2 -1
+1 0 +2 -2
+1 1) +2 -3
+1 0 +2 —4
+1 0 2 -6
-1 0 +2 +2
-1 0 +2 +1
-1 0 +2 0
-1 0 12 -1
-1 0 +2 -2
-1 0 +2 —~
+2 0 +2 -2
-2 0 +2 +2
-2 0 +2 0
-2 0 +2 -2
+3 0 +2 0
+3 0 +2 -2
-3 0 +2 +4
-3 0 +2 0
-3 s 2 -2
0 +1 +2 0
0 +1 +2 -2
0 +1 +2 -4
0 -1 +2 +2
(4] -1 +2 0
0 -1 +2 -1
(1] -1 +2 -2
0 -1 +2 —4
0 +2 +? -2
+1 +1 +2 -2
+1 +1 +2 -4
-1 -1 +2 42
-1 -1 +2 0
+1 -1 +2 0
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Ser. No.

25
627
G29

641
642
643

650
651
€52
653
5L4
658
65¢€
657
660
663

667
€89
670
671
673
676
78
660
682
697

696
697

700
702
703
704
707
708
709
n
712
15

TABLE A7 (Cont.)

Coett.”

+

COOE 2: SOLAR TERMS I LATITUDE, 7,C

+ 4+

| 2 4+ k4

+ +

1+ 1+ + 1+

1

0.07
0.33
0.19

0.725
0.601
0.394
0.042
0.445
0.068
2020
(.455
0.079
0.034
3.077
0.192
0.092
0.074
0.054
0.107
5.679
0.030
0.308
0.074
0.166
1.300
026S
0.042
0.145
0.092
0.123
0.032
0.040
1.302
0.054
0.031

n sen

V.10
0.1
0.037
0.740
0.044
0.C2%
0.041

COOoOODOOOO0O

- 0000

+

w
oo

:):)'t):):t:::ﬂ::':AOOOOOOOOOOCOCOOOOOOOOOOOOO

+ +
—-w

-

+2
+2

+2

OOOOOO‘DOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

o
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Ser. no.

77
719
rral
723
725
731
733
735
737
139
744
746
747
752
753
760
766
777
778
782
783

187°
788
789°
790
791°
792
793
794
795
796

CODE 6: SOLAR TERMS IN LATITUDF, FRINCIPAL TERMS

797
798
799

TABLE A-7 (Cont.}

Coaff.”

- 4 o+

T T S B B S S N

!+

CODE 3: SOLAR TERMS IN LATITUDE,N

0.787
0.461
2.056
07
0.027
0.145
0.443
0.670
1.540
o111
0.116
0.259
0.078
0.212
0.151
0.032
0.026
oaw
C.632
0.027
0135

-526.689

+

(I .

3.362
44.297
6.000
20.599
30.598
24.649
2.000
225N
10.985

0
0
+1
+1
-1
=1
~2
-2
0
0

+2

O QOO0

+

- 00

+ 1851811 sin S

+

59

1.189sinS
6.241sin 35

OO0 CO0OO0I00CO0O0OCO0OODOODOCOOO

+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
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Ser. No.

1428
1437
1442
1450
1468
1472
1476
1477
1483

1534
1635
1546

15652

CODE &

"

Cooft.

+0.045
+0.068
+0.029
+0.031
+0.027
+0.077
+0.025
+0.074
+0.03D

+0.051
+0.061
+0.035

+0.083

TABLE A-7 (Cont.)

PLAMETARY TERMS IN LATITUDE

F\. DC LO
-1 +2 0
-1 +2 0
+1 +2 0
-1 +2 0
0 0 +1
0 0 +1
0 0 +1
(v} 0 +1
0 0 +1
+1 -2 0
-1 -2 v}
0 0 +1
+1 9 0
60

Q

0
0
0
0
0
0
e
0
0
0
]
]

+2

Angle

00
270
180
80
285
216.6
265

51.6
128

00

168

Planet

+3vV
+5V
+3V
+3V
+1V
-3V
+4V
+3V
£V

+2)
+2J
+2J




Calculate the Code 3: Solar Terms in Latitude, N from Table A-7 where each
term has the form

Kq sin [ih’c +le_ +k Fc +m Dc].
The sum of the 10 sin¢ terms will be denoted by N.
Calculate the Code 4. Planetary Terms in Latitude from Table A-7; the sum
of the 13 sine terms {cach similar in form to the planetary perturbstions of

Section A.4.2) will be denoted by Ay,

“alculate the apparent lunar latitude (referred to the true ecliptic of daiej of
the center of mass of the moon from

B=A {sin S| + B {sin 35) + C {sin 5s] + DN + Af p+ (A.43Y
+0'215sin L

For use in eclipse calculations only, calculate the apparent latitude of the
center of figure of the moon § (F) from the expression

B(F)=p8-076 (A.44)
A6.4 CALCULATION OF THE LUNAR PARALLAX

Calcutate the Code 5: Solar Terms in Parallax and the Code 5. Plancrary
Terms in Parallax from Table A-8. The sum of the 70 cosine solar termsand the
2 cosine planetary terms will be denoted by sin 7 (in arc seconds).

Calculate the horizontal parallax of the moon n¢ from

Te =sin® [0.9999 53253 +(3.9168 x 10" }* (sinm)*] —
- 070890 - 070049 cos . (A.45)
where ¢ is in arc seconds.
A.7 LUNAR RIGHT ASCENSION, DECLINATION AND SEMI-DIAMETER
A.7.1 Caicuiation Lunai ©

Right Ascension and Declination

Calculate the lunar right ascension a¢ and declination 8¢ from

cos 8¢ cos g = cos fcos A
cos 8¢ sin 0 = cos Bsin A cos€ — sin Bsine
sin by =cosfBsinhsine +cinfcose (A0
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Ser. N

AG2
803"

876

COWLE 5: SOLAR TERMS IN PARALLAX

+

Costf.

"

0.26077

+ 28,2333
+3422.7000

+
+

0.0433
3.086¢

+186.5398
+ 343117

+
+

+

L+ + 1 + 4+

PO (T O I B R B B OO A B

+ 1+ ++ 1

0.3
0.0086
0.00E3
G.3000
€.3997
1.6178
0.0339
0.9781
0.0054
0.2833
10.1657
0.3039
0.3722
2.0108
0.0484
0.9480
1.4437
0.0673
0.0050
0.2302
1.1823
0.2257
0.0102
0.0085
0.0¢16
0.0124
£.1052
0.1093
0.0118
0.0386
0.1404
0.0243
0.6215
0.1187
0.0074
0.0051
0.1038
0.0192
0.0324
0.0213
0.1268
0.0106
0.0484
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Ser. No.

1580

1610

TABLE A-8 (Continued)

Coeff.

+ 0.0112
+0.0196
~0.0212
—0.0833
- 0.0481
-0.7136
-0.0112
—-0.0066
-0.0100
+0.0155
-0.0088
+0.0164
+0.0071
+0.0401
-0.0130
-0.0097
+0.0115
-0.0090
—-0.0053
-0.0141

L

<

+1
+1
+ 1
+1
+ 1
+1
+1
0
+2
+2
+2
+1
0
+4
+4
+3
+3
+2
+2
+2

¢
<

-2

-d

1
]

+

I+

4
00O =2=000—-000-0002

+
OCOO0OONOOODOC

+2
-2
-2

CODE 5: PLANETARY TERMS IN PARALLAX

Coetf"

+ 0.0055

+0.0095

L

<
-1

-1

[»)

¢
+2

+2
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Angle

180°.3

ec

+2

leetc

+3V

-2)




in which s given vither by (A4 or (A.44) depending upon whether “usual”

or colipse caleulations are contemplated.
A.7.2 Calculation of Lunar Semi-Diameter

Cateulate the lunar semi-diameter (in are seconds) from the expression

S¢ = 00799+0.2724583 %, (A4
ot trom
sin 8§¢ = 0.27248R sinmg (A.48)
o4
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APPENDIX B
EPHEMERIS SIDEREAL TIME

The Ephemens Sidereal Tune e, the right ascension of the Ephemeris Mene
disnd at Q"L on the date of the observation is caleutited from the expression

EST0M = 0027601 939765 4 QNO02T3 TOESI ORI+

+ ROSSE N 10 e (B.1

where d oo given by (AT The increment of sidercal time assocuted waith the
intenal extending trom 0" T to the time of observation is given n

AENT = (100273 7009 oS + 1Tel2o v 10 Y dbr (B
where 1 ois detined by (A2
The “equation of the cquinones™ (Aw cos ¢ is added next to the s of
(B 1) and (B.2) to vield theapparent ephemernis sidercal tinwe on the date and at the
(ephemeris) time of observition
SV o= EST. O +AEST 409174 5y (W
where Ay is given by (ALS).

