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ABSTRACT

Integral equation methods are described for calculating
the entire sound pressure field when either the distribution of
velocity or sound pressure is specified on an arbitrary closed
surface, The theory is based on determining an equivalent sur-
face layer of either monopoles only, dipoles only, or both mono-
poles and dipoles. Appropriate integral equations are derived
for the unknown surface monopcle and/or dipole density for each
case and each boundary condition, Every closed surface has twc
infinite sequences of characteristic wave numbers at each of
vhich there exist an associated characteristic internal standing
wave and an associated characteristic external traveling wave
which saticfy the homogeneous parts of these integral equations
at one or the other of the two sertes of wave numbers. At
these wave numbers, and for particular boundary conditions which
are specifically derived, all the integral equations may have
infinite or indeterminate solutions. The problems of sound radia-
tion by a pulsating sphere is used to illustrate the solutions of
all the different integral equations and to demonstrate the compli-
cations that occur at the characteristic wave numbers. Special
and simple techniques are described for approximating each cf
the integral equations by a linear matrix equation wich finite
elements and for the numerical solution of the matrix equation,
Special methods are described to eliminate the indeterminacy in
the solution to the matrix equation near the characteristic wave

numbers,
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INTRODYCTION

Some integral equation methods that are currently being used in the
numerical solution of radiation and scattering problewms are described and
analyzed, The intention is not to provide a comprenensive review of the
very extensive literature but rather to give a unified derivation of the
methods which stresses their common features and compares their relative
merits as they appear to the author,

These methods have been used by the author in a variety of specific
engineering problems, e.g., the distribution of sound radiation from a
vibrating ship hull, the directivity pattern of an array of sound trans-
ducers, the scattering of explosive sound by the resonant vibrations of
a ship hull, and the thrust-deduction factor of a marine propeller. All
of these problems required a solution to the wave equation for the region
outside an arbitrary closed surface, given some specified relation between
the sound pressure and its normal gradient at the surface,

However, we will consider here only a restricted version of this
problem, namely, where the pressure is harmonic in time and where either
the pressure or its normal gradient is specified at the surface., We take
the sound pressure to be the real part of p exp(-ikct) and the gradient
to be the real part of q exp(-ikct), where p and q are complex, We
denote an arbitrary point inside, on, and outside the closed surface by
the vectors x, v, and z, respectively, Hereafter we will omit the time
factor from the equations and also we will tacitly assume that the real

parts are taken, Then the differential equaticn is the Helmholtz equation
(P +"®) p(2) =0 (1

If the normal gradient of the pressure is specified at the surface

(Neumann boundary conditions), the boundary conditiun is

:
T2l - 2)
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where n is a unit normal, pointing outward from the surface point y, Or
alternatively, if the surface values of the sound pressurec are specified

(Dirichlet boundary conditions), the boundary condition is

P(z) =p(Y) s 2~y . (3)

We also assume some radiation condition at infinity, most simply in the

form

tkz

p(z) =~ < HE X (4>
where z = |z|,

O0f course, these simple boundary-value problems occur in many fields
of applied physics but we shall continue to interpret the equations solely
in terms of sound pressure waves, Even in these terms, the equations have
many useful alternative physical interpretations in sound radiation and
scattering, For example, there are two direct interpretations as radiation
problems (i) The surface y is the outer surface of some solid body which
vibrates in an arbitrary patte n at steady circular frequency w = kc,

v(y) = q(y)/(ipkc) is the distribution of vibration velocity normal to the
surface, and p(z) is the sound pressure distribution in the external space;
(i1) The surface y is any geometric surface which encloses all the sources
of sound in the fluid, the sound sources all have circular frequency ¢ = kc,
p(z) is the external sound pressure at z, and q(y)/(ipkc) is the normal
component of the particle velocity of the fluid at y,

There are also two straightforward interpretations as simple scatter-
ing problems (1) The surface y is a rigid impenetrable surface that scatters
an incoming sound wave of frequency w = kc, p(z) is the sound pressure of
only the scattered or reflected wave (omitting the incident wave), and
~q(y)/(ipkc) is the normal component of particle velocity irn the incoming
wave at y, provided the rigid surface and its interior are replaced by
fluid; (ii) The surface y is a free (pressure-release) surface that scatters

an incoming pressure wave, p(z) is the sound pressure of only the scattered




or reflected wave, and -p(y) is the sound pressure at y in the incoming
wave, provided the free surface and its interior are replaced by fluid.

Finally there are two straightforward interpretations in terms of .
special socurce distributions in a bounded region (i) The surface y is a
rigid impenetrable surface with a layer of simple sources, q(Y) per unit
area, placed an infinitesimal distance outside the surtace, and p(z) is
the external sound pressure; (ii) The surface y is a free (pressure-
release) surface with a layer of dipoles, n p(y) per unit area, placed an
infinitesimal distance outside the surface, aud p(z) is the external
sound pressure. The last two interpretations are based on the fact (which
we prove subsequently) that the normal gradient of the field of a layer of
simple sources and the field of a layer of dipole sources are each discon-
tinuous as the field point crosses the layer,

The mathematical methods to be described for solving the boundary
value problems use integral equations to determine 'equivalent" monopole
and/or dipole layers whose external field is the same as in the o:iginal
boundary value problem. Hence, we first review the properties of the
fields of such monopole and dipole layers and derive an indefinite number
¢ appropriate integral equations, We thewn show that each integral equa-
tion has an infinite sequence of characteristic wave numbers, at which
the solution becomes infinite or indeterminate, and discuss how the ori-
ginal boundary value problem can be solved in such cases. We then describe
specific techniques for approximating each of these integral equations by
finit2 order matrix equations and for obtaining numerical solutions to
each of the matrix equations, These techniques are specifically designed o
for problems having the arbitrary geometry and boundary conditions that
commonly occur in real engineering situations. We also compare some of o

the relative merits of the various methods, ]

EQUIVALENT SURFACE LAYFRS , :

The methods of solution are based on the possibility of finding
some surface distribution of simple sources (monopoles), and/or some

su.face distribution of double sources (dipolesg), which, if placed at
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the position of the vibrating surface in an unbounded fluid, would have
exactly the same pressure field outside the surface as does the vibrating
surface, It turns out that there are an infinite number of such equiva-
lent surface distributions of monopoles and dipoles;1 we shall discuss
only three special distributions,

The first equivalent surface distribution is one having monopoles
only. We will take the field at z due to monopole of unit strength at y
to be eikR/4nR, where R = z - y. Then the field due to the entire surface
distribution is

¢ c(x)eikli - ¥l

(
ZIPE I ”

p@ = |

where o(y) is the source strength per unit area; o(y) must be specified
80 as to satisfy the boundary condition of either Equation (2) or (3).
It can be shown1 that o(y) must equal Q(y) - q(y), where q(y) is the
normal gradient at y of the external field p(z), and Q(y) is the normal
gradient at y of an internal pressure wave P(x) whose surface values
match those of the external field p(z), i.e., P(y) = p(y). However,
this interpretation does not define I(y) explicitly because the boundary
condition does not define both q(y) and Q(y) explicitly,

The second equivalent surface distribution is made up only of
dipoles which are oriented in a direction normal to the surface, Hence,
since we take the field at z due to unit dipole in the n direction at y
to be (B/Bn)(eikR/4nR); where R = |z - y|, the field due to the entire
surface distribution is

¢ 5 |etklz - ¥l .
p(z) = Jj n(y) a; [m ds (6

1Re£erences are list2d on pages 55-57




where p(y) is the local dipole density per unit area and must be specified
so as to satisfy the boundary condition of either Equation (2) or (3). It
can be shown1 that u(y) must equal p(y) - P'(x). where p(y) is the surface
value of the external pressure wave p(z), and P'(x) ig the surface value
of an internal pressure wave P’(E) whose ncrmal gradient at y, Q'(x),
matches that of p(z), i.e., Q'(x) = q(y). But again this interpretation
does not define u(y) explicitly,

The third equivalent surface distribution is made up of a particular
menopole layer, whose surface density is equal to the negative gradient
-q(y), and a particular dipole layer, whose surface density is equal to
the surface pressure p(y). The statement that the combined external field
of thesc two particular layers is equivalent to p(z) is called the Helmholtz

equation

oAz - y 3 loiklz - xl] . o

p(2) = -H W 7% .” PO 5[ %]z - o

and is commonly derived from Green's theorem.l’z Ordinarily, either p(y)
or q(y) is specified explicitly by the boundary condition and the other
function remains to be determined,

We shall call o(y) and p(y), Green's equivalent monopole and dipole
layer, respectively, since they were apparently first used by George Grieen
in electrostatic problems about 1830, We may call q(y) and p(y), the
Helmholtz monopole and dipole layers, respectively, If either o(y) or
u(y) were known, or if both p(y) and q(y) were known, then p(2) could be
calculated by simple quadratures, But in all the present p;oblems, the
unknown surface layer, either o(y), u(y), P(¥), or q(y), as the case may
be, must be determinad from the boundary condition in some way, In every
case this may be done by solution of an appropriate integral equation,

We will discuss at least five different integral equations which can be
used for this purpose when Dirichlet boundary conditions are prescribed
and at least five integral equations which can be used when Neumann

boundary conditions are prescribed,
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INTEGRAL EQUATIONS FOR MONOPOLE AND DIPOLE LAYERS

