
3 MAC TR-88

SBOUNDS ON INFORMATION RETRIEVAL EFFICIENCY
IN STATIC FILE STRUCTURES

Tarry A. Welch

Jun* 1971

"~Dc

JUN~ 23 Z7

I 3~mZ5 ffA-TMET X
Appvedforpubric releae,
Distribution UnlIhited - I

MASSACH]USETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMI3PIDGE MASSACMUSMTS 0-13

UNCLASSIFIED
S Security Classification

DOCUMENT CONTROL DATA - R&D
(Security claeslifcation of title, body of abetract and indexing annotatlon must be entered when the overall report is classified)

I. ORIGINATING ACTIVITY (Corporate author) 2.. REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology UNCLASSIFIED
Zb. GROUP

Project MAC None

3. REPORT TITLE

Bounds on Information Retrieval Efficiency in Static File Structures

4. DESCRIPTIVE NOTES (Type of report and lnclueJve dates)

Ph.D. Thesis, Dept. of Electrical Engineering, May 1971
S. AUTHORIS) (Ladt name, first name, initial)

Welch, Terry A.

6. REPORT OATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS

June 1971 166 19
Ba. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMbER(S)

Nonr-4102 (01) MAC TR-88 (THESIS)
b. PROJECT NO.

9b. OTHER REPORT NOiS) (Any other numbers that may be.
assigned this report)

d.

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

None 3D-200 Pentagon
Washing.ton, D.C. 20301

13. ABSTRACT

This research addresses the problem of file organization for efficient information
retrieval when each file item may be accessed through any one of a large number of iden-
tification keys. The emphasis is on library problems, namely large, low-update,
directory-oriented files, but other types of files are discussed.

The principal analysis variable is item relevance, the probability that a file item
accessed is actually useful, which is a measure of retrieval efficiency. An upper bound
on average relevance is derived, and is found to give useful resalts in two areas. First,
it shows that retrieval eff."ciency is determined primarily by catalog size (amount of
information stored) and user question statistics, with only second-order effects due to
type of catalog data and file structure used. Second, it is used to evaluate various
indexing procedures proposed for libraries and to suggest improved experimental proce-
dures in this field.

14. KIEY WORS

Information Theoiy File Organization Information RKtrieval
Classification Directories Relevanc,
Libraries

DD, . 1473 (M.I.T.)
securltv clas¶iz Ication

BOUNDS ON INFORMATION RETRI1VAL EFFICIENCY

IN STATIC FILE STRUCTURES

Terry A. Welch

June 1971

PROJECT MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cambridge Massachusetts 02139

2

ACKNOWLEDGMENTS

I greatly appreciate the help received from Prof. Peter Elias

in the course of this research. His encouragement, clear insight,

and always accurate cr : s have been most valuable.

I also appreciate the encouragement and support given by

Prof. J.C.R. Licklider of Project MAC.

My readers, Prof. R.N. Spann of RLE and Dr. M.M. Kessler,

Associate Director of Libraries at MIT, were very helpful in formin,

the presentation of the material. Similar help was received from

Richard Marcus and Peter Kugel of Project Intrex.

The preparation of this document has been greatly expedited by

the good typing and spelling of Miss Joanne Knowlton.

Work reported herein was supported in part by Project MAC,

an M. I .T. research program sponsored by the Advanced Research

Projects Agency, Department of Defense, under Office of Naval

Research Contract Number Nonr-4102(01).

3

BOUNDS ON INFORMATION RETRIEVAL EFFICIENCY
IN :STAT!C FILE STRUCTURES*

Abstract

This research addresses the problem of file organization for
efficient infornp?*ion retrieval when each file item may be accessed
through any one of a large number of identification keys. The em-
phasis is on library problems, namely large, low-update, directory-
orienteC files, but other '-'pes of files are discussed. The model
used introduces the conc-,, of an ideal directory against which all
imperfect real implementations (catalogs) can 1)e compared. The use
of an ideal reference point serves to separate larguage interpreta-
tion problems from information organization problems, and permits
concentration on the latter. The model includes a probabilistic
description of file usage, developed to give precise definition to
the range of user requirements. The analysis employs mathematical
tools and techniques developed for information theory, such as the
entropy measure and the concept of an ensemble of possible file items.

The principal analysis variable is item relevance, the proba-
bility that a file item accessed is actually useful, which is a
measure of retrieval efficiency. An upper bound on average relevance

is derived, and is found to give useful results in two areas. First,
it shows that retrieval efficiency is determined primarily by catalog
size (amount of information stored) and user question statistics, with
only second-order effects due to type of catalog data and file struc-
ture used. Second, it is used to evaluate various indexing procedures
proposed for libraries and to suqgest improved experimental procedures
in this field.

*This report reproduces a thesis of the same title submitted to the

Dept. of Electrical Engineering, Massachusetts Institute of Technology,
in partial fulfillment of the requirements for the degree of Doctor of
Philosophy, May 1971.

4

TABLE OF CONTENTS

CHAPTER ONE INTRODUCTICN 7

1.1 Intent 7

1.2 Scope 8

1.' The Importance of Information Retrieval
Researcl 9

1.4 Outline 14

CHAPTER T1O SEARCH LENGTHS IN FILE SYSTE4S WITH
DIRECTORIES 16

2.1 A Directory Model 18

2.2 Mathematical Analysis 21

2.3 Implications for Librarians 24

CHAPTER THREE APPLICATION: LIBRARY ORGANIZATION 28

3.1 A Directory Model 29

3.2 A Bound on Directory Fffiziency 39

3.3 Example of a Library 42

3.4 Variations on the Exaunple 56

3.5 Ordering Books on the Shelf 60

3.6 Selecting Attributes for a Catalog 64

3.7 Techniques of Directory Construction 70

3.8 Strategies for Librarians 80

3.9 Defense of the M•odel 84

3.10 Conclusions. 92

5

CHAPTER FOUR MATHEMATICAL ANALYSIS OF FILE
DIRECTORIES 102

4.1 Directory System Model 102

4.2 Total-Recall Example 105

4.3 General Bound Derivation 109

4.4 A Working Approximation
(Right Hand Side) 112

4.5 Retrieval Bounds
(Left Hand Side) 119

4.6 Ordering 123

CHAPTER FIVE CIMMENTS ON FILES IN GENERAL 125

5.1 The Genezal File Search Length
Problet- 125

5.2 Directory Functions 28

5.3 Otner File Organization Techniques 133

5.4 Areas of Further Research 138

APPENDIX A COMBINATORIAL ANALYSIS OF THE
BUCKETING PROBLEM 140

A.l The Bucketing Problem 140

A.2 Search Length Bound 145

A.3 Examples of Bound Calculations 149

A.4 Comparison of File Syutems 151

A.5 General Lower Bounds 156

A.6 Redundancy 159

A.7 Conclusions and Conjecture 161

BIBLIOGRAPHY 163

6

LIST OF FIGURES

FIGURE 3-1 File Model . . 31

FIGURE 3-2 Total Recall Bound for
Example 3.3 46

FIGURE 3-3 Relevance Curves - Limited Attribute
Implementation for Example 3.3 48

FIGURE 3-4 Relevance Curve - Randomly Selected
Attributes for Example 3.3 50

FIGURE 3-5 Relevance Curves - Consolidated
Attributes for Example 3.3 52

FIGURE 3-6 Relevance Curve - Classification
Attributes for Example 3.3 55

FIGURE A-1 Search Lengths on 2000 Items 152

FIGURE A-2 Search Lengths on 106 Items 153

I

7

CHAPTER ONE

INTRODUCTION

1.1 INTENT

This research arose from the conjecture that file access

efficiency is not greatly affected by the methods of file organ-

ization used. A wide range of library catalog construction tech-

niques have been proposed in the literature (such as clustering,

factor analysis, stewiing, automatic indexing), and they all

seem to reach about the same degree of effectiveness. However,

there has been no way to compare these systems and test the

conjecture.

In essence, the research described here consisted of forming

statistically-described data bases (files) on paper, and perform'.ng

retrieval experiments using a variety of file organizations on the

same data. These experiments were performed in equations rather

than simulations, using the statistical tools of information theory.

The use of conjectural data basos, in which correct results are

known in advance, avoids the pitfalls of interpreting the semantics

of user questions, and permits concentration on the questions of

organizing and representing the data.

The results were as expected, showing that average relevance

of retrieved file items (or equivalently, length of file search)

was determined primarily by the absolute size of the file dire.tory,

measured in tems of the information it contained. The analysis

also smrves to indicate the second-order effects due to type of

8

directory used, and identities the parameters which are important

in qauginq file system performance. In general, the value of the

analysis 4s not in confirming the conjecture, but in describing

precisely the conditions under which it is true and the methods

by which best system performance is achieved within these conditions.

The results take the form of a relevance bound, applicable to

a wide range of data bases, relating file retrieval errors to the

size and nature of the file directory.

1.2 SCOPE

The research addresses itself to all forms of information

storage and retrieval, but its application is of imiediate value in

a narrower field. The file problems specifically discussed are:

1. Organizational problems, rather than semantic interpretation.

The questions of determining the meaning of words is

ignored, and only questions of how to store previously-

determined meaninqs are considered.

2. Libraries, rather than data structures. The problems of

interest here are those where the user can access an Item

in the file by any number of descriptions, or partial

specifications of key information. This is distinct from

the typirAl computer-file problem of representing variable-

length, sinqle-key data while achieving economical memory

utilization.

3. Fact retrieval, rather than document retrieval. Present

libraries are reasonably efficient at retrieving documents

9

which the user can name directly, but are rather poor at

retrieving facts irrespectivc of their location in

specific documents. Thu latter problem is the real

challenqe.

4. Static files, with a low update rate. If questions of

high change rates are introduced, further problems arise

which are not really related to the analysis given here.

5. Theoretical systems, rather than specific hardware or

software configurations. Specific details of implementa-

tion are ignored hare because of the confusion they introduce.

Rather, attention Js concentrated on those design problems

which are common to all fMle systems. I
1.3 THE IMPORTANCE OF INFORMATION RETRIEVAL RESEARCH

The basis of need for the research follows from three generally

accepted observations:

A. Present m--ans of access to library information are quite

poor, especially for technical subject matter. The system

works fairly well for document retrieval when the identity

of the document is well specified, but it works rather

poorly for fact retrieval in which the identity of the

document is neither known nor important.

B. Future increases in published information promise to be

substantial, thus overburdening an already inadequate system.

C. Computer technologies and techniques give promise of becoming

economical enough to provide a means for breakinq through

I.

10

these problems, but computerization may require substantial

changes in our information access procedures.

These observations lead to the conclusion that we must completely

re-examine our information storage and retrieval methods in order

to best utilize the new set of economics and capabilities that

computers will bring. In fact, this re-examination is progressing

actively in the information retrieval field in general, and at

MIT's Project Intrex in particular.

Automation of libraries can be broken down into two problem

areas, namely: 1) Storage, the description and filing of infor-

mation, and 2) Interpretation, the analysis of a user's request.

The interpretation question has received intensive study already,

in the form of research in automatic language translation. Since

interpretation is really a question of translating a user's request

into the language of the file system, the developments and conclu-

sions of the automatic translation work are directly applicable.

These conclusions are rather pessimistic; see Bar-Hillel (2) for

example, saying that machine interpretation of language is unlikely

in the near future, if indeed it is possible. A new approach is

now being taken in rc-ri.eval, by providing rapid communication in

place of perfect semantic interpretation, and this approach is the

keystone of Project Intrex. Rather than having the system fully

interpret the semantics of the user, this method seeks to allow

the user to adapt to the semantics of the system, by means of rapid

interaction on time-shared computers. Since this appears to be a very

11

reasonable approach, the interpretation question looks uninteresting

for further theoretical research at this time.

The storage question is quite a different matter. Here the

possibilities of quantitative analysis are good, and largely un-

explored. In particular, the question of file organization will

become a critical one as on-line retrieval is achieved. The bottle-

neck in access to stored information will grow as the result of

two effects: 1) Automation of libraries means the concentration

of data into a single storage unit with very few access ports, as

opposed to the parallel access of library stacks, and 2) the emphasis

on on-line interaction increases the number of accesses to storage,

as compared to batch retrieval where few accesses are possible.