Finally, for an observer at longitude X (West positive; Fast negative) the local
sidereal time (LS T at 7 hours .10 s gven by

LST = bFST A e

* We note that the Ephemeris Sidereal Time ot {(B.3) at 7 hours Ephemetis Time is numetically
equal to Greenwich Sidereal Trne {i e, the right ascension ot the Greenwich Meodan) au s
hours Univet sa! Time; the same comment obtains for (B 4) also
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APPENDIX C

PREDICTION OF SHADOW OUTLINE AND
MOTION ON THE SPHEROID

C.0 INTRODUCTION

This appendix develops the algorithims necessary 1o predict the outline and
motion of the moon's shadow on an carth spheroid of wrbitrary radius and flatten-
ing. The development is based upon Chauvenet's expositon of Bessel's original
trcatment (1] and luter summanzed authontatively in “The Explanatory
Supplement™ (2]

The development is being rencated here in detail because the summary of
requisite formula in [2] with an ordering quite different from that of [1] lacks
both the justification and sceming incvitability with which clements related to the
flattened spheroid and the shadow motion thercon were originally introduecd.
Furthermore, it seems appropriate to show (in view of today's interest in upper
atmospheric and ionospheric rescarch and the cmployment of high altitude and
orbiting instrument platforms) that the relationships pertaining to center hine posi-
tion and duration in the ionosphere ~ originally cited by Lewis® in 1940 — follow
naturally from a development in whicli scale tactors are explicitly employed.

C.1 SHADOW AXIS COC:RDINATES AND THE FUNDAMENTAL PLANE

Given the right ascension ag,. declination 8, and parallax 7 of the sunand
the right ascension ag, declination &, (calculated from the lunar latitude of the
center of figure) and parallax n¢, of the moon, we will calculate the right ascension
a and declination d of the solar-lunar shadow axis from the equations.

Geosdoosa = 1500884 cosag —rg cos &y cos og

Geosdsina = rg cosdg uinag —rg cos &g sinag
G sind = rgsin 85 —rg sin b4 C.hH

where G is the solar-lunar scparation. Following division by rg. (C.1) can be
written in the form,

gcosdcosa = cosbg c0sag — beos &g cosag

gcos dcos a = cos g sin ag —bcos O¢ sin e (C.2)

g sind sin 8 - bsin &g

* Lewis, |. M, “'Formutas for the lonospheric Track in Eclipses,”” Astron. J. 40. 4, (1940).
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in wlich g = (;,:"r@. is given by

s .
r dg. SIN TT‘ sin ﬂ@

b= % = (— —_ = , (C.3)
ra aLfsin mg SN Mg

and a,, is the equatonal radius of the carth.

C.2 COORDINATES OF THE MOON RELATIVE TO THE
FUNDAMENTAL PLANE

Next, following Bessel, we introduce a right handed cartesian system with its
origin at the carth's center and its z-axis maintained parallel to the (inoving) shadow
axis of right ascension a and declination d as determined by (C.2) and (C.3). The
xy-plane, so determined, is the fundamental plane; the x-axis, which is positive to
the eost, is traced out by the intersection of this fundamental plane and the equa-
torial plane; the ysxs, which is positive tc ward the north, completes the right
handed triad of this system portrayed in Figure C-1.

The cartesian coordinates of the moon in this system follow immediately
fromapplication of an Euler Angle transformation® to the lunar coordinates in the
geocentric equatorial system. After some trigonometric reduction, these coordin-
ates become

X = Xxag
Y =¥
(C.4)
1= :ag
in which
x = [cos & a1 (&g — 3} /an g
Y = [sin 8¢ cosd — cos 8¢ sind cos (ag — a)}/sin mg
z=[sin 8¢ sind + cos &¢ cos d cos (g ~ a)]/sin g (C.5)

® In this transtormation we successively rotate positively (counterclockwise) about the origins!
z-axis by ¢, positively about the new x-axis by 8, and positively about the new 2-axis by ¥,
the rotation matrix R{y.8,¢) so obteined relstes the old (x,y.z) system to the new (x',y" .2}
sysiem via the matrix equation

x’ X
< v')‘ﬂ(\m cb)( v).
2 1

for the case 8t hend ¥ = 0, 0=—g —d, and ¢=a+g )
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and whe et should be noted that th9e < snt y coordinates are the coordinates of
the shiwdow axis’ intersection with the fundamental plane.

C.3 PENUMBRAL AND UMBRAL RADII ON THE FUNDAMENTAL PLANE

in Figure € 2 two shadow cones have becn drawn in cross section, the interior
tangent cone defining the penumbra =nd having the vertex Vp a distance ¢; above
the fundamental pizne and the extericr tangen. cone defining the umbra and
having a vertex V a distance ¢, above the {undamertal plane. We may write
immaeliately that

sin f, = i@;“‘— (C.6)
do -
un f, = —9(—‘——‘- (C.7)

where f, and f, are the penumbral and umbral cone halt-angles, respectively, and
where d and dg are the linear semi-diameters of the sun and moon, respectively.
But, we not+ from (C.2} and (A.22) that

a

= = _._‘__4’_ = ag R C.8
GC=gg "8 4 o & Sinmg ’ (C.8)

.oni the definiticn of the solar semi-diameter thut sin 5g= dg /1), and fur-
whor Jrom {A23) that

de =T1g sin 8g ¥ (sin Sy/sinng) ag; (C.9)

hence, (C.6) and (C.7) zan be written in the usual form as

1

sinf, = (sin Sy +k sin 7,)/gR (C.10)

#

sin f, (sin S5 — k sin my)/gk (C.11)

where k = d¢/ag is un adopted constant.
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From 4V BC we may write that

¢ = z+dg cosecf, (C.12)
and similarly from 4V, B'C"
C; =2 -d, cosecfz. (C.13)
hence,
¢, = (z+kcosecf))ag (C.19)
and
¢ =(z —keoosecf,)ag (C.15)

where, from (C.4)* and (C.5) respectively,
= zag
and

z = (sind¢ sind — cos & cos d cos (o — a)]/sin mg.
Thus, the penumbral radius on the fundamental plane can be found from
2 = ¢ tanf, (C.16)
and the umbral radius can be found from
£, = ¢ tanf,. €an

The sign cenvention introduced in (C.15) is such that £, is negative for total
eclipses and positive for annular eclipses.

C.4 SUMMARY — THE BESSELIAN ELEMENTS

In the developments of the prior sections the geometric position of the
snadow axis and radii of the penumbral and umbtral cones on the fundamental
plane have been described. The elements appropriate to this description are the
Besselian elements: x,y, sin d, cos d, £,, £, and g, the ephemeris hour angle of the
chadow axis. This hour angle is used in place of the a, the right ascension of the
shadow axis, and is calculated from

#=EST-a (C.18)
where the ephemeris sidereal time E.S.T. is given by (B.3).

* We note that a,. the earth's equatorial radius is generally set equal to unity. In such instances,
of course, (C.4) immediately reduces to the trivial identity z = 2.
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These elements and their howrly variations, which ar¢ independent of posi- ‘
tion on the spheroid, are tabulated in the major almanacs and the major eclipse
canons, such as {4]).

C.5 COCRDINATES OF THE OBSERVER RELATIVE TO
THE FUNDAMENTAL PLANE

'We will consider a spheroid of flattening f (or, equivalently, of ellipticity or
first cccentricity e)* centered at the geocenter and having an equatorial radius a_
where
a, = Hag (C.19)

with } an arbitrary constant; positions will be specified on the spheroidal surface
by assignment of longitude (West taken positive) and geodetic latitude. Hence, by
employing the same transformation used to effect (C.4) and (C.5), an observer

at ephemeris longitude A. and latitude ¢ will have the fundamental plane
coordinates

£ = [,oc:osd>'sin®]ZKa63
n
4

[psin ¢"cos d — p cos ¢" sin d cos () ] Kag

[psin ¢ sind +p cos ¢’ cosd cos () | Hag (C.20)

The hour angle (1) is given by

prrviea S < < - 18 w11

@ = -2, (C.21)
where the ephemeris longitude A, “is related to the longitude X by means of the . .
relation ' ,
A, = A+1.002738 AT. (C.2D)

AT is the difference (either extrapolated, in the case of the future or distant past,
or measured, in the case of the immediate past) between Ephemeris Time and
Universal Time. The geocentric latitude ¢’ and geocentric distance of the observer
p are related to the geodetic latitude ¢ through

psing =Ssing; Pcos ¢ =C cos ¢ (C.23)

* We note from the definitions f = {a — b)/a and e = [1 — b?/ a®) ‘%, where a is the equatorial
radius and b the polar radius of the spheroid, that e? = 2f — {2,
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where
S=(1 —=H?C C=[cos? ¢+ (1 — f)? sin? ¢] (C.24)
or, equivalently

S=(1 —eN)C; C=(1 —elsin? )% (C.2%)

C.6 PENUMBRAL AND UMBRAL RADII ON THE OBSERVER'SPLANE

We now construct a plane through the observer parallel toand at a distance ¢
above the fundamental plane. Referring once again to Figure C-2, it is seen that
the penumbral and umbral radii on this plane are given by

L, =(¢, = %) tan fl = £, —ftan f, (C.26)
and

Ly =(c; —={tanf, =8, —{tanf, (€27
respectively.

