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ABSTRACT 

Integral equation methods are described for calculating 

the entire sound pressure field when either the distribution of 

velocity or sound pressure is specified on an arbitrary closed 

surface. The theory is based on determining an equivalent sur- 

face layer of either monopoles only, dipoles only, or both mono- 

poles and dipoles-, Appropriate integral equations are derived 

for the unknown surface monopole and/or dipole density for each 

case and each boundary condition.  Every closed surface has two 

infinite sequences of characteristic wave numbers at each of 

which there exist an associated characteristic internal standing 

wave and an associated characteristic external traveling wave 

which satisfy the homogeneous parts of these integral equations 

at one or the other of the two series of wave numbers. At 

these wave numbers, and for particular boundary conditions which 

are specifically derived, all the integral equations may have 

infinite or indeterminate solutions. The problems of sound radia- 

tion by a pulsating sphere is used to illustrate the solutions of 

all the different integral equations and to demonstrate the compli- 

cations that occur at the characteristic wave numbers. Special 

and simple techniques are described for approximating each cf 

the integral equations by a linear matrix equation wich finite 

elements and for the numerical solution of the matrix equation. 

Special methods are described to eliminate the indeterminacy in 

the solution to the matrix equation near the characteristic wave 

numbers. 

ADMINISTRATIVE INFORMATION 

This report was authorized and funded as part of the independent 

research program Task Area ZR011-0101 of the Nwal Ship Research and 

Development Center, 



INTRODUCTION 

Some integral equation methods that are currently being used in the 

numerical solution of radiation and scattering problems are described and 

analyzed,  The intention is not to provide a comprehensive review of the 

very extensive literature but rather to give a unified derivation of the 

methods which stresses their common features and compares their relative 

merits as they appear to the author. 

These methods have been used by the author in a variety of specific 

engineering problems, e,g„, the distribution of sound radiation from a 

vibrating ship hull, the directivity pattern of an array of sound trans- 

ducers, the scattering of explosive sound by the resonant vibrations of 

a ship hull, and the thrust-deduction factor of a marine propeller. All 

of these problems required a solution to the wave equation for the region 

outside an arbitrary closed surface, given some specified relation between 

the sound pressure and its normal gradient at the surface. 

However, we will consider here only a restricted version of this 

problem, namely, where the pressure is harmonic in time and where either 

the pressure or its normal gradient is specified at the surface. We take 

the sound pressure to be the real part of p exp(-ikct) and the gradient 

to be the real part of q exp(-ikct), where p and q are complex. We 

denote an arbitrary point inside, on, and outside the closed surface by 

the vectors x, v, and z,  respectively. Hereafter we will omit the time 

factor from the equations and also we will tacitly assume chat the real 

parts are taken. Then the differential equation is the Hslmholtz equation 

(V3 + ' 3) p(z) * 0 (j; 

If the normal gradient of the pressure is specified at the surface 

(Neumann boundary conditions), the boundary condition is 

3p(z) 
"55" i=v. = «<Z> (2) 



where n is a unit normal, pointing outward from the surface point v_. Or 

alternatively, if the surface values of the sound pressure are specified 

(Dirichlet boundary conditions), the boundary condition is 

P(£) - P(Z) J £ -»1 (3) 

We also assume some radiation condition at infinity, most simply in the 

form 

ikz 
P(z) (4) 

I 

where z « |_z| . 

Of course, these simple boundary-value problems occur in many fields 

of applied physics but we shall continue to interpret the equations solely 

in terms of sound pressure waves.  Even in these terms, the equations have 

many useful alternative physical interpretations in sound radiation and 

scattering. For example, there are two direct interpretations as radiation 

problems (i) The surface y_ is the outer surface of some solid body which 

vibrates in an arbitrary patte n at steady circular frequency to = kc, 

v(v.) ■ q(y.)/(ipkc) is the distribution of vibration velocity normal to the 

surface, and p(z) is the sound pressure distribution in the external space; 

(ii) The surface v_ is any geometric surface which encloses all the sources 

of sound in the fluid, the sound sources all have circular frequency a ■ kc, 

p(js) is the external sound pressure at r,  and q(y_)/(ipkc) is the normal 

component of the particle velocity of the fluid at v.. 

There are also two straightforward interpretations as simple scatter- 

ing problems (1) The surface v_ is a rigid impenetrable surface that scatters 

an incoming sound wave of frequency a) = kc, p(z) is the sound pressure of 

only the scattered or reflected wave (omitting the incident wave), and 

-q(y_)/(ipkc) is the normal component of particle velocity in the incoming 

wave at y_, provided the rigid surface and its interior are replaced by 

fluid; (ii) The surface v_ is a free (pressure-release) surface that scatters 

an incoming pressure wave, p(z) is the sound pressure of only the scattered 



or reflected wave, and -p(y_) is the sound pressure at v_ in the incoming 

wave, provided the free surface and its interior are replaced by fluid. 

Finally there are two straightforward interpretations in terms of 

special source distributions in a bounded region (i) The surface y_ is a 

rigid impenetrable surface with a layer of simple sources. q(y_) per unit 

area, placed an infinitesimal distance outside the surface, and p(fc) is 

the external sound pressure; (ii) The surface y_ is a free (pressure- 

release) surface with a layer of dipoles, n p(v) per unit area, placed an 

infinitesimal distance outside the surface, aud p(js) ia the external 

sound pressure. The last two interpretations are based on the fact (which 

we prove subsecjuently) that the normal gradient of the field of a layer of 

simple sources and the field of a layer of dipole sources are each discon- 

tinuous as the field point crosses the layer. 

The mathematical methods to be described for solving the boundary 

value problems use integral equations to determine "equivalent" monopole 

and/or dipole layers whose external field is the same as in the original 

boundary value problem. Hence, we first review the properties of the 

fields of such monopole and dipole layers and derive an indefinite number 

el appropriate integral equations. We theu show that each integral equa- 

tion has an infinite sequence of characteristic wave numbers, at which 

the solution becomes infinite or indeterminate, and discuss how the ori- 

ginal boundary value problem can be solved in such cases. We then describe 

specific techniques for approximating each of these integral equations by 

finite order matrix equations and for obtaining numerical solutions to 

each of the matrix equations. These techniques are specifically designed 

for problems having the arbitrary geometry and boundary conditions that 

commonly occur in real engineering situations. We also compare some of 

the relative merits of the various methods. 

EQUIVALENT SURFACE LAYERS 

The methods of solution are based on the possibility of finding 

some surface distribution of simple sources (monopoles), and/or some 

surface distribution of double sources (dipoles), »'hich, if placed at 



I: 
5 

the position of the vibrating surface in an unbounded fluid, woulc' have 

exactly the same pressure field outside the surface as does the vibrating 

surface.  It turns out that there are an infinite number of such equiva- 

lent surface distributions of monopoles and dipoles;  we shall discuss 

only three special distributions. 

The first equivalent surface distribution is one having monopoles 

only. We will take the field at z  due to monopole of unit strength at. y 
ikR 

to be e  /4«R, where R = z  - y_.  Then the field due to the entire surface 

distribution is 

PCS) « 1) Z (Jl Mi -1\ 
4*|z - vj 

dS (5) 

where 0(v_) is the source strength per unit area; a(%)  must be specified 

so as to satisfy the boundary condition of either Equation (2) or (3), 

It can be shown that 0(y_) must equal Q(y_) - q(y_), where q(yj is the 

normal gradient at y_ of the external field p(£), and Q(y_) is the normal 

gradient at y_ of an internal pressure wave P(x) whose surface values 

match those of the external field pit),  i.e., P(y_) = p(y_). However, 

this interpretation does not define a(y^) explicitly because the boundary 

condition does not define both q(v_) and Q(y_) explicitly. 

The second equivalent surface distribution is made up only of 

dipoles which are oriented in a direction normal to the surface. Hence, 

since we take the field at z  due to unit dipole in the n direction at y 
IkR 

to be (ö/dn)(e  /4jtR); where R ■ \z  - ^J , the field due to the entire 

surface distribution is 

P(ü> - 11  M(Z) ^ 
Vkli -1\' 
_4n|z - vj_ 

dS (6) 

References are listed on pages 55-57 



where n(y_) is the local dipole density per unit area and must be specified 

so as to satisfy the boundary condition of either Equation (2) or (3).  It 

can be shown that u(y_) must equal p(y_) - P'(y_). where p(y_) is the surface 

value of the external pressure wave p(js), and P (y_) is the surface value 

of an internal pressure wave P (x) whose normal gradient at y_, Q (y_) , 

matches that of p(js), i.e., Q (y_) = q(v_).  But again this interpretation 

does not define u(y) explicitly. 

The third equivalent surface distribution is made up of a particular 

monopole layer, whose surface density is equal to the negative gradient 

~q(y_), and a particular dipole layer, whose surface density is equal to 

the surface pressure p(y_).  The statement that the combined external field 

of these two particular layers is equivalent to p(_z) is called the Helmholtz 

equation 

•(5) = -11 q(z) 4itjz - vj 
dS + 11 t  ^ ä 

Ml - l\ 
.Hi" il. 

dS (7) 

1 2 
and is commonly derived from Green's theorem. '  Ordinarily, either p(y_) 

or q(v.) is specified explicitly by the boundary condition and the other 

function remains to be determined. 

We shall call o*(^) and u(^), Green's equivalent monopole and dipole 

layer, respectively, since they were apparently first used by George Green 

in electrostatic problems about 1830. We may call q(v_) and p(y.)> the 

Helmholtz monopole and dipole layers, respectively.  If either a(y_) or 

u(v_) were known, or if both p(^) and q(y_) were known, then p(z) could be 

calculated by simple quadratures. But in all the present problems, the 

unknown surface layer, either Cf^), u(v_), p(^), or q(^), as the case may 

be, must be determined from the boundary condition in some way.  In every 

case this may be done by solution of an appropriate integral equation» 

We will discuss at least five different integral equations which car. be 

used for this purpose when Dirichlet boundary conditions are prescribed 

and at least five integral equations which can be used when Neumann 

boundary conditions are prescribed. 