Thus the upcoming use of on-line computers will place a heavy load

on the file access mechanism, and this will become the system

parameter limiting the number of users who can be served.

The interactive nature of coming systems will also change

user operating procedures, and the file organization must change

to fit these new patterns. Batch retrieval systems have emphasized

high recall at the expense of overloading the user with many

irrelevant documents. When on-line, the user will desire very

few documents at a time, particularly since his read-out device has

limited bandwidth. flanual libraries provide very coarse indexing,

because of cost. The interactive user will require more precise and

extensive indexing information, so that he can narrow his requests

down to a few documents, knd computer costs will allow this. Thus,

file organizations must evolve to give qreater efficiency in handling

.I

12

more frequent requests, smaller requests, and bigger attribute sets.

This will require improved knowledqe of the effectiveness of various

organizations, and may require the development of new techniques.

The objectives of this research in files can be summarized in

the form of three sets of questions:

1i. Parameters - What are the parameters by which to measure

the performance of an information filing system? What are

the variables that contribute to the cost of the system?

What characteristics of the document collection are im-

portant in influencing the difficulty of file organization?

Past experimentation in information retrieval has been

hampered at least partially because no one knows how to

measure the value of a system to the user.

2. File Organization - What techniques or file organizations

are useful in organizing computer files? How effective

is the technique of introducing redundancy into the file?

How are directories best employed? There exist many

possibilities of new organizational techniques which show

promise, but are difficult to evaluate without theoretical

help.

3. Classification - What strateqy should be used in selecting

index categories to give the most user flexibility at least

cost? Should categories be disjoint or overlapping; larqe

or small? khen should categories be merged or separated?

The set of index terms to be used is not an inherent property

of a document set, as is often assumed, but is quite open

to manipulation.

Sj1

13

These three problem areas are considered to be approximately

equal in importance. They are recognized to be strongly interrelated,

so the answers cannot always be simple ones.

The theoretical work to date in information filing techniques

has fallen into two schools of thought, Classical and Statistical.

Both schools are working in information retrieval using tools

borrowed from other fields and both schools encounter trouble

because the tools do not quite fit.

The classical school has been concerned with adapting standard

data-processing filing methods (e.g. hash-coding) to information

retrieval, without developing much of a theoretical framework for

analysis of these methods. The major difficulty encountered in

this approach is that most present filing algorithms depend on

receiving the complete description of a requested item, while

information retrieval faces the more difftcult problem of user

requests which are stated in terms of a small and unpredictable

part of the total document description. As a result, the use of

standard filing techniques produces a very expensive system, or

more often an inadequate system.

The statistical school has been concerned with classification

procedures using statistical tools developed in psychological testing

and refined in pattern recognition. This work has been largely

theoretical due to the lack of suitable data bases for experimentation.

This approach has been disaDpointing, probably because of scale

factors. That is, pattern recognition works with objects in the

hundreds, while information retrieval works with hundreds of thousands.

14

Pattern recognition aspires to a 99% or greater accuracy, while

information retrieval is happy with 50%. The statistical classi-

fication techniques concentrate on obtaining the correct class of

a pattern, while retrieval requiris that a document be in a reason-

able class. This corfusion in objectives has caused retrieval

statisticians difficulty in evaluating the worth of their classifi-

cation algorithms, because they are measuring their results against

inappropriate goals.

The differences of emphasis which distinguish information

retrieval from the related fields are really only apparent in an

automated retrieval system. Previous organization and classification

techniques were sufficient in manual systems because the volume of

data was relatively iight, and flexibility was very restricted.

In large file systems with greatly expanded indexing, the unique

aspects of information retrieval become magnified, and it becomes

necessary to evaluate file systems under a new set of constraints.

The appearance of this shift in goals exemplifies the rethinking

which will be necessary as computers find their place in retrieval

systems.

1.4 OUTLINE

An attempt has been made to make each of the chapters of this

document self contained, so that individual sections can be read

without having to understand all other sections. In particular,

the mathematical derivations of Chapter Four may be skipped by the

casual reader.

_ _

15

Chapter Two summarizes the entire work, with other chapters

filling in the details. Chapter Three, showinq library applications

of the mathematical results derived, preceeds the actual derivations

in Chapter Four because knowledge of the applications makes the

mathematics more meaningful. Even non-librarians would do well

to browse through Chapter Three before attackinq the mathematics

followinq.

Chapter Five enters into conjecture about the larger picture

of file access, and cites some partial results as well as describing

possible further research areas. An Appendix is attached which

describes an alternate approach to file analysis which was somewhat

less successful. However, it does provide two key results described

in Chapter Five, and may be interesting to some researchers as a

different conceptual tool.

I

I.

16

CHAPTER TWO

SEARCH LENGTHS IN FILE SYSTEMS WITH DIRECTORIES

The quality of a directory (catalog) in a file system is

measured by how well it narrows the average field of search in

the main file for an ensemble of user questions. An ideal

directory will pinpoint every relevant item in the file for every

user question, while a less perfect directory will supply a longer

list cf items, including some irrelevant entries. A quantitative

statement of expected search length for a given directory requires

an estimate of two parameters:

1) Size of the ideal directory, reflecting the number of

file items and the statistics of the descriptive attri-

butes used to form questions, and

2) Statistics of expected usage, namely the relative fre-

quency of all questions which might I- , • -Ad the

expected recall level (completener, f je•.•c'h) desired

by each user.

Woen these parameters can be established, it can be shown that the

following bound is applicable to a range of interesting file cases:

- in log p . K[H(F)-,,(G)j (2.1)

where: K is a constant !z'endinq on question and file statis-

tics

H(F) is a measure or the ideal directory size

H1(G) is a measure of the size of an imperfect actual

catalog in use, measured in bits of storage.

!I

17

Pn is the relevance of each item retrieved (probability

that the retrieved item actually fits the question

asked by the user).

This gives a lower bound on average -log Pn as a function of directory

size H(G). As directory size gets smaller, the bounding value gets

larger, thus requiring smaller pn (lower average relevance) to meet

the bound conditions.

When the resulting numbers are analyzed, two conclusions appear:

1) The first-order influence on average search length is

simply the size of the directory, directories with low

information content will give poor average search times

no matter how brilliantly they are organized.

2) Variations in directory organization affect search lengt'

through a) more efficient utilization of the bits of H(G),

and b) better matchinq the directory of the pattern of

user requests, especially the level of recall specified.

A third conclusion is that past experimental technique in the

information retrieval field has been inadequate. In comparing

this theory with previous experimental results, it was found that

the experimenters failed to understand all the parameters they

were faced with, and did not hold enough parameters constant to

obtain meaninqful results.

The following pages elaborate on the above theme, describing

the file model used, deriving some mathematical relationshipa, and

applying the results to practical library orqanizations.

I
18

2.1 A DIRECTORY MODEL

The exact parameters of the file model are of some importance,

because this is an area in which previous investigators have been

a little careless, with consequent deterioration of results.

The Question Ensemble. The analysis here is limited to intersection

forms of questions, where a file item is considered relevant to a

question only if it matches all the attribute values specified by

the user. For mathematical convenience, attributes are assumed

to be binary, beinq either related to an item (1) or not related

to it (0). There are r attributes for the file, each of which

the user may a) specify to be 1, b) specify to be 0, or c) not

specify. The 3r possible questions will occur with unequal proba-

bilities, and this distribution is a parameter of the analysis.

Recall Levels. The user will specify how many of the file items

related to his question he wants. Often he wants only one book,

or a representative sample, but sometimes he will desire total

recall (retrieval of every item fitting his description). We

specify this parameter here only by saying that a set of users

favors high recall, low recall, or somethinq in-between.

Ideal Directory. The ideal directory knows the correct relation-

ship between each of the r attributes and the s file items. Thus

every question asked can be qiven the file addressee of exactly

those elements which match the question. This approach has the

19

important feature of eliminating semnmtic interpretation as a

variable in the analysis. It is a' umed here that the user already

understands the attribute meanings, and that the relat.Lon between

attributes and items has already been correctly determined. This

permits concentration on the organizational aspects of filing.

Implementation (Real Directory). Actual library catalogs contain

much less information than an ideal directory. Typically, they

will omit information for some attributes, or will store combinations

of attributes where one description is used to represent all attri-

butes in a group (forced synonyms). The important parameter of

a catalog is how many bits are used to store it; the means of best

using these bits are discussed later.

Directory Output. The directory supplies a search list of all

items which possibly fit the user question. Each item in the list

has a probability, p n of matchinq the question. For the ideal

directory, Pn - 1 or 0, since accurate retrieval is assumed. The

sum of Pn over all items in the list gives a constant, because

the number of items in the file which fit the question is fixed

regardless of what directory implementation is used. Good directories

concentrate the sum of p, in a few items, while poor directories

spread it out over a longer search list. The items in the search

list are ordered according to decreasing Pn, so that the user can

search throuqh the most likely items first and then progress through

less likely items until his recall level is reached.

20

Ensemble of Files. 7b measure the complexity of the ideal directory,

a key assumption must be made. It is that we are dealing with an

ensemble of files, not Just one confiquration. The ensemble is

the set of Possible file configurations which the user might expect

to appear in a given library. While only one such configuration

actually does occur there, the user does not know wh.'ch one that is

until after that information is conveyed to him.

Each possible file has an ideal directory. Not all directories

are equally likely to occur, but the distribution of occurrence

probabilities can be predicted from knoriledge of attribute statis-

tics and inter-attribute correlations. Information theory provides

a handy measure of the variety of possible combinations, the entropy

function, which happens to measure the minimum number of bits

required on averaqe to store the directory.

Thus for a file directory P, given a knowledge of the expected

frequency of occurrence of the various configurations of F, the

entropy H(F) can be calculated. Similarly, H(G) measures the

configurations which an implementation G can take on, weighted by

their frequency of occurrence. The exact value of H(F) for a real

file is difficult to calculate or even guess at. Fortunately, the

value of H(F) used need not be very precise, and in many cases it

is not needed at all as long as H(F) is larger than H(G). H(G)

is more easily measured, being the number of bits used to store the

catalog (a desiqn parameter).

I-i

21

2.2 MATHEMATICAL ANALYSIS

For a limited number of file and question ensembles, a

rigorous statement can be made about the average of log pn"

- Pn log Pn > K[H(F)-H(G)J

where K depends on file and question statistics; and equality

occurs under the conditions that:

a) each item in F has a unique representation in G,

meaning there is no ambiguity in the indexing process

which creates the directory.

b) the members of G can be described without correlations,

which means that the information in G is not wasted

describing inter-attribute mutual information.

Implications. This relation says that a given directory size, H(G),

determines a lower bound on -log pn averaged over all questions

and item configurations. As the bounding value goes up, the values

of F'n (relevance) must get smaller to preserve the iequality. The

averaige value of pn is thus set by H(G) alone, and file organization

can cnly serve to adjust the distribution of pn values amongst

the items.

For user questions desiring total-recall, the best distribution

is to have All non-zero pn be equal, which minimizes the number

of non-zero Pn's (items which must be searched to achieve total

recall). The bound (2.1) can then be solved to show, for simple

cases:

22

total-recall search lenoth > .1- (2.2)

where a - H(G)
H (F)

for the case where each question has an expected

number of relevant items - Pn " 1.

Note that when H(G) is a small fraction of H(F), a typical case,

and the number of file items s is large (say 10 5), search lengths

will be intolerably long on average (say 104 documents).

The file designer then has the choice of redistributing his

Pn values to achieve different system objectives. First, he can

unevenly distribute the pn's so that some items are more probably

relevant then others, but with an increase in the total number of

items having a non-zero p.n Then low recall questions can be

answered with a few -igh p references, giving lower average search
n|

lengths for these questions. This is achieved at the cost of

increased search length for total recall. Second, the designer can

unevenly distribute the pn s over questions, so that some questions

received preferred treatment and the others have very long searches.

This is effective when H(G) is so small that average search length

is intolerably long; at least some questions can be civen decent

handling if the p n's are unbalanced.