In mathematical terms, the integral equations can all be interpreted
as limiting forms of Equations (5) and (6), or their derivatives, as the
field point z approaches a surface point 1'. However, the mathematical
processes must be carefully defined, ard restrictions must be placed -n
the continuity of the surface layers because the integrands, the integrals,
and the derivatives which occur are sometimes unbounded and/or discentin-
uous. A classical, rigorous and detailed analysis of these processes was
originally given by Kelloggp3 His analysis was confined to a case equiva-
lent to k = 0 in Equations (5) through (7). But the additional facter

exp(iklg - 1|)is only a minor complication because this factor is ccatin-
uous for all z, Appendix A adapts and summarizes some of this anaiysis,
The arguments are not meant to be rigorous but mainly to give cperatianal
and detailed meaning to the abbreviated notation which follows and which
would otherwise be ambigucus. A star before the integral sign identifi-s
terms that are written in this special abbreviated notaticn, The star

may imply that the integral is "improper," that a "principal value" 1s
intended, that some other special limiting process is intended, or that
some other special definition applies which can be determined by reference
to Appendix A,

The integral equations generally state that when you cross a mc:o-
pole surface layer the pressure p(r) is continuous, whereas the normal
gradient q(y) is discontinuous by ar amount equal to the local moncpsle
surface density., And, when you cross a dipvle surface layer, the ncrmal
gradient is continuous, whereas the pressure is discontinuous by an
amount equal to the local dipole surface density,

There are two integral equations for Green's monopole layer o(y),
depending on the boundary condition. When q(y) is specified apriori, an
appropriate integral equation follows from the discontinuity in the normal

gradient of a monopole field and can be given in the form

3 |ty -yl oG o "
"I o 5 Sl | e 8

¥
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where n’ is a unit normal at x' into the region z, The integral is an
abbreviated notation for the principal value integral which is defined
more precisely by (Al0), The second term is the discontinuous component
to q(x') and changes sign when x' is approached from region x.

When p(y) is specified apriori, an appropriate integral equation for
0(y) follows from the continuity of a monopole field as the field point

passes through the surface. Hence

ik|

. ly’ - ,
[[ o &==r—= a5 = pz" (9
brly” - 3

where the integral is an improper integral which wmust be evaluated as in
(46).

There are likewise two integral equations for Green's dipole layer
u{y), depending on the boundary conditions, When q(y) is specified
apriori, an appropriate integral equation for p(y) follows from the con-
tinuity of the normal gradient of a dipole field at the surface.3 Thus,

in an abbreviated nctation,

* d? I’eiklxl -y / \

More explicit and detailed forms for this integral are given by the
right hand side of either (Al17) or (Al8),

When p(y) is specified apriori, the appropriate integral equation
for the dipole density u(y) follows from the discontinuity in the field

of a dipole layer and can be given in the form

N ik|y' -yl g
* ol e ll(x ) ) ,
JJ. u(y) ﬁ[ AT =3 ]dS + === p(¥") ¢ 8)
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where n is the unit normal at y. The integral term 18 an abbreviated
notation for the principal value integral which is defined more proecisely
by (Al4)., The second term is the discontinuous ccmponent tv p(y' and
changes sign when the point Xl is aoproached from within x

There are at least three independent finteg:al cquaty ae 1 1
Helmholtz layers p(y) and q(y), and each can be uscd ter o diy Dirtch. ot
or Neumann boundary conditions. The mest commoniy used tatoprac o oat.n
is the Helmholtz surface pressure equation, which is dortved 1o Appoadid A

in Equation (A22). 1In the abbreviated notation this cquation {s

ikl |

ik|y = }I
e R R - R

4 -

An alternative integral equation, which may be zalled th: surface oo .c:
equation is derived in Appendix A, Equation (A25), and can be stated in the

abbreviated notation by

q_z(zg ] a 2 Akly” - 5l

on’| Tunly” - g

*” @ & - 3l ds (33
BRI I PR o

A third relation which can be used as an iantegral equatica for “he
Helmholtz layers is the Helmholtz "interior" equationl’2

3 |.iklx - 3l L Rdkx -y o
“ P 34 [—-——-———lx =5 ds = H q(z) p '—TZ d5

wnere X is a fieid point inside the closed surface. The last :elat::o
differs from all the other integral equations because the twc variabi:

points x and y do not have a common domain,
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Finally, we note the possibility of obtaining an indefirite num-
ber of additional integral equations for either p(y) or q(y) by a combin-
ation of (12) and (13), For example, if we multiply (13) by X(z') and
add to (12) we gét

— 3 |eikly’ -zl o3 |etkly’ - 3
reas - "{foonfss [ PRSI i e

).q(x Joikly’ - g .y ikl -yl
Ij 4ﬂ| \ 4nly’ - y| - M) nly” - 3] (13)

k(x’) could be any continuous function of X': e.g., the constant k-l.
However, it should have the physical dimensions of p/q, i.e.,, of
length, in order to maintain dimensional homogeneity.

Equations (8) through (15) are all integral equations because
the unknown function, either o(y), u(y), p(y), or q(y), appears under an
integral sign, When the unknown function also appears outside the inte-
gral, as in (8) and (l1), and possibly (12), (13), and (15), the equa-
tion is then an integral equation of the second kind, for which the
theory is complete and well docmnented.a’5

The properties of an integral equation for a given doumain of
integration are determined essentially by the properties of the kermel
function, There are four kernel functions that appear in all of these
integral equations, They all have simple physical interpretations, and
they are all simply related to each other, These kernel functions are
defined as follows in the abbreviated notation as well as in a detailed

notation, with R =y’ - y; R = |R| ; R = R/R.

' [
R _ LR
4rly’ -y 4nR

M(y ':X) =

is the field at y’ due to a unit monopole at y in a free unbounded field

and is a function of the two vector field points.

10

(16)




z=y

, a JAklx’ - g
D(y ,y/n) = Tﬂr?-——r = n. My ’,2)

LK .
2 (- 1))

is the field ac X’ due to a unit dipole n at y in an unbounded field and

is a function of the two positions and the direction n, The subscript 2

indicates that a derivative is taken with respect to the second variable,

" 3 let¥lz’ - ¥l .
N Tl

ikR
R (- 1)

is the field gradient in the g' direction at z' due to 2 unit monopcle
at y in an unbounded field and is a function of the two points and the

‘
2=y

direction g'.

U]
4xly’ - yl

] = n'-¥,D(z,y/n) z=y '

I ] a’
EQC'/n’,y/n) = Sr-

LIKR
[(3ik - 2+ K*R) (neR)(n’+R)- (ik - —) (nen )J (19}

is the gradient in the n’ direction of the field at y' due to a unit
dipole n at y in an unbounded fluid and depends on the two points and
the two directions,

These kernels all have weak singularities at y’ = y but a prin-
cipal value integral exists in all cases, Note that the two functions

M and E are each self-symmetric (but not complex-conjugate-symmetric)

11




to an interchange in the two field points and the two directions, i.e.,
M(X';X) = M(y,y") and E(y '/n’,y/n) = E(y/n,y’'/n). However, the two func-
tions D and N are mutually symmetric (but not ccmplex-conjugate-symmetric)
to an interchange in the same variables, i.e,, D(y,y /n’) = N(y'/n’,3).
The integral equations for these equivalent monopole and dipole
layers may have no finite solution, or possibly an indeterminate solution,
under certain commonly occurring practical conditions, This may seem
surprising because the boundary value problem, for the space external to
an arbitrary surface, posed by Equations (1) through (4) always has a
solution and the solution is unique.2 However, the same integral equa-
tions can also be intermediate steps in solving a boundary value problam
for the region interjor to the surface, and it should be obvious on
physical grounds that the solution to the interior problem becomes inde-
terminate at the resonance frequencies of interior standing waves, Accord-
ingly, we will discuss in the next section the possible starding-wave

solutions in the space inter:or to any arbitrary closed surface,

INTERNAL. STANDING WAVES AND ASSOCIATED
EXTERNAL TRAVELING WAVES

We shall assume without proof the assert10n6'that for every closed
surface, an unbounded sequence of wave numbers exists at which standing
waves can erist inside the surface with any prescribed combination of
field and normal gradient, oP(y) + PQ(y) = 0, at the surface where « and
f are real constants, We consider, in particular, the two independent
series of characteristic wave numbers, those for which =0 and P(y) = 0
and those for which =0 and Q(y) = 0, We denote the characteristic wave
numbers of the first kind by £4,; 1 = 1,2,,,., the interior standing wa&e
by Pgl)(§) (normalized in any convenient way), and its nurmal gradient
at the surface by le)(x). Also we define an associated traveling wav=z
pil)(g) for the external space by the condition that the normal gradients

match at y, i,e,,

12
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3™ (2 3P(1)(§)q
Po- ] ) o

Likewise, we denote the characteristic wave numbers of the seccnd
kind by m,

define an associated traveling wave p

2
and the internal normalized standing wave by P§ )(5), and wu
(?)
i
condition that the fields match at y, i.e,,

(z) for the external space by tne

pP i =iy @

Note that for the inteiior of any closed surface, the fundamental

(=)

characteristic standing wave of the secon. class is P, “(x) = constant

with k = m, = 0. For this wave function clearly satisfies the Helmhoitz
() _

i 0.