£jQHmUp«<3igif>*« "i,L! W*l,"f"*M*,PMlU-l»'4!*-*".  mvnmMPM 

INTEGRAL EQUATIONS FOR MONOPOLE AND DIPOLE LAYERS 

In mathematical terms, the integral equations car. all be interpreted 

as limiting forms of Equations (5) and (6), or their derivatives, as the 

field point z  approaches a surface point y_ .  However, the mathematical 

processes must be carefully defined, ar.d restrictions must be placed on 

the continuity of the surface layers because the integrands, the integrals, 

and the derivatives which occur are sometimes unbounded and/or discontin- 

uous.  A classical, rigorous and detailed analysis of these processes was 
3 

originally given by Kellogg,   His analysis was confined to a case equiva- 

lent to k = 0 in Equations (5) through (7).  But the additional factor 

exp(ikJ£ - _vj) is only a minor complication because this factor is contin- 

uous for all z. Appendix A adapts and summarizes some of this analysis. 

The arguments are not meant to be rigorous but mainly to give operational 

and detailed meaning to the abbreviated notation which follows and which 

would otherwise be ambiguous, A star before the integral sign identifies 

terms that are written in this special abbreviated notation.  The star 

may imply that the integral is "improper," that a "principal value1' is 

intended, that some other special limiting process is intended, cr that 

some other special definition applies which can be determined by reference 

to Appendix A. 

The integral equations generally state that when you cross a meno- 

pole surface layer the pressure p(r) is continuous, whereas the normal 

gradient q(y_) is discontinuous by an amount equal to the local monopole 

surface density. And, when you cross a dipole surface layer, the normal 

gradient is continuous, whereas the pressure is discontinuous by an 

amount equal to the local dipole surface density. 

There are two integral equations for Green's monopole layer a(v_)., 

depending on the boundary condition. When q(vj is specified apriori, an 

appropriate integral equation follows from the discontinuity in the norma! 

gradient of a monopole field and can be given in the form 

If «D a 
Sn"' 

Mi 
Mi 

■-jf] 
dS 2 - q(z') (8 



where n is a unit normal at v_ into the region z.    The integral is an 

abbreviated notation for the principal value integral which is defined 

more precisely by (A10),  The second term is the discontinuous component 

t0 ^(z ) and changes sign when y_ is approached from region x„ 

When p(y_) is specified apriori, an appropriate integral equation for 

a(v^) follows from the continuity of a monopole field as the field point 

passes through the surface.  Hence 

»ff    e
ik!*' - l\ 

where the integral is an improper integral which nust be evaluated as in 

(A6). 

There are likewise two integral, equations for Green's dipole layer 

u(y_), depending on the boundary conditions. When q(y_) is specified 

apriori, an appropriate integral equation for u(^;) follows from the con- 
3 

tinuity of the normal gradient of a dipole field at the surface.  Thus, 

in an abbreviated notation, 

*rr , N a3   feik|*': y|1 
JJ ^ än^[MirTirJ 

dS = q(v/) (10) 

More explicit and detailed forms for this integral are given by the 

right hand side of either (A17) or (A18). 

When p(y_) is specified apriori, the appropriate integral equation 

for the dipole density u(y_) follows from the discontinuity in the field 

of a dipole layer and can be given in the form 

*rr        d re
ik^' * y'l       n(z')        / 

\\ »W ol [W-llJ dS +      2      = *X'> <U> 



. mm IM,. nm'WHWmUHWIPMMWU 
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where n is the unit normal at y_.  The integral term is an abbreviated 

notation for the principal value integral which in defined more precisely 

by (A14)„ The second term is the discontinuous component t« p(y  im) 

changes sign when the point y_ is approached from within x 

There are at least three independent integral equalI i* f u     I 

Helmholtz layers p(y_) and q(y) , and each can be used to In i Dmih.H 

or Neumann boundary conditions»  The mest conmionly uaed Integral .;it.' i 

is the Helmholtz surface pressure equation, which 1'. derived in A|( ulix A 

in Equation (A22)„  In the abbreviated notation this equation is 

2 JJ PW SJf^lx'-^J dS JJ q(y) ■■•/-.■ - -7 «' 
Ui\ 

An alternative integral equation, which may be ca.".led the aurfa;  <.■ uc: 

equation is derived in Appendix A, Equation (A25), and can be stated in th- 

abbreviated notation by 

dS 

JJ P<*> ärTän" [T^UJ dS . .1 

A third relation which can be used as an integral equation for the 
1 2 Helmholtz layers is the Helmholtz "interior" equation ' 

JJ*>i[^]-JJ«»-£ I« ~1\ 
-  ds 

where x is a field point inside the closed surface.  The last relativ 

differs from all the other Integral equations because the twe variabi 

points x and y_ do not have a common domain. 



Finally, we note the possibility of obtaining an indefinite num- 

ber of additional integral equations for either p(y_) or q(^r) by a combin- 

ation of (12) and (13). For example, if we multiply (13) by \(v/) and 

add to (12) we get 

p<^> - IMI 
Mi 

. 4*!z' -1\ 
1    w   '\ ^      f« J x<* > 53S'[ 

Ml 
Hz   - 2\ 

ikZ 

H? - 3 "Hl,) s't^in 
.i"lx' " Zl 

(15) 

\(y_ ) could be any continuous function of y_ , e.g., the constant k . 

However, it should have the physical dimensions of p/q, i.e., of 

length, in order to maintain dimensional homogeneity. 

Equations (8) through (15) are all integral equations because 

the unknown function, either 0(y_), u(Z), P(Z), °r q(y.)> appears under an 

integral sign. When the unknown function also appears outside the inte- 

gral, as in (8) and (11), and possibly (12), (13), and (15), the equa- 

tion is then an integral equation of the second kind, for which the 
4 5 

theory is complete and well documented. ' 

The properties of an integral equation for a given domain of 

integration are determined essentially by the properties of the kernel 

function. There are four kernel functions that appear in all of these 

integral equations. They all have simple physical interpretations, and 

they are all simply related to each other. These kernel functions are 

defined as follows in the abbreviated notation as well as in a detailed 

notation, with R ■ v/ - v_; R - |R| ; R = R/R. 

M(v/,v.) = 
ikl 1    - 1\ 

Mz' 
ikR 

4*R 
(16) 

is the field at y_ due to a unit monopole at v_ in a free unbounded field 

and is a function of the two vector field points. 

10 



D(X',!/£) -gjj n.V8M(v/,£) JB-J, 

£(»-iX*S (17) 

is the field ac v/ due to a unit dipole n at y in an unbounded field and 

is a function of the two positions and the direction n. The subscript 2 

indicates that a derivative is taken with respect to the second variable. 

11   i N(v. /n ,v.) • 2ta' 
,ikl 

L4«!* 
'-ill   , 
-llj £=v. 

^(--DG'D ■•""ft* 

is the field gradient in the n direction at v/ due to a unit mcncp.lt 

at v_ in an unbounded field and is a function of the two points and the 

direction n . 

E(* /S 'i/£) " ön^; 

ikRr 
>  I 

n '• ViD(z,v,/n) £=2 

|^[<3ik - I + k8R)(n.R)<n'.R)-(ik - ^)(n.n') j     (19) 

is the gradient in the n' direction of the field at v/ due to a unit 

dipole n at y_ in an unbounded fluid and depends on the two points and 

the two directions. 

These kernels all have weak singularities at v/ = v_ but a prin- 

cipal value integral exists in all cases. Note that the two functions 

M and E are each self-symmetric (but not complex-conjugate-symmetric« 

11 



to an interchange in the two field points and the two directions, i.e., 

M(x't£) * M(ltl')  and E(i'/i'ji/n) ■ E(£/n,^'/n). However, the two func- 

tions D and N are mutually symmetric (but not ccmplex-conjugate-symmetric) 

to an interchange in the same variables, i.e., D(y.,y^ /n ) = N(v, /n ,£). 

The integral equations for these equivalent monopole and dipole 

layers may have no finite solution, or possibly an indeterminate solution, 

under certain commonly occurring practical conditions.  This may seem 

surprising because the boundary value problem, for the space external to 

an arbitrary surface, posed by Equations (1) through (4) always has a 
2 

solution and the solution is unique.  However, the same integral equa- 

tions can also be intermediate steps in solving a boundary value problem 

for the region interior to the surface, and it should be obvious on 

physical grounds that the solution to the interior problem becomes inde- 

terminate at the resonance frequencies of interior standing waves.  Accord- 

ingly, we will discuss in the next section the possible starding-wave 

solutions in the space interior to any arbitrary closed surface. 

INTERNAL STANDING WAVES AND ASSOCIATED 

EXTERNAL TRAVELING WAVES 

We shall assume without proof the assertion that for every closed 

surface, an unbounded sequence of wave numbers exists at which standing 

waves can erist inside the surface with any prescribed combination of 

field and normal gradient, oP(y_) + ßQ(y_) = 0, at the surface where Of and 

ß are real constants. We consider, in particular, the two independent 

series of characteristic wave numbers, those for which ß=0 and P(y_) = 0 

and those for which «SO and Q(y_) » 0. We denote the characteristic wave 

numbers of the first kind by L; i = 1,2,... the interior standing wave 

by P} (x) (normalized in any convenient way), and its normal gradient 

at the surface by Q;  (y). Also we define an associated traveling wave 
(i) 

p)  (Z) for the external space by the condition that the normal gradients 

match at _y, i.e., 

12 



«i^-lsr 
fax)<5> *<*> 

2     ■- 
3n~ 

»<i> <z> (20) 

Likewise, we denote the characteristic wave numbers of the second 
(a) 

kind by m and the internal normalized standing wave by P^  (x), and we 
(2) 

define an associated traveling wave p^ '(t)  for the external space by the 

condition that the fields match at y_, i.e., 

pja)(z) - pfa)(z) (2 

Note that for the inteiior of any closed surface, the fundamental 
(a) 

characteristic standing wave of the secon».. class is Pj  (x) ■ constant 

with k = mt ■ 0i For this wave function clearly satisfies the Heimholtz 

equation and the boundary condition Q,  = 0. 