The other design decisions available to the file designer

involve makinq sure that the directory bits are used efficiently,

and none of H(G) is wasted. Thid consists of 1) selecting an

efficient codinq so that correlations do not waste bits, and 2) striv-

ing to reach equality in the bound (2.1) by minimizinq the maqnitude

23

of the conditions causinq inequality. None of these results would

surprise an experienced librarian.

File Ordering. An interestinq result of this model and approach is

the conclusion that the ordering of items in the file (shelf

sequence) can be analyzed as part of the directory function. The

information used to determine file ordering is indistinguishable

from information stored in the directory, so H(G) is actually the

sum of these two informations. Thus all the trade-offs in deter-

mining Pn'S apply to the selection of criteria for file ordering

as well as to selecting attribute information for the directory.

Exceptions. The above conclusions are based on a relation derived

for a limited set of file cases:

1) The derivation assumes that attributes are statistically

independent in F and Q, and that each attribute is

described by the same set of usage statistics. If corre-

lations or unequal usaqe occur, then the bound value is

calculated with modified entropy functions: H (F')-H (G').

In H(G'), information is weiqhted differently for each

attributei information put into heavily weighted attributes

is more effective than that put into attributes of lesser

weight.

2) The derivation assumes a particular type of implemen-

tation strateqy to minimize search tinies. This strategy

seeks to minimize attribute correlations in the description

24

of G, which has the effect ot minimizing the number of

attribute ambiguities in G (this is better described

in Chapter Four). I hypothesize that this strategy is

optimal over all F's and Q's, but this has not been

proven. No examples have been found which contradict

this hypothesis, but if they were found, the relation

2.1 would not apply as an inequality but only as an

estimate. Any error in such a case would be second

order for normal file statistics, and the genaral con-

clusions drawn above remain intact (although some of

the cataloging criteria of Chapter Three might be

invalid).

2.3 IMPLICATIONS FOR LIBRARIANS

The above thinking processes put a somewhat different light

on many of the problems which occupy researchers in information

retrieval. The problem of how to build the best possible catalog

actually becomes a problem in trying to figure out what the user

really wants. This is not easy in practice because users have been

so well trained by inadequate present systems that they simply do

not think to go to the library with most of their questions, and

so these questions cannot be counted.

As a sample of how library problems can now be viewed, consider

three issues of interest:

LI

25

1. Attribute Selection. Should attributes be broad.'y defined

short terms (keywords) or more precise terms of less

frequent usage (subject phrases)? Given that the same

amount of catalog information is gat'iered under each

system, the difference is only that:

Short terms give a little information for a lot of

items, minimizinq the lenqth of hiqh-recall searches

but not giving any preference to low recall searches.

High precision terms serve a narrower field well,

giving very good relevance in a few cases (benefiting

low recall questions) at the expense of little help for

total-recall questions.

No particular attribute prtcision level is the right one

for all systems, for user recall patterns must decide

this issue.

2. Clustering. Clustering usually takes the form of grouping

ideal attributes into a set which can be represented by a

single composite attribute (typically the union of the set).

This is a useful form of information reduction which brinqs

the amount of data down to the level that can be stored

in the catalog. It serves to create lower-precision

composite attributes so that high-recall searches are aided,

at the expense of low-recall searches. It serves to com-

bine correlated attributes so that directory entropy is

used most efficiently. These virtues, however, occur to a

limited extent, and existinq clusterinq alaorithms probably

.1

26

approach the theoretical limit of clustering effective-

ness.

3. Thesaurus. A Thesaurus is an additional means of putting

information into a catalog, and one which is a convenient

form of coding information from semantically similar attri-

butes. It is useful to A) extend the range of attributes

which were only partially indexed over the document set,

and B) to give entry to attributes otherwise not appearing

in the catalog. As an optional tool to use when reaching

for high recall, it can only improve relevance. When

building a system, however, the thesaurus must be compared

against the alternate possibility where the same time

and money is put into just adding more index information.

Experimental Procedures. The experimental work performed to date

in information retrieval research has not lived up to expectations,

partially due to careless experimental technique (detailed in

Chapter Three). The parameters of the experiments have not been

adequately defined, with the result that too many parameters are

varied at once, and ncthing is learned. The principal fault

observed was where two indexing languages were compared in trials

where the two directory sizes were unequal, and the language blessed

with the larger directory is always found to be "the best". A

second error mode is to compare two languages which give different

relevance distributions (one favoring hiqh-recall questions and the

I

27

other favoring low recall), and conclude that one is superior when

in truth they are equal but adjusted to different user question

ensembles.

Library Strategy. The obvious conclusion of the bound derived

here (2.1) is that libraries can be improved only by great additions

of index information to cataloqs. This approach, however, has its

drawbacks. First is the problem of search time through the expanded

catalog. Second is the cost of indexing, which is probably pro-

portional to H(G), and is prohibitively high. The possible solution

to both these problems lies in computers, through fast search of

machine-lanquaqe catalogs, and through automatic indexing. It may

be a while before this is an ec)mical solution, however.

The advent of computers in retrieval will shift the emphasis

in file organization. As interactive computer systems are better

utilized to overcome the semantic problems of user question inter-

pretation, the demands on the file will shift to lower-recall

question distributions, requirinq a different approach to attribute

selection and utilization in the catalog.

28

CHAPTER THREE

APPLICATION: LIBRARY ORGANIZATION

The problem of the library is that it is effective for document

retrieval but not fact retrieval. Most of the subject topics in

the general literature do not fall into simple subject categories,

are not confined to well-indexed reference books or collections,

and are not described by a few source documents. For example, the

topic "theory of file organization" is related not only to libraries,

computers, and information theory, but also linguistics, matrix

theory, and chemical abstracts. The user who needs information

about such dispersed topics faces virtual exhaustive search of the

library, so he takes his questions elsewhere or leaves them unasked.

How do we provide users access to all the information in a

library? How can a user find a fact in a document whose title does

not describe or even imply the existence of that fact? What form

of catalog or classification mechanism is necessary to provide

flexibility in user specification of his information needs?

Numerous workers in the field have suggested file organization

or information classification procedures which purport to attack

this problem. Virtually all these systems are untested, because

there exists no convenient means to compare them or predict their

usefulness in a real file. The resulting confusion is increased

by the failure of the researchers to define the exact problem they

are solving, and indeed no two of them seem to be working on quite

the same problem. A prerequisite, then, for analysis of these various

I ___

29

organization methods is a careful understanding of the problem and

its parameters.

To this end, this chapter builds a model of a file and its

access procedures, with emphasis on providing the user extensive

flexibility in specifying questions. The subsequent mathematical

analysis describes the trade-offs available in file urganization.

The results are used not only to compare the theoretical value of

the various information organization schemes but also to criticize

experimental work in the field.

3.1 A DIRECTORY MODEL

The following pages describe a model, which hopefully is more

than a mere exercise in formalism. I claim that the following

model is not only an adequate one, but that it precisely identifies

the critical parameters of the file system. While some of the

simplifications may seem arbitrary, they were necessarily chosen

to achieve the best problem understanding with the least analytic

complexity.

The detailed discussions which justify specific d'cisions made

in the model have been segregated to the end of the chapter, in

Section 3.9. The reader is encouraged to refer to this material

if sace aspect of the model is unsatisfactory to him. If the

decisions made do not seem unusual, then the page references given

can be ignored.

We view the library system as beinq a set of documents serviced

by a catalog (called a directory). Each item has an identification

30

number (generally describing its physical location in the file),

and the directory serves to suggest those items (identification

numbers) which may satisfy a user question. Figure 3-1 illustrates

this model, The user specifies a request, receives a list of

suggested item numbers from the directory, and searches through

the suggested items until his desired facts are found. The size

and composition of the directory are the parameters of interest in

the following discussion.

User Questions (Input to the Directory). To calculate search times

in the file, we must specify exactly what :ange of questions users

will ask a particular library. Failure to make this specification

is a common weakness in file organization research.

A. Intersection Form - This model will be limited to questions

formed by the logical intersection of attribute values.

That is, a file item is relevant to a question only if

it matches all attribute values specified. This form of

question seems to be representative of most question types,

and it is more easily analyzed than the rest (see page 87

for further discussion).

B. Number of Attributes - The user will select from a range

of r available attributes which describe the document set.

This set of r attributes is assumed to be large enough to

allow any user to accurately specify his question. The size

of r determines the user flexibili%.y in accessing the file,

for as r increases so does the number of different questions

LL_____

31

USER REQUEST

-- 1 - 0 1 1 - 4 - USER

r ATTRIBUTES

DOCUMENTS

DIRECTORY ITEM # 1
(CATALOG) ITEM # 2

I TEM
IDENTIFIERS ITEM bn

1062

#0047

* ITEM # S
4921

SEARCH LIST FILE

FIG.3- 1 FILE MODEL

It

32

the user can ask. For interesting cases, r will be very

4 6large, on the order of 10 to 10 . The number of attributes

actually specified by the user in a question is much smaller,

on the order of 2 to 20 (see page 89).

C. Binary Attributes - It is assumed that an attribute either

is or is not related to a file item, with no in-between

cases. This restriction is made for the purposes of sim-

plicity, and does not affect the nature of the results

obtained. Other forms of attributes (dates, names, etc.)

can be recoded into binary without altering retrieval

performance (see page 86).

D. Choice of Attributes - The attributes may be of any degree

of precision (from very specific to very vague, as indicated

by frequency of usage) itnd may be arbitrarily intercurrelated.

E. Question Statistics - Every possible combination of attribute

values Is a legal question. There are 3r such questions

since ,.ich of the r attributes can be specified as a 1,

or 0, or not specified (labelled 0, or "don't care").

The specification of 0 says that retrieved items should not

have that attribute. Not all questions are equally prob-

abl,:, so some set of statistics will be used to describe

the relative frequency of the various questions. Typical

simple question statistics are specified by saying l)the

user specifies n of the r rittributes each time, with each

of the (r) combinations being equally likely, or 2)the user
n

33

specifies attributes independently, where for each attri-

bute ai there are values P(ai-l) and P(ai-O), such that

P(ai-l)+P(ai-O)+P(ai-0)-l. The interesting point about

such assumptions of user statistics is that they suppose

that all arbitrary combinations of attributes are used.

This conflicts with the tendency in most library systems

to view attributes in a hierarchical structure.

F. Recall Level - Not all users wish to see all documents

which relate to their questions. Indeed a large class of

inquiries seeks only one document out of many acceptable

possibilities. Each question, then, is assumed to specify

a recall level, indicating how many or what percentage of

the relevant items are desired. Some distribution of recall

levels will be assumed, for example saying that each recall

level is equally likely, or that low recall questions occur

more frequently than high recall questions. This parameter

is important because a low average recall makes file

organization much easier.

Search List (Directory Output). The response to a user question

is a list of all items which are possibly relevant to the lequest.

The user searches through these items in the file until his recall

level is reached. Several parameters can be quantified j-. this

process:

A. Relevance Probability (Efficiency) - Each item, b , in then

list has a probability pn. O•pn --l of i•ctually being relevant

34

to the question. For example, a poor directory will pro-

duce a long list of items with low pn's, while a good

directory will produce a short list with higher pn 'a. ni
Most present catalogs do not supply this probability ex-

plicitly for the user, but he is often able to make rough

calculations based on the attribute fit. The value Pn is

a direct measure of the efficiency of retrieving an item

from the file.

B. Item Sequence - Items in the search list are ordered by

decreasing Pn so that the most likely items are examined

first.

C. Relevance Curve - If the various pn's are plotted for the

items in the search list, the resulting curve has two

properties:

a: It is monotore decreasing, by definition of the sequence

ordering,

b: The area under the curve equals the expected number of

file items relevant to the question asked. For a given

question and a given file (document collection) the

area of the curve will be constant regardless of the

directory used.

This relevance curve is a principal analytic tool in the

following discussion. It is not quite the same as, but

very similar to, Salton's recall-precision graph.

!1

35

D. Search Length -'The number of items in the search list

with non-zero Pn is the full-recall search length, namely

the number of items which must be searched by the user.