More generally, for any surface shape, the characteristic wave

equation and the boundary condition Q

number may be degenerate, i.e,, there may exist a finite number of
independent wave fuactions Pij(i) and pij(g); j = 1’2’°"jmax’ where Jnax
depends on the surface shape and wave number, However, we shall omit

any further reference to the degeneracy of the wave functions in order

to simplify the notation,

We show in Appendix B that the equivalent monopole and dipole
layers for these four series of characteristic wave functions have scms
simple and remarkable properties., Thus for characteristic functions of
the first kind, i.e,, if k = ‘i’ at which there can exist internal staad-

ing waves with zero pressure at the surface, then

E]

i)z -yl
*” qf)(y_) SA—nW ds = P§_1)(§) ifr = (22a

=0 ifr=y (22b}
=0 ifr=2 (22¢)
13
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1
* ) y id|r - yl )
“ Py 62 B [‘E"”T_‘—.‘L_r_l ds = Pi (%)
P ()
)

= pf) (2)

. ihly’ -yl
Meo &[5 e

by’ - yl

.

*IF @) af eihlx' - y|
ﬂ Py W On ‘On [lmlx' - 3|

ifr=x (23a)

ifr=2 (23c)
qu)(l:)

- (24)

]ds =" (25)

For characteristic functions of the second kind, i,e,, if k = m, (at

which there can exist internal standing waves with zero normal gradient

at the surface)

img|z - g
*ff (3) et MI2 . p®
H WO T *T R ®

= - pia)(x’)

= - pf)(g)

14

ifr=x (26a)
ifr=y' (26b)
ifr=2z " (26¢)
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img|x - yl
*ﬁ pf)(z) % [e‘m'l' - ¥ ]ds - P?)(E) X B3 (27a)
pia)(x) )
=-—5— ifr-y (27b)
=0 ifr=z (27¢)
( )

img|y’ - 3| D)

@) 1 T
‘” @ 35 [lmlz Canly - 3] :lds B 2 (28)

* (3) S° eﬁnilll - 3

ﬁ p; @ anan'[ e das =0 29)

Mote that the integrals in (22a), (22c), (23a), (23c¢), (26a), (26c), (27a),
and (27c) need not be starred,
Equation (22c) shows that for an arbitrary closed surface there
exlsts one sequence of wave numbers (the characteristic wave numbers of
the first kind) at which an associated surface distribution of monopoles,
( )(z) produces no external field, and (27c) shows that there is a
second sequence of wave numbers at which an associated surface distribution
of normal dipoles p( )(1) produces no external field, These results
generalize a remark of Lamb who showed that when sin ka = 0, 'a uniform
distribution of simple sources over a sphere of radius a produces no
effect at external points,'" Thus the surface distributioms that produce
a null external field exist for every surface shape, for dipole distribu-
tions as well as simple source distributions, and they exist in an infinite
number of characteristic patterns, In fact at k = 0, & uniform distribution
of normal dipales over any closed surface produces no external field,
However, these results are principally of consequence in the solu-
tion of the integral equations because (22b) and (29) demonstrate a
family of solutions to the homogeneous parts of the integral equations
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of th: first kind, whereas (23b), (24), (27b), and (28) demonstrate a
family of solutions to the homogeneous parts of the integral equations of
the second kind, And it is well-known that the solution to aay linear
integral equation becomes indeterminate under conditions in which the

homogeneous part of the equation has a solution,

EXISTENCE AND UNIQUENESS

The mathematical condition for the existence of a unique solution
to any linear integral equation of the second kind is known as the Fredholm
Alternative.*’S As applied to (8), for example, this states that either
the integral equation with a specified k and a specified surface shape has
a unique and regular solution for all choices cf the known function q(y) or
the homogeneous yart of the integral equation has a rontrivial solution and
the adjoint homogeneous integral equation has a nontrivial solution, In the
alternative case the integral equation has a regular (but not unique) solu-
tion only when the known function is orthogonal to every solution of the
adjoint homogeneous equation,

In the present context, two functions f,(y) and f£3(y) are ortho-
gonal if

ﬂ £,£; dS = H f,i3 ds = 0 (30)

where the "overbar'" denotes the complex coujugate, And by the adjoint
homogeneous 2quation we mean a homogeneous integral equation of the second
kind whose kernel function is obtained from the original kernel by inter-
changing the two variables and taking the complex conjugate., Thus adjoint
homogeneous equations to: (i) Equation (8) for o(y), (i1) (1l1) for n(y),
(i1i) (12) for p(y), and (iv) (13) for q(y) are the complex conjugates of
(1) (23b), (i1) (27b), (ii1) (24), and (iv) (28), respectively,

The special relations of (22) through (29) demonstrate that solu-
tions to the homogeneous integral equations for sound radiation do
occur and that they occur at the gharacteristic wave numbers of the
L Also, they identify the solutions of

the homogeneous equations to be tlie surface values of the characteristic

first and second kind Li and m
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traveling waves of the first and second kind--p§ )(y), qi1>(z - ( )(Z):
and qi )(z) Furthermore, we show in Appendix B that solutions to these
homogenaous integral equations, excluding (14) and (15), can occur only
at the characteristic wave uumbers Li or m,.

Accordingly, we list below the conditions for the existence and
uniqueness of solutions to the integral equations for o(y), u(y), pP(¥),
and q(y). These are stated as conditions on the prescribed wave number k
and on the prescribed boundary condition p(y) or q(y). The conditions
may be verified by systematic use of the Fredholm Alternative and uy
appeal to the special relations of (22) to (29).

1. A unique equivalent monopole layer o(y) exists as a solution
to either integral equation (8) or (9) unless k is equal to a character-
istic wave number of the first kind, L If k = Li ard if either
jj qpii)ds 0 or Jj pﬁ(I)dS = 0, see Equation (B21); then a particular
solution to either (8) or (9) for o(y) exists, Any finite multiple of
qil)(x), towever, can be added to o(y) with no effect on the external
field as calculated from (5), If k = L and JJ qui)ds jj pqgi)ds £0,
no finite J(y) exists,

2, A unique equivalent dipole layer p(y) exists as a solution to
either integral equation (10) or (1ll) unless k is equal to a characteristic
wave number of the second kind, m, . If k = m, and if either jj pqga)ds =0,
or, equivalently, if j q3§ )dS = 0, then a particular solution p(y)
exists, However, any multiple of p( )(x) can be added to u(y) with no
effect on the external field as calculated from (6), If k = m, and
JJ pqia)ds = I qﬁia)ds # 0, then no finite p(y) exists,

3. A particular solution to the Helmholtz surface-pressure equaticn,
(12), for either p(y) or q(y), exists for aI; k and is unique unless k = L
Q@

sclution for q{y) with no effect on the external field as calculated from

When k = 1 L then any finite multiple of q; ° can be added to a particular

(6). But also when k = L the particular solution to (12) for p(y) is
indeterminate by an arbitrary multiple of Py )(V), and the corresponding
formal solution of (6) for p(z) is indeterminate by the same multiple of
pfl)(g). The correct multiple of pi )(x) which fits the specified boundary

condition must be determined by some supplementary condition,
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4, A particular solution to the surface-gradient equation (13), for

i When

k = m, , any finite multiple of pga)(x) can be added to the particular solu-
tion of (13) for p(y) with no effect on the external field p(z) as calculated

from (6). But also when k = m the particular solution to Equation (13) for

either p(y) or q(y), exists fcr all k and is unique unless k = m

4{y) is indeterminate by an arbitrary multiple of qia)(x), and the consequent
3
solution of (6) for p(z) is indeterminate by the same multiple of pi )(5).
)

Again the correct multiple of p; ~(2) which fits the specified boundary

i
condition may be determined by some supplementary condition,

5, The existence and uniqueness of solutions to the Helmholtz interior
equation (14) depend upon the position of the interior points x as well ason
the wave number k, We can list only some of the conditions under which the
solution of (14) is indeterminate, These occur when k = fi or m,, and all
x are on a nodal surface of the internal standing waves Pil)(i) or Pia)(g),

respectively, If k = Li, and Pil)(é) = 0, then any finite multiple of
1

o)

the external field as calculated from (6), Under the same conditions the

(y) can be added to the particular solution of q(y) with no effect on

particular solution to (14) for p(y) is indeterminate by an arbitrary
multiple of pil)(x), and the consequent solution of (6) for p(z) is indeter-
minate by the same multiple of pii)(g). If k = m, and Pia)(g) = 0, the
particular solution to Equation (14) for qi(x) is indeterminate by an
arbitrary multiple of qia)(x), and the co?sequent solution to (6) for p(z) is
indeterminate by the same multiple of pis)(gg. Under the same conditions
(k = m, and Pia)(i) = 0) the particular solution to (14) for p(y) is
indeterminate by an arbitrary multiple of pia)(x); ideally this indeter-
minate component has no external field,

6. The existence and uniqueness of solutions to the combination
equation (15) depend upon the choice of the function A(¥) as well as on
the wave number k, However, if A(y) is chosen as a positive constant
independent of y, it seems plausible that the integral equation would
have an infinite sequence of characteristic wave numbers with values that

interlace the Li and interlace the m .
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i 7. The conditious for the existence and uniqueness of any equiva.ent
monopole layer to be used in Equation (5) are the same as the conditicns

i for the solutions of integral equations (8) and (9). Likewise the condi-

tions for an equivalent dipole ’'ayer to be used in (6) are the same as the

conditions for the solutions of integral equations (10) and (11, Howeuer,

there always exist correct and unique Helmholtz layers p(y) and q(y; which

can be used in (7), even though the solutions to one of the integrael equa-

i tions (12) through (15) may be indeterminate,

In principle, the characteristic wave numbers for any one of thes:
integral equations are discrete line values; i.e,, the singularitiz=s in tne
solutions would occur only if k were exactly equal to m, or li, and. in
the case of (14), only if x were exactly on a nodal surface, However, 11
practice, the integral equations are solved by numerical methods which
necessarily generate an indeterminate error, depending on the precisicn of

the computing machine and the nature of the computation algorithms. Thus;