More generally, for any surface shape, the characteristic wave 

number may be degenerate, i.e., there may exist a finite number of 

independent wave functions P,.(x) and p .(z); j ■ l,2,...j  , where j 
lj ^~     lj "* max       max 

depends on the surface shape and wave number. However, we shall omit 

any further reference to the degeneracy of the wave functions in order 

to simplify the notation. 

We show in Appendix B that the equivalent monopole and dipole 

layers for these four series of characteristic wave functions have seme 

simple and remarkable properties. Thus for characteristic functions of 

the first kind, i.e., if k ■ A,, at which there can exist internal stand- 

ing waves with zero pressure at the surface, then 

'IK1'*) Mil -1\ 
4n|r - vj 

dS p{l><8> if r = x U/a; 

if r (??b'; 

if r = z (22c: 

13 



'R'wl; Ml* - xl 
_ 4«|r - yj . 

dS = P^(x) 

P^V) 

- P<1)<I> 

if r ■ x 

if r ■ v_' 

if r ■ z 

(23a) 

(23b) 

(23c) 

JJ «i   Cz) s' 4«lz' -zl 

(l), 
"ill'-lll qi   <*'> 

dS = (24) 

ön an 
MIZ   " Z 
4n|y,   - ZI 

dS  = qJX)(z') (25) 

For characteristic functions of the second kind, i.e., if k = m , (at 

which there can exist internal standing waves with zero normal gradient 

at the surface) 

*JNa)<*> ä
lmill - XI 
4«|r - vj 

dS P<8)(x) 

>(8> 

if r - x 

- Pj (X )   if r - y. 

- pj3\z)    if r-z 

(26a) 

(26b) 

(26c) 
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*pr (a), N ä 
JJ pi <*> S 

"e
lmill - zl" 

dS - - P^'^x) if r = x (27a) 
_4*|r - vj    m 

2 «I-i' (27b) 

= 0 if r = z (27c) 

*[T (3), . a fe1"1^' ' 
dS = - 

qfV) 
(28) 

JJ pi (*> 53E' 4« v. 
dS = 0 (29) 

Note that the integrals in (22a), (22c), (23a), (23c), (26a), (26c), (27a), 

and (27c) need not be starred. 

Equation (22c) shows that for an arbitrary closed surface there 

exists one sequence of wave numbers (the characteristic wave numbers of 

the first kind) at which an associated surface distribution of monopoles, 

q} (v.) produces no external field, and (27c) shows that there is a 

second sequence of wave numbers at which an associated surface distribution 

of normal dipoles p) '(v.) produces no external field. These results 
1     7 

generalize a remark of Lamb who showed that when sin ka = 0, "a uniform 

distribution of simple sources over a sphere of radius a produces no 

effect at external points." Thus the surface distributions that produce 

a null external field exist for every surface shape, for dipole distribu- 

tions as well as simple source distributions, and they exist in an infinite 

number of characteristic patterns. In fact at k = 0, a uniform distribution 

of normal dipolus over any closed surface produces no external field. 

However, these results are principally of consequence in the solu- 

tion of the integral equations because (22b) and (29) demonstrate a 

family of solutions to the homogeneous parts of the integral equations 

15 



of th> first kind, whereas (23b), (24), (27b), and (28) demonstrate a 

family of solutions to the homogeneous parts of the integral equations of 

the second kind. And it is well-known that the solution to any linear 

integral equation becomes indeterminate under conditions in which the 

homogeneous part of the equation has a solution. 

EXISTENCE AND UNIQUENESS 

The mathematical condition for the existence of a unique solution 

to any linear integral equation of the second kind is known as the Fredholm 

Alternative. '  As applied to (8), for example, this states that either 

the integral equation with a specified k and a specified surfaco. shape hcs 

a unique and regular solution for all. choices of the known function q(y_) or 

the homogeneous ^art of the integral equation has a rontrivial solution and 

the adjoint homogeneous integral equation has a nontrivial solution.  In the 

alternative case the integral equation has a regular (but not unique) solu- 

tion only when the known function is orthogonal to every solution of the 

adjoint homogeneous equation. 

In the present context, two functions fx(v_) and fa(v_) are ortho- 

gonal if 

JJ f^a dS = |j Tjfa dS * 0 (30) 

where the "overbar" denotes the complex conjugate. And by the adjoint 

homogeneous equation we mean a homogeneous integral equation of the second 

kind whose kernel function is obtained from the original kernel by inter- 

changing the two variables and taking the complex conjugate. Thus adjoint 

homogeneous equations to: (i) Equation (8) for a(v_), (ii) (11) for u(v_), 

(iii) (12) for p(y_), and (iv) (13) for q(v^) are the complex conjugates of 

(i) (23b), (ii) (27b), (iii) (24), and (iv) (28), respectively. 

The special relations of (22) through (29) demonstrate that solu- 

tions to the homogeneous integral equations for sound radiation do 

occur and that they occur at the characteristic wave numbers of the 

first and second kind I.  and m.. Also, they identify the solutions of 

the homogeneous equations to be the surface values of the characteristic 
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traveling waves of the first and second kind--pj (y), qj (z)> P\    (l)> 
(2) 11 

and q^  (y.).  Furthermore, we show in Appendix B that solutions to these 

homogeneous integral equations, excluding (14) and (15), can occur only 

at the characteristic wave .lumbers I.  or m.. 

Accordingly, we list below the conditions for the existence and 

uniqueness of solutions to the integral equations for o(%), u(^), p(£>, 

and q(y_).  These are stated as conditions on the prescribed wave number k 

and on the prescribed boundary condition p(y_) or q(y_).  The conditions 

may be verified by systematic use of the Fredholm Alternative and L-y 

appeal to the special relations of (22) to (29). 

1. A unique equivalent monopole layer a(^) exists as a solution 

to either integral equation (8) or (9) unless k is equal to a character- 

istic wave number of the first kind, k..  If k = I,  and if either 

JJ qp"^dS = 0 or jj pq"P^dS - 0, see Equation (B21); then a particular 

solution to either (8) or (9) for a(^) exists. Any finite multiple of 

qj (%),  however, can be added to a(y_) with no effect on the external 

field as calculated from (5).  If k = t   and JJ qp"^dS = JJ p^^dS t  0, 

no finite a(^r) exists. 

2. A unique equivalent dipole layer u(y_) exists as a solution to 

either integral equation (10) or (11) unless k is equal to a characteristic 

wave number of the second kind, m.. If k = in. and if either   p'q"!' ^dS = 0, 
n(a) JJ  i 

qp; 'dS = 0, then a particular solution u(y) 
fa) 

exists. However, any multiple of p^ '(jr) can be added to ji(y_) with no 

effect on the external field as calculated from (6).  If k = m and 

JJ P<C dS ■ JJ qp^ dS t 0, then no finite u(^) exists. 

3. A particular solution to the Helmholtz surface-pressure equation, 

(12), for either p(y_) or q(y.), exists for all k and is unique unless k = I.. 
(l) X 

When k = I  , then any finite multiple of q^  can be added to a particular 

solution for q(^) with no effect on the external field as calculated from 

(6). But also when k = I.  the particular solution to (12) for p(y_) is 

indeterminate by an arbitrary multiple of pj1  (y), and the corresponding 

formal solution of (6) for p(z)  is indeterminate by the same multiple of 

Pj (z). The correct multiple of p^ '(v.) which fits the specified 'boundary- 

condition must be determined by some supplementary condition. 
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4. A particular solution to the surface-gradient equation (13), for 

either p(y_) or q(v_), exists for all k and is unique unless k - m.. When 

k = m., any finite multiple of p. '(y_) can be added to the particular solu- 

tion of (13) for p(y_) with no effect on the external field p(jz) as calculated 

from (6).  But also when k = m the particular solution to Equation (13) for 
(a) 

q{y_) is indeterminate by an arbitrary multiple of q}  (y.), and the consequent 
(a) 

solution of (6) for p(£) is indeterminate by the same multiple of p^  (js). 
(3^ Again the correct multiple of p^ *(z)  which fits the specified boundary 

condition may be determined by some supplementary condition. 

5, The existence and uniqueness of solutions to the Helmholtz interior 

equation (14) depend upon the position of the interior points x as well as on 

the wave number k. We can list only some of the conditions under which the 

solution of (14) is indeterminate.  Thest se occur when k = t.  or m , and all 
f     \ /     \ 

1 standing waves ?) '(x) or P^  (x), x are on a nodal surface of the interna 

respectively.  If k = A., and P^  (x) = 0, then any finite multiple of 
(l) li- 

q,  (y_) can be added to the particular solution of q(y_) with no effect on 

the external field as calculated from (6). Under the same conditions the 

particular solution to (14) for p(^) is indeterminate by an arbitrary 

multiple of pj  (y_), and the consequent solution of (6) for p(z) is indeter- 

minate by the same multiple of pj ■ (z).    If k = m and P^ '(x) = 0, the 

particular solution to Equation (14) for q.(v_) is indeterminate by an 
(a) 

arbitrary multiple of q^  (v_), and the consequent solution to (6) for p(z) is 

indeterminate by the same multiple of P<  (,z). Under the same conditions 
(3) 

(k = m. and P} 7(x) = 0) the particular solution to (14) for p(«) is 
(a) 

indeterminate by an arbitrary multiple of pj (v^); ideally this indeter- 

minate component has no external field. 