This is the measure of the cost of accessing the main

file. Average search lengths can also be calculated for

partial recall question sets.

Directory Contents. The directory is modelled at two levels: the

ideal directory, and the actual implementation.

A. Ideal Directory - If we had a perfect directory, it would

contain the precise relationship between each of the s

items in the file and the r attributes of the user questions.

The search list produced would always have Pn's equal to

exactly 1 or 0, with no uncertainty about relevance.

It is necessary to presume such a perfect directory as

an analytic tool to differentiate filing errors from the

semantic errors of attribute interpretation. These two

sources of errors occur, and can be corrected, independently;

but they produce the same system performance degradations,

so some artificial separation is necessary to reduce the

complexity of the analysis (see page 89).

B. Implementation - In a real library, the catalog used is a

subset of the perfect directory, containing less infor-

mation. Consequently it gives uncertain answers where

asked to relate some items to some questions. Typically

the real catalog has less information than the perfect

directory because:

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

36

1. Some attributes have been omitted,

2. Some attributes have been substituted for others not

exactly their equal,

3. Relationship between certain attributes and items have

been added or dropped to make the attributes easier to

store,

4. Some attributes have been clustered together and replaced

by a composite attribute.

Further illustrations of real catalogs occur in Section 3.3.

C. Item Independence - In the perfect directory, it is assumed

that the r attribute values of a given item are not correlated

with the values of other items in the file, given that the

statistical properties of the attributes are already known.

That is, the existence of one item description in the file

does not raise or lower the probability of any other item

description being in the file, Equivalently, any new item

added to the file cannot be better predicted by knowing

the specific existing membership of the file than by knowing

the statistics of the attribute occurrences of the file in

general.

This is not completely true in real situations, for it

can sometimes be said that a library having item X will

almost always have item Y as well as, for example, when

X and Y are two volumes in a set. However, the extent

of inter-item correlation is believed to be quite small,

so the time required to perform a more exact azalysis

I _______

37

would not be warranted. Further, it seems likely that the

existence of inter-item correlation would not alter the

general results derived herein (see page 87).

D. Information in the Ideal Directory - We assume that the

person using a file knows the statistics of attribute

occurrence in the subject area, but does not know which

particular items appear in the file. Then the ideal

directory contains the information saying which items

actually do appear, and this can be calculated as the sum

of the informations needed to specify each item (since

the items are assumed to appear independently). That is:

2
H(F) Z Z H(C)

znml

and

2r

-H(Cn) -E p(cm)log p(cm)
M=1

where H (F) - entropy in the .Ae F

H(C n) - entropy of the conftgurations of item bn

p(%) - probability of an item taking an attribute

configuration c , where cm is one of the 2 r

possible configurations in C.

This entropy can be calculated on an attribute basis as well:

r
H(F) <_ H(a.)

i-i1

38

where -H(ai) - P(ai-l)log p(ai-l) + P(ai-O)log p(a i.).

The equality holds for H(F) if the attributes happen to be

statistically independent in the file.

This entropy, H(F), is the minimum number of bits needed,

on average, to store the ideal directory. It gives an

accurate measure of the difficulty of accessing the file,

as will be demonstrated below.

E. Information in the Implementation - The actual catalog used

will, in general, be much smaller than the ideal directory.

This implementation is called G, and has entropy:

H(G) < number of bits in catalog,

with equality when the catalog bits are

efficiently used, namely equally likely

one or zero, and independently chosen.

It is the measure of cost of building the catalog (see page

90).

In general, H(G) will be broken down on a per-item basis,

similar to that of H(F):

5

H1(G) Z Z H(En
n-l

and

-H(En) - E p(eklog P(epk
k

39

where H(G) - entropy in implementation G.

H(E n) - entropy An the configurations representing bn'

p(ek) - probability that an item is represented by

implementation conEiguration ek.

In summary, the moSL important aspect of this model is the

definition of an ideal directory. This serves to bypass semantic

interpretation problems which also contribute to retrieval errors.

However, no ideal directory of a real file is available for experi-

mentation. Therefore, we experiment with a range of hypothesized

ideal directories, to study the effects of different implementations.

3.2 A BOUND ON DIRECTORY EFFICIENCY

For the above model, the following result has been proven true

for all questions and all files (see Chapter 4). For any item:

-Pn lgpn I(Q#;CjE)

averaged over all questions q in Q and item

configurations c in C,

where # is the event that, for each q, the item

b fits the question.n

This relation takes a great deal of explanation. The left-hand

side gives a restriction on relevance curves which affects the shape

of these curves, and it is a measure of the retrieval error in the

system. The right-hand side says this: If an item bn is known to

fit a question q, how much more doze t•his tell me abeoil b than I
n

already knew from the directory?

40

While this relation is precise and general, it is not directly

meaningful and must be further interpreted for special cases. For

the case where:

1) All attributes are described by the same statistics, both

in the file and in user questions (i.e. pQ(ai- 0) is constant

over i, etc.),

2) Each item configuration has a unique representation in E,

H(EIC) a 0 (no ambiguity in the indexing process), and

3a) No correlations exist in E (a desirable system design goal,

described later), or

3b) Questions are specified with attributes taking on values 1

or 0 equally likely, and independently,

the relation can be rewritten (details of derivation omitted here):

-Pn log Pn - K(Q,F)[H(C)-H(E)J

where K(Q,F) is a constant determined by question sta-

tistics and file statistics, but not implementation

statistics;

K(Q,F) is determined by:

-p(#)log p(#) - K(Q,F).H(C).

File cases which do not fit the above restrictions can be viewed

as variations on this basic case:

1) If some attributes are accessed more frequently than

others, or have different probabilities of taking 1 or 0

41

values in Q or C, then the various attributes will be

weighted differently in the computation of H(E). That is,

information put into the directory should be put in the

most-used attributes first, etc. The H(C)-H(E) term is

still valid in form, but information for some attributes

is weighted more heavily than others.

2) If items are not uniquely represented, then H(E) is in-

efficiently used, and the relation becomes an inequality

giving a lower bound on -p log pn"

3) If E can have correlations, and Q is not symmetrical in 1

and 0, then a more complicated situation exists. Generally,

both of the previous conditions occur, namely attributes

become unevenly weighted and the relation becomes an in-

equality, lower bounding -pn log Pn" The inequality has

not been proven rigorously, but appears true for all useful

file situations (Chapter Four discusses this). Whether or

not precisely true for all file situations, the inequality

makes an excellent working tool, to be used throughout

this chapter:

-pn log pn > K(Q,F)[H(C) - H(E)]

From this bound, several observations can be drawn. "Tte H(C)

term is given by the user demands on the system, being defined by the

set of attributes which the user would like to use. The H(E)

term measures the effectiveness of the catalog in meeting the user

needs, and should be made as large as possible as an objective in

designing the catalog. Two lines of analysis are provided by the bound:

42

1. The first-order measure of catalog effectiveness is purely

in the relative size of H(C)-H(E), namely in the adequacy

of the catalog in terms of its absolute size. All catalogs

of the same size, and of reasonable construction, will

produce about the same effectiveness in file access efficiency.

2. The details of creating a catalog are concerned with

approaching the lower limit of the bound as closely as

possible, consistent with fitting the needs of the user.

This is discussed at length below.

To give more concrete details of what the bound demonstrates, a

specific example will be examined at length.

3.3 EXAMPLE OF A LIBRARY

Presume a file system having:

Documents: one thousand a - 103

Attributes: one thousand r - 103

Attributes per document: 250 P 14

Questions: All attribute combinations such that p(#jq) - .016.

That ia, all questions used have an expected value of 16 items

-hich will be retrieved. Each question will have 3 attributes

specified te. have value 1, with each of the r attributes appearing

equally often:

p(ai-l) - 3 x 103

p(ai0O) - 0

p(aiW]) - 1 - 3 x 10-3

43

Explanation. This example was ted to approximate a real library

situation, but with numbers chose., so that the resulting output

curves are clear and meaningful. A real library would probably have

more items, more attributes, and a smaller p.

Assume that this is just a set of books, with a very extensive

subject classification system. The attributes might also be author's

names, journal names, etc. The books are assumed to have attribute

configurations chosen randomly and independently from the 2r con-

figurations permitted.

The attriLutes of this example will be assumed to be uncorre-

lated. That is, all item configurations having exactly X 1 's will

have the same probability of occurrence, regardless of which X

attributes are involved. I apologize for this unrealistic assump- I
tion, but the example can be made more illuminating under these con-

ditioas. Variations on this example, showing more realistic con-

ditions, are discussed in Section 3.4.

The number of questions allowed is quite large, saying that

each book can, on average, be distinguished from all others by
.250 6

about (2) different questions, or about 106 ways. This is necessary
3

for successful access for the user.

The specification that every question should have the same

p(#* q) is a convenient trick to provide clear results. If a range

of question precisions were permitted, the questions with larger

P(# I q) would have a disproportionate influence on the search length

averages, thus obscuring the results of the example. The results

obtained for constant p(#Iq) questions give useful insight for other

question types as well.

.1

44

Entropy of the Ideal Directory. If the r attributes are mutually

independent as assumed, H(F) can be calculated as the sum of the

entropies of every bit relating an attribute to an item. If

correlations existed, H(F) would be smaller.

Hf(F) < r-s.H(P)

where H(P) = -PlogP (1-P)loq(l-P).

3 3 5
H(F) < 10 .10 -. 811 - 810 bits

The exact value of H(F) is not critical, as will be observed

later unless it is close to H(G) (rarely the case).

Implementation Entropy. The entropy of the cc~talog is simply the

number of bits we are willing to prepare and store in constructing

the file syste,. In library catalogs this information may be stored

in Erqlish, not binary, so a little interpretation will be required.

It is a reasonable 4orkinq approximaition to say that a book

can be identified uniquely within a library through about four fields

of identifiers: title, publisher/date, qRelf classification/author,

and subject -erms. If anything, this is being a little generous

to present cat:,, , . Using the rnmbers of the example, the l03

books in the file require that 10 bits - loq210 of info2atic0n be

:upplied to uniquely distinguish one book. Each book that can be

distinguished on four fields thus has 40 bits zif descriptive

information in the catalog. That number does not make an iz.teresting

example, so I increase it by x5 to give:

45

H(G) - s.200 - 2 x 105 bits.

H(F) - 4.H(G).

This is the capacity of the catalog, not necessarily the useful

information content. Poor use of the catalog information can always

decrease retrieval efficiency.

Error Bound. Having determined a file size and a catalog size,

we can compute a retrieval error bound:

-pnlo• pn >p K(Q,F)[H(C)-H(E)]

for p(#) - .016

and H(C) - 811 bits

H(E) - 200 bits I
then K(Q,F) - 12 x 10

"pn log Pn > 12 x 10- [811-200] - .072

There are a large number of solutions which achieve equality

in this bound. Some of the extreme cases are shown here. The

solutions are shown as relevance curves, which give the distribution

of pn'S over a full file.

Total-Recall Bound. Figure 3-2 shows a relevance curve which satis-

fies the pn log Pn bound, and which gives the shortest possible

average search length for 100% recall questions. It says that 355

items must be searched for each question, and there is no possible

.I

46

0.25

S = 1000

0.20 r = 1000

H(G) 0.25 H(F)

" 0.15-

w

z

w
"-J 0.10- THEORETICAL MINIMUMw

TOTAL-RECALL SEARCH
364 ITEMS, Pn = 0.045

0.05- EXHAUSTIVE
(RANDOM) SEARCH

0 200 400 600 800 1000

SEARCH LIST ORDERING (documents)

FIG. 3-2 TOTAL RECALL BOUND
FOR EXAMPLE 3.3

47

catalog of the size specified which can give shorter average total-

recall searches.

The logic behind that statement is this:

355 items at Pn - .045 gives:

a) - Pn log Pn - .201, and .201 x .355 - .071

b) expected numbeir of relevant items: 355 x .045 - 16

No Pn > .045 can fit these two conditions. If, for example, someone

proposed a catalog giving pn- .1 for 160 items, -Pn log Pn - .033
n

being smaller than the -pn log Pn bound guarantees that no such

catalog could be built.