With these two equations and some =2dditional analysis, it becomes possible
to calculate all circumstances of the eclipse appropriate to the locale of a specified
observer; these calculations will be discussed extensively in a subsequent appendix.
But, if one wishes to predict the observation site or sites approprniate for a given
circumstance — such as the outline of the umbra on the spheroid — then, the
spheroidal flattening introduces the complication that, in order tc calculate L;
from (C.27), for example, { must be known which requires, in turn, that ¢" and ¢,
a desired end result, must be known. This difficulty is minimized by the following
treatment of Bessel.

C.7 INTRODUCTION OF THE AUX!LIARY ELEMENTS

The development is initiated by introduction of the parametric latitude ¢,,
through the relation

00s ¢; = Poos ¢’ =cos ¢/(1— e? sin? 9)” (C.28)
from which, using (C.25),

sin @, = [1 —cos? ¢, 1" =(1 —e?)" " psing¢’ . (C.29)
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Conseguently, (C.20) becomes

t = leos o, sin (W) ) Ha,,
n = ((1 —¢*)* sin ¢, cosd — cos ¢, sind cos @ ] ag
t = [ —€)? sing, sind +cos ¢, cosdcos (H) ] Hag

We now make the following substitutions in 7,
sMind =P, sind, (1 — €*)" cosd = £, cosd,
and the following substitutions in {,
cosd =p; cosdy; (1 —e?)? sind = P, sind,
so that (C.30) now becomes
£ = [cos ¢, sin (B) 1Xag
m= /P, =(sin ¢, cosd, — cos ¢, sind; cos (H) 1¥Haq
{ = Py {sin ¢, sind; +cos ¢, cosd; cos @ JHag,
Next, we define the variable ¢, from

8 = (Hag)? ~ 82 -2

(C.32)

(C.33)

(C.34)

a useful form of which — after substitution of § and n from (C.33) and some

reduction — is

$ = Isin ¢, sind, + cos ¢; cosd, cos @ ] Hag

(C.33)

Further, we note from (C.33) that {, and 1, may be readily manipulated to yield,

Hag (sing,) = n, cosd; +¢, sind,

and

Hag (cos ¢, cos (B )= —n, sind, +§, cosd,
which upon insertion into ¢ of (C.33) yields

t =p; [§icos(d, --d;) — n, sin(d, —d;)].

(C.35)

(C.3)

(C.38)




This form of { has the useful property that the assignmuent of specific values
to§ und n - hoth of which are in the fundamental plane - sllows the immediate
ailculation of §, by (C.35) and thus the third coordinate ¢ by (C.38).

Finally, from the tirst equation of (C.33) writi 2= in the form

Hag(eos ¢, sin (M) ) =¢ (C.39)

and (rom (C.36) and C.37), it follows that

tan @ = ¢ (C.4)
§, cosd, — n, sind,
and
sin ¢, = b (§y sind, +n, cosd,). (€C.41)
(Hag)

Thus, il definite values of £ and n are available from the application of specific
geometric conditions, §, u; and §, can be calculated and, hence @ {and thus X)
and ¢, (and thus ¢} can be obtained from (C.40) and (C.41), respectively.

These calculations, and the calculation for ¢ in (C.38), fully incorporate the
flattening and are based upon the auxiliary elements p,. p5, sin q,, sin d,.
sn (d, ~ d;) and cos (d, — d;) which, after manipulating (C.31) and (C.32),
follow dircctly from the Besselian element d and the ellipticity of the spheroid e,
in the form

P, = (1 —e?cost d)?

Pr =(1 —elsin? @)

sind, =sind/a,

cosd, = (1 e cosd/p,
sin(d, —d,) = e?sindcosd/n, P,

cos(d, ~d;)=(1-e)*/n p, . (C.40)
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C.8 OQUTLINE OF THE SHADOW

In general, eolipse phenomena are described by specitying tie distance and
position angle Q nicasured cast from north) of the shadow axis with respxect to
the “observation” pomt o question. Thus, in the plane drawn through  the
“observer™ and maintained perpendicular to the shadow axis, we qan wnite that
fhe in-plane components of the observer coordinates (5. ) ave related (o0 e
shadow axis coordinates (X, v) by mvans of

t = x wmsnQ
and
7=y moeos Q (C3H

where

m?

=(x Py nF (C.a8)
Conscquently. it follows immediately that the outline of the vmbra® on the
spheroidal surtace at 4 specific time is given by those (£.0) pairs which circum-
saribe (xuy) at the distaoee m =Ly,

However, before allowing Q to assume all values from 0% to 3607 in walcu-
Iating the shadow outline, it is usetul to determine whether the entire umbral cone
intersects the spheroidal surtace or, equivalently, whether the entire umbral circle
1alls within a circle of (nearly constant) radius Kag on the fundamental plane.

Figure C-3 portrays the situation when a portion of the umbral circle talls
outside this circle.

I we now set x =Y sin mand y = 7 cos m (where M is the position angle of
the shadow axis) and note that at the extreme points L; = {; (singe these points
are i the fundamenial plane and § = 0), then

Hag) = Y 40 270 cos Q- M)

or N .

T 40 - (Hag)

s Q- MY = ——= (A4
N

* The outline of the penumbra can be calculated by replacing L and L. by 4 and {,
respectively.
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where ¥? = x? + y?. When the evaluation of the right-hand member of (C.40)
lcads to the condition that cos (Q - M) < 1, the two consequent values of Q
define two circumferential segments: one within the fundamental plane arele and
(running) values of Q producing § > 0; the other outside the fundamental plane
grcle and (running) values of Q leading to & < 0. When (C.40) results in
c0s (Q — M) > 1, the entire shadow lics within the fundamental plane circle and
all values of Q from 0° to 360° are perinissible.

Assuming that the appropriate range of valuces has been cstabbished, the
shadow outline can now be calculated by the following iterative procedure for each
of the permissible Q.

Step 1t Assume Ly, =¥, and caleulaie

£ = x —&;sinQ

i = (y - £, cos Q)ip,

HY = 1(Hag)? — ™) - (i) (€.47)
Step 11: From n{*’ and "' calculate $*®  from

$O =p; §17 cos (4, ~dy) - 0\ sin(d, —d)] (C48)

and L{" from

LY = 2, - " anf, (€.49)
Step 111: Using this value of 1, calculate

Y = x - LYY sinQ

7 = (y - LY cos Qip,

) = ((Hag)? - @) - (i (C.50)
Step IV: Assuming that an additional iteration of Step 1l is

not required by the results of (C.50), use (C.50) 1o
calculate —~ following (C.40) and (C.41) -

s(:)

S'l(” cosd, - n{"sind,

tan () =

(C.5D)
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and

, HYsind, + 0!V cosd
sing, = — L : (C.52)
J'(a@

which leads, following (C.21) to
A, = H- @ (C.53)
and, following (C.23)}, (C.25),(C.28) and {C.29) to
tan¢ = (1 -¢?)" ¥ tan ¢, (C.54)
C.9 THECENTRAL LINE
Sirce the central line is the locus of points of intersection of the shadow axis

with the spheroid, it follows immediately that the results of the previous section
may be utilized by shrinking the shadow radius £, to zero. Thus, the equations of

(C.50) become
t =x
m=yle, =y,
§ = ((Hag)? - x* —yi)” (C.55)

which leads immediately, upon substitution in (C.51) and (C.52) to

X

tan (B) = (C.56)
$1 08 dy — ¥,y sind,
and
ind, +y, cosd
sine, = §iysind; +y, 1 (C.57)
Hag

where again from (C.54)

tan¢ = (1 ~e?) P tang, . (C.58)
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i (C.4) and (C.34) esc employed, then (C.50) and (C.57) are transformed to

X

_ ) — “59
tan @ ST . €5
Hil- 3 cosd, ~y, sind,

and ) } x'l +).l1 1) ‘ .
sin ¢, = i X - — sind, +), cosd, | (C.60)

which is the form employed by Lewis® in calculating the jionospheric central ine.

C.10 NORTHERN AND SOUTHERN LIMITS OF THE SHADOW —
ADDITIONAL AUXILIARY ELEMENTS

From the discussion immediately following (C.45), it is readily scen that the
examination of the time variation of the observer/shadow-cone separation m? — L?
(where L is either the penumbral or umbral radius) can be employed either to
calculate circumstances given the observation location or, conversely, to calculate
the observer location given the circumstances. Here we are cencerned with the
latter type and, more specifically, with calculating the northern and southern
limits of the shadow dircctly rather than by inferring these values from the com
plete shadow outline calculated in Section C.8.

In Figure C-4, a time variation of m? — L? has been hypothesized for two
Jocations. At location A the particular phase of the eclipse under consideration
(partial for L = L,, total for L = L,) begins at t‘ and ends at t'), ic., at the
two solutions of m? — L2 =0. At location B, on the other hand, the eclipsc both
begins and ends at the same time, an occurrence identified by the coalescence uf
the two roots of m* — L? =0 to t, and th: presence of the horizontal tangent at
ty- Henee, at ty we have that

-+ y-m @ -ttanf)? =0 (C.o1)
and, using dots to signify difterentiation with respect to time, that
E-Hx-HHy-Ny-D-Q-ftanH-ftanNH=0 (C.62)

where f, given by (C.10) or (C.i 1}, is sensibly constant.