>

there will be a band cf values for k surrounding each Ei and m within
which the solution to the integral equation has an indeterminate component
or a singularity; for (14) there will be & layer of positions about each
nodal surface, Furthermore, for every surface shape, the average spacing
in k between successive zi or m, decreases as k-a, and, eventualily, the
bands (or layers) must overlap, Thus, for every surface shape and every

integral equation, there is a value of k beyond which k is arbitrarily

e e i

close to a characteristic value and beyond which a numerical solution of

an integral equation will generate an indeterminate error,

-y e
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In summary, the numerical solutions for p(y) or q(y) will be
indeterminate by an arbitrary multiple of some particular surface distribu-
tion when the wave number k is too large or when k is tco close to some
characteristic value, Under similar conditions on k, a finite sclutien
for o(y) or u(y) will exist only for special boundary conditions; even
then, the indeterminacy will occur,

However, these difficulties do not mean that the integral equations
cannot be used in the neighborhood of these characteristic wave numbers,

In some cases, e.g., the solution of (12) for q(y) or the solution of (3
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for p(y), the indeterminate component in the solution, has no external
field and, hence, will not cause an error in the subsequent calculation of
the external field from either (5), (6), or (7). In other cases where the
indeterminate component does have an external field, it has been possible8
to supplement the original integral equation with enough additional condi-
ticns to fix the correct amplitude of this component, Even in those cases
where no finite solution exists, the experience described in the next
section suggests that it may be possible to factor out the infinite compon-

ent from the external field,

UNIFORMLY PULSATING SPHERE

To 1llustrate all of these methods, and to demonstrate the complica-
tions which occur at the resonance wave numbers, we will consider the very
simple problem of a sphere of radius a, pulsating with uniform radial
velocity in a uniform unbounded medium, Assume that either the surface
pressure p_ exp(-iwt) or the normal gradient at the surface q, exp (-iwt)
is specified apriori., Then explicit analytical solutions to any one of
the integral equations (8) through (14) can Le obtained because all the
unknown functions are constants which can be factcred outside the integral
sign and because all of the integrals can be reduced to functions of the
single variable R = iE - zl by taking the surface element in the shape of
a spherical zone betwesn the two circles at distances R and R + dR from
the field point r, The method of solution is demonstrated in Appendix C,

By these methods the explicit solutions to (8) and (9) for the

equivalent monopole density are readily found to be

' ka -ika .
@) *Gnwa/Tka -1 % ()
) ka e-ika
°@") = in k;) a po (32)

Likewise, the solutions to (10) and (11) for the equivalent dipole

densities are
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3
' ka 1l - i tan ka S
W) = fa -1 (ka - tan ka/ %o (33
l - i tan ka .

ngh = (EHEe)e, 367

A formal solution to the Helmholtz surface equation (12) for either of
the Helmholtz densities p(y) or q(y) is

(sin ka) q(x') = (sin ka) (ik - %) p(x') 735"

A formal solution to the surface gradient equation (13), for either of
the two Helmholtz densities is

(ka - tan ka) q(y') = (ka - tan ka) (ik - %) p(y ") 36"

and,finally, a formal solution to the Helmholtz interior equaticn (i4)
for either of the two Helmholtz layers is

(sin ) q(z') = (sin kx) (ik - ) p(y") (37

Hence in this problem, every one of the integral equations has a
formal solution for all values of k, However, each soluticn has some
gsingularity at those special values of k where the homogeneous part cf
the integral equation would have a solution., Thus, the formal solutions
for o(y) become infinite where sin ka = 0, and this condition identifes
the characteristic wave numbers of the first kind Li, where there can
exist internal standing waves with zero surface pressure., The formal
solutions for n(y) become infinite where tan ka = ka, and these identafy
the characteristic wave numbers of the second kind where there can exist
internal standing waves with zero surface gradient. The sclutions t»
the Helmholtz surface pressure equation (12) become formally indeterminate
vhen sin ka = 0, again at the characteristic wave numbers of the first

kind, However, the solutions to the surface gradient equation (i3 for tn-
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same Helmholtz layers bacome indeterminate at the characteristic wave
numbers of the second kind, And the solutions tc the Helmholtz interior
aquation are formally indeterminate when sin kx = 0, It is interesting
that this can occur not only at the characteristic wave numbers zi and
m but also at any wave nunber k 2 «/a.

I1f we disregard the apparent singularities and simply substitute
either (31) or (32) into (5), or substitute (33) or (34) into (6), or
substitute either (35), (36), or (37) into (7), we will get expressions
for the external field p(z; which are formally indeterminate at the
criticat wave numbers, But in each case we can simply divide out the
indeterminate factor, or, more generally, we can require that the solu-
tion for p(z) be a centinuous function of k. 1In this way we obtain the

cocrect and unique external ficld pressure,

p(z) = Eﬁ;o- - % o1k(z - a) (38)
p(2) = p a eik(z - a) (39
oz

which is valid for all k, even at those critical wave numbers where

either a finite equivalent monopole or dipole layer does not exist,

COMPARISON OF INTEGRAL EQUATION METHODS

We have derived at least five different integral equaticn methods
for solving the Dirichlet problem and at least five different integral
equation methads for solving the Neumann problem, Equation (10) for
the Neumann prcblem and (13) and (15) for either the Dirichlet or
Neumann prcblems appear to be new in sound radiation and scaitering
problems; however, all of these methods have a long and continuous
history of application, development, and rediscovery in problems in fluid
flow, elasticity, acoustic waves, and electromagnetic waves, Mikhlin5
cites a long bibliography of older publications by Soviet authors, and

there is no doubt that an equally long bibliography can be prepared
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with non-Soviet authors, However, the great power of these methods could

not be realized until the development of high speed computers, and we par-
ticularly wish to stress the more recent methods and applications using these
computers, Practical experience in such applications to acoustic prohlems
seems to be confined to solutions of the Neumann problem, most cften by

-13 14-19

calculating o(y) from (8)9 or by calculating p(y) from (12});

however, there is some limited experience with solutions of the Helmho.tz
interior equation (l4) for p(y).zo

It seems generally preferable to base a solution of either the
Dirichlet or Neumann problems on a calculation of the unknown q(y, <r piy,
rather than on a calculation of the equivalent monopole layer o(y) cr the
equivalent dipole layer p(y). This is because: (i) the functicns p(y’ cr
q(y) have immediate physical significance and may even be determined exper-
imentally; (ii) in many practical applications, e.g., low-frequzncy radia-
tion by longitudinal vibrations of a slender body, the Helmholtz integral
term in p(y) contributes negligibly to the far field, and there is no
need to solve an integral equation to determine p(y); (iii) in cases =f
high-frequency radiation by an arbitrary body to the far fieid there is a
simple approximation to the unknown function p(y) or q(y) which again makes
it unnecessary to solve an integral equaticn; and (iv) when the wzve number
k is too large or too close to a characteristic wave number, a finite C(y’
or u{y) may not exist but a unique and finite p(y) or q(y) always exists.

Hewever, the relative merits of integral equations cf the first
kind and of the second kind are not so easy to assess, Equaticns (8’
and (12) are both equations cf the second kind for the Neumann probiem,
having similar kernel functions and with the same spectrum of critical wave
numbers, Equations (1ll) and (13) are both integral equations of the scccad
kind for the Dirichlet problem, again having similar kernels and witr :he
same spectrum of critical wave numbers, Ordinarily, we would expezt trhat
the equations of the second kiud are preferable and easier to scive thsan
the first kind because the theory of the formar is complete and well d:cu-
mented, whereas it is still possible that unexpected difficulties can arise
in solutions of the latter equations, However, the equations of the first

kind may have some special advantages at the critical wave numbers, Fo:
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example, if we solve the Dirichlet problem at k = Li by using (12), an
equation of the first kind, then the solution is indeterminate by some
multiple of qgl). However, this indeterminate component has no effect on
the external field, Likewise a solution to the Neumann problem at k = m.
obtained by using an equation of the first kind (13), has an indeterminate
component p§a) without an external field.