The curve of Figure 3-2 cannot actually be achieved by any

real implementation for this example, although a reasonable approxi-

mation is shown later.

Limited Attributes. One sample implementation consists of a catalog

consisting of 25% of the attributes of the ideal catalog. When

considering all questions asked of the file, this gives a family

of relevance curves, shown in Figure 3-3. That is, if all three

attributes of the question fall within the 25% of the attributes

retained, then perfect access to the main file is possible. At the

other extreme, if all requested attributes fall into the ignored

75% exhaustive search of the file is necessary.

This form of implementation is used to do a good job of access

for a few users at the cost of ignoring the majority. Those users

who can formulate their questions in terms of the 25% catalog attri-

butes will do so, and other users will go elsewhere.

48

1.O0O1FI I II

- 16 ITEMS, Pn = 1,

FOR 1.6% OF QUESTIONS

0.25 64 ITEMS, Pn =0.25,

FOR 14.2% OF QUESTIONS

0.20 S = 1000

r = 1000a3.

U H(G) = 0,25 H(F)
z 0.15

L.U
-J
LUCr

0.10.. 250 ITEMS, Pn = 0.063,
FOR 42.1 % OF QUESTIONS

- EXHAUSTIVE SEARCH,
0.0b FOR 42.1% OF QUESTIONS

i ,I

0 200 400 600 800 1000

SEARCH LIST ORDERING (documents)

FIG. 3-3 RELEVANCE CURVES
LIMITED ATTRIBUTE IMPLEMENTATION
FOR EXAMPLE 3.3

49

Checking the -pn log pn numbers:

Pn - pn log pn % number - p log p
of items

1 0 .016 16 0

.25 .5 .142 64 .0045

.064 .254 .421 250 .027

.016 .095 .421 1000 .040

.C..5

"-pn log pn n .0715

Randomly Selected Attributes. Another catalog approach is to list

32 attributes for each book, randomly selected from the 250 attri-

butes in each case. Thus all attributes would appear in the catalog

but would be related to only 12% of their possible documents. This

produces the relevance curve of Figure 3-4. This density P - 032

requires 25% of the bit storage that p - .250 attributes require.

This curve is well suited for questioners who seek only par-

tial recall on their questions, but seldom seek full recall

(because that involves exhaustive search). Random attribute

selecting is quite easy in practice, for that is what happeni

when authors classify their own documents using a free vocabulary.

Note, however, that random selection of attributes violates

one of the conditions for approaching the bound in the p log p

inequality, namely H(EIC) - 0. With random selection, there are

many configurations (e's) which legally represent any one item,

with a resulting losu of information. Indeed, for this example

50

0.25

S = 1000

0.20 r = 1000
3 ITEMS
Pn 0.225 H(G) = 0.25 H(F)

E. 0.15-

z

w
"j 0.10

89 ITEMSPn = 0.05

0.05V 908 ITEMS

Pn = 0.011

0 200 400 600 800 1000

SEARCH LIST ORDERING (documents)

FIG. 3-4 RELEVANCE CURVE
RANDOMLY SELECTED ATTRIBUTES
FOR EXAMPLE 3.3

51

"-P log pn - .085, indicating that about half oZ the directory

information was inefficiently used.

To achieve a smooth distribution of relevance curves without

such loss of information requires a pseudo-random attribute selection

system, where catalog information is taken from all attributes but

in a predictable pattern. There is little chance of this happening

in a real library.

Consolidated Attributes. Figure 3-5 shows the results of combining

attributes into representative groups. That is, each attribute in

a group is represented in the catalog by the union (logical "or")

of all attributes in that group. This effect is similar to classi-

fication methods such as "clustering" and "stemming", which are just

different methods for grouping attributes. For this axample, I
attributes were grouped randomly, since the discussion of selective

grouping is delayed until later in the chapter.

In this example each composite attribute represents 4 attributes

in union. The compos-te attribute has value zero the 32% of the

time that all 4 attributes it represents are zero, and it is one

otherwise. There are 250 such composite attributes, each with

entropy .90 - H(.32), the total entropy of the system is 225 bits

per item, 10% more than specified. Each attribute specified by the

user thus eliminates 32% of the file items, and only the rest need

be searched. 99% of the time the user's three specified attri-

3but*s fall into separate composites, so that only (.68) - 33% of

the file is searched. 1% of the time, two of his attributes fall

_ _ ____

0.25

S = 1000

0.20 r =i000

H(G) = 0.28 H(F)

C", 0.15

u.i
U
z

w 320 ITEMS, Pn z 0.050,
w 0.10 FOR 99% OF QUESTIONS

468 ITEMS, Pn 0.034,
FOR 1% OF QUESTIONS

0.05
- - --- -

I
I

... I I I I I

0 200 400 600 800 1000

SEARCH LIST ORDERING (documents)

FIG. 3-5 RELEVANCE CURVES
CONSOLI DATED ATTRIBUTES
FOR EXAMPLE 3.3

53

2into the same composite group, narrowing his search to (.68) * 47%

of the file. With probability 10 -5, he will have to search 68%

of the file when his three attributes fall into one group.

Checking these results against the pn log Pn restriction, we

calculate:

-pn log pn - 70.0.

This is about as predicted by the bound, adjusting for the 10%

larger directory.

Small Library. Another approach is to ignore 75% of the library

items when constructing the directory. This gives perfect relevance

for 25% of the books, and exhaustive search on the other 75%.

-•his is possibly a reasonable approach for partial-recall questions,

but is poor for total recall questions. It is what happens when a

small library is formed in a specific subject area, with a know-

ledgeable librarian (the ideal catalog) guiding all inquiries.

Classification. Another approach to cataloging is to use attributes

which are disjoint. That is, within a group of attributes each

item belongs to one attribute or another but never two at a time.

Such disjoint sets are created by overlooking overlaps in documents

and picking one attribute only from each set. (pie Dewey Decimal

System is an example of one disjoint set of attributes.)

54

To achieve this format with the numbers of this example, the

attributes have to be grouped in sets of 22:

45 sets, 22 attributes per set, each attribute is related

to 45 items (18% of its true values). Retrieval for

virtually all questions yields:

For -pn log Pn "11n log pn

6 items .215 .477 2.9

129 items .046 .204 26.3

5 items 0 0 0

all other items .010 .066 56.8

86

This relevance curve is shown in Fig. 3-6.

This p log p value comes out larger than the bound value because

the approach violates the H(;-IC) - 0 condition of the bound. When

an item could fit under several attributes of a single classification

but may be listed under only one, there is ambiguity as to which

one is to be selected. As a result, the directory information is

only about half utilized, gi,;ing the resulting poor retrieval.

Example Sizauary. The clear implications of this example are:

1) With orly 25% of the possible information in the catalog,

typical search lengths involve one-t.hird of the file.

2) As a second-order effect, catalog information coding can

be chosen to adapt the file to user recall needs, reducing

search lengths for partial recall at the expense of length-

ening searches for total recall.

55

0.25

S = 1000

0.20 6 ITEMS r 1000

Pn=0".215 H(G) = 0.25 H(F)

. 0.15

z
5.

0-1

"J 0.10
129 ITEMS
Pn = 0. 046

0.05 8601TEMS
Pn = 0.010

0 200 400 600 800 1000

SEARCH LIST ORDERING (documents)

FIG.3-6 RELEVANCE CURVE
CLASSIFICATION ATTRIBUTES
FOR EXAMPLE 3.3

56

An important observation to make is that tho actual entropy

figures are important for their order of magnitude, not t1,qir

nrecision. Variations of up to a factor of two in calculation of

H(E) or H1(C) do not substantially decrease search lengths. It

would only be if H(E) were very close in value to H(C) that search

lengths would be short and precise calculations necessary.

EcImivalently, variations in directory organization do not

give significant improvement in search length. The file improve-

ment techniques we muit look for are those giving large increases

!.n catalog information content, and this is not a problem of just

information organization.

3.4 VARIATIONS ON THF EXAMPLE

Catalog Size. The best way to observe the influence of catalog

size on search length is to calculate the total-recall search

length lower bound.

Minimum total-recall search - s.p(# Iq)

where - H

H (C)

For the numbers of the above example:

a search length

0 1000 items

.05 813 items

.1 661 items

.25 356 items

.5 126 items

.8 37 items

57

Real Library Statistics. Estimating the size of the ideal d'rectory

for a real library is risky, of course, because it depends on the

level of user interests. Care must be taken not to be biased by.-

the statistics of existing libraries, because users always adapt

their needs to the resources available. No survey of library

users will turn up statistics of the questions from people who did

not bother going to the library because the response would be

predictably poor. Any survey of present library users will always

demonstrate the need for a catalog just slightly larger than the

present one, no matter how limited it is.

Therefore, the imagination must be used. Presume that the

library is indexed about as thoroughly as a book is by its index.

That is, the typical index is taken to be the level of classifi-

cation which would approach %n ideal directory. (It is not

proposed that the book index be used directly, but only that the

number of concepts in a book which should be identified is the

same.)

Presume then a library of 106 items, with 100 attributes

related to each item. With full indexing each attribute might be

related to 1% of the item-. Then:

s-M 106 r = 104 P - .01

H(F) - r's'H(p) - 8 x 108 bits, or 800 bits per item.

Calculating catalog implementation entropy requires some

imagination as well, because it is stored in English, not binary.

It is reasonable to say that a book can be accessed throuqh four

independent fields of identifiers, as was discusved in the example

58

above. With 20 bits required to identify one item from 106, this

implies S0 bits of catalog information per item.

The resulting H(G) - .1 H(F) gives long search times. For

questions which specify one item, p(#Iq) 10-6, average total recall

search has a length of 250,000 items. This .1 fraction between

real and ideal directcries is probably not a bad estimate for many

libraries, but that is just a personal opinion bred in years of

frustration with library usage.

File Correlations. Correlations reduce the amount of entropy in

the file and make It easier to access. For 'he real library example

just above, various degrees of correlation between two attributes

yield the following entropy reductions, where H(p)-.081 bits, P-.01:

Two attributes: Number of Entropy per Bit
Extent of items in item of the savings

Correlation common attribute pair

0% 100 .162 bits 0%

10% 1,081 .159 bits 2%

50% 5,025 .136 bits 16%

90% 9,001 .097 bits 40%

100% 10,000 .081 bits 50%

This almost-linearity between entropy and degree of correlation

is generally true for low-density attributes (P<-!) . Note that it4

takes a high level of correlation to substantially reduce the infor-

mation stored. That is, numerous attributes would have to be virtual

synonyms of each other to achieve the degree of entropy reduction

59

necessary to substantially improve file access (50% or greater

reduction).

More complicated correlations make a smaller contribution to

entropy reduction. For example suppose one attribute is correlated

with four others by that fact that it may appear only when one of

the other four appears. For example, some subject attributes

appear only in four journals, and nowhere else. The entropy of

such a restricted attribute in the library example is reduced from

.08 bits to .04 bits.

Correlations do appear in real libraries, but the information

measure of their magnitude is perhaps smaller than one might think.

An attribute must be restricted to a very narrow range to reduce

its entropy noticeable: an attribute of density p loses half its

entropy only when it has been confined to ,5 of its original area.

For example, for P-.01, if an attribute is known to appear in only

.1 of the library, then it loses roughly half its entropy. Further,

two attributes must be strongly correlated to achieve the same

level of reduction. Based on these observations, I project that

file entropy is seldom reduced more than 50% by correlations, and

that 50% makes a good working value. Even if this 50% reduction

in H(F) could be fully exploited by clever catalog construction,

general search l~ngths would be long.

Question Correlations. A weakness in present theory of files is

the lack of a means for prediccing what questions a user will ask

of a file. Users know about correlations between terms of their

60

sukbject field, and this clearly alters the kinds of queRtions asked.

For bnample, if two attributes are disjoint (do not intersect, as

for example two different dates of publication), the user will

certainly not ask that both attributes be satisfied.

If notable correlations exist in Q, then the values of p(#Ic)

will vary widely over the various configurations. This alters the

strategy in implementation of the catalog. Configurations with

low P(#Ic) are seldom accessed, and should have less catalqg infor-

mation wasted on tnem. Likewise if Q is biased so that some attri-

butes are used more frequently than others, then catalog information

is best spent on the most popular attributes.