* Lewis, op. cit.
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We now note that differentiation of (C.20} leads, after a modest reduction, to .
é = y (- nsin d+§cnsd)
' n=uksind-d¢
! =uf cosd+dn (C.63) 1

0: andci are presented as hourly variations in the literature) which become, upon
substitution of (C.43 and (C.44;

£ =p(-ysind+{cosd+mnsindcos Q) i
n=p(xsind—msindQ)—d§' !
§"=;;(—x:'osd+mcosdsinQ)+ci(y—mcosQ). C.64)

!
i
]
1.
1
|
!
i
i
i
i

Hence, {C.62) becomes, upon substitution of (C.64), and upon noting that at
t=tu,m=l,=!2—§tanv',
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sinQ (X taysind+pQtanfeosc —afcosd (1 +tan® )] +
+oosQ(3;--;1xsind+(i§’-—citanf(0*g'tanf)]+
+ [~ é--;:xcosdtarnf+(itar\fy] =Q. (C.65)

or, unon defininy, the auxiliury elements

a= -Q-uxtanfcosd
b = v+uxsind
¢ =x+pysin d+g%anf cosd (C.66)

(where 3, and &, are penumbral 2uxiliaries: 4, and ¢, are umbral auxiliarics)

sinQlc—utcosd (i +tan? O] +
sQ (—b+d{—dtanf(2—Jtanf)] +a+dtanfy=0. (C.67)
However, foliowing Cha-ivenet, terms involving tan? i andci tan f will be neglected
so that we have
b-df-asecQ

¢—-atosd

tan Q= (C.68)

as the condition for the northern and southera limijts. For umbral limits, cos Q is
positive for the norihern limit of a total eclipse and the southern limit of an annu-
lar eclipse: cos Q is negative for the scuthern limit of a total eclipse and the
rorthemn limit of an annular eclipse. F .r penumbral limits. cos Q is positive for
the southern limit and regative for the nortliern limit.

The calculations for the limits are similar to those of the shadow outline

StepI:  Assume L. =8; (or L, =%,) and caiculate

tan Q® = b (C.69)
C

8.




from which

E(O) = x - Q: sin Q(O)

i =y — ¢, cos Qy/p,
O = ((Hag)? - (') - (n{®)?)% (C.70)

Step Il:  From n{® and ¢{®, calculate @

§O = p, [E® cos(d, — dy) —n® sin(d, — d,)] o
and thence
tan Q= b -G 80 _g, sec Q)
& — 489 cosd .
and
' =0 -y, o

Step III: Using these values of Q' and L{!’, calculate
ED = x L sin QW)
" =(y - L{Y cos Q1)/py
HY = (Hag)® — 1) - (nft)? 1% (C.74)

Step 1V:  Assun:ing that an additional iteration of Step 11 is noi:
required by the results of (.74), preceed as in (C.51),
(C.52), and (C.53).

C.11 DURAT!ON ONCENTRAL LINE

Given an observation point £, 7, and a center line peoint x,. Yo both evalu-
ated at the time T,, the two comporents of the position of the shadow axis
relative to this observation point can be expanded to first order at the iime

To +7as

(x=8 =[x +x7- .]—[fg +£7+..] =msinQ (C.75)
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and
(y-m=ly,+yr+. ) —[q+07+.1=mcosQ (C.76)

or, upon squaring and adding the components to yicld the relative scparaticn,
m? =(Xo — 00+ (Yo ~ 102 +2[(%o —E) (X~ £ + (Yo — M) (y =) ]7 +
- D Ay —n) Tt (€.77)
We will now place the observer on the center line, such that {; = x; and
Mo = Yo and such that the time 7 = Ty — T, will b2 taken as the beginning of the
umbrsl eclipse whenm =L, .
Thus (C.77) becomes
L; =[x —§)? + @y =] (T, - T,)? (C 78)

and lence, the semiduration s = T, - T, of the eclipse is immediately given by
the solution of {C.80) in the form

_L
ST (C.7%)
where n, the speed of the shadow relative to the observer, is giver by
n=l(x —§ +y -n?”", (C.80)

L, is assumed to be constant throughout the caiculation and is evaluated from

L, =% - Jotanf, (C.81)
in which

o =p3 (5 cos(dy —dp) — 7 sin(d; —dy)] (C.8Y)
where §, and 7, are evaluated from (C.53) with x, and y, replacing x and y.
7 can be evaluated by noting that since £ = x and n = y.(C.63) can be manipulated
to yield

);-E.=>2+;;ysind—;;§‘oosd (C.83)

):—1;=;/—;1xsind+<i§ (C.84)

or, by employing the auxiliary clements of (C.66).
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)2-~é=é—;loosd(§+2tanf) (C.85)
y—n=-b+d{ (C.86)

which, consistent with the lcvel of approximation of (C.75) through (C.80),
reduce to the approximate relations,

x -t ~ ¢—pt oosd (C.87)
(C.88)

~

y-n = —b
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APPENDIX D
LOCAL CIRCUMSTANCES

D.0 INTRODUCTION

As pointed out in Section C.5 of the previous appendiy, it is pessible to pre-
dict all circumstances of an eclipse at a locale once the coordinates of that locale
have been specified. The purpose of this appendix is to develop the basis of algo-
rithms employed to calculate these circumstances, to develop differential correc-
tion mocedures for adjusting these circumstances to modest departures from the
specified locale and to develop the calculations of other topocentric parameters of
potential interest to solar,* atmospheric and ionospheric research.

0.1 PRELIMINARY CONSIDERATIONS

Following (C.20) we may write immediately for a site with geodetic latitude
¢, longitude A (West taken positive) and height h (in meters) above the spheroid
that

£ = pcos¢ sin W
n = psing’ cosd — pcos ¢ sind cos (W)

psin g’ sind + p cos ¢ cos d cos @ (D.1)

in which the equatorial radius of the earth a; will be assumed henceforth as the
unit of distance and where

psing’ =(S+H)sing; pcos¢ =(C+H)cos ¢ (D.2)

with H = 0.15678503 x 10" °h;** S and C are given by (C.24) and (C.25). The
hour angle @ is, following (C.21) and (C.22),

() = u—\-1.002738 AT (D.3)

*Apperdix E is devoted to the development of various coordinate systems (and their inter-
relationships) for use in observation of optical and radio phenomena on and above the solar
surface.

**We recognize, witn reference to (C.20), the difference between the change of scale implied
by Hag of (C.20), on the one hand, and the addition of the height term in 0.2 normal to the
spheroid, if added at each point of the spheroid, on the other. However, for a scale change
{or height addition) of 0.1a, the difference betweer the two approaches ieads to a difference
of ~ 2km at the poles and will be neglected.
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where u, the ephemcris hour angle of the shadow axis, is given by (C.18) and AT,
is the diffcrence of Ephemeris Time and Universal Time for the year in question.

If these coordinates and their time variations. given by (C.63) as

E'-‘-A;(—-nsind'f{oosd)

n =t sind-di

£ = —»&F.Aoosdﬂin. (D.4)
are combined as

u=x-—§ vay—n m?=ul+v? (D.5)

and

U= x—Eveyomont sl Hy? (D.6)

then (C.77), the first order expression relating the distance m between the shadow

axis (x,y) and an observation site (§, ) at the time T, + 7 to the shadow axisand '

observation site positions (Xo, Yo; £o.%o) and velocities (x, ¥; £, 1) at the time T,
becomes

m?!=m) + 2ugu+voV)r+n?r? . (D.7)

This equation has the solution
¥
2
;s=_ D + D "l—ﬂ—(mg——m’)] (D.8)
n? L

Dz

where D = u, &t + v, ¥, or, following rearrangement of the second term

. . 2 %
omn [ (siae)]
n? n m* n

which leads to the to. m commonly encountered in the literature

n

where sin y = (up v - vYo¥/n m.
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Thus, to determine the time at which m assumes a specified value, once ¢sti-
. mates an Ephemeris Time T, “reasonably™ close to the desired time, evaluates all
component quantities of (D.5) and (D.6) and solves — after insertion of the speci-
fied value of m — either (1D.8) or (D.9) for the correction 7 to the estimuted time.

b e

If great accuracy is required, a second iteration may be required in which
(D.5) and (D.6) are re-evaluated at T, + 7 = Ty, and the correction 7' 1o Ty, is cal-
culated from (D.8) or (D.9).

e g—
-

Similarly, by differentiating (D.7) and rearranging the result to yicld

; =("_‘2) SR % (D.10)

one can determine the increment 7 to the time T, at which m assumes a specified
value, all other “‘component’ quantities of (D.10) being evaluaied at the “reason-
ably” close time T, .