6. The existence and uniqueness of solutions to the combination 

equation (15) depend upon the choice of the function X(v) as well as on 

the wave number k. However, if X(^) is chosen as a positive constant 

independent of v_, it seems plausible that the integral equation would 

have an infinite sequence of characteristic wave numbers with values that 

interlace the I.  and interlace the m . 
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7, The conditions for the existence and uniqueness of any equivalent 

monopole layer to be used in Equation (5) are the same as the conditions 

for the solutions of integral equations (8) and (9). Likewise the condi- 

tions for an equivalent dipole *ayer to be used in (6) are the same as the 

conditions for the solutions of integral equations (10) and (11).  However, 

there always exist correct and unique Helraholtz layers p(yj and q(y; which 

can be used in (7), even though the solutions to one of the integral eaua 

tions (12) through (15) may be indeterminate. 

In principle, the characteristic wav£ numbers for any one of thes? 

integral equations are discrete line values; i0e., the singularities Li tne 

solutions would occur only if k were exactly equal to m. or I.,  and in 

the case of (14), only if x were «xactly on a nodal surface. However, i~\ 

practice, the integral equations are solved by numerical methods which 

necessarily generate an indeterminate error, depending on the precision r>£ 

the computing machine and the nature of the computation algorithms.  Thus, 

there will be a band cf values for k surrounding each 1.  and m , within 

which the solution to the integral equation has an indeterminate component 

or a singularity; for (14) there will be a layer of positions about each 

nodal surface. Furthermore, for every surface shape, the average spacing 
-3 

in k between successive I   or m decreases as k , and, eventually, the 

bands (or layers) must overlap. Thus, for every surface shape and every 

integral equation, there is a value of k beyond which k is arbitrarily 

close to a characteristic value and beyond which a numerical solution of 

an integral equation will generate an indeterminate error. 

In summary, the numerical solutions for p(y_) or q(v_) will be 

indeterminate by an arbitrary multiple of some particular surface distribu- 

tion when the wave number k is too large or when k is too close to some 

characteristic value. Under similar conditions on k, a finite solution 

for a(^) or u(v_) will exist only for special boundary conditions: even 

then, the indeterminacy will occur. 

However, these difficulties do not mean that the integral equations 

cannot be used in the neighborhood of these characteristic wave numbers. 

In some cases, e.g., the solution of (12) for q(y_) or the solution of (13) 
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for p(y_) , the indeterminate component in the solution, has no external 

field and, hence, will not cause an error in the subsequent calculation of 

the external field from either (5), (6), or (7). In other cases where the 
a 

indeterminate component does have an external field, it has been possible 

to supplement the original integral equation with enough additional condi- 

tions to fix the correct amplitude of this component.  Even in those cases 

where no finite solution exists, the experience described in the next 

section suggests that it may be possible to factor out the infinite compon- 

ent from the external field, 

UNIFORMLY PULSATING SPHERE 

To illustrate all of these methods, and to demonstrate the complica- 

tions which occur at the resonance wave numbers, we will consider the very 

bimple problem of a sphere of radius a, pulsating with uniform radial 

velocity in a uniform unbounded medium. Assume that either the surface 

pressure p exp(-iojt) or the normal gradient at the surface q exp(-icüt) 

is specified apriori. Then explicit analytical solutions to any one of 

the integral equations (8) through (14) can be obtained because all the 

unknown functions are constants which can be factored outside the integral 

sign and because all of the integrals can be reduced to functions of the 

single variable R * |r - y| by taking the surface element in the shape of 

a spherical zone between the two circles at distances R and R + dR from 

the field point r. The method of solution is demonstrated in Appendix C. 

By these methods the explicit solutions to (8) and (9) for the 

equivalent monopole density are readily found to be 

^•Gähs) 
-ika 

_i  
ika - 1 

(31) 

'<*'>-(arn) 
-ika 

(32) 

Likewise, the solutions to (10) and (11) for the equivalent dipole 

densities are 
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/   '\      i      A -  i tan ka^ 
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A formal solution to the Helmholtz surface equation (12) for either of 

the Helmholtz densities p(y_) or q(v) is 

(sin ka) q(v/) = (sin ka) (ik - i) p(v/) (35] 

A formal solution to the surface gradient equation (13), for either .f 

the two Helmholtz densities is 

(ka - tan ka) q(v/) ■ (ka - tan ka) (ik - -) p(v/) (36) 
8 

andjfinally, a formal solution to the Helmholtz interior equation (14) 

for either of the two Helmholtz layers is 

(sin kx) q(v/) = (sin kx) (ik - \)  p(v/) (3?; 

Hence in this problem, every one of the integral equations has a 

formal solution for all values of k. However, each solution has some 

singularity at those special values of k where the homogeneous part of 

the integral equation would have a solution.  Thus, the formal solutions 

for o~(y_) become infinite where sin ka = 0, and this condition identifes 

the characteristic wave numbers of the first kind I  , where there can 
i' 

exist internal standing waves with zero surface pressure.  The forma! 

solutions for u(y_) become infinite where tan ka = ka, and these identif> 

the characteristic wave numbers of the second kind where there can exist 

internal standing waves with zero surface gradient. The solutions to 

the Helmholtz surface pressure equation (12) become formally indeterminate 

when sin ka = 0, again at the characteristic wave numbers of the first 

kind. However, the solutions to the surface gradient equation (13' for tbr 
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same Helmholtz layers become indeterminate at the characteristic wave 

numbers of the second kind.  And the solutions to the Helmholtz interior 

equation are formally indeterminate when sin kx = 0.  It is interesting 

that this can occur not only at the characteristic wave numbers I.  and 

m but also at any wave number k ^ rt/a. 

Tf we disregard the apparent singularities and simply substitute 

cither (31) or (32) into (5), or substitute (33) or (34) into (6), or 

substitute either (35), (36), or (37) into (7), we will get expressions 

for the external field p(z)  which are formally indeterminate at the 

critical wave numbers. But. in each case we can simply divide out the 

indeterminate factor, or, more generally, we can require that the solu- 

tion for p(z) be a continuous function of k.  In this way we obtain the 

correct ar.d unique external field pressure. 

. .    qoa  a ik(z - a) (38) 
r v—   lka - 1 z 

, .     a ik(z - a) (39'» 
P(2> = P0 7 

e 

which is valid for all k, even at those critical wave numbers where 

either a finite equivalent monopoie or dipole layer does not exist. 

COMPARISON OF INTEGRAL EQUATION METHODS 

We have derived at least five different Integral equation methods 

for solving the Dirichlet problem and at least five different integral 

equation methods for solving the Neumann problem.  Equation (10) for 

the Neumann problem and (13) and (15) for either the Dirichlet or 

Neumann problems appear to be new in sound radiation and scattering 

problems; however, all of these methods have a long and continuous 

history of application, development, and rediscovery in problems in fluid 

flow, elasticity, acoustic waves, and electromagnetic waves, Mikhlin 

cites a long bibliography of older publications by Soviet authors, and 

there is no dcubt that an equally long bibliography can be prepared 
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with non-Soviet authors. However, the great power of these methods could 

not be realized until the development of high speed computers, and we par 

ticularly wish to stress the more recent methods and applications using these 

computers.  Practical experience in such applications to acoustic problems 

seems to be confined to solutions of the Neumann problem, most often b> 
9-13 14-19 

calculating a(y_) from (8)    or by calculating p(y.) from (12); 

however, there is some limited experience with solutions of the Heimholte 
20 

interior equation (14) for p(y). 

It seems generally preferable to base a solution of either the 

Dirichlet or Neumann problems on a calculation of the unknown q(y_; cr p{%) 

rather than on a calculation of the equivalent monopole layer a(yj cr the 

equivalent dipole layer |i(y_).  This is because: (i) the functions p(vjs or 

q(y_) have immediate physical significance and may even be determined exper- 

imentally; (ii) in many practical applications, e.g., low-frequ£nc> radia- 

tion by longitudinal vibrations of a slender body, the Helmholtz integral 

term in p(y_) contributes negligibly to the far field, and there i* no 

need to solve an integral equation to determine p(y_)» (iü) in cases :f 

high-frequency radiation by an arbitrary body to the far field there is a 

simple approximation to the unknown function p(y_) or q(^) which again makes 

it unnecessary to solve an integral equation; and (iv) when the wave number 

k is too large or too close to a characteristic wave number; a finite p(yj 

or n(y.) may not exist but a unique and finite p(y_) or q(y_) always exist«. 

However, the relative merits of integral equations of the first 

kind and of the second kind are not so easy to assess.  Equations (8) 

and (12) are both equations cf the second kind for the Neumann problem, 

having similar kernel functions and with the same spectrum of critical wave 

numbers.  Equations (11) and (13) are both integral equations of the seccnd 

kind for the Dirichlet problem, again having similar kernels and witr. the 

same spectrum of critical wave numbers. Ordinarily, we would expect that 

the equations of the second kind are preferable and easier to solve than 

the first kind because the theory of the former is complete and well docu- 

mented, whereas it is still possible that unexpected difficulties car: arise 

in solutions of the latter equations.  However, the equations of the first 

kind may have some special advantages at the critical wave numbers,  Fo: 
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example, if we solve the Dlrichlet problem at k = I   by using (12), an 

equation of the first kind, then the solution is indeterminate by some 

multiple of q (l) However, this indeterminate component has no effect on 

the external field. Likewise a solution to the Neumann problem at k = m., 

obtained by using an equation of the first kind (13), has an indeterminate 
(a) component p.  without an external field. 

It may sometimes be useful to seek a simultaneous solution of two of 

these integral equations rather than only one. For example, one method 

for solving the Neumann problem when k ~ A. is by a simultaneous solution 

of the Helmholtz surface equation (121 and the Heimholtz interior equation 

(14),  The latter must, be satisfied at a sufficient number of interior 

points x to fix the amplitude of any indeterminate component to the solu- 

tion of (12).  The scheme has value only when the wave number k is close 

enough to a  characteristic wave number of the first kind I.   to generate 

an indeterminate component in the solution to (12) but when the interior 

points x can be picked not too close to the nodal surface of an infrnal 

standing wave. When k is sufficiently large, the layers of critical 

positions about each nodal surface will overlap, and this method cannot 

be used. 