The previous bound

-pn log Pn >- K(Q,F)JH(C)-H(E)]

is applicable only to unbiased Q's. With uneven use of attributes,

it is not a linear relation, but one where thei first few bits in

H(E) are more valuable than later bits. It is difficult to generalize

further, for the correlations must be treated as special cases.

Frequently library policy prevents concentration of all catalog

information on the most frequently used attributes and documents.

In such a case, it would be a reasonable approximation to model

the file with no correlations in Q for calculation of search lengths.

3.5 ORDERING BOOKS ON THE SHELF

The discussion to this point has ignored the possibility that

item identification numbers may be related to item content, as when

the items :.ave been ordered by content. The previous calculations

61

assumed randomly selected identifiers, such as when a librarian

sorts books by acquisition numbers or some such thinq. In fact,

the ordering of books cn the shelves of a library is an alternate

form of stor-ing directory information.

For s items in a file, there are s: different shelf orderings.

The entropy of these orderings is about s log s. The number of

different implementations of a file is the product of the number

ci states of the cataloc7 and the number of states of shelf ordering,

so that the entropy of implementation is the sum of catalog entropy

and ordering entropy. The two sources of entropy are indistinguish-

able except that the ordering entropy is limited to s log s bits.

Thq previous calculations considered total implementation

entropy for H(G), so the introduction of ordering serves simply

to reduce the number of bits in the catalog by s log s. In par-

ticular, search lengths based on ordering information alone may be

obtained by setting the catalog to zero and calculating relevance

curves for H(E) - log s.

Techniques. Procedures for ordering items in the file are exactly

the same as those for selecting information to construct a catalog.

Sample possibilities are:

1) Order items by a particular subset of attributes, as when

ordering by author name, journal name, etc. This gives a

family of relevance curves such that some questions are

answered very well, and most questions not at all.

62

2) Cluster similar items into adjacent areas, such as the

Dewey Decimal System does. This is equivalent to creating

a set of composite attributes which are mutually disjoint

(since a book can appear in only one place). This pro-

duces a two-step average relevance curve: each question

has relevant items it, one or two clusters with some

reasonable probability, and the other relevant items

are spread throughout the rest of the file. This approach

gives reasonable results for partial-recall questions,

with no help for t¢'al-recall questions.

3) Subdivision.into smaller libraries is nothing more than

creating macro attributes corresponding to the various

library names, and is just a coarser version of 2) above.

It also benefits partial-recall questions at the expense

of total recall.

Ordering Strategy. In short, when we know how to select information

for creating a catalog, we a' o know how to select information for

ordering the file. The possible deviations to this rule are:

1) Not all information coding techniques which wovk in a

catalog are equally useful for ordering. For the conven-

ience of the user's remembering the code scheme, a system

of disjoint attributes is best for ordering.

2) There is a different economic saving for having similar

items adjacent on the shelves as opposed to having them

adjacent in the card catalog. In general the time cost of

63

looking several places in the file is greiter than the

cost of looking several places in the card catalog, so

shelf ordering should take place on the mest frequently

specified attributes, with the remainder put in the

catalog. If all ettributes are equally likely, t here is

nothing that can be done to take advantage of the cost

difference.

Another observation of interest is that since shelf ordering

is "ust an extension of the catalog, it should not use the same

information. If both systems use the same information, it is just

wasted in one place. A good example of violation of this rule is

the procedure used on library shelves or ordering books within

subjects by author's name. This duplicates card catalog infor-

mation which is also by author's name, so if a user desires a

particular author he can go through the catalog. It has in fact

been my experience that the author-ordering of the shelves is

useless for fact retrieval for this reason. A better alternative

would be to ordei books within subject by date of publication,

for this often is an important attribute not readily searched for

elsewhere.

A second comment of the same nature is that card catalog

subject terms too often are quite similar to ordering classifi-

cation categories, so the subject information of the card catalog

is partially wasted. Card subject terms can probably be chosen to

be independent of ordering subject terms without loss of meaning,

and with an increase of scope.

64

Redundancy. An interesting filing possibility is to buy extra

copies of books and have them appear in different subject areas.

This would reduce physical search time, and help searches which

bypass the card catalog. This happens presently only in the

sense that Juplicate books appear in separate subject libraries

within the same library system.

By having 2s items in the system, there are s 2s.2 ways to

arrange the file, giving about 2s log s bits of information, or

about twice as much as for s items. For reasons which are i.at

clear, not all this entropy can be effectively used to red.ce

catal-g information. Therefore, the 2s log s bits is an upper

bound, and a rather loose one. An exact analysis method for

redundant systems is not known, but an approximation i dis-

cussed in Chapter Five.

However, even with 2s log s ordering bits obtained from a

redundant file, this is still geneu.411y an uneconomical approach.

The equivalent s log s additional bits put in the card catalog

are cheaper.

3.6 SELECTING ATTRIBUTES FOR A CATALOG

Having established a model and some mathematical treatment

of file perforwance, we can use tiese tools to work with some

difficult aspects of file theory. In particular, design of a library

catalog depends most heavily on the selection of attributes to

represent the file information.

65

The objectives in building a catalog are three:

1) Coding efficiency - The information which appears in the

catalog should be efficiently used. An objective in

catalog construction is to miaximize H(E) given the number

of bits available for storage. This involves a) avoiding

correlations between bits, b) using each bit equally

likely 1 or 0, and c) have the bits represent useful

information (H(EIC--0). Of course, these objectives must

be tempered by constraints of practical usage, such as

putting information into English so it can be read.

2) Recall matching - The principal criterion in selecting

cataloging mechanisms is to fit the anticipated range of

user recall requirements. For the discussion here, that

consists of observing whether a particular coding method

favors high-recall cr low-recall questions. Unlike the

efficiency question of 1), there is no right or wrong here,

just a range of trade-offs.

3) Indexing cost - A big cost factor in building a catalog

is the human cost of extracting attribute relations from

the books. I conjecturu that this cost is directly

proportional to the amount of information in the index

data, H(E). This of course ignore* practical considerations

such as whose budget the indexing cost comes out o:. Since

indexing cost mirrors storage cost of the catalog, only the

latter will be explicitly discussed, but this coding effi-

ciency criterion should be understood to carry the %eight

of both costs.

66

In evaluating a range of cataloging methods using these cri-

teria, we will find conflicts, for the criteria are not always

independent. For example, the achievement of a shortest search-

length for total recall often involves less than full utilization

of catalog storage bits.

There has long been disagreement over what forms of attributes

are best used for cataloging books. Generally the argument has been

over which forms carried the most information or most closely

approximated "natural" classificationw of information. From the

analysis above, it is clear that all attribute systems, implemented

with equal care, contain about the same density of information.

Differences between systems lies in second order considerations of

relevance-curve shaping and coding efficiency.

Precision. Should attributes be short "keywords" appearing in

many items (say a density of p<10-2) or long phrases of more limited

appearance (say a density of P-10-3 or 10-4)? This subject has

been mentioned in passing by most authors, and studied deeply by

a few (5, 8). The answer, of course, is that it does not make

much difference so long an the same amount of information is used

in each system. Some differences are;

1) Precise terms are more conveniently coded in English, though

there is less difference in a machine-language catalog.

:n pure information-thaory coding terms, sparse terms are

best coded by simply identifying them when they occur.

1
Frequently-occurring terms (p" j) are best coded as a

67

binary yes or no for each item, but this is more difficult

for the user to interpret and remember.

2) Greater precision terms come in greater quantity for a

given total information, so that the system has more -- mes

to keep track of and recognize. This is an unknown cost

factor.

3) Precise t-ins require a more complicated format of user

questions. Low-precision terms can usually be just inter-

sected to form user questions, but with high precision

terms this yields too few combinations with which to specify

a given document. With high-precision terms the user

requires questions which are more powerful Boolean con-

ditions of attribut -ý, such as unions of intersections,

or best m out of n match, etc. Only with this added

flexibility does he get as much access flexibility as

with simple intersections of low-precision terms.

4) Lower precision terms carry a higher portion of their

information in the zero condition. Thus if users ask

questions with negative attributes (ask for books which

do not contain a specified attribute), low precision

terms are better. However, semantic aspects seem to cause

users to specify only positive associations, so high-

precision terms have a slight advantage.

5) Lower precision terms tend to produce flatter relevance

curves, which favor high-recall questions. Conversely,

high precision terms are specified less often but with

68

greater impact, when used, giving a sharply sloped

relevance curve. This favors low-recall questions, or

can be used to favor some questions over others.

All of these effects are reasonably small except in special

circumstances. The advantage of one form of term or the other

lies very much in the details of the specific customer being served.

Ordering. Should attributes be used which form an ordered disjoint

set (such as Decimal Classifications), or should they be allowed

to overlap (such as key words)? Ordered attributes are cheaper

to store and easier to index for a given number of attributes, but

contain less information than unordered attributes. For a given

level of information, the two approaches are essentially the same,

ixcept for these variations:

1) Ordered terms have a built-in ambiguity because acmue

items could appear equally well in several places in the

classification. This reduces the effectiveness of the

directory because some of tho directory information is

being used to distinguish some items from attributes to

which they actually relate. Other things being equal,

this is an important factor favoring unordered sets of

attributes, because this inefficiency can cause an effective

reduction of up to 50% in catalog effectiveness.

2) Ordered attributes w'11 irnv-.lve more attributes for a given

amount of information, assuming that each level within a

69

ordering is considered to be a separate attribute. This

just affects the complexity of the searching procedure.

3) Ordered attributes are achieved by ignoring certain docu-

ment relationships which conflict with the partitioning.

Thus they do not improve search length for total recall,

as do most systems which spread a given information over a

larger number of attributes. Rather, they give a relevance

curve with less variance. That is, unordered attributes,

fewer in number, answer some questions well and others

poorly, giving a family of relevance curves of widely

varying shapes. Ordering the attributes maintains the

same shape relevance curve, but reduces the variation,

so that all questions tend to be answered equally poorly.

4) Ordered attributes make a good system for arranging items

on a shelf, which is an advantage in some cases, but also

is a source of bias because some librarians feel this

makes them inherently better for all applications.

Correlations. Should attributes be selected which are statistically

and semantically independent, or should correlations between attributes

be tolerated? In theory correlated attributes are as useful as

uncorrelited ones, but in practice there are some difficulties in

efficiently coding the information, especially if it is for human

consumption. For example, at 50% correlation between two attributes,

the way to store them is to represent one attribute conventionalll

by listing its occui~rences, and adding one bit which says whether

70

or not the second attribute occurs also; when the second attribute

occurs alone, it is listed directly. This system is efficient,

but would take some explanation for users of a card catalog. In

general, a catalog is more easily implemented if the attributes

selected for it are mutually independert.

Relevance Threshold. Should attributes be considered as related

to A) those items which are clearly strongly related to the concept

of the attribute, or B) all those items which even hint they are

related to the concept? Where is the threshold of attribute rele-

vance? There is no absolute answer, of course, for this is a

design parameter of the system.

For a given size catalog there will be room for fewer low-

threshold attributes (those which count weak relevance) than high-

threshold attributes (those which count only strong relevance).

Low-threshold attributes produce a flatter relevance curve, which

benefits high-recall questions. They also give greater variance

among questions, because fewer attributes can be handled, although

it is possible that this latter effect will be small (due to corre-

lations which generally occur). Conversely, high-threshold attri-

butes obviously give better relevance for low-recall questions.

3.7 TECHNIQUES OF DIRECTORY CONSTRUCTION

Many researchers have proposed various schemes of creating

library access tools. and it is difficult to compare them. The

general conclusions of the analysis here are that all such schemes

71

will be roughly equivalent, under equal conditions of information

storage, etc. Second-order variations occur, however, and are

discussed here. An important parameter in these systems is their

effectiveness in coding correlated information.

Automatic Indexing. Computer extracted attribute relationships

seem to give potential help in breaking the high costs of indexing.