0.2 TIME OF GREATEST PHASE

. The time of greatest phase occurs when the eclipse magnitude M; = (L, — m}’

(L, +1,), derived in Section D.7, is precisely a maximum. But since the shadow

radii variations Ll L, =1 are small,* the time of greatest phase is usually taken

i as the time at which the distance n. between the shadow axis and the observer is
minimum, or when m = 0.

If this specified value of m is substituted in (D.10), then the correction 7 to
E the “'reasonable’ time of greatest phase T, is immediately given by

;=D LAn

which leads to the interpretation of the first terms in both (D.8) and (D.9) as that
correction to the assumed time T, which effects the minimum separation between
3 the shadow axis and the observer.

STIRTC TRRN T

If, on the other hand, accuracies of tens of milliscconds are required., then

L the maximum magnritude definition employed by Gossner**
d / Li-m \ o
M = — | —— ] =0 (iH
N dt L, +L;

* ¢f. {D.39) and associated foo:note.

** Gossner, S. D., “A Correction to the Time of Maximum Obscuration in Solar Eclipses,”
A. J. 60, 383 (1955).




which can be written, following substitution of L; = L; =L, in the form,

=W tlyl, -y —md, +L) (L, — L, +2m) L

(D.13)
(L, +1.) L, +L,

leads, upon substitution of (D.13) in (D.10) to Gossner's Eq. (5)

p= (2 bitim )y D
L +L, n? (D.14)

which reduces immediately to (ID.11) when shadow radii variations are neglected.

D.3 PENUMBRAL (FIRST AND FOURTH) CONTACTS AND DURATION

In the case of the penumbral (first and fourth) contacts we sct m = 1, in
(D.9), following the choice of some initial time T,, and write immediately that

-_D Ly
L Bt S |°°Wp| (D.15)
in which
Sin g, = 4 | MoV —You |, (D.16)
L, n

the negative sign is selected in calculating the correction to the Ephemeris Time T,
for first contact (immersion) and the positive sign is selected for fourth contact
(emersion). Since L, loos y, I/n is either added to or subtracted irom the time of
maximum eclipse T, — D/n® to give either the first or fourth contact, then assum-
ing T, has been selected to be reasonably close to maximum, L; icos yp ifn can bc
regarded as the semi-duration of the partial phase.

Because the times of penumbral contacts are generally not required with
great accuracy, one can  _.and the square root of (D.8) and keep only the first
term, thus yvielding as the approximate correction

~ t (L] — mg)

LS 55 (DA

where again the negative and positive signs are selected for first and fourth con-
tacts, respectively.
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D.4 UMBRAL (SECOND AND THIRD) CONTACTS AND DURATION

For the second and third (umbral) contacts m = L, and (D.9) becomes

)] 1,
1, = - ? 1 —I;— ‘ A \-’/u| (.18
in which
y _ 1 Uy V- vy U
siny, = -l'kz. ~'——T'"— . (D.19)

The positive sign is sciccted cither for second contact (immersion) in the case
of a total eclipse (L, < O0)or third contact temersion) for an annulai eclipse; the
ncgative sign is selected either tor third contact (emersion) for a total eclipse or
sccond contact (immersion) for an annular eclipse.  Because of accuracy require-
ments a second iteration is often required.

The semi-duration of the umbral phase is given immediately as

N :!'_2.

u n

cos ¥, (D.20)
which reduces, as expected, to the center line value of 1, /n given by (C.81) when
W =vo=0and cosy =1.

D.5 POSITION ANGLES

The angle Q which can be calculated -~ following (17.43), (C.44), (D.5) and
(D.6) - from

lanQ=\‘7J (.2

is at all times the topocentric position angle of the moon’s center measured east-
ward from the north point of the solar limb.*  When u and v are ¢valuated at the
contact times of (D.15) and (D.18), Q is the angle of the points of contact of
the apparent disc of the moon with the apparent disc of the sun.

In irstances when altitude-azimuth instrumentation is being employed, the
position angle with respect to the vertex (defined as that point of the solar limb
nearest the zenith) may prove more useful. This angle is determined by noting that

* The north point of the sun is readily determined observationally as that point on the apparent
solar disc tangent to the disc's apparent (diurnal) motion singe it is the intersection point of
the northern limb and the hour circle through the solar center.
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the distance from the north point of the sol.. Wmb to the vertex is equal to the
parallactic angle g which can be gotten from the equation
cos @ sin 0
tangq = —- - (D.22
sin ¢ cosd — cos ¢ sind cos 8

or, Since cos ¢ x p ¢os ¢ and sin ¢ = P sin ¢’ in (D.1), fiom the approximate
relation

lang = L . (D.23)
n

Hence, the position angle V, as mcasurcd from the vertex, is given by

V=Q~-q . (D.24)

D.6 DIFFERENTIAL CORRECTIONS TO LOCAL CIRCUMSTANCES

In this section all differential corrections requires to adjust calculated lonal
circumstances to modest changes in locale will be developed.

D.6.1 Development of Differential Coefficients

We begin by casting the spatial variation of a function in the operator form

=02 +86 L + e 2

9 2 D.25
7N 2 M (D.25)

where &\ and 8¢ are variations in longitude and latitude, respectively, and are
expressed in radians while 8H is the variation in height expressed in units of the
carth’s radius.
From (D.3), (D.5) and (D.6) it follows that
bu=—6$,6v=—6n,6@ = -8\ (D.26)

and from (C.25) that

¢ _ 88 _ . € -3 =9 (D.27)
oH oH )Y oA i
§
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and

oo 8 (g cetsinter el singeosd (D.28)
3 v
2% = (1 -¢) %ZT = $C%e? sin ¢ cos ¢ (0.2

Consequently ., by applyint (D.25) to § of (D.1) we have
5 = A SR+ A; 60+ A 0H (D.30)
in which

A = %i= - poos ' cos (W

A = i;—i = —(SC? + H)singsin (8)

Ay = '%% = cos ¢ sin (W) D.3N
and, similarly, for n of (D.1)

5p = B, 6N+ B,80 + By 6H (h.3Y)

in which

B, = 9 — Esind

A
B, = *%g = (SC? + H) (cos ¢ cos d + sin ¢ sind cos CHR]
By = %—% = sin ¢cosd — cos ¢ sind cos W) (D33

However, since many calculations do not require the accuracy of (D.31) and
(D.33), the following approximations are sometimes used,

A, = o~ C? p sin ¢’ sin @

Ay = pocos ¢ sin (o = & H.3H
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B, ~ CSpcos ¢'cosd+C? psin¢ sindcos (W)
B, = psing cosd — pcos ¢ sind cos @ = 9 (D.35)

In the bal_ancg o( this sub-section, those differertial coefficients associated
with 6%, 8L; 8¢ 8n, 8¢, 8(n*) and &n will be developed for completeness.

We begin by applving (D.25) to ¢ of (D.1) thereby yielding

§ = C,BA+C, 8¢ + C, 8H (D.36)
in which
¢ = —ag = Ecosd
oA
C, = —%ﬁ = (SC? + H) (cos ¢ sin d - sin ¢ cos d cos (¥ )
C, =—g"g=sin¢sind+cos¢cosdccs® (D.37)

which, like the approximations of (12.34) and (D.35), can be approximated as

C, = CS ocos¢ sind - C? psin ¢’ cosdcos (1)

C. =~ psin¢ sind+pcos ¢ cos d cos @ = (D.38)

3

Further, by employing (C.26) or (C.27) which define L, and L,, respectively, we
note immediately t! at

6L = —tanf 85 =—tanf[C, BA+C, 59 +C; §H] (D.39)*

Mext, we apply (D.25) to égiven by

£ = u(C+H)cos o cos ()

* A is usuaily ignored for the simple reason that {-variations can enter loca! circumstances
only through the shadow radii and thus through 6L of (D.39). Hance, even though O() = O(n)
=0{{i, tan { =~ 0.005 and thus 8L is smail by comparison,
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and find that
8 = A] Sa+ A, 6¢ + A, 8H

in which (recalling that & (. = 3\)

A} = g—i—=ﬁpcos¢>’sin X

3 .
A, = %;— = —p(SC?* + H)sin ¢ cos g

Ay = g%=ﬁcos¢>cos (.

Similarly, (D.25) applied to 7 of (D.4) yields
5n = B &N+5, 8¢ + B, 8H
in which

dsind A, -dC,

Bl’ = -

s

B, dsindA, -dG,

B, = 2L = fisindA, —dC,

and when applied tof of (D.4) yields
6§ =C, 86X +C, 6¢+C, 6H

in which

"

.3t . :
G 3§-=—ucosdA, +d B,

¢ = %i-= ~f cosd A; +d B,

S
L}

"g‘ﬁ = "I-;COSdAa +éBg
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Hence, we can write immediately (noting that 0= — d-tand that 8v = — 1)

that
8(n*) = N; 6A +N; 8¢ + N, 6H (D.46)
in which
N, = -2 A] +VB})
N, = -2 A + VB))
N; = - 200 Aj +VB3) (D.47)
and that
2
5(ny = 01 (D.48)
2n

D.6.2 Development of Differential C~: ctions to Loce! Circumstances

In subsequent caiculations of the differential ccrrections to Iccal circum-
«tances, 8L, du = — 8§, 5v = — 87, &(n)and 5(1?) wiil be neglected.