An alternative, and preferable, scheme is to solve either the 

Neumann or Dirichlet problems by a simultaneous solution of both surface 

integral equations (12) and (13), The critical wave numtars for these 

equations are the characteristic wave numbers of the first and second 

kind, respectively. They do not coincide except fov special surface 

shapes, e.g., a rectangular box, and then the characteristic wave functions 

are orthogonal on the surface and need cause no difficulty. Nevertheless, 

tt is likely that any algorithm, and Equation (15) can be viewed as one 

such algorithm, which "selects" the "accurate" solution from an over- 

determined combination of two integral equations, will tend to introduce 

its own set of characteristic wave numbers. In any case the numerical 

calculation will undoubtedly become ill-conditioned at sufficiently high 

wave numbers where the critical bindwidths about I   and m overlap. 
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REDUCTION OF INTEGRAL EQUATIONS TO MATRIX EQUATIONS 

The first step in obtaining a numerical solution to any of these 

integral equations for either the Neumann or Dirichlet problem is to con 

vert the equation into a matrix equation, i.e., into a set of simultaneous 

algebraic equations. The procedures that we will describe are designed f r 

the most general case, where the surface has some arbitrary, nonanalytical 

shape, and where the known boundary condition in q(y_) or p(^) is likewise 

arbitrary and nonanalytlcal.  Even in those cases where the surface is a 

spheroid or an ellipsoid, and where in principle the kernel function can 

be expanded in terms of separable wave functions, it may be more accurate 

to solve the integral equation by these general, nonanalytical, techniques 

because the higher order wave functions are not tabulated and are too 
17 

difficult to compute. 

The basic procedure is to approximate the integral equation that is 

specified over a continuous range of positions on the surface by a matrix 

equation that is specified at only a finite number of stations on the sur- 

face. To do this we first pick a finite number N of representative stations 

v.; j = 1,2,...N on the surface and then associate each station with an 

element of area S., a normal direction n., and some representative value 

c. for the local radius of curvature of the surface. The stations need 

not be spaced with uniform density, and the c sments of surface area need 
18 

not have any special or uniform shape    The density of stations on the 

surface should be high in regions of high surface curvature and in regions 

where p(vj or q(v) changes most rapidly, except that no station should be 

placed at a discontinuity of p(^) or q(y_).  The shape of each surface ele 

ment need not be specified; the magnitude of each area S, should be deter- 

mined by distributing the total surface area £ S. among the N elements i-i 

approximately inverse proportion to the local station density and in 

accordance with any convenient bookkeeping scheme.  In practice, it may 

be convenient to assume that the elements have some particular shape e.g., 

quadrilateral or triangular; however, the shape has no effect on the 

calculations. The general prescription is that p(y^, q(y.), the direction 

of the normal n(yj, and the curvature of the surface should each be reason- 

ably uniform over a compact area S. about the point v.. 
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We now approximate each of the integrals that occurs in (8) 

through (14) by a sum of terms evaluated only at the N stations v.. For 

nple, if the unknown function is £(v,), and the kernel function is ex amp 

K(V.,JZ), we set 

is 

l\*(l)  Kfcjrf) « -£ Wjkf(2k) K 
N 

> 
(40) 

for i = 1,2,...N.  The weighting factor W., depends upon the quadrature 

formula being used.  In the simplest and most common case W., = S, {   how- 

ever, for special surface shapes or for special ways of ordering the 

points y,, it is possible to make a more sophisticated choice for the 

weighting factor.  The value for the kernel depends on whether or not 

j = k, i.e., whether the point y, is identical with the point v. . 

When j £  k, then K., is taken to be the value of the kernel function 

K(y_ tl)  at £ ■ v, and y_ = v. .  In particular the four kernel functions 

of interest have the following forms, with R = v, - v. , 

M 
JVc 

ikR 
e  
4«R 

(41) 

ikR 
D1k = 4^T (ik * R> ("V*> (42) 

ikR 
Njk " 47F (ik " R> CSj-S) (43) 

Jjk 
= CT [(3ik ■ I+ k2R>M)(sk'i> - <ik - Jxaj-äfc)] (44) 

When j = k these forms have singularities and are inapplicable. 

Instead,  in conformity with the original definitions of these functions 
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given in Appendix A, we assume that K., is a mean value of the particular 

kernel function over the area S, surrounding the point v., Furthermore, 

we assume that if S. is sufficiently small, the mean value of K.. will be 

the same as though the surface element were a spherical cap with v. at 

its pole, with surface area jtb^ ■ S., and with the same mean radius of 
j   J 

curvature c as the actual surface at v.. Then by special calculations 

for such a spherical cap (the procedures are similar to the derivations in 

Appendix C) we obtain the following results which ere correct to the first 

order in kb.: 

MJJ*2^T (45) 

ikb - 1 

'jj = Njj * 4flbjCj 
(46) 

Ejj"2^ 
(47) 

Note that the values of D  and N. . are ordinarily negligible, regardless 

of the shape assumed tor the element of area, because the curvature of the 

element is usually small.  In fact, it is common to approximate the neigh- 

sac 

o. 
borhood of each station by a plane surface element for which c = « and 

In summary then, the recommended procedure is: (1) pick N stations 

on the surface; (ii) associate an area S., a normal n., and a curvature 
»l ^        —^ 

S   with each station; and (iii) replace each integral by a finite sum of 

the form of (40), where W 
jk 

S.; and where K.. is given by (41) to (47). 

This is probably the simplest and most universally practical of 

possible procedures, but most calculators have used more complex schemes» 

Usually they prescribe the shape of each area element to be a plane quadri- 

lateral or a triangle and then prescribe the location of the station within 

the element of area.  This is equivalent to picking the weighting factor 

W., so that it depends on the shape of S, as well as the size of S. „  The 
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weighting factor may a]so depend on some assumed form of variation of the 

integrand in the neighborhood of v. .  These more complex schemes can be 

more accurate in special geometries, or they may be more accurate when 

calculating the main value of each separate term K... However, for *. body of 

arbitrary shape, it is doubtful that the accuracy of the total calculation 

will be improved at all.  In fact, the procedure recommended here is so 

much more economical in computing time, etc., that it is often practical 

to increase the accuracy by increasing the number cf stations. 

One special geometry occurs so commonly in real problems, however, 

as tc justify the development of a special calculation scheme.  These are 

problems where the vibrating surface cau be approximated by a surface of 

revolution, and where the specified boundary condition can be written in 

the form of cos(ncp) times an arbitrary function of the axial coordinate, 

where cp is the angle about the axis of revolution.  A common and simple 

example of this problem would be scattering an incoming plane wave by a 

surface of revolution.  For such a problem the integral equations can all 

be reduced to equations having only one dimension.  Each integral term 

can be replaced by a sum over a finite number of stations in which each 

station is not a point location on the surface but a circular ring on the 

surface about the axis of revolution.  The elements of the kernel matrices 

then have much more complicated forms and are more laborious to compute, 

although their accuracy is greatly increased. Also it is feasible to use 

more sophisticated quadrature formulas. A detailed explanation of the 

solution of the Helmholtz surface equation for this type of problem is 

given in Reference 19. 

Reverting to the general procedures, we find that each of the 

integral equations for sound radiation may be replaced by a matrix equa- 

tion. We will denote a matrix by an underbar. Take £, £, C,  and u_ to 

be column matrices, each with N complex elements p(^.), Q(X.i) >  etc! J> *s 

a diagonal matrix with N diagonal elements S.; and M, D, N, and E are 

square matrices with N3 complex elements defined in Equations (41) 

through (47), and I is the identity matrix. 

Thus Equations (8) and (9) for the equivalent monopole density 

a(^_) are replaced by 
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(2NS - I)a * 2g (48) 

and 

MS a = £ (49) 

Equations (10) and (11) for the equivalent dipole density \i(y)  are 

replaced by 

ESu « q (50) 

and 

(2DS + I)ü = 2£ (51) 

The two independent integral equations (12; and (13) for the Heimholte 

surface layers may be approximated by 

(2DS - I)£ - 2MSa (52) 

and 

(2NS + I)JJ = 2ES£ (53) 

Furthermore, we can form an arbitrary linear combination of (52) and (53) 

to obtain an indefinite number of matrix equations for £ or g. 

Finally the Helmholtz interior equation (14) may be replaced by 

gSq = hS£ (54) 

where £ and h are row matrices, not column matrices, with elements 

lkR 
e  

Jx " 4JTR (55) 
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with R - x - y_, , and x is an arbitrary fixed point within tue surface. 

If £ or £ is to be calculated completely from (54), there must be at 

least N interior points x and N equations such as (54). 

A formal solution can be written for each of these equations in 

terms of the inverse matrix.  Thus the formal solutions to (48) avid (49) 

are 

O = (2NS - I)"1 2g (57) 

0 = (MS)"1 £ '    (58) 

where the superscript -1 denotes an inverse matrix, However, when k is 

equal to a characteristic wave number of the kernel matrix, the matrix 

is singular, and the inverse does not exist. The characteristic wave 

numbers of the matrix are the same (except for some shifting due to the 

finite approximations) as the characteristic wave numbers of the kernel 

function in the integral equation. The characteristic wave numbers i, 

and m of the first and second kind and the characteristic wave functions 

p.  , qV , p^ , and q^  which we have previously defined in Equations 

(22) through (28) are related to the eigenvalues and eigenvectors of the 

matrices of (48) through (53). We may consider that an element A (k) of 

a typical matrix A is a function of the wave number k as well as of the 

two surface points v and y , and we define the eigenvalue V (k) and the 

eigenvector jg,(k) by the equation 

A(k) <g.(k) = yk) ^(k) 

Then, according to (22) through (25), when k = A. 