However, computer programs are unable to comprehend the full context

of a word's usage as well as a human does, so automatic indexing

is less accurate. This can be interpreted to mean that a computer-

generated catalog must contain more raw information to contain as

much useful information as a human-generated catalog, but that is

reasonable or. a cost basis. Thus the machine-generated catalog

will contain more attributes with less information about each one.

This has the previously described effect of smoothing out the

variance in the relevance curve, answering all questions equally

poorly rather than a few questions well and muny questions badly.

As to how much extra attribute information is needed in an

automatic system, that is the interesting question. This is beyond

the scope of this research, but the informational terms given earlier

seem to give a theoretical basis from which to pursue an answer.

It is clear, however, that it may be difficult to come up with a

fair comparison experiment, since the relevance curves resulting from

machine generated attributes will be of different shape than those

from manual indexed systems.

72

Fixed ,.>cabulary. Should indexers work within a fixed vocabulary

of acceptable attributes, or should they be free to construct terms

that Lest describe an item? This is virtually the same question

as the high-threshold versus low-threshold one discussed above.

Free '.ndexinc, 1-""0u:zs more attributes with stronger relevance

(higher threshold), and thus gives less variable relevance curves

which favor low recall questions.

Stemming. Stemming is one of a number of ways of forming a union

composite attribute from several less frequent attributes (14).

(It consists of reducing English words to the root stems, thus

equating, say, computer, computation, and computable.) It serves

to increase attribute coverage with consequent reduction in the

variance of relevance curves and improvement of high-recall per-

formance at the expense of low-recall performance. It is an inter-

esting way, further, to handle correlations between attributes which

appear as linguistic similarities, and thus it gives a partial

solution to coding of correlations.

Thesaurus. A thesaurus is a set of equivalencies between attributes,

so that near synonyms can be used to augment a user request (3).

The thesaur-.:s can be used in two ways: Selectively on high-recall

questions only, or Non-selectively on all requests.

The Non-selectively approach is just an information reduction

process whereby several attributes are unioned into a single com-

posite attribute. It may not be stored quite that way, but that is

73

the effect. If the number of attributes per equivalence class is

not large, then little information is saved this way, assuming

that 1) the composite attribute appears in less than 10% of all

items, and 2) the original attributes were uncorrelated. If the

original attributes were statistically correlated in the data

gathered (regardless of meaning), then the storage cost savings

may be significant. If the original attributes were semantically

correlated (re, Iless of statib'Ci..s), information is actually

added to the system in that the bits stored will be better

interpreted, giving a better approximation to the real system.

This latter effect is most likely when the thesaurus is generated

from outside information, such as by an expert in the field, in

which case it represents a true addition of knowledge to the file.

Using the theory developed here, it is possible to calculate

what level of semantic correlation is necessary to justify includ-

ing an attribute pairing in a thesaurus. For a pair of attributes
-3

of p - 10 , they need be only about 30% correlated semantically,

assuming no statistical correlation, to justify combining them for

a net gain in information. As the size of the equivalence class

increases, each new attribute must maintain about the same corre-

lation level to the entire previous class. For attributes with

larger p0s, greater correlation is required. Since 30% to 40%

correlations are probably frequently encountered in subject attri-

butes in technical fields, this implies that a thesaurus is worth-

while.

74

The effect of a thesaurus on a relevance curve is a flattening,

with greater help given to high-recall questions at the expense of

low-recall 'juestions. Salton has compared systems with and without

thesaurus, and shows relative precision-recall curves on page 130

of his book (3) demonstrating exactly this effect. (His curves

are sufficiently similar to my relevance curves that the general

patterns appear the same for both.) Calculating pn log pn from

his numbers, his thesaurus was not able to capture a high enough

correlation level to achieve an effective increase in useful infor-

mation, for the two results were effectively equal. Thus his

thesaurus approach Vhows how to reshape a relevance curve without

change of system performance level.

If the thesaurus is generated statistically from the attribute

data gathered for the catalog, it represents no new outside data.

It still can have a net positive effect on the useful information

of the catalog, but only if 1) attributes which are semantically

independent also appear as statistically independent in the data,

and 2) attributes which are semantically correlated also appear

statistically correlated in the data. This is a very difficult

set of conditions to identify quantitatively, but it looks lik%, a

tenuous justification for a non-selective thesaurus.

A selective thesaurus is another matter. In this system,

equivalent attributes are employed only when the user-specified

attributes fail to achieve the desired recall. This system is an

addition to the information already in the catalog and cannot fail

to improve retrieval. Even a statistically generated "thesaurus"

75

derived from statistically independent data will only serve to

cause an exhaustive search over a different ordering of the items

(exhaustive search being what has to be done to achieve high recall

in the first place). The extent of information improvement with a

thesaurus depends on semantic correlation levels (see example

of correlation savings in Section 3.4). For example a 50% semantic

correlation correction by & thesaurus augments the useful catalog

information by about 30%, less any stat:.stica! correlation already

found.

In general, it becomes clear that the thesaurus is a useful

tool, and that with the correlation levels common in subject attri-

butes, I would guess it offers savings/gain of perhaps 20-40% over

the simple catalog.

Clustering. A number of researchers (10-18) have outlined proposals

for statistical "clusterinq" methods which serve to determine

correlations between attributes (or between items). Mathematically

this is just an implementation method for creating the thesaurus

described above. Such methods are used 1) Non-selectively to

reduce data by creating classification categories having fewer

attributes than the original data, or 2) Selectively upon retrieval

co expand a user question to achieve fuller recall. Thus the value

of clustering is covered above.

But there are many algorithms for clustering because the full

problem is too big and must be solved by an approximate iterative

procedure. Unfortunately, no one has found a method to e,,aluate

76

clustering procedures to see how close the approximations come to

optimum, or indeed what optimum is. The evaluation is especially

difficult in the information reduction (classification) case

because the clustering process both a) condenses correlated data

(desirable) and b) drops good data (undesirable).

if we could measure the true (correlated) entropy of the original

data, we could apply the pn log pn relationship derived previously

to determine a bound on the iffectiveness of the clustering. That

is pretty complicated, so an approximate a postori test is proposed

instead; Take a few sample attributes and calculate their pair-

wise correlations with all other attributes; then determine what

percentage of this pair-wise correlation is with attributes in the

same cluster; this estimates how much of the statistical correlation

was eliminated by the clustering (correlation within a cluster is

eliminated, while inter-cluoter correlation remains untouched).

While precise comparisonw are difficult, it appears likely

that most clustering programs produce the same results, for efficiency

is generally determined mostly by the size of the cluster, and less

by the fine decisions of now to greup attributes. However, two

questions remain unauswered.

How big should tie clusters be? None of the researchers cited

provide a criterion for selecting cluster size. The answer is not

simple, of course;

1) If catalog storage size is fixed and raw data is limited,

then make clusters larger until the data is reduced to the

point it can be stored.

77

2) If raw data can be expanded, then clusters should be

increased and new attributes added so long a. the new data

is no more unreliable than the original.

3) If no exact sizes are set (the most likely case), then

clusters on n attributes are best when

1
- C, where P - density of attribute relationsn log np

to documents,

and C w percentage cowrelation of

new attributes to previous

members of a cluster.

At this value of n, new attributes added to a cluster cause

more error in interpreting the previous attributes than they add

new information. In most practical cases (correlations of around

30%, say), this occurs when the union of documents related to the

attributes in a cluster (i.e. the number of items related to any

attribute in the cluster) reaches between .1 and .5 of the total

document set (when the composite union attribute reaches a p of

.1 to .5).

What density weighting factor should be used to measure cluster

optimality? I have not yet fouid a student of clustering who recog-

nizes this weighting factor, but it is one of the few interesting

parameters in clustering. For example, consider attribute cluster-

ing: it is desirable to have each document appear (be relevant to an

attribute) in as few clusters as possible. Consider an example:

78

1) A document relates to 80% of attributes in one cluster, and

10% in each of 7 other clusters, or

2) The same document relates to 30% of the attributcs in each

of 5 clusters.

Which is better? It depends on which weighting factor is used. If

a linear weightinq is used 2) is better because only 5 clusters

are counted. If a density-squared rule is used, 1) is better be-

cause of the high density in oie cluster.

Every cluster scheme has this weighting factor in it somewhere,

and every researcher tends to use a different weicjat, being sure

that his choice is the only right one.

The truth lies in the relevance curve. Factors which weight

high density most heavily produce heavily concave curves, favoring

low-recall questions. Weightings which are close to linear produce

fewer total document-cluster relations, regardless of density,

giving a flatter relevance curve and better high-recall performance.

In summary, clusterinci seems to be a reasonable way to reduce

correlated information in a catalog, but again the savings will only

be on the order of maybe 30%, which is small compared to the gain

needed to achieve a really good catalog.

Most clustering algorh.hms appear to give about the same results

from my intuitive comparisons. P'rbp-;ly the best way to measure

the extent of correlation in a data base is to run it through a

clustering process and compare two parameters: increase in attribute

density 0 (information loss), and decrease in total entropy (corre-

lation lobs plus information loss).

79

Bibliographic Attributes. The source of attribute information is

not a subject which can be analyzed statistically. It appears that

information from any one source is as good as from any other source

provided it is consistant, reliable, and understood by the user.

A number of researchers have suggested bibliographic citations as

an attribute set to aid in identifying subject matter (7,16,17).

This seems certainly to be a useful data source to supplement subject

terms, but not to replace thum.

In considering various sources of attribute data, the following

statistical properties might be observed:

1) Does the data source provide a capability to vary attribute

density (P) in order to shift the level of recall emphasis?

Citations, for example, have some difficulties here because

book bibliographies have fixed lengths, with few inherent

means to expand or abridge them. If citations are used,

certainly clustering methods, such as Ivie's (17), must

bz avaliable to adjust P.

2) Does the data source contain correlations which make it

inefficient to store? Before adopting a data source,

some idea of the extent of correlations must be gained to

indicate whether the data is worthwhile storing directly,

or if it needs compaction to reduce correlation and make

it economical. For citations, it is difficult to say

intuitively whether or not biblioqraphic lists will tend

to duplicate one another or have other correlations.

I

80

3) Does the data source provide enough raw data to allow cata-

log construction to come arbitrarily close to complete

indexing? Text analysis indeed permits arbitrarily deep

analysis, but bibliographic citations give a data base of

limited scope. This generates the conclusion that cita-

tions should supplement but not replace subject terms.

Going beyond the statistics, a personal observation can be

made that most attribute sets fail to supply any information about

the quality of a document. Bibliographic data doos contain such

information, and thus it seems to be a promising source of attributes.

3.8 STRATEGIES FOR LIBRARIANS

The mathematics of the derivation and application of the rele-

vance curve bound have pointed up specific cataloging pitfalls which

should be avoided.

Indexing Ambiguity. The bound is an inequality, with a condition

for equality being H(EIC) - 0. That is, each item configuration

should have only one possible representation in the catalog. In

library terms this says that there should be no ambiguity in indexing

an item entering the library. If there is uncertainty on the part

of the librarian, then there must certainly be the same uncertainty

on the part of the user when he goes to find the concept represented

by the book. Ideally, the indexing process, whether performed at

the local library or the Library of Congress, should be absolutely

:1

I 81

mechanical in nature, requiring no judgment on the part of the

indexer. ibis is more easily said than done, but it is an

interesting way to restate the goals of catalog construction.

Correlations in the Description of an Implementation. When com-

posite attributes are used in an implementation, the zero condition

of such an attribute says not only that the original attributes

were all zero, but that they were zero together. This fine point

t turns out to cost upward to 30% in efficiency of utilization of

the catalog bits. The problem is that catalog information about

combinations of information is not useful because user questions

tend to ask single attributes alone. This effect seems to appear

to some degree whenever relevance curves are shaped for total

recall, and is just an inefficiency which must be accepted whenever J
flat relevance curves are desired.

The principal affect on the librarian from this obscure effect

is the perhaps obvious advice that when two attributes are corre-

lated in the file, the implementation often should be chosen to

break up the correlation. This is done by putting one attribute

in the catalog but not the other. Then the one which is cataloged

can serve to aid in accessing the other, due to the correlation

between them.

Coding Efficiency. Librarians and programmers are probably all

aware of the basic methods for efficient coding of directories.