Because as stated previously, the penumbral contact tunes are not required
with great accuracy, the correction will be based on (D.20) and thus

2 3 2 2. _m?
5t =5 <____Ll —m° Y o 8mh) (L -mi)sn (D.49)
2/ 2D 2D?
or, since near the contact time (L‘l‘ -m?) = 0,
bt =~ Slmd) _ ulErvén (D.50)
2D D
Hence, the correction to the penumbral cortact time can be written as
5t = poA +q b¢ +1 811 (D.51)
in which
P = (uA, +vB,)/D
q = (vA; +vB,)/D
r = (uA; +vB;)/D (D.52)
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Similarly, the correction to the time of greatest phase from (D.14) becomes

_ DY\ _ udt+v én

e ) sie
or

6t, =p, dx+q  do+r SH (D.54)
in which

pm = (l.lAl +°B| )/n2

q, = WA; +vBy)/n?

r, = (0A; +VB;3)/n? (D.55)

The correctiorr to the umbral contact times will be calculated, under the
assumpticn that (D.54) has been calculated, by correcting the semi-duration S, of
(D.20) for changes in locale. This is accomplished by noting, from (D.19), that

. 1 uv .- v ‘ K !
J = - = — DS(
sin Vu L; ( n ) Lz ¢ ))
and that

8K = p &N +q80 +r 6H (D57
in which

B, = (iB; ~vA))n

q = GB; —vA)n

r, = (@B; -vA3)/n (D.58)

Hence, we recalculate the semi-duration S from the formula

, _ L
where
sin Y, = K+8K (D.60)
L,
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Finally, we note that a change in AT from AT to AT + 6T can be readily
incorporated within the existing framework by noting its complete equivalence to
a fictitious change in longitude (8¢ = 6 H=0) ¢. the form

8\ = 1.002738 6T (D.61)

and thus can be accommodated via P, p,, and p; (the differential coefficients of
8)\) in computing 6t, 8t and s; from (D.50), (D.54) and (D.57), respectively.
The corrections to these previous times (when expressed in U.T.; will be 8t — 8T
and 8t — 8T.

D.7 ECLIPSE MAGNITUDE

The magnitude of an eclipse is defined as the fraction of the solar diameter
covered by the moon at the time of greatest phase. Consequently, referring to
Figure D-1 — a redrawn and simplified version of Figure C-2 — we see that for an
observer O, located in the penumbral shadow PP’ that the magnitude M, of the
partial eclipse is given by

which, employing the similarity of triangles PMO, and S'MA; and PMU and $'MS
leads to

M = PO,  PX-XO,
" pU PX — XU

But PX = L, , the penumbral radius, XOp= mand XU = — L2 during totality (as
pictured), hence
M, = ™ (D.62)
Li+L,

which is the desired result valid for any time during the eclipse.

Similarly for an observer located within the umbra at O the magnitude
is given by

%
=2}

M; =

v
v
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But B'B = SB + SB’ and from the similar triangles UMO, end SMB; and PMO and
S’MS we have SB/S’S = UO, /PU = UO_/P'U, from the similar triangles SM'B’ and
P'M’O,. and S'M'S and U"M'P’ we have §’B/SS’ = P'O_ /P'U’, hence

SB+SB' _ U0, +POy, _ PU _ PX+XU

$S Pu PU PX-XU
or
My=—la (D.63)
L, +L;

Alternatively, we can write that

B'B MM |

s BB /xz MM,

BB 7 / 2 Y s, Se

$S 7 s ST "o o
=[x T[xx  snSe ®

where S¢ and Sg, are the semi-diameters of the moon and sun, respectively. Hence

X oa M (D.64)
Se

0.8 DEGREE OF OBSCURATION

The degree of obscuration at a particular location is defined as that fraction
of the solar disc obscured by the moon during the partial phase and is — in the
notation of Figure D-2 and based upon the treatment in [2] — given by

(ap *312

S'=
2
e

(D.65)

To develop S’ in a form suitable for calculation we note first that

e Vig -x*
a, =2f J  dvdx
l’@ cosB g
or |
= / b [ | X 1’@
3g = | Xvryh—x? +r1 sin o
T®cos b

|
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which becomes

8y = r@ ~g - [ Io cos B/ ré— r®5 cosB + 1 sin~! (cos B)] ,

and, since A= ;:'— - A,

ay = 1B -1} sinBcosB. (D.66)
Similarly, we can write that

a, = r{A—rd sinA cos A (D.67)

and hence that (D.55) becomes

A 2
s = [(L)MB-(—:L)'sinAcosA-sinBoosB] v (D.68)
LYo} O]

Second, we note from (D.13) that
\ S
T
.L = ._‘:. = b’2 A
c} Se

Hence, if we set the solar semi-diameter® rg = BC = 1, we can writs ~ referring
once again to Figure D-2 -

— (L, - L)
f, = AC=g=—21 "1
(L, +L,) - (D.69)

From (D.11) we note, since the solar semi-diameter is the unit of distance, that

— (L, - m
FD = 2M, = -— (D.70)
(L, +Ly)
and thus that BA : BF + AF » BD — FD + AF =1 — 2M, + s, or that
B = 2 . (D.71)

L +L;

* It should be noted that the semi-dismeter of the sun can either be that of the “‘usual’’ optical
sun or that of a specific radio sun, the particular semi-diameter chosen will manifest itself
through the value of L; .
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Next, application of the law of cosines twice, yields

AC? = BC? + BA? — 2BC BA cosB
and

BA? = AC? +BC? - 2AC BC cos ¢

or, using (12.69), D.70) and (3.71)

cos B=(L,L; +m®)jm(L, +L;) (D.72)
and
cos C= (LI +L3-2m?)/(L, +Ly) (D.73)
from which
A=1-(B+C). (D.74)

Thus, S of (D.68) becomes
§' =[s? A+B — (s’ sin Acos A +sinBcosB)]/r (D.75)

or, since the third term is twice the area of ABCA, which is readily shown to be
KlssinC,

S={s2A+B - ssinC]ln (D.76)

2

where, during ibe annular phasc, $' = s* and during the total phase S = 1.

D.9 CENTROID OF UNOBSCURED SOLAR DISC

From symmetry it is seen that the position of the unobscured solar disc
centroid lies on an extension of the line joining the solar and lunar centers which,
as in the previous section, is taken as the x-axis of a system having its origin at the
solar center. Hence, we may write — referring to Figures D-2 and D-3 - that the

m e e S

A Al nenn N \
centroid of arca B (a) is given by

th-—xi
—_ |
ay xg=2fb f dy x dx
r®cusB 0
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or 5
; . WXy = -3 (g —x?)3?
% which beeomes

_ 2 : 3

)"B = 3 (rgsin B) /aH

Similarly, we win write that

xA =BA -

Wt

(rysinA)'/a,

(ay Yag) "X,y T2, X p*tay "Xy
or

(aA '“’H) *Xpep ©

which, since r sin A = r; sin B, reduces to

a, + ag

Furthermore, we note that

or since X,,g,c =0, _
X = (@, *ag) " X4
c

a¢

which reduces, upon substitution of (D.80) to

— — a
XC :_BA _.T_;A______‘
iy ~(a, +ag)

4 105

i

: —RA da
Xpo,pg ~BA  ——P—

o
Iy cos B

(D.77)

(12.78)

Next, we note hat the controid of the combined areas )-(A B is given by

(D.79)

— 5 2 .
BA a, — § (ry sinA)® + -g (1 sin B)’

(D.80)

jw)

(D.82)
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or, tf the results of the previous section are employed

- sPUA sin Avos A) // 2m
' ’ (D.83)

\( - T T e e — e
Tl -8 \L,+L2
/
Hence, by specifying its position angle 6. = P —m and radiai distance relative to
the solar center X, the centroid may be located casily on the solar disc.

D.70 TOPOCENTRIC PARAMETERS

The topocentric right ascension &g declination 8, and aistance rg of the
moon can be calculated trom the following exact relaticnships

Ty 008 8, cos ag T, cosbd, cos g — p cos @ cos Ty

Te €05 8 cinay = 1y cos bg sin oy — p cos @ sin Ty,
T, sin 8¢ = 1 sin 8y — p sin ¢’ (D.84)

in which ag and & are the geocentric lunai right ascension and declination of
{A.46), respectively; rg 1s the geocentric distance given by

fe = ag/sin T (D.85)

where the lunar parallax ¢ comes from (A.45); and 7¢, is the local sidereal time
(L.S.T.) 2t r howrs E.T. given by (B.4).