2MS 

2DS 

has eigenvalue 0 and eigenvector <K' (1) 

DS has eigenvalue +1 and eigenvector p) 
— i 

(i) 

2NS has eigenvalue +1 and eigenvector <±) (i) 

(39) 
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Also, according to (26) through (28), when k = m 

(s) 
2DS has eigenvalue -1 and eigenvector^ 

(a) 
2NS has eigenvalue -1 and eigenvector g; ' 

(3) 
2ES has eigenvalue 0 and eigenvector JJ^ 

A more complete analysis of the eigenvalues and eigenvectors of these 

matrices for arbitrary values of the wave number k will be given in a 

subsequent report. 

NUMERICAL SOLUTIONS TO MATRIX EQUATIONS 

The matrix equations discussed here are all, except for (54), con- 

ventional linear matrix equations of the form Af ■ £. There is a vast and 

growing literature, e.g., References (21) and (22), about numerical 

methods of solution, and most of their analyses are applicable here.  It 

is well-known, for example, that it is not efficient to obtain a solution 

by calculating the inverse matrix A .  The methods of solutions are 

commonly classified into direct methods, where the solution is obtained 

after a definite number of prescribed operations, and iterative methods; 

where the solution is obtained by an indefinite number of successively 

improved approximations.  In general the choice of an optimum method depends 

upon such factors as the size, i.e., the order, of the matrix A; whether the 

matrix is sparse, i.e., has many zero elements; whether the matrix is 

nearly singular or whether the problem is otherwise "ill conditioned"; and 

whether an approximate solution is available. 

In the particular problems of sound radiation and scattering, all 

the matrix elements are finite, complex, and generally nonzero, although 

the elements of the principal diagonal of A are generally dominant.  The 

numbers of stations v. on the surface often exceeds 100, which means that 

the order of the matrix exceeds 200. Also, in these problems, the wave 

numoer k is often greater than i^,  the lowest characteristic wave number 

of the first kind; in most cases the characteristic wave numbers it  and 

m. in the neighborhood of k are not known apriori, and it is very laborious 

to compute them. 
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When k « jix, then it is a simple matter to start with an integral 

equation such as (12), (8), or (9) that does not have a singularity at 

k ss 0. All conventional direct and iterative methods of solution are then 

applicable, and the optimum choice is mostly a matter of convenience.  Some- 

times in this low-frequency case, a solution to the Laplace equation, k = 0 

in Equation (1), may be available as an initial approximation in an iterative 

solution to the matrix equation; however, when k is noc too close to a 

characteristic value, the problem is well conditioned--even without an 

approximate solution. 

As already discussed, when the wave number k is sufficiently large, 

k will be arbitrarily close to one or more characteristic wave numbers, 

the matrix A will be almost singular, and the problem will be ill-conditioned. 

Even when the solution must simultaneously satisfy two matrix equations hav- 

ing no characteristic wave numbers in common, it appears likely that the 

problem will be ill-conditioned for sufficiently high k. 

However, in the high-frequency case, if only the far-field is 

ultimately required, then there is an approximation for the surface pressure 

that can be used directly in (7) without solving any integral equation. 

P(Z) (ik " £> " <KZ) (60) 

where c(y_) is a mean radius of curvature of the local surface at y_.  Presum- 

ably a more accurate solution can be obtained by using this equation as the 

initial approximation in an iterative solution of matrix equations (52) or 

(53) and by terminating the iteration before the process diverges. 

When the wave number has some intermediate value greater than i^ 

but less than the wave numbers at which there is a high density of char- 

acteristic values, then either direct or iterative methods of solution may 

be used.  The principal advantage of the direct methods is that many library 

programs are available which can be used automatically.  These direct 

methods generally require more storage space and have larger computing time 

(proportional to N3) than the iterative methods (proportional to N2).  The 

32 



more common library routines are, however, restricted to approximately 

100 elements. A more serious disadvantage of a direct method is that the 

apparent solution could be grossly inaccurate when the wave number is toe 

close to a characteristic value without an indication thai, the solution 

is incorrect. For example, if an indeterminate solution exists at the 

characteristic value, then the direct method will produce some unknown 

multiple of the indeterminate component; if no finite solution exists at 

the characteristic value, then the direct method will tend to produce a 

finite apparent solution, having an incorrect component. 
o 

A iterative method can easily be programmed for any one of these 

matrix equations. The solution is ordinarily faster than a direct method 

and requires a smaller storage space, so that the number of stations 

could be increased with a consequent gain in accuracy. When the matrix 

equation results from an integral equation of the second kind, e.g. (48), 

it is already in a form to fit the simplest iteration scheme, one which 

is the direct analog of the classical Neumann series for solving the 

integral equation. 

f<**> =Bf(n)+Ä (61) 

where f^ ' is the n  approximation to f, and f   = g. For example, in 

(48), F ■ O, £ = -2£, and B ■ 2NS. When the matrix equation results from 

an integral equation of the first kind, e.g. (49), it is in the form 

AF = jj, which can be transformed into the form of (61) by the scheme 

fCn+l) . M(n) + £-i fi (62. 

where B = I - L* A, and L is a diagonal matrix whose diagonal elements 

are equal to the diagonal elements of A. Note that (45) and (47) show 

that the diagonal elements of M or E are real, finite, and of one sign 

so that the inverse matrix L  always exists for matrix equations like 

(49), (50), and (52). 
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Equations (61) and (62) are called Jacobi iteration schemes, imply- 

ing that the (n+1) approximation to every element of f_ is based on the 

(n)  approximation to every element of ^.  In practice, some amount of 

Gauss-Seidel iteration is used, implying that the (n+1) approximation to 

the j  element of ^ is based on the (n+1) approximation to the first 

j-1 elements of f (which have already been calculated) and to the n  approx- 

imation to the remaining elements of _f. The Gauss-Seidel iteration usually 

converges faster than does the Jacobi iteration.  The Gauss-Seidel scheme 

can also be written in the form of (61) but with a modified iteration matrix 

instead of B. 

The principal disadvantage of an iterative method is tha'- the itera- 

tion may not converge, even in those cases where a finite solution exists. 

Conversely, an important advantage of an iterative method is that when a 

finite, and possibly indeterminate, solution exists, and when the iteration 

does converge, it normally converges on the correct and unique solution 

that tits tiie boundary condition. An iterative process such as (61) con- 

verges if and only if the largest eigenvalue of the matrix B, i.e., the 

largest root y.  of the equation JB - "il\   = 0, has a modulus less than unity. 

This condition is difficult to apply because the eigenvalues are difficult 

co compute, unless the surface has some special shape, e.g., a quadric 

surface. A sufficient, but not necessary, condition that the iteration 

converge is that some norm of B be less than unity, ||B||< 1. In our 

limited experience with solutions of the matrix equations for sound radia- 

tion, a sufficient condition for the convergence of either the Jacobi or 

Gauss-Seidel processes is that the wave number k be sufficiently removed 

from a characteristic wave number at which the determinant of A = 0.  In 

particular, iterative solutions to (48) and (52) always seem to converge 

as k -» 0. 

There are also more sophisticated schemes, which expand or other- 

wise modify the range of k, for which the iteration will converge on a 

correct and unique solution.  In particular, there is the iteration scheme 

f(n+i) m  hj£<n) + (1 . h) (M(n) + &) (63) 
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where h Is a complex number.  In Reference 17 we prove that this process 

converges to the correct solution provided all the eigenvalues Y. of the 

matrix B are within a circle in the complex plane passing through the 

point (1,0),  having a center at h/(h-l), and having a radius equal to the 

modulus of l/(l-h). When h = 0, this reduces to the simple scheme of (61). 

When h is a real and positive number less than unity, the domain of Y, 

within which the process converges is a large circle that includes the unit 

circle of the simple iteration scheme.  In fact, (63) with h = 1/2, ox 

perhaps a Gauss-Seidel variation of (63) with h = 1/2, ie a good wide- 

range iteration scheme that is worth trying whsn the eigenvalues Y are 

not known apriori. 

SPECIAL METHODS NEAR CHARACTERISTIC WAVE NUMBERS 

There probably is no general method for obtaining the correct unique 

solution when k is close to a k. for which the solution is indeterminate,, 
i 

But there are always special methods in special situations, 

already mentioned several such methods: 

We have 

(i) Shift the nearby k. by changing to an integral equation with a 

different spectrum of characteristic wave numbers. 

(ii) Use the iteration scheme of Equation (63) and pick h so that the 

process converges, 

(iii) Seek a simultaneous solution of two integral equations. 

(iv) Use the high-frequency approximation of (60) and avoid the solution 

of any integral equation. 

There are several other methods: 

(v) The correct and unique solution is clearly continuous in k. Hence, 

if the characteristic k. are not too close together, we may solve the 

matrix equation and obtain unique solutions with two different values of 

the wave number on either side of the nearest k,, and then we can inter- 

polate to get the correct solution at k . 

(vi) Another method, which apparently has been tried in electromagnet re 
23 

wave theory,  is to eliminate the possibility of internal standing waves 

by adding an energy dissipation term to the integral equation.  Presumably, 

if the damping or dissipation is small enough, the solution to the equation 
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with damping will not differ appreciably from the correct solution without 

damping. A simple way to introduce damping is to treat k as a complex 

number with a small imaginary part.  However, when the real part of k comes 

too cloue to a characteristic k., then we can expect that the matrix problem 

will be ill-conditioned. 

(vii) There are many situations where a low-frequency approximation to 

the unknown function p(y^ can be used with negligible error in Equation (7) 

for P(JE).  The approximation might be obtained by solution of the integral 

equation with a value of k « A .    Or the approximation might be estimated 

from some incompressible potential flow (k ■ 0) result which does not 

entail Lhe solution of any integral equation. 