It may sometimes be useful to seek a simultaneous solution of two of
thesc integral equations rather than only one., For example, one method1
for soiving the Neumann problem when k ~ Li is by a simultaneous solution
of the Helmholtz surface equation (12) and the Helmholtz interior equation
(14, The latter must be satisfied at a sufficient number of interior
points x to fix the amplitude of any indeterminate component to the solu-
tion of (12), The scheme has value only when the wave nunber k is close
enough to a characteristic wave number of the first kind Li to generate
an indeterminate component in the solution to (12) but when the interior
points x can be picked not too close to the nodal surface of an int:rnal
standing wave. When k is sufficiently large, the layers of critical
positions about each nodal surface will overlap, and this method cannot
be used,

An alternative, and preferable, scheme is to solve either the
Neumann or Dirichlet problems by a simultaneous solution of both surface
integral equations (12) and (13), The critical wave numtars for these
equations are the characteristic wave numbers of the first and second
kind, respectively, They do not coincide except foi1 special surface
shapes, e.g., a rectangular box, and then the characteristic wave functions
are crthogonal on the surface and need cause no difficulty, Nevertheless,
it 18 likely that any algorithm, and Equation (15) can be viewed as one
such algorithm, which "selects" the "accurat2" solution from an over-
de¢termined combination of two integral equations, will tend to introduce
its own set of characteristic wave numbers, In any case the numerical
calculation will undoubtediy become ill-conditioned at sufficiently high

wave numbers where the critical bandwidths about Li and m, overlap.

i
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REDUCTION OF INTEGRAL EQUATIONS TO MATRIX EQUATIONS

The first step in obtaiuing a numerical solution to any of these
integral equations for either the Neumann or Dirichlet problem is to cen
vert the equation into a matrix equation, i,e., into a set of simultaneous
algebraic equations. The procedures that we will describe are designed for
the most general casa, where the surface has some arbitrary, nonanalytical
shape, and where the known boundary cordition in q(y) or p(y) is likewise
arbitrary and nonanalytical, Even in those cases where the surface is a
spheroid or an ellipsoid, and where in principle the kernel function can
be expanded in terms of separable wave functions, it may be more accurate
to solve the integral equation by these general, nonanalytical, techniques
because the higher order wave functions are not tabulated and are toc
difficult to cOmpute.17

The basic procedure is to approximate the integral equation that is
specified over a continuous range of positions on the surface by a matrix
equation that is specified at only a finite number of stations on the sur-
face, To do this we first pick a finite number N of representative stations
xj; j=1,2,...N on the surface and then associate each station with an
element of area Sj’ a normal direction Dy and some representative value
cj for the local radius of curvature of the surface, The stations need
not be spaced with uniform density, and the ¢ ements of surface area need
not have any special or uniform shape oL The density of stations on the
surface should be high in regions of high surface curvature and in regicns
where p(y) or q(y) changes most rapidly, except that no station should be
placed at a discontinuity of p(y) or q(y). The shape of each surface ele-
ment need not be specified; the magnitude of each area S, should be deter-

3

mined by distributing the total surface area £ S, among the N elements i=

approximately i1nverse proportion to the local stition density and in
accordance with any convenient bookkeeping scheme, 1In practice, it may

be convenient to zssume that the elements have some particular shage. e.g..
quadrilateral or triangular; however, the shape has no effect on the
calculavions, The general prescription is that p(y), q(y), the directicn
of the normal n(y), and the curvature of the surface should each be reason-

ably uniform over a compact area S, about the point xj.

3
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We now approximate each of the integrals that occurs in (8)
through (14) by a sum of terms evaluated only at the N stationms Xj' For

example, if the unknown function is f(zj), and the kernel function is

K(inl), we set

S e

N
- /
[J 1 xapw a8 =) Wy £ Ky (40)
k=1
for j =1,2,...N, The weighting factcr W, depends upon the quadrature

ik

formula being used, 1In the simplest and most common case W, = Sk; how-

ever, for special surface shapes or for special ways of ordgsing the
points Zj: it is possible to make a more sophisticated choice for the
weighting factor, The value for the kernel depends on whether or not
j =k, i,e,, whether the point Xj is identical with the point Yy

When j # k, then Kjk is taken to be the value of the kerrel function
K(y',y) at y' = ¥ andy =y,. In particular the four kernel functions

of interest have the following forms, with R = ¥y - Y

eikR
M ® TR (41)
' eikR 1 .
Dy = zmm (k- ) (B (42)
KR 3 . o
= - - . 2
N = o - P @D (43)
eikR 3 . N R 1

= - - ] L4 - =i L4 \
By = s [(31k 2+ D@D @D - k- D@, p_k)] (44)

When j = k these forms have singularities and are inappiicable.

Instead, in conformity with the original definitions of these functions
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given in Appendix A, we assume that K,, 18 a mean value of the particular

kernel function over the area Sj surrganding the point ¥y Furthermore,
we assume that if Sj i1s sufficiently small, the mean value of ij will be
! the same as though the surface element were a spherical cap with Xj at
{ its pole, with surface area nb? = Sj’ and with the same mean radius of

g curvature ¢, as the actual sur%ace at 11. Then by special calculations
for such a spherical cap (the procedures are similar to the derivations in
Appendix C) we obtain the following results which are correct to the first
i oxder in kbj:
M, &g (45)

D,, =N ad (46)

E (473

33 = 2nb2

e

5 Note that the values of Djj and ij are ordinarily negligible, regardless
of the shape assumed for the element of area, because the curvature of the
element is usually small, In fact, it is common to approximate the neigh-
borhood of each station by a plane surface element for which cj = ® and

=N,, =0,
P33 = Nyy

In summary then, the recommended procedure i1s: (1) pick N stations

[ on the surface; (1i) associate an area Sj, a normal Bj’ and a curvature

S-1 with each station; and (iii) replace each integral by a finite sum of

the form of {%0), where wjk = Sk; and where Kjk is given by (41) to (47),
Thie is probably the simplest and most universaliy practical of

pessible procedures, but most calculators have used more complex schemes,
Usually they prescribe the shape of each area element to be a plane quadri-
lateral or a triangle and then prescribe the location of the station within
3 : the element of area, This 18 equivalent to picking the weighting factor

W,, so that it depends on the shape of Sk as well as the size of §,, The

jk k
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weighting factor may also depend on some assumed form of variation of the
integrand in the neighborhood of e These more complex schemes can be
more accurate in special geometries, or they may be more accurate when

calculating the main value of each separate term K However, for 2 body of

arbitrary shape, it is doubtful that the accuracy g% the total calculation
will be improved at ail, In fact, the procedure recommended here is so
nuch more economical in computing time, etc,, that {t is often praccical
to increase the accuracy by increasing the number cf stations,

One special gecmetry occurs so commonly in real problems, however,
as tc justify the development of a special calculation scheme, These are
problems where the vibrating surface can be approximated by a surface of
revoiution, and where the specified boundary condition can be written in
the form of cos{ny) times an arbitrary function of the axial coordinate,
where ¢ is the angle about the axis of revolution, A vommon and simple
example of this problem would be scattering an in-oming plane wave by a
& surface of revolution., For such a problem the integral equations can alil

be reduced to equations having only one dimension. Each integral term

can be replaced by a sum over a finite number of stations in which each
station is not a point location on the surface but a circular ring on the
surface about the axis of revolution, The elements of the kernel matrices
then have much more complicated forms and are more laborious to compute,
although their accuracy is greatly increased, Also it is feasible tc use
more sophisticated quadrature formulas, A detailed explanation of the
solution of the Helmholtz surface equation for this type of problem is
given in Reference 19,

Reverting to the general procedures, we find that each of the
integral equations for sound radiation may be replaced by a matrix equa-
tion, We will denote a matrix by an underbar, Take p, g, G, and u to
be column matrices, each with N complex elements p(xj), q(xj), etc; S is
a diagonal matrix with N diagonal elements Sj; and M, D, N, and E are
square matrices with N° complex elements defined in Equations (41)
through (47}, and I is the identity matrix,

Thus Equaiions (8) and (9) for the equivalent monopole density
0(;.; are replaced by
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(288 - I)g = 2g (48)
and
MSo = p (49)

Equations (10) and (11) for the equivaleant dipole density n(y) are
replaced by

ESu = g (50)
and

(208 + Dy = 2p (51)
The two independent integral equations (12) and (13) for the Helmholtz
surface layers may be approximated by

(208 - I)p = 2M8q (52)
and

(&S + Iy = 2ESp (53)

Furthermore, we can form an arbitrary linear combination of (52) and (53)
to obtain an indefinite number of matrix equations for p or q.

Finally the Helmholtz interior equation (14) may be replaced by
859 = hsp (54)
where g and h are row matrices, not column matrices, with elements

kR
B * ZaR (35)
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he = T (k- D Cned) (56)

with R = x - Yy and X is an arbitrary fixed point within tlic surface.
If p or q is to be calculated completely from (54), there must be at
least N interior points x and N equations such as (54),

A formal solution can be written for each of these equations in

terms of the inverse matrix, Thus the formal solutions to (48) and (49)

are
g=(s -7 29 (57
o= (MS) * ‘ (58
gL e\ B \ Vi

where the superscript -1 denotes an inverse matrix, However, when k is
cqual to a characteristic wave number of the kernel matrix, the matrix

is singular, and the inverse does not exist, The characteristic wave
numbers of the matrix are the same (except for some shifting due to the
finite approximations) as the characteristic wave numbers of the kernel
function in the integral equaticn., The characteristic wave numbers Zi
and m, of the f}rst and second kind and the characteristic wave functions
pgl), qil), pia), and qga) which we have previously defined in Equations
(22) through (28) are related to the eigenvalues and eigenvectors of the
matrices of (48) through (53). We may consider that an element Amn(k) of
a typical matrix A is a function of the wave number k as well as of the
two surface points ¥ and Yoo and we define the eigenvalue Yj(k) and the

eigenvector 55(k) by the equation

A(k) @,(k) = Yj(k) Qj(k) (59)

Then, according to (22) through (25), when k = §
)

i

(1)
{
(1)
i .

i

2MS has eigenvaiue 0 and eigenvector g
2DS has eigenvalue +1 and eigenvector p

2NS has eigenvalue +] and eigenvector g
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Also, according to (26) through (28), when k = m

i
2DS has eigenvalue -1 and eigenvector_Pia)
3
2NS has eigenvalue -1 and eigenvector i; )
(2)