Weat, the azimuth Azg (measured east from north) and the elevation E2, of

the moon can be caiculated from
cos EXg cos Azy = +sin 8 cos ¢ — cos 8¢ sin ¢ cos (1o, — o)
cos LYy sin Az, = -cos B sin (7 — o)

sin bl =+ sin 8¢ sin ¢ + cos 8 cos ¢ cos (7 — o) (D.86)

in which (1, ~ag) s recognized as the hovr angle of the moon,

106




And finally, the topoeentric lunai se " 52 - cer 5y, can be calculated from
the expressicn

T
it = [ -
sk Sy o sin S, (D.87)

where the sine of tiv geocentric lunar semi-diameter Sg can be rotten directly
from (A.48) we notc in passing that S_ - S is known as the augmenc.iicn.

In the case of the sun, an approximate form of (D.84) suffices; thus, the
topocentric right ascension ag, and the declination 8 are given by

°"® = g — dag,

"

ty = 8y - Adg (D.88)
in which
Aag = 7g [0 cos @' sec bgsin (1, — Gg)

Abg = mg [psin ¢ cos 8o — pcos¢ sin 8 cos (1o, — )] (D.89)

and where 7 is given by (A.22). As in (D.B6). the azimuth Azg and EQ® are
given by

cos Efq cos Azg, = +sin b cos ¢ — cos b, sin 9 os (T ~ ag)
G

cos Efg sin Az = - cos b sin (14, &)

sin EXg =+ sin b sin ¢ + cos 8’ cos ¢ cos (1, ~ o)
(D.9O)Y

~here it should be noted, for locations near the center line and at or around
cclipse maximum, that the useful approximation

sin E¢q ~ & (D.91)
follows from an examination of (C.20).

Since the solar semi-diameter is almost totally insensitive to topocentric
variations; the value given by (A.23) can be used throughout the cclipse.
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APPENDIX E

SOLAR COORDINATE SYSTEMS AND RELATIONSHIPS

E£.0 INTRODUCTION

In this appendix various coordinate systems applicable to solar astroromy
will be described and their interrelationships defined. Particula: attention will be
directed to the development of both precise and approximate “‘poimnting instruc-
tions” for observation of phenomena both on and above the solar surface.

E.1 PRELIMINARY DISCUSSION OF SOLAR COORDINATE SYSTEMS

Points are located on or above the solar surface by specifying both their
heliographic longitude L and heliographic latitude B, once the prime mendian of
the rotating* sun (the x-axis of the heliographic system) and the rotation axis of
the sun (the z-axis of the heliograshic system) have been specified for the date
and time of interest,

This specification uses as reference an ecliptic plane having no secular
motion and furthermore, the latitude of the sun is neglected. Hence, one requires,
first, thz inclination of the solar equator with respect to the ecliptic I, or,
equivalently, the angle hetween tie ecliptic north pole z_ and the north pole of
the sun z; (this is shown in Figure E-1); second, the longitude of the ascending
node of the solar equator on the ecliptic £; and finally, because of the gaseous
nature of the sun and, hence, the lack of a recognizable reference point on the
solai equator with which to measure longitudes, the location of the prime
meridian by specification of the heiiographic longitude of the ascending node as a
given function of time, M. These cre given by

1=7°15"
Q=720 + 5025 (t — 1R50.0)
M- 18)°=112°766 — 14°18439716 (J.D. — 243 0000.5) (E.1)

in which t represents the number of years since 1850 and J.D. represents the
Julian Day number of the date and fime of observation.

In “‘actual” appearance, of course, the sun resembles a disc onto which
points both on and above the solar surface are apparently projected. The normal
0 the disc (x; x" in Figure E-1) lies along the earth-sun line at the -eiestial
iongitude Ag+ 7 where A is given by (Al7) or (AlR). A vnrojected point is
located on the disc by specifying two polar coordinatcs; first, its radial distance

* In what follows we negiect the differential (heliographic latitude dependent) rotation of the
sun. Longitude is measured westward (in the direction of rotation) from the prime meridian
and ranges from 0° to 360”; latitude is maasured from the solar equator, positive towards the
north,
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from the disc center, cquivalent to the angle p subtended at the center of the sun
by this point and the carth’s center; and sccond, its position angle 8 measured
eastward from the north point (the z” axis of Figure E-1) which is the projection
of the earth’s rotation axis z, on the disc*. The relationship between this
“observational” disc coordinate system and tiie heliographic systemas can be fixed
by specification of the position angle P of the projection of the solar rotation axis
z;; on to the disc

E.2 PRELIMINARY CONSIDERATIONS

In the remainder of this appendix we assume that a positive rotation with
respect to an axis procceds i~ the nght handed sense, and furthermore, in the
following three reiations, we assume that the rotation operiator operates upon the
coordinate basis x, y. z to pioduce the transformed x’, y’, z’ basis.

By positive rotations with respect to x, y and z axes we mean

X I_R,, R,: Ry X I o0 0 " x
y' R: Ry Ry y =1 0 cos8 sinf y
z' L Ry, Ry Ry, z, 0 —sing cosé z ,
(E.2)
x' cosf 0 -—siné X
y |= 0 y
7' sin cos 6 / z , (E.3)
and
7 \ \ .
X\ cosfsinf O "X
y' J= | —-sinfcos@® 0 y
7’ 1 z E.4)
respectively.

* As discussed in Appendix D, the nosth point is observaticnally defined as that point on the
solar limb which is the tangent point of the parallel of declination defined by the apparent
(diurnal) motion of the sun.




E3 THE HELIOGRAPHIC/ECLIPTIC COORDINATE TRANSFORMATION

The hehiographie system (X, ¥}, . 2,,) is transformed into the ecliptic system
(x..y..z) by the following sequence of rotations: {irst, a rotation around z, by
M; second, a rotation around the new x-axis by ~ I; and finally, a rotation around
the new z-uxis oy --£2. This leads to

X X

v H
. = RrCH
Y. (R EIT oy,
Z; Zy (E.5)

in which

R{H = cosQcos M +sinsin M cos |

R{M = —[sin cos M cosl — cos § sin M]

R'H = sinQsinl

R{H = <inf2cosM — cos © sin M cos |

RS = cos§cosMcos | +sin 2 sin M

R{H = o cosQsind

RSY = — sinlIsinM

R$H = sinlcosM

R{H cos ! (E.6)

E.4 THE ‘D!SC’/HELIOGRAPHIC COORDINATE TRANSFORMATION
AND RELATIONS

The ‘disc’/heliographic transformation can be deveioped by either of two
routes, namely: that the ecliptic system (Xr ¥, 20 s transformed into the ‘disc
system (x', y¥', 2') by a rotation around z_ through ()\@ + @) and, in turn, that
fhe ecliptic system is transiormed by use of (E.$8) or, equivalenily, that the same
deveivpment as that leading to (E.5) isused but with —£2 replaced by =2 +(Ag +7)
in the third rotation. In either case,
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v = RNy,
4 zy (E.D)
with
R} = ~ s (Ag - ) cos M +sin (\g — £2) sin M cos |
Rz = _ [sin (A@ - V) cos M cos 1 + cos (Ag — §2) sin M]
K3 = sinQg - sinl
R: = sin(Ag- ) cos M +cos A — ) sin M cos |
R'zl: = —cos A\g — §2) cos M cos | + sin (A — Q) sin M
R;‘; = c0s(Ag — §)sin 1
RY = _sinlsinM
R';; = sinlcos M
RY = cosl (E.8)

Next, we note that the x'-axis of the ‘disc’ system, i.e., the ‘disc’ center,
defined by the subterrestrial point located at heliographic longitude L, and lati-
tude B,, can be specified by transposing (E 7) in the form

H
/COS Bo COs i.o\ / i\ (/R“ \
cos By sin L, = IR'H 1T 0 ]= R,'Z

sin B, 0 \R'.S' (E9)

or

cos By cos Lo = — cos (X — ) cos M +sin (Ag — §2) sin M cos 1
cos By sin Ly = — [sin (Ag — §2) cos M cos | + cos (A5 — 2) sin M]

sinB, = sin(\g — ) sinl (E.10)




These, in turn, can be transtormed. by means of some stiaightforward manipu-
lation into the more commoenly employed form for calculating Ly and B,
sin B, = sin ()\® — ) sin |
cos By cos(Ly — MY = - 005 {Ag - §2)
cos By sin (Lo — M) = —sin (A — 2 cos L (E11)

Finally we have that the angle Y between the projection onto the ‘disc’ of
the sun’s rotation axis z,; and the ecliptic pole can be gotten in two steps: first
acquire the disc coordinates of z,; through

s

/X' 0 RiY
. - e _ 'H
y ]= (R" )\ 0} =} Ry
z'/ | RP (E.12)

or
X =sin (g - Q) sin |
V' =costAg — §2)sin |

z' =cosl (E13)

and second, note that

tanY = — % = —cos(Ag-~S2)tanl (E.14)
ES5 THE ‘DISC/EGUATORIAL COORCINATE TRANSFORMATION
AND RELATIONS
The ‘disc’/equatorial transformation is developed by noting that the squato-
rial system is transformed into the eclintic system by a rotation around x;. through

the obliguity ¢ and that, in turn, the ecliptic system is transformed into the disc
system by 2 rotation around z_ by the angle (Ag + 7). Hence,