(viii) As a final example of a special method we solve the matrix equa- 

tion (52) for £ by the iteration scheme of (63), and use matrix equation (53) 

to determine a non-stationary value for the iteration parameter h.  If £ 

is the n  approximation to £, and £   is a tentative value for £^   , 

£(+) = 2DS£(n) - 2MS2 (64) 

£<«*> =£<+>+h(£(n) -£(+)) (65) 

The parameter h is picked so that £^ 1' approximately satisfies (53) at 

any m, 1 £ m £ N, stations. We truncate the N, I, and E matrices to 

m x N rectangular matrices and denote them by N , I , and E , respectively. 
"Til ~in     ~in 

Then 

(2N S + I )q - 2E S£
(n+l) 

= 2E S£(+) +h 2E S(£(n) - £(+)) (66) ■~m —       ~m -~ 

This equation gives m different values for the complex number h.  To 

define a "best" *aiue, we multiply on the left by fS where S is a 
"""to        ""TO 

diagonal matrix with m diagonal elements S,, and f is a row vector 
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whose elements are the complex conjugate-transpose (hermitian transposed 
u 

of the column vector in the last term of (66). That is, if f denotes 

a hermitian transpose 

fH =  2E Sfe<n> - £
(+)) (67) 

and 

*-S-m 
(2N S+I)q-fS 2 E Sp 

—m —*- 
(+) + h f S f H (68) 

and 

f S t (2N S + I )jg 
 m  -m - —m-3 2E S£(+)] 

(69) 
f S f 
 m — 

The iteration factor h could be computed in this way for each itera- 

tion, but it seems safer to do the. first few iterations with h = 1/2.  Ihe 

m stations for the calculation should be selected at positions where the 

component of f, as defined in (67), has a maximum modulus.  If the itera- 

tion process has already converged except for the contribution of a single 

characteristic mode of indeterminate amplitude, then in princi». le it would 

be sufficient to select only a single station (m = 1) for the calculation 

of h, but in practice it would be safer to use more stations. 

In almost all of these special methods, it would be helpful, but 

not necessary, to know the values for the nearby characteristic wave 

numbers k , and to have some knowledge of their associated wave functions 

Pi (y.) an<* If Cx)« F°r example, in this last method, it would be preferable 

tc pick the stations for the calculation of the iteration factor h at 

these points at which p. (v.) is a maximum. 

SUMMARY AND CONCLUSIONS 

We have derived and discussed many different methods for solving 

sound-radiation and scattering problems associated with arbitrary surfaces. 
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The common features of all of these methods are: (1) they replace the 

radiating or scattering surface by an "equivalent" surface distribution 

of monopoles and/or dipoles, (2) they specify the density of this equiva- 

lent layer by an integral equation, (3) they approximate the integral 

equation with a matrix equation of finite order, (4) they solve the matrix 

equation by the general numerical techniques which have been developed for 

matrix operations on high-speed computers. We have also uerived and dis- 

cussed the conditions for the nonexistence or indeterminacy of solutions 

to these equations, and we have suggested several techniques for obtaining 

a correct and unique solution when such conditions obtain. 

Some general recommendations have been made for these mrthods which 

are likely to be faster, more accurate, or more elegant or to have a wider 

range of application.  However, it is recognized that every one of these 

methods is complicated and laborious to implement and that each method 

may have special advantages for special classes of problems. Furthermore, 

it happens that in many real engineering problems, the physical parameters 

which affect the solution--e.g., the details of the boundary conditions 

or the detailed specification of the surface shape—can b? known only 

approximately or only in a statistical sense.  In such cases there is 

little point in obtaining a solution whose mathematical precision exceeds 

the possible error due to uncertainties in the parameters. Hence an 

overall recommendation is to use the simplest successful r.ethod that is 

easily available and tc give only minor consideration to such factors as 

speed, accuracy, or wide range. 

This has not been a comprehensive or an historical review. For 

example, we have not covered what seems to have been a parallel historical 

development of the same methods--but applied to problems in electromagnetic 

radiation. A small bibliography on this application is given in Refer- 

ence 24. Also other possible "equivalent" distribtuions of multipoles 

have not been covered, besides the surface distributions. For example, it 
25 

is possible to find a finite linear distribution of monopoles  and/or 

dipoles  inside a body which solves arbitrary Neumann or Dirichlet 
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problems on the bodv. And it is possible to express the far field of any 
27 

vibrating body by a suitable combination of point multipoles.   In each 

of these equivalent distributions, the multipole strength can probably 

be specified by an integral equation similar to those used here. 
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APPENDIX A 

DERIVATION OF INTEGRAL EQUATIONS 

A common expression that recurs in all the equations o be derived 

has the form m.? 'f(R)> where f(R) is an arbitrary function of the distance 

R> ^ = £ ■ z, m is an arbitrary unit vector, and V / means that the gradient 

is to be taken with point z    varied and point z  fixed.  Then 

m. 7# 7z/f(R) = (m.R) || = - m.7zf(R) (Al) 

where R is a unit vector in direction R. When the two unit vectors n 

and n are associated with points z'  and z.   respectively, it is sometimes 

convenient to use the abbreviated notation 

of „ - , iv df 
r- = n.V f - -(n.R) -Tz 
on  — z    N dR 

'S-. - n «V /f = (n'R) -rr 
on   —  z    v ' dR 

vA3j 

To derive the integral equations for the monopole layer 0(y_), we 

consider fir3t the field at a point z  , which is a small distance h off 

surface, point _y_ *n the  direction of the normal n , i.e., £ = y_ t hn , 

We write the field in two parts, an integral over the surface A  within a 

sphere of infinitesimal radius 6 centered at v', and an integral over 

the remaining surface area S-A. 

»» _ iklz - yl 
p(z ) = Jj ——r--, r dS + 

I   <*|i'-*| n 
S-A 

ae 
ikfz' 1' 

4it|z' - vj 
dS (A4) 

Take R • z' - y_, dS = B*dQ/(n> R),  where dCl  is an element of a solid angle 

and evaluate the first integral as c — 0, arid subsequently, as h -» 0„ 
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1! Ce ik|z' - v| ikR Ikh 

4«| z' - ^l JJ 4nR (n»R) 6-»oJJ 4«     h-«o 
(A5) 

The limit of the second integral as e and h approach zero in either order 

will be written in an abbreviated form as 

*rp qe
ik1*' - l\   M       Mm 

Mz' " l\ II ae ikli' - 2 
s-o Jj^ 4«|2 - 21 

dS (A6) 

Hence, an integral equation for 0(2), when p(2) is specified apriori, is 

given by 

P(i') - *IJ o(x) ;*Mz  - Zl 
4«J2* - 2I 

dS (A?) 

which is the same as (9), 

When q(2) is specified apriori, we proceed from (A4) by taking the 

gradient in the n direction. Then 

, /.  wm rr a 

A 

Mi' - zl 
.«*!■  -zl. 

dS 

: -»y OJ z -»y o«)   on' 
S-A 

Ik z' e ' — 

4«|iz' - v| 
dS (A8) 

The first term becomes 

I^C^) *••&£&»!! #<*-i>« 
A 

(n.R) 6-0 ^ 4« 
~ —     A 

°(z') 
f£o "  2 (A9) 
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This term changes sign when v_ is approached from the region x.  The 

second integral in (A8) has the same unique limiting value, regardless 

of the order in which e and h approach zero and regardless of whether v_ 

is approached from the £ or x side.  The limiting value of this second 

integr^A will be written in an abbreviated notation as (with R « jv_ - ^[) 

7j aSn"' 
\*b\l' ' l\ 
_4*U' " l\ 

dS - 
Aim |T aeikR 

G-o JJ  4«R 
S-A 

(ik - ~)(n'.R) dS (A10) 

Hence the integral equation becomes 

g(z') <<*'>-- "f^ + 'If «£' >%' ' l\ 
4«|v/ - vj dS (Ail 

which is the same as (8). 

To derive the integral equations for the dipole density n(^), we 

start with the field at the point z' = v/ + hn' and again separate the 

form into two parts, an integral over the infinitesimal area A about v/ 

and an integral over the remaining surfaces S-A. 

*<*'> = \Uk 4rt[z' - y| 
dS + If ^ 

S-A 

Mi 
HI7 dS Ai2' 

We now follow the same procedure« as in (A9) and the first integral 

becomes 

ikR 

JJ   JJ 4ffß       R' n.R/ 

_ff ^(1.lkhMQ.- + H<f> 
C-oJJ  4r n-»o    2 

(At 3) 

The limiting form of the second integral in (A12) will be written in 

the abbreviated form as 
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Hi' -1\ S-A 
(A14) 

Hence, the integral equation becomes 

PCZ ) - ~r~ +  iJ * 35 
a
iklz' - il 
4rt|y_    - z\ 

dS (A15) 

which is the same as (11). 

We return now to the field of a dipole layer at the point 

z    = 2   + »B 

*<*'> ■ l\ *<*> Iij4^ [ds 
(Al 6) 

where R = z    - _£. We take the gradient in the n direction at z    and 

then take the limit as z' -* y',  assuming that the limit exists, 

. K   Mm 
q(y ) = /  / 

Ml') 
on' 

Aim 

"«V 
ikR^ 

on V 4*R / 
^H^(^ )iS 

Mm  (T . , d* feikR N Je 

ön ön 
(A17) 

And by repeated use of (A2) and (A3), 

, '. _ Äim  (T ^ 
ikR 

z -*£ 4*R* 

{(3ik - | + kaR)(n.R)(n'.R) - (ik - |)(n.n')j dS      (Al8) 
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In fact, the gradient of the field of a dipole layer Ü5 continu- 

ous as the field point crosses the dipole layer.  Thus, the limit of (Al7) 
3 

exists and is unique.  A rigorous proof of this result would be long and 

ted;"ous to develop; thus, it will be omitted.  However, the result shojld 

be plausible because the dipole layer may be considered as the superposi- 

tion of two monopole layers, + 0"(y) = + u(vj/d, of equal amplitude but 

having an opposite sign and being displaced an infinitesimal distance d 

apart.  The gradient of the field due to each monopole layer has e  dis- 

continuity at the surface, as given in (A9); however, in the combined 

field the two discontinuities cancel; therefore, the gradient of the field 

of a dipole layer has no discontinuity at the surface. 