2ES has eigenvalue 0 and eigenvector p,
A more complete analysis of the eigenvalues and eigenvectors of these

matrices for arbitrary values of the wave number k will be givern in a

subgsequent report,

NUMERICAL SOLUTIONS TO MATRIX EQUATIONS

The matrix equations discussed here are all, except for (54), con~-
ventional linear matrix equations of the form Af =g, There is a vast and
growing literature, e.g., References (21) and (22), about numerical
methods of solution, and most of their analyses are applicable here. Tt
is well-known, for example, that it is not efficient to obtain a solution
by calculating the inverse matrix é-i. The methods of solutions are
commonly classified into direct methods, where the solution is obtained
after a definite number of prescribed operations, and iterative methods,
where the solution is obtained by an indefinite number of successively
improved approximations, In general the choice of an optimum method depends
upon such factors as the size, i,e,, the order, of the matrix A; whether the
matrix is sparse, i.e.,, has many zero elements; whether the matrix is
nearly singular or whether the problem is otherwise '"ill condition<d"; and
whether an approximate solution is available,

In the particular problems of sound radiation and scattering, all
the matrix elements are finite, complex, and generally nonzero, although
the elements of the principal diagonal of A are gencrally dominant. The
numbers of stations 1j on the surface often exceeds 100, which mesns that
the order of the matrix exceeds 200, Also, in these problems, the wave
numoer k is often greater than 4, the lowest characteristic wave number
of the first kind; in most cases the characteristic wave numbers Li and

m, in the neighborhood of k are not known apriori, and it is very latorious
to compute them,
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When k << Z,, then it is a simple matter to start with an integral
equation such as (12), (8), or (9) that does not have a singularity at
k = 0. All conventional direct and iterative methods of solution are then
applicable, and the optimum choice is mostly a matter of convenience. Some-
times in this low-frequency case, a solution to the Laplace equation, k = 0
in Equation (1), may be available as an initial approximation in an iterative
solution to the matrix equation; however, when k is no: too close to a
characteristic value, the problem is well conditioned--even without an
approximate solution,

As already discussed, when the wava number k is sufficiently large,
« will be arbitrarily close to one or more characteristic wave numbers,
the matrix A will be almost singular, and the problem will be ill-conditioned,
Even when the solution must simultaneously satisfy two matrix equations hav-
ing no characteristic wave numbers in common, it appears likely that the
problem will be ill-conditioned for sufficiently high k.

Hcwever, in the high-frequency case, if only the far-field is
ultimately required, then there is an approximation for the surface pressure

that can be used directly in (7) without solving any integral equation.

p@) (ik - 3y = q(p (60)

where c(y) is a mean radius of curvature of the local surface at y. Presum-
ably a mcre accurate solution can be obtained by using this equation as the
initial approximation in an iterative solution of matrix equations {52) or
(53) and by terminating the iteration before the process diverges,

When the wave number has some intermediate value greater than 4
but less than the wave numbers at which there is a high density of char-
acteristic values, then either direct or iterative methods of solution may
be used. The principal advantage of the direct methods is that many library
programs are available which can be used sutomatically. These direct
methods generally require more storage space and have larger computing time

(proportional to N®) than the iterative methods (proportional to N®). The
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more common library routines are, however, restricted to approximately
100 elements, A more serious disadvantage of a direct method is that the
apparent solution could be grossly inaccurate when the wave number is toc
close to a characteristic value without an indication thac the soluticn
is incorrect. For example, if an indeterminate solution exists at the
characteristic value, then the direct method will produce some unknown
multiple of the indeterminate component; if no finite solution exists at
the characteristic value, then the direct method will tend to produce a
finite apparent solution, having an incorrect component.

A iterative meth:d can easily be programmed for any one of these
matrix equations, The solution is ordinarily faster than a direct method
and requires a smaller storage space, so that the number of stations
could be increased with a consequent gain in accuracy. When the matrix
equation results from an integral equation of the second kind, e.g. (48),
it is already in a form to fit the simplest iteration scheme, one which
is the 2irect analog of the classical Neumann series for solving the

integral equation,
£(n+1) = §_f_(n) +g (61>

where £(n) is the nth approximation to f, and j(l) = g. For example, in

(48), F =g, g = -2q, and B = 2NS, When the matrix equation results from

an integral equation of the first kind, e.g. (49), it is in the form

AF = g, which can be transformed into the form of (61) by the scheme
E(n"'l) - H‘.(n) + L'l g (62}

where B =1 - L'l A, and L is a diagonal matrix whose diagonal elements

are equal to the diagonal elements of A. Note that (45) and (47) show

that the diagconal elements of M or E are real, finite, and of one sign.

so that the inverse matrix L-1 always exists for matrix equations like
(49), (50), and (52).
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Equations (6l) and (62) are called Jacobi iteration schemes, imply-
ing that the (n+l) approximation to every element of f is based on the
(n)th approximation to every element of f., In practice, some amcunt of
Causs-Seidel iteraticn is used, implying that the (n+l) approximation to
the jth element of f is based on the (n+l) approximation to the first
j-1 eliements of f (which have already been calculated) and to the nth approx-
imation to the remaining elements of f, The Gauss-Seidel iteration usually
converges faster than does the Jacobi iteration, The Gauss-Seidel scheme
can also be written in the form of (61) but with a modified iteration matrix
instead of B.

The principal disadvantage of an iterative method ig tha’ the itera-
tion may not converge, even in those cases where a finite solution exists,
Conversely, an important advantage of an iterative method is that when a
finite, and possibly indeterminate, solution exists, and when the iteration
does converge, it normally converges on the correct and unique solution
that fits tue boundary condition, An iterative process such as (61) con-
verges if and only if the largest eigenvalue of the matrix B, i,e., the
largest root Y, of the equation |B - ¥I| = 0, has a modulus less than unity.
This condition is difficult to apply because the eigenvalues are difficult
to compute, unless the surface has some special shape, e,g., a quadric
surface. A sufficient, but not necessary, condition that the iteration
converge is that some norm of B be less than unity, [|B||< 1. 1In our
limited experience with solutions of the matrix equa:ions for sound radia-
tion, a sufficient condition for the convergence of either the Jacobi or
Gauss-Seidel processes is that the wave number k be sufficiently removed
from a characteristic wave number at which the determinant of A = 0. 1In
particular, iterative solutions to (48) and (52) always seem to converge
as k » 0.

There are also more sophisticated schemes, which expand or other-
wise modify the range of k, for which the iteration will converge on a

correct and unique solution. In particular, there is the iteration scheme

£ L™ Lo -y @™ 4 (63)
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where h i8 a complex number, In Reference 17 we prove that this process
converges to the correct solution provided all the eigenvalues Yi of the
matrix B are within a circle in the complex plane passing through the
point (1,0), having a center at h/(k-1), and having a radius equal to the
modulus of 1/(1-h). When h = 0, this reduces to the simple scheme of (61}.
When h is a real and positive number less than unity, the demain of Yi
within which the process converges is a large circle that includes the unit
circle of the simple iteration scheme, In fact, (63) with h = 1/2, or
perhaps a Gauss-Seidel variation of (63) with h = 1/2, ic a good wide-
range iteration scheme that is worth trying when the eigenvalues Yi are

not known apriori,

SPECIAL METHODS NEAR CHARACTERISTIC WAVE NUMBERS

There probably is no general method for obtaining the correct unique
gsolution when k is close to a ki for which the solution is indeterminate,
But there are always special methods in special situations, We have
already mentioned several such methods:

(1) shift the nearby ki by changing to an integral equation with a
different spectrum of characteristic wave numbers,

(ii) Use the iteration scheme of Equation {63) and pick h 30 that the
process converges,

(iii) Seek a simultaneous solution of two integral equations,

(iv) Use the high-frequency approximatidn of (60) and avoid the solution
of any integral equation,

There are several other methods:

(v) The correct and unique solution is clearly continuous in k. Hence,
if the characteristic ki are not too close together, we may solve tie
matrix equation and obtain unique solutions with two different values of
the wave number on either side of the nearest ki’ and then we can inter-
pola.e to get the correct solution at ki'

(vi) Another method, which apparently has been tried in electromagnet‘c
wave theory,23 is to eliminate the possibility of internal standing waves
by adding an energy dissipation term to the integcal equation, Presumably,
if the damping or dissipation is small enough, the solution to the equaticn
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with damping will not differ appreciably from the correct solution without
damping. A simple way to introduce damping is to treat k as & complex
number with a small imaginary part. However, when the real part of k comes
; too close to a charactaristic ki’ then we can expect that the matrix problem
will be ill-conditioned.

{vii) There are many situations where a low-frequency approximation to
the unknown function p(y) can be used with negligible error in Equation (7)
for p(z). The approximation might be obtained by solution of the integral

equation with a value of k << J Or the approximation might be estimated

il
from some inzompressible potential flow (k = 0) result which does not
entail :he solution of any integral equation.