/ x\ /% \

y')= (R ¥y )
7 z, (E.15)
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with
R = —coshg
R, = —sin)\® cos¢
RE = —sin Ap sin €
Ry = sin Ao
R';lzi = —(0S Ay COS€
R';lg' = —cos Agsine
Ry = 0
RE =  —sine
RS = cose (E.16)

Furthermore, we also note that the angle X between the north point defining
the projection of the earth’s rotation axis 2 on the *disc’ and the ecliptic pole
can, like the angle X be gotten in two steps: first, acquire the disc coordinates of
z,. through

x\ 0 R

y ] =®RY[ o R

z | . R% (E17)

L]
or

X" = —sin \g, sin €

V= - cosAg sin e

2 = cos € (E.18)

and second, noie that

’

tan X = -l— = —0s Ay tane. (E.19)
z




Finally, woe see that the position angle P of the solar rotation axis is given by
P=X+Y (E.20)
where Yo was defined in (F.14).
E.6 THE 'DISC’/"DISC” COORDINATE TRANSFORMATION

The *disc'/*disc™” transformation is developed by rotating the ecliptic pole (the
Z'anisharound the x"axis by the angle - X into the north point (the z"-axis),or that

X \ | 0 0 x"
y' ) = 1 cos X —-sin X y"
7' 0 sin X cos X 2" (E.2D)

E.7 THE HELIOGIaPHIL/"DISC COORDINATE TRANSFORMATION
AND RELATIONS

This “disc” system (x. y, 2"} is transformed into the heliographic system
(X} ¥y - Z,) Ly the following rotations: first,a rotation around x” by P; second. a
rotation around the new y-axis by Bg: and finally, a rotation around the zy axis
by — L. This leads to

X, x"\

yN = [R“n ] y" }
ZH ; zh

(E.2D)
in which
RIV = s By eosio
RIY = _{cosPsinly — sinPoos Ly sin By}
RYY = — (sinPsin Ly +cos P cos Ly sin Byl
RY = cos By sinl,
RY," = cos Pcos Ly +sin Psin L, sin B,
RIV = «nPoeosl, --cosPsinl, sin B
R = sinBg
R = —sinPcosBy
RY" = cosPcos Bg. (F23)
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Coisequently, o poiint o the surface of the sun (ol radius Re ) at latitude B
ard longitude L, iciehy having the heliographic coordinates

e T R cos Beos b
.\;|| = R(_\ cos B Sin l
n = et (F.24)

will be transformed into a point in the “disc™ system with hejiocentric angle p
and position angle 6 thereby having the “disc™ coordinates

A Re cosp

Y = ~Rgsinpsin¢

N

z = Rgsinpcos() (E.25)

iIf these are substituted in (F.22), and appropriaic o;-crations and manipulations
performed. we have that

sin B =sin By cos p + cos Be sin g cos (P - §) (.20
cos Bsin(L - Lg)=sinpsin (P —§) (E.27)
which permits the immediate calculation of the heliographic latitude and longi-
tude of a point once its disc coordinates # (whose determination will be Giscussed
in Section E.10) and 9 have been specified. Equivalentl ", we have
cos 2 = cos By cos B cos(L — L, ) +sin By sin B (+.28)
siii g sin (= §) = cos Bsin (L — L) (£.29)
if Band L are specified and p and 6 are cquired.

E.8 RIGHT ASCENSION AND DECL:NATION OF AN OBSERVED POINT
ON THE “DisC”

This development is nitiated by employing the transpose of (1.2]) operating

on the ‘disc” components ot the poinit in thie fonm

X' = Rg cosp

= -Rg sinpsin(6 - X)

)

7' = - R@ sin p cos (0 - X) (I )
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to yicld

N o® P\Q | - cos p cos 7\@ ~ sinp sin )\@sin (8 -- X))
Vi = Rg 1 - cospsindgcose +sinpcos g cos € sin (8 — X)

~sin psine cos (8 — X))
2y = Rg [ —cospsinhgsin € +sin p cos Ag sin € sin (8 ~ X)

+sinp cos € cos (8 — X)]. (E.31)

Next, because the geocentric, equatenal X, y, z components of the solar center
(neglecting the solar latitude) are given by (A.21) as

xg =R cos d cos oy = Rcos A
Yo=R cos 69 sin g = Rsin A cos €
zg =Rsin 8® R sin Ag sin € (E.32)

then the geocentric, equatorial components of the disc point can be written by

R
X=Xxp +Xx =R (1——R@ cosp\)oosk(v

- (—%Q sin 0) sin (8 — X) sin 7\@-

y yc+yr _R‘/ "——- (;,,i\S'nAOCObe

R
+ (-}? sinﬂ)(sin (6 — X) cos € cos A~ cos (§ — X)sin €)

R
z2=2a+2; =R\—(] - —RQ cos;)sink@sine +

[

R
+ (—R—@ sinp)(c,os(o —X)cose+sin(9-X)sinecos?\®)-‘

(E.33)
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Consequently, il we employ the reasonable zpproximation that 6 = x* +y’ 42
=~ R?, we can writc immediately that the nght ascension a, and declination 6‘ of
the point are given by

R cos b cosa = x

Roosi sina, =y
Rsiné, = z (E.34)
where x, y, and z are given by (E.33).
But (E.34) and (E.33) can be transiormed into a more familiar form by

expanding the sin (8 — X) and cos (2 — X) terms and identifying sin x and cos x
with the ecliptic and equatorial courdinates ot the sun. For from (E.18) and (E.32)

we have that
(y)? +(2')? =(— cos hgsine )? + cos® € = cos’® b (E.35)
so that
. ’ :t
sin X = Y = —Cos A gsin € /cos b (E.36)

VT + @)

and

cos X = ————2Z—— — = cos €/cos So (E.37)
iy + @

which, when employed — together with (£.32) — in (E.34), yield (after consider-
able manipulation)
Ro
cos &, cos a =<l — —R— cos p ) cos By Cos g —

I

R

TQ sin p [sin 6 sin o+ cos 6 cos o sin 5®]

R
005 25s sinc = \/l - —R@ cosp)cos 6®sinu®+

Re . .. o A
+ X sin p [sin 0 cos g™ cos 0 sin o,y sin 8y !

R R
! sin §_ = <l - —‘;—D cos p) sin b¢, + A}E‘D sin p cos 9 cos 851,

{F.38)




Q1

R
-io sinpsind = sin(a - &g cos 6‘

29 G cont = cos b sin b, — sin g cos 8
R sino contt = cos bmsin b~ sin O cos & cos (o - @)

[ Rg .
\l - —; cos;:) = sindg sin &+ cos g cos 25s cos (&, — ag). (E.39)

But reference 1o Figure E-2 shows that

R R .
sinp, = —ﬂ% sinp = —PQ sin p (E.4C)
and
R - Raycozh
cosp, = S O RAGMP l—;R@cosp (E4D)

8, R

so that (F.39) reduces to the familiar set of relations

sin p; sin@ = sin (@, — ag) cos 6s

sin py cos @ = cos 8 cos & - sin b sin &, cos (a — « o)

cos p; = sin 6® sin tSs + cos 69 cos ZSs cos (o, -ag ) (E.40)

which also follow directly from Figurc E-3 and the solution of the astror mica!
triangle on the celestial sphere of infinite radius (wherein the approxim:. .ons of
{E.40) and (L.41) are rendered unnccessary).*

If the sepuration of (ag, 8 ¥ and (a.. b)) is sufficiently small that square and
higher order terms can be neglected, then
P, sintd = (7 — o) €OS b
£y cos@ = sin (5S - 6®\ > bs - 6(,) .

b —_——

* See (9] pp. "5-26.
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or, to within this kevel of approyimation
a - ag * p;sinfsce b (E.43)
6; — 6® x pycos 0, (E.44)
E9 DETERMINATION QF y FROM OBSERVATIONS

The determination of p is based on the geometry of Figure E-4, a more
detatled version of Figure E-2, which also provides for a radio sun of radius
Ry = Hg Ry with K 2 1 as well as for the optical sun of radius R. randrg
are meant to symbolize linecar observational measures in some convenient scale on
say.a photograph.

Because of 1ts small magnitude (~ 16 we can write that the sojar semi-
diameter of A.23 is given by
: . Ro o
sin 85 = R ® Se (E.45)

and, to the same level of approximation that

_PyL r

Se S T (E.46)

Hence, p, can be determined from the threc known or measured quantities Sy,
rand r,,

But we see that

SinA _ sin(p, +p) _ sinp, Py E
R R Ro Re (E.47)
or, employing (E.43), that
sin(p, +p) = P|/S@ (E.48)

where it should be pointed out that the optical radius has bee . tacitly employed.

If on the other hand we wish to calculate the p appropriate to a radio sun of
radius R, =3 Ry from the same p,, we modify (E.48) such that

1 /¢
sin(py, +pp) = A/S, = J(—<s—(; ) (E.49)
R
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