Hence, an appropriate integral equation for |i(y_) when q(yj> is 

specified can be stated in an abbreviated notation by 

I 

q<z') -*JJJ*C2>^J 
eikll' - ill 
4*|v/ - .vj_ 

dS ai9> 

which is the same as (10), More explicit and detailed forms for the term 

on the right are given by the right-hand sides of (A17) or (A18), where 

it must be emphasized that the integral term in square brackets must be 

evaluated with R * \z' - ^| before passing to the limit z '  = v/.  However, 

if the surface of integration is divided into two parts, a small finite- 

area A about v^ an^ t^ie  remaining surface S-A, the second part may be 

evaluated with R =\%'  - vj , and no limit is necessary in the second part. 

One derivation of the Helmholtz mrface equation obtained by using 

Green's transformation theoram is given in Reference 15. However, once 

we have established (A7) and (A15) for the fields of arbitrary monopole 

and dipole layers, we can derive the Helmholtz surface equation quits 

simply. We consider the combined field p(y_) * p (v^) + PH(yJ, where 

p (y_) is the field at the surface of a monopole layer with surface density 

minus q(y_) 

.  *(T q(y)eikli " l\ 
?n(l)"     11  7 , / i  ^ (A20) 
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and PJ(V_) is the field at the surface of a dlpole layer with surface 

density p(vj on the positive side. 

Mi' -1 
e,fe') = 

P(Z') 
*\\ 

p3n 4*|y/ 
dS (A21) 

Hence, the combined field is 

pc*')      Krrjaelk,x'" *' -- w 4«|v/  - v] 
dS + IJP^^ 

.ikjx' - zl 
4«jy_    - vj 

dS (A22) 

which is the same as (12), 

The new integral relation between the Heimholt?, surface layers 

p(y_) and q(y_) as given by (13) can be derived by a slight variation of 

this last method. We consider the combined normal gradient at the sur- 

face, q(^_') - q (y_') + qj(v/), where q (2') is the normal gradient at. 

y_ of the field of a layer of monopoles with surface density -q(y_), and 

q,(y_') is the nor.nal gradient at y_' of the field of a layer of dipoles 

with surface density p(y_). Hence by (All) and (A17) 

"  ]]*<*> 3S'| Hz'-ill i{ dS (A23) 

qd(z) - *JJ P(Z) 
0s 

ön ön .   ^\l    - l\. 
dS (A24) 

q(i') 
2 

*rp     > re
tki^' ik|2' - vj 

SJ 
dS 

»   r„lklz' -1\ 
X   " il 

dS 

which  is the same as  (13). 

(A25) 
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APPENDIX B 

CHARACTERISTIC WAVE FUNCTIONS 

The simple homogeneous relations, (22) through (29), that apply 

to the characteristic wave functions can all be derived from the Green 

transformation theorems as applied to an arbitrary external wave function 

p(z) with gradient q(y) at surface point v_ in the direction of the out- 

ward normal n. 

'JJ q(v,)e ik|r 

4*!r - vj 
1\ * 
  dS + JJ p<*> i 

Mi.- ih 
. Hi • i\ 

dS 

= 0 if r = x .31.' 

2 
if r = jr' (32' 

- P(£) if r = z ,53. 

öa       [e
ik\l    " Z! *rr /NO re^iL-iiLLe A *rr , **a   kik! 

I  - II 
dS 

qfr') 
2 (3- 

The first three equations are those we have previously called the 

Helmholtz interior, surface, and exterior equations (14), (12), and (7), 

respectively. Equation (B4) is the new surface gradient equation derived 

in (A25). Note that the integrals in (Bl) and (B3) need not be starred 

because no abbreviated notation is implied. However, the possibility of 

writing the set of equations in this unified notation was the principal 

reason for selecting the particular form of abbreviated notation. 
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We also write similar equations for any internal wave function 

P(x) , with gradient Q(y_) in the direction of the outward normal n. 

»ff Q(y)eikl- " ^1       *rr       ö 
U     %L-l\      dS~    ^P(I)^ 

reik'l - l\ 
4n|r - yj 

dS 

= P(x) if r = x (B5) 

Hi) 

= 0 

if I " 1 

if r = 2 

(B6) 

(B7) 

re
ik!i' -2! 

7 r 
Ml 

dS Hi) 
d2 r.ik!i' - zl 
ön an . Hz    " Zl 

dS (B8) 

Q(l') 
(B8) 

Note that the forms of (El) through (B'O differ in sign from (B5) through 

(B8) only because in the former set, the normal points into the region 

where the wave function p(r) obeys the differential equation without 

singularities; whereas, in the latter set, the normal points into the 

region where there must be some singularities in the wave function P(r). 

If there were no singularities anywhere, P(r) would be identically zero. 

The special relations for the characteristic wave functions of 

the first kind would then result from supplementing (Bl) through (B8) 

with the defining characteristics for functions of the first kind. 

Q^Z) - q[°(z) (B9) 
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i p>"'(z) = o ;B::; 

For example, (22a) through (22c), respectively, follow from substituting 

(B9) and (BIO) into (B5) through (B7), respectively. 

The special relations for the characteristic wave functions of the 

second kind follow in like manner from (Bl) through (B8), plus the defin- 

ing characteristics for functions of the second kind 

Pfa)fc) =pf)(^) (B1J 

Q[
2
\I) - 0 (B12; 

We now show that the homogeneous equation 

a \e
ik\i -ih      p(z') 

>n[ 4«|y' - y| J "JJ^s'^-^—Hds = (Bi3: 

has a solution only when k • i.,  a characteristic wave number of the 

first kind, i.e., only when an internal wave P(x) exists with F(^) = 0„ 

For p(^ ) in (B13) can be interpreted, according to (All), as the field 

at — "* £ °f a special dipole layer u(^) 

P(Z') **JI^ J; . 4*U' - ll 
dS + ü(Z) 

(B14; 

provided u(y_) is taken equal to p(^). Also, the field of the same 

dipole layer as the point £ is approached from the interior region x is 

given by 

P(y') =*Jjn(2) an 4Ä 1   - 2\ 

._  ufc'>  P(Z)  Pfc')  fi ds . __ = __ . __ = o (BI5) 
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In like manner, we show that the homogeneous equation 

*jf \z '-i\ 
dS = - 

P(*') 
(B16) 

has a solution only when k = m., i.e., only when an interior standing 

wave P(x) exists with Q(y_) = (ÖP/än) «■ 0.  First, note that if a solu- 

tion to (B16) exists for a specific k, then according to the Fredholm 

Alternative a solution must also exist to the adjoint homogeneous 

equation 

JJ f<*> 35' 4*U' - zl 
dS = - 

f(v') 
(B17) 

and by taking complex conjugate of (B17), a solution must alsc exist 

to the homogeneous equation 

II'CDS' 
e
+:kl*'--yl ..   Hi)  7 - as -  - —— 

Un\1    -  vj , 
(B18) 

Now, according to (8), f(jr') can be interpreted as the field gradient 

of a special monopole layer <J(^') as 2.    *-8 approached from z. 

'(!') - *II <Kz) tf 
,ik|2' - z\ 
4«U -1\ 

dS - 
"(2') 

(B19) 

provided cr(v_) is taken equal to -f(yj. However, the gradient at jr of 

the internal field P(x) due to this same monopole layer is given by 

Q<Z'> - *JJ •<*> & 
S<-\l   - l\ } t_     0(2')     j     f 

r^iTTxrj**"1""1^"0 (B20) 

' 
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Finally, we show that if Px(£) and pa (z)  are two independent 

solutions of th-i Helmholtz equation with the same wave number k, then 

JJ Px<2) «ta(z) ds - JJ Pad) 1i(l)  ds 

Consider the Green formula as being applied to the two functions Px(z' 

and Pa(z) in the infinite region outside the surface v_ and inside a 

sphere at infinity. 

JJ (Pi<ia " P2qi) dS = jjj (Pi^Pa - Ps^Pi) dV 

= k JJJ (PiPa * PaPi) dV 

JJ Plqa dS = JJ Pi^a dS - JJ Ps^i dS 
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APPENDIX C 

SOLUTIONS TO THE INTEGRAL EQUATIONS 

FOR THE PULSATING SPHERE 

To solve the various integral equations for the pulsating sphere 

it is convenient to firtt calculate values for the integrals of the four 

kernel functions over the surface of the sphere. We take point z'  to be 

outside the sphere at a distance r from the origin at the renter. We 

take R and R as indicated in Figure 1, 

Figure 1 - Geometry of Pulsating Sphere 

and take the element of area to be in the shape of an annular zone with 

dS = 2jraasin 9 d6 = 2«a RdR/r ■ 2JTR dR 
o o 

(CD 

We can now calculate the four integrals M„, D , N . and E . 
o' o' o' o 

»o "I! 
Mi -1\ 
My'- y 

»aa ikRo ika 
JS -   V-r- 2nR dR - -.— sin ka 

«I   4«R    oo   k 
o    o 

(C2) 
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Mi -1\ 
47tJ2   - 2| 

ds" r dr (4sn) s 2rtRodRc 
o 0 

ika          .         e        sin ka      1 , e        cos ka _  (C3) 

«   *rrä felk|z': *! \ =    JJ 3n'[ 4*|v/ - ^1 «-•f*<ffi)i«-* o 0 
0      0 

ika .        e        sin ka      1 e        cos ka :  - -r 
ka 2 

(C4) 

u !»  i3 *rr a; 

an an 4«|y' - y|J      = r-»a|3r" -r_fl dR V W Sa" "   r 

-C*-i).ltaC-'--J,tfO (C5) 

The integral equations (8) through (14) for this problem all reduce to 

siwple algebraic forms in terms of these four values. For example, (13) 

becomes 

q (ka - tan ka) - p (ik - -) (ka - tan ka) (C6) 

or 

q + 2q I * 2p J Mo   x> o    00 
(C7) 

which is the same as (35). The remaining equations of the series, (30) 

through (36), can be obtained in a similar way. 
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