(viii) As a final example of a special method we solve the matrix equa-

tion (52) for p by the iteration scheme of (63), and use matrix equation (53)

, to determine a non-stationary value for the iteration parameter h, If g(n)
3 th +) (n+1)
E is the n~ approximation to p, and p is a tentative value for p ’
2 =205 - zsq (64)
+
.E(n+1) 5= 2( ) 4 h(R(n) - 2(+)) (65)

(nh) approximately satisfiess (53) at

The parameter h is picked so that p
any m, 1 € m < N, stations, We truncate the N, I, and E matrices to
m X N rectangular matrices and denote them by Em’ zm’ and Em’ respectively,

Then

- (k1)
2y S + ;m)g 2E Sp

This equation gives m different values for the complex number h. To

" [1] ., w
define a '"best" .alue, we multiply on the left by £§m where §m is a

}

diagonal matrix with m diagonal elements S,, and f is a row vector
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whose eclements are the complex conjugate-transpose (hermitian transpose)

TS TS S ST S,

of the column vector in the last term of (66)., That is, if jﬂ denctes
a hermitian transpose

;' a2 5™ - ™) ()
§
! and
¥
; is N s+1)a=£5 28 0™ +n ss £ (68)
and
) )
Eslan se1)g - ™) s,
t = H )
£5 £

The iteration factor h could be computed in this way for each itera-
tion, but it seems safer to do the first few iteratiors with h = 1/2, The
m stations for the calculation should be selected at positicns where the

component of f, as defined in (67), has a maximum modulus. If the itera-

tion process has already converged except for the contribution of a single

RTINS EINNE [ S T Rr A

characteristic mode of indeterminate amplitude, then in princirie it would
be sufficient to select only a single station (m = 1) for the calculation
of h, but in practice it would be safer to use more stationms,

In almost all of these special methods, it would be helpful, but
not necessary, to know the values for the nearby characteristic wave
numbers ki’ and to have some knowledge of their associated wave functions
pi(z) and qi(z). For example, in this last method, it would be preferabie
tc pick the stations for the calculation of the iteration factor h at
these points at which pi(z) is a maximum.

SUMMARY AND CONCLUSIGNS

We have derived and discussed many different methods for solving

sound-radiation and scattering problemns associated with arbitrary surfaces,
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The common features of all of these methods are: (1) they replace the
radiating or scattering surface by an "equivalent'" surface distribution

of monopoles and/or dipoles, (2) they specify the density of this equiva-
lent layer by an integral equation, (3) they approximate the integral
equation with a matrix equation of finite order, (4) they solve the matrix
equation by the general numerical techniques which have been developed for
matrix operations on high-speed computers, We have als» (erived and dis-
cussed the conditions for the nonexistence or indeterminacy of solutions
to these equations, and we have suggested several techniques for obtaining
a correct and unique solution when such conditions obtain.

Some general recommendations have been made for these methods which
are likely to be faster, more accurate, or more elegant or to have a wider
range of application., However, it is recognized that every one of these
methods is complicated and laborious to implement and that each method
may have special advantages for special classes of problems, Furthermore,
it happens that in many real engineering problems, the physical parameters
which affect the solution--e.g., the details of the boundary conditions
or the detailed specification of the surface shape--can bz known only
approximately or cnly in a statistical sense. In such cases there is
little point in obtaining a solution whose mathematical precision exceeds
the possible error due to uncertainties in the parameters. Hence an
overall recommendation is to use the simplest successful method that is
easily available and tc give only minor consideration t¢ such factors as
speed, accuracy, or wide range.

This has not been a comprehensive or an historical review, For
example, we have not covered what seems to have been a parallel lLiistorical
development of the same methods--but applied to problems in electromagnet.c
radiation, A small bibliography on this application is given in Refer-
ence 24, Also other possible "equivalent" distribtuions of multipoles
have not been covered, besides the surface distributions, For example, it
is possible to find a finite linear distribution of monopoles25 and/or

dipoles26 inside a body which solves arbitrary Neumann or Dirichlet
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problems on the body. And it is possible to express the far field of any

vibrating body by a suitable combination of point multipoles.27 In each
of these equivalent distributions, the multipole strength can probably

be specified by an integral equation similar to those used here,

i
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APPENDIX A
DERIVATION OF INTEGRAL EQUATIONS

A common expression that recurs in all the equations o be derived
has the form m.V IF(R), where f(R) is an arbitrary function of the distance
Ry R= 5 - z, m is an arbitrary unit vector, and v, + means that the gradient

is to be taken with point 3' varied and point z fixed. Then
v ER) = meR) & - v_£(R) Al)
mV £(R) = @R) g5 = - m 9, (A1)

~
where R is a unit vector in direction R. When the two unit vectors 2'
and n are associated with points 5' and z, respectively, it is sometimes

convenient to use the abbreviated notation

of df 703
Fn = MNe sz = -(E-_R) drR \As
af 1] &~ Jf ‘A7
Sp¢ =RV, f = (a°R) R (A2}

To derive the integral equations for the monopole layer o{y,, we
consider first the field at a point 5', which is a small distance h off

surface point x' in the direction of the normal B’: i,e., z'

/ . !
zZ =y =+ nn.
We write the field in two parts, an integral over the surface a within a
sphere of infinitesimal radius € centered at z', and an integral over

the remaining surface area S-A.

A e

ceiklz’ - 3] seiklz’ - ¥l ,
p(z") = j}l T = ” T ‘a4

Take R =z' - y, d§ = Rad(V(B-é), where d{l is an element of a solid angile

and evalucte the first integral as ¢ - 0, aud subsequently, as h - 0,
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The limit of the second integral as ¢ and h approach zero in either order

will be written in an abbreviated form as

1 1
*"j A T .” selklz’ - 1 i o
ce '\t "4 oL gt 12 T2
o |y’ -yl 0 33 anly -yl

Hence, an integral equation for o(y), when p(y) is specified apriori, is

given by

by’ - *jj . Jkly' -yl

———— (A7)
4rly’ - 3

which is the same as (9),.
When q(y) is specified apriori, we proceed from (A4) by taking the
gradient in the n’ direction, Then

[
- Lim 5 [etklz” - 1l
q(y " ! .” 0531[————41['2, - Xl de
A —

ik| - v|
Lim o)
U 05 [4ﬂ|z _“:']ds (48)

The first term becomes

¢ 1kR s 30 ettt
£J dR 4ﬂR.> @"H 5 (aeR) €0 ij e K S )
o(y")
fimo - éz (A9)




-

This term changes sign when x' is approached from the region x. The
second integral in (A8) has the same unique limiting value, regardless
of the order in which ¢ and h approach zero and regardless of whether Xl
is approached from the z or x side, The limiting value of this sccond

integr.i will be written in an abbreviated notation as (with R = lx' - X})

% ikl - | ’ -
a e x x !.im A /] o0
] °5:[7.;|_x—_&_|] ” R - wiaD o -

Hence the integral ecuation becomes
o(y) x d eikll’.l -yl
) =-=5— ” Sso/ | o7 |95 (21
n | 4xly -y

which is the same as (8).

To derive the integral equations for the dipole density p(y), w
start with the field at the point 5' = x' + nn’ and again separate the
form into two parts, an integral over the infinitesimal area A about Xl

and an integral over the remaining surfaces S-A,

iklz’ - y] [ iklz' - ¥
N o d [eF2 "X [ 9 I e e
p(,E ) = j‘£ [ Fn [ 4‘“'2 T yl ]dS + \S[‘-IA“. B; [ 41{'2 -.-X—I } ~.A12

We now follow the same procedures as in (A9) and the first integral

becomes

.” ” P (iK "")(—'*)R dn

ikh '
H e — (1 - 1kh) dn ; § ) (13}

The limiting form of the second integral in (Al12) will be written in

the abbreviated form as
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ikly’ - vl ~  ikR
* d | el J _ Mm ue 1 A
II K S inxl - Xl ER &0 JJA AnR (1k - ﬁ)(-E.B) g5 (Al4)

Hence, the integral equation becomes

j 1k|X ’Z' is (AL5)
us— Chxly” -yl

p(x)—

which is the same as (11).

We return now to the field of a dipole laver at the point

p(z") Jj k(y) T[_‘ma Tds (A16)

where R = 5' - y. We take the gradient in the g' direction at g' and

_Z_, ’—}:I'*-hp.l

then take the limit as z’ - y’, assuming that the limit exists,

gim [3p(z)]  itm kR
q( )_Z—DX[ anl ]=_Z_l—>y [g- II“ 41!R>ds

=2 »;z ” (;z) ,a ( Z::)ds (A17)

And by repeated use of (A2) and (A3),

31
A im “..e-nR
q (); sl z l‘_‘z ! 47‘( Ra

{(31k - % + PR (eB) (n"oR) - (1k - 2) (9::1')} ds (A18)
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In fact, the gradient of the field of a dipole layer is continu-
ous as the field point crosses the dipole layer, Thus, the limit of (Al7)
exists and is unique, A rigorous proof of this result3 would be long and
tedious to develop; thus, it will be omitted. However, the result should
be plausible because the dipole ilayer may be considered as the superpcsi-
tion of twe monopole layers, + o(y) =+ n(y)/d, of equal amplitude but
having an opposite sign and being displaced an infinitesimal di=ztance d
apart. The gradient of the field due to each monopole layer has & dis-
continuity at the surface, as given in (A9); however, in the combined
field the two discontinuities cancel; therefore, the gradient cf the field
of a dipole layer has no discontinuity at the surface,

Hence, an appropriate integral equaticn for p(y) when q(y) is
specified can be stated in an abbreviated notation by

. » [oikly’ -yl o
q(z ) sE jj ‘,J.(X) an lan[ 4ﬁ|£f _ zl ds \..119,1

which is the same as ¢10). More explicit and detailed forms for the term
on the right are given by the right-hand sides of (Al7) or (Al8), where
it must be emphasized that the integral term in square brackets must be
evaluated with R = |z’ - y| before passing to the limit z' = y'. Hewever,
if the surface of integration is divided into two parts, a small finite
area A about z' and the remaining surface S-A, the second part may be
evaluated with R =|z' = zl, and no limit i3 necessary in the second jart,
One derivation of the Helmholtz jurface equation obtained by using
Green's transformation theorzm is giveu in Reference 15, However, once
we have established (A7) and (Al5) for the fields of arbitrary menopsle
and dipole layers, we can derive the Helmhcltz surface equaticn quite
simply, We consider the combined field p(Y) = pm(z) + pd(x), where
pm(x) is the field at the surface of a monopole layer with surface densicy
minus q(y)

ik|y’ - y|
P (y)=- *j Ap)e

ds (A20}
m 4rly’ - y e
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and pd(z) is the field at the surface of a dipole layer with surface
3 density p(y) on the positive side,

_p@h oikly’ - ¥l
b (2 = —5— Hpg-[ STl ds (A21)

Hence, the combined field is

1k iki I
L 4|y’ .U P 5‘{ zmé - ;]ds (A22)

which is the same as (12),

The new integral relation between the Helmholtz surface layers
pP(y) and q(y) as given by (13) can be derived by a slight variation of
this last method, We consider the combined normal gradient at the sur-
face, qQ(y = = 64 "y + qd(l ), where q (L Y is the normal gradient at
z of the f‘eld of a layer of monopoles with surface density -q(y), and
qd(x') is the normal gradient at 1' of the field of a layer of dipoles
with surface density p(y). Hence by (All) and (Al7)

( ) ikl - ¥
") = H (¥ y ‘mlx' 3] ds (A23)
" »  [etkly’ - oy ,
q,y) = H p(¥) an,an[ I xl (424)

agh) 5 [okly' - 4l
-l sw a;'['mz' e

- ¥
* 7 d? [ iklx - ¥
x jj pCD) dn On 4ﬁ|z -y ds (425)

which is the same as (13),
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APPENDIX B
CHARACTERISTIC WAVE FUNCTIONS

The simple homogeneous relations, (22) through (29), that appiy
to the characteristic wave functions can all be derived from the Green
transformation theorems as applied to an arbitrary external wave function
p(z) with gradient q(y) at surface point y in the direction of the out-

ward normal n,

. yyelklz - ¥ RUIE Y
j%‘fﬂ—ds Hp(x) [‘wlr-xl]

+

=0 ifr =x Bl
i

P(Y ) ‘ .,

S o ifr=y B

= p(2) ifr=2 183,

« > [elkl2’ - xl 2 [ikly - )_'
- jj a(x) on’ e4ﬂ| - Eh jj PQ) 51'5n 4ot -
ly’ [y’ xl

o e—— (B\"l

The first three equations are those we have previously called the
Heimholtz interior, =urface, and exterior equationa (14), (12), and (7},
respectively, Equation (B4) 1is the new surface gradient equaticn derived
in (A25), Note that the integrals in (Bl) and (B3) need not be starred
because no abbreviated notation is implied, However, the possibiiity of
writing the set of equations in this unified notation was the princigal

reason for selecting the particular form of abbreviated notation.
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We also write similar equations for any internal wave function

P(x), with gradient Q(y) in the direction of the outward normal n.

(el - 1l xep 3 feiklz -2l
T P H RN I e

= P(x) ifr=x (B5)
P 1

= (f ) ifr=y' (B6)

=0 ifr=z (B7)

opr 3 [oi¥l2’ - ¥l ol ¥ [eiklz’ - ¥l ‘

h QY B_n'[m ds - “ P(y) Soisn lmlxl - Xl.ds (B8)
Q"

= —5= (B8)

Note that the forms of (Bl) through (B4) differ in sign from (B5) through
(B8) only because in the former set, the normal points into the region
where the wave function p(r) obeys the differential equation without
singularities; whereas, in the latter set, the normal points into the
region where there must be some singularities in the wave function P(r).
If there werc uo singularities anywhere, P(r) would be idertically zero,

The special relations for the characteristic wave functions of
the first kind would then result from supplementing (Bl) through (B8)
with the defining charactefistics for functions of the firest kind,

M =P w (89)
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pil)(x) -0 BLD

For example, (22a) through (22c), respectively, follow from substituting
(B9) and (B10) into (BS5) through (B7), respectively.
The special relations for the characteristic wave functions of the

second kind follow in like manner from (Bl) through (B8), plus the defin-

ing characteristics for functions of the second kind
3 a EE
PE )(1) = Pg )(x) (Bli

oV =0 12,

We now show that the lionogeneous equation

j_kl - I F}
* d [etf1L " X p(Y) .
P P P T IeLA. A ‘B3
“‘ p(Y) gn[ 4“'2, - ZI ]OS 2 \B13]

has a solution only when k = f'i’ a characteristic wave number of the
first kind, i.e., only when an internal wave P(x) exists with F(y} = 0.
For p(x') in (B13) can be interpreted, according to (All}, as the field
at z -»1' of a special dipole layer p(y)

3 [eiklz’ - 2l (y
IR K d|e Ly )
pe) = e & [m] 8 +—=7 (Bi4"

provided u(y) is taken equal to p(y). Also, the field of the same

dipole layer as the point 1' is approached from the intericr region x is
given by

" o® ) otklx’ - 2l ux) P PG .
P(y’) = H M(Z)ll:an m das - 2 =g -5 = 0 (B}
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In like manner, we show that the homogeneous equation

wtt o[ oiklX - 3l p(y ")
[

has a solution only when k m i,e., only when an interior standing

wave P{x) exists with Q(y) (BP/an)y = 0, First, note that if a solu-

tion to (Bl6) exists for a specific k, then according to the Fredholm
Alternative a solution must also exist to the adjoint homogeneous

equation

> [e'ik|z - 3 ] s o fah

*0r £

and by taking complex conjugate of (B17), a solution must alsc exist

to the homogeneous equation

%00 ) e'H'le' - I' ' 'E(X')
jj £(y) a’[m] ds = - = (B18)

Now, according to (8), ?(X') can be interpreted as the field gradient

of a special monopole layer c(x') as x' is approached from z.

o ik' ' - I ’

o) * a e x X n(x )

f(y') = jj o( ds - B19)

@ ” E'[ wly - zl] 2 ‘
provided o(y) is taken eaual to ;E(x). However, the gradient at x' of
the internal field P(x) due tn this same monopole layer is given by
FEN L | ] - -
_ 3 [etly' -3 s F F_ ,
2w’ =] ow a[m §+——=2-3"0 (B20)
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Finally, we show that if p,(2) and pz;(z) are two independent
solutions of th~ Helmholtz equation with the same wave number k, then

jj P1(Y) 2% (y) dS = jj Pa(y) 91 (y) ds

Consider the Green formula as being applied to the two functions p,; {2’

and pa(z) in the infinite region outside the surface y and inside a
sphere at infinity,

JI (P19 - Paqy) dS = jjj (P, %P3 - Pavpy) 4V

K? jjj (P1Pa - PaPy) &V

IEXNE

"
oD jj p1q= ds
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APPENDIX C

SOLUTIONS TO THE INTEGRAL EQUATIONS
FOR THE PULSATING SPHERE

To solve the variocus integral equations for the pulsating sphere
it is convenient to firi.t calculate values for the integrals of the four
kernel functions over the surface of the sphere, We take poiunt EI to be
outside the sphere at a distance r from the origin at the renter, We

take R and R, as indicated in Figure 1,

Figure '1 - Geometry of Pulsating Sphere

and take the element of area to be in the shape of an annular zone with
dS = 2ra’sin © 4@ = 2a RAR/r = 2xR dR (C1)

We can now calculate the four integrals My Do’ No’ and Eo'

*H Ky - gl B j.aa o gl N

= = = a

Yo bxly’ -y o mRj e T K (c2)
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TR P TP ' Rl (e Sl o ETPRCY T TP -
- " . L T ™Y TR ST . o -
ek VX P N EETIINTC T, T ) T P Ty Y =T e T T Ty
'
.

1
3
i
; |
[
D-*jja eik|x -ilds jaa._d__e_i R_')RdR
o on 4“'17 -y dRo lmR.o 2a "0
ika
1 _ ika _e sin ka _ 1
: = e cos ka s 2 (C3) .
[
N = *j" : ,[eik'z —:—"-Z—|]ds = *j‘za g (eikko>i 27R_dR
) On 4rly’ - yi 2 dR, 4nRy/ 2a oo i
ika
ika e sin ka 1
= e cos ka - % "3 (C4)
k "
e *“‘ 32 ejl'kl-z - 3l ds = Mm 3 ‘\r-i-a d eikb Ok 2naRdR
: ° dnOn| 4nly’ - | r-a|or v._q 9R \én da T r
|
)
o _l) 1ka< _ sin ka)
(}k = e cos ka - == —- (c5) . !
i
The integral equations (8) through (14) for this problem all reduce to )
simple algebraic forms in terms of these four values, For example, (13)
becomes
q (ka - tan ka) = p_(ik - %) (ka - tan ka) (c6>
or
q, + ZqOIo u ZpOJo (c7)

which is the same as (35). The remaining equations of the series, (30)
through (36), can be obtained in a similar way,
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