Little can be added except to note that, given the present system

82

of listing attribute names directly under each item, maximum coding

efficiency is reached for attributes with lowest p (fewest items

per attribute). This is because no efficient codinq method has
1 -31

been found for moderate density (1 > P > 10) attributes which also

permits easy access to thtj attribute values. Communication Theory's

answer to this problem, difference coding (run-length coding

does not appear applicable.

Likewise, the coding techniques for reducing correlated infor-

mation (various clustering schemes) seem adequate, given the tools

available.

A disappointment, however, is the seeming failure of librarians

to recognize shelf ordering of books as an extension of the catalog.

Thiw ordering is the lowest cost source of access information for

the user, and should be exploited fully. Suggestions of possible

change to better fit this philosophy are:

1. As mentioned above, books within decimal classifications

should be ordered on something besides author name, say

date of publication.

2. The decimal classification needs better explanation to the

user, such as better advertising of the category definitions,

or such as an in-stack thesaurus which tells the user to

"see-also" other semantically adjacent categories.

3. The filing of periodicals alphabetically is a waste of

ordering information, being ambiguous as well as generally

useless. (Does the Journal of the Association for Computing

Machinery come under: "Computing", "Association of",

tI

83

"Association for", "Journal of", or "Journal for"? It

takes me five minutes to find it in any good-sized

library.) Grouping periodicals by subject matter would

extend their usefulness. In fact, integration of period-

icals into the book shelf ordering would seldom slow down

the specific access of either, and would certainly help

the browser.

Frequency of Utilization. Some books are accessed more often than

others, and some attributes more often than others. Clearly age is

the biggest factor in decreased usace, with quality of material

being a smaller effect only because it is more difficult to measure.

In the bound derived above, frequency of use shows i•p primarily in

terms of the weighting on different attributes in H(E). unfor-

tunately the theory of what to do here is weak.

Mathematically, H(E) is best titilized when all available infor-

mation is put entirely into those attributes and documents which

are most heavily used, with all others being ignored. This would

produce characteristics of high relevance for some low-recall ques-

tions, but low relevance for other low-recall questions and all

high-recall questions. It minimizes average search length for

low-recall questions, even though doing some poorly. An extreme

application of this policy contradicts library policy of some access

to all documents. Further, since age is a principal factor in

usage, and because indexing labor is the main cost item in cataloging,

the policy of concentration on most-used books implies throwing out

old index cards, which actually saves nothing. In short, theory cannot

add much to present practice in this area.

I

84

Recall Levels. It is alarming to observe that most libraries have

the same depth of indexing, because it is hard to believe that all

libraries have the same distribution of recall needs. Reference

libraries and local special-subject libraries tend to get entirely

low-recall questions, a'd should have relatively bigger catalogs

with very p.ecise attributes.

Other. So long as implementations are intelligently carried out,

there is no mathematical reason to discriminate for or against

specific cataloging strategies. That in itself is an important

conclusion.

3.9 DEFENSE OF THE MODEL

An important part of any analysis of this form is the model

used. The model must include numerous simplifications and approxi-

mations which can be the source of misunderstanding and controversy.

Approximations were made with two objectives in mind:

1) To strip the problem of unnecessary frills that do not

affect the basic results, and 2) to build a simple example

which can be understood, under the hope that the results

of this example apply to more complicated situations.

The following paragraphs discuss the major assumptions in modelling

the retrieval processes, showing which category each falls into,

and justifying the risks taken in making such assumptions.

85

Non-Interactive Questions. The model assumes the user asks a ques-

tion and gets an answer to that question. The results are measured

relative to the question asked, and not to what the user really had

in mind. The user does not interact with the catalog during its

operation.

This is a two level assumption, related to both statistics and

semantics. The user cannot improve the catalog performance without

supplying extra information augmenting his original question. That

is, a user cannot improve access for a given question through inter-

action. Simply put, the file search length is determined by the

state of the catalog, compared to the number of states available

in the catalog, and the user cannot affect this relationship.

Semantically, interaction can be quite valuable, in that the

response to his original question allows the user to add more infor-

mation and narrow the search. However, this semantic improvement

is exactly the effect we wish to avoid in this file-organization

analysis, for we must separate the statistical and semantic effects

to understand each. This model studies the case of file perfor-

mance within each step of an iterative session, where the user input

is constant for the duration of the step.

Fixed Attribute Set. The model assumes that items are described by

their relation to a set of attributes. This bothers two types of

people:

1) Some people think that items should be described by their

relation to each other. But observe that relationship to

I

86

another item could be considered an attribute for describing

ite••, so this is not a different system.

2) Some people feel that fixed vocabularies cannot describe a

library, because each new item will require new attributes

to describe it. Again this is no contradiction, for the

set of attributes is described only for items in the system,

and indeed aa items are added so also new attributes would

be expected. The ideal cataloq would simply have to include

every attribute related to all its items.

In short, this aspect of the model does not cost generality.

Binary Attributes. The model assumed binary attributes for the

ideal directory. wij.. each attribute either relevant or not relevant

to an item. The true case in real implementations is that two

states exist but they are: 1) relevxait, and 2) probably not

relevant. Observe that real systems are just approximations of

the ideal, and the 1,0 restriction on the ideal case causes no

restriction on implementations.

A more serious problem is that multi-valued attributes must be

considered. These miqht be quantitative attributes such as dates

or book size, or attributes listed in various degrees of related-

ness. The binary assumption was made for simplicity, both of

derivations and examples.

The multi-valued attributed can always be recoded in binary.

however, by simply representing each ttate of the original attribute

by one binary attribute; if the original attribute had Y states it

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

8'

would be replaced by Y binary attributes, somewhat intercorrelated.

Further, I have seen no indication that any statistical argument

used here could not be applied equally well to multi-valued attri-

butes (with perhaps a little more complexity involved). While

the assumption of binary attributes looks quite unrealistic, yet

it seems to cause no loss of generality.

Intersection Question Types. The assumption that questions may

consist of only attribute intersections is a necessary one, but

does cause loss of generality. Better question types will have

unions of intersections of attributes, or possibly best m out of

n matchings.

The intersection case wac studied only as a typical case,

not an all-inclusive one. There is reasonable basis for hope that

the results of the intersection-type analysis will apply equally

well, with scale factors, for more complicated questions. The

findings of Chapter Five give support for the indication that the

intersection questions and best m of n type questions have very

similar search problems.

Item Independence. The assumption that items occur independently

in a file is not true in real cases, but probably is only slightly

off. The analysis performed here could be extended to handle

inter-item correlations, I think, with no chanqe in results. The

resulting arguments would be complicated to the point that they do

not warrant the effort to correct a small approximation error.

I

88

Note that this error is considered small because of the assumption

that the user is fanmiliar with the attribute density statistics of

the library he is using. That is, it is not a question that ,ook A

on physics is correlated in occurrence with book B on physics,' but

rather what is the correlation between A and B given that the library

has (say) 8% of its books related to physics. The appearance vf

one book does tell about the general level of attribute usage in a

library, but it does not say much about the appearance of othor

specific configurations within that distribution.

Exceptions to the item independence assumption occur when:

1) Books are purchased by sets of matched volumes, rather

than the subject content of individual items,

2) The existence of book A precludes the existence of book B

(a rare occurrence), as for example the fact that libraries

do not tend to carry competing brands of unabridged

dictionaries.

The Ensemble Concept. The library is treated here as a random sample

out of the set of libraries which "might have been". This is probably

an alien concept to librarians, who are faced with a single copy of

a library with no random distribution at all.

The emphasis here must be on the user, who does not know the

contents of the library at hand, else he would not ask his question.

The catalog must co municate the state of the file to the user, in

terms to distinguish it from all other files the user might expect.

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

89

This is somewhat similar to the question of coding subject terms

on catalog cards. There is a fixed small set of possible subject

terms used, so the terms tpplicable to each document could be

identified by only a few c.aracters of information. The user,

however, must interpret these terms relative to all attributes

which might reasonably appear on a card. Therefore, the catalog

card lists the terms in English, using much more information than

the few characters "minimum". The difference is just that the

user is coming from a more general framework without previous

knowledge of specific configuratiins in the file.

Ideal Directory. The concept of an ideal directory is a figment of

our imagination which can never be constructed and perhaps cannot

even be described with real numbers. It is used here only as as

analysis tool, to permit conceptualization of otherwise difficult

ideas. It is similar to a reference point used in surveying.

The exact location of the reference point is not very interesting,

but it acts as a tool to show the relative locations of all other

points one to another. It would be nice to produce absolute sta-

tistics describing the ideal directory, but not necessary.

Breadth of Questions. The major variation in this model from some

used previously is the flexibility of questions allowed the user,

namely arbitrary combinations from a larqe number of attributes.

This is based on the consideration that an ideal directory can allow

nothing -ers. More limited sets of allowable questions are the result

90

of poor irmplementations which render most questions unreasonable to

ask.

It has been assumed here that the range of questions asked will

not chanqe to adjust to a particular implementation. In real life

stich adjustment is exactly what will take place. This restriction

reflects the fact that retrieval systems should be measured against

all questions which might have been asked if possible. Any real

system will perform reasonably well on the questions asked it,

for the difficult questions are not asked, and thus it is not

truly tested. A fixed question set Ls a necessary parameter for

system evaluation.

Cost Parameter. The principal cost parameter of the model was

taken to be the amount of information in the ratalog. This reflects

storage cost of the catalog, and also cost of preparing the catalog.

Is indexing cost truly proportional to information content? The

claim that it is proportional is more than an idle hope, but less

than a proven conclusion. In lieu of a proof, I give examples

which support the claim.

Attxibute density, P, affects indexing cost because a rare

attribute need not be considered for most books indexed. The

principal cost of indexing is in judging books which are close to

havinq or not having an attribute, which calls for closer examination

of the book contents to make a decision. Close decisions will occur

more often for hiqh-p than low-p attributes, and indeed high-p

attributes must be decided for virtually every item in a library.

91

Likewise, disjoint attribute sets (classifications) are easier

to index than a similar number of overlapping attributes, just as

the information content is lower. Further, it seems reasonable to

say that the difficulty of assigning an item a spot in a classification

grows as the log of the number of classes to be chosen from.

Of course these are guesses, and it would be interesting to

see experiments which measure the cost of indexing documents into

various attribute sets of the same information content. It would

also be interesting to see how machine indexing costs compare with

the reliability of the results they produce.

Performance Parameter - Search Length. The claim here is that

search length, for various recall levels, is an effective single

parameter measuring performance. Other parameters can be derived

from this one, and will reflect conditions local to a particular

implementation.

Search time, for example, is always proportional to search

length, but has scale factors depending on the storage mechanism

holding the file. Search time would have to include factors

relating to data transfer rates, file bucket sizes, extent of

parallel access, etc.

Response time, the time it takes to find an answer for a user,

must reflect search time as well as the relationship between system

demand and capacity. Queue.ng for resources is a principal component

of response time, which is determined by availability of unused system

92

capacity, but reflects very little on directory construction except

throuqh search lenqth.

Computation cost as a performance parameter has been ignored

here, for two reasons: First, it is difficult to measure meaningfully.

Second, it is not important in most retrieval systems. The latter

condition arises because very little computation is performed in

retrieval systems relative to the amount of storage machinery and

relative to the economics of computers. The big cost item is the

access mechanism in the storage device and the data channel connected

to it.

3.10 CONCLUSIONS

We have performed a set of experiments with hypothetical data

bases and exhaustive question sets. This form of experimentation

permits a variation and isolation of file parameters not possible

in mechanized expcriments. The experiments have served to show the

relatively small importance of some parameters, such as style of

indexing, and the greater importance of such ignored parameters

as catalog size and question set statistics.

The results of this work are typical of information theoretic

work, being negative conclusions. We can say that certain bounds

can never be exceeded, and can usually point out methods which will

not approach the bounds, but cannot prove that some one technique

is better than all else.

These results take the form of saying how not to carry out

retrieval experiments, and that the retrieval problem will not be

fI

93

solved by some simple answer. Sometimes this type of information

is the most valuable.

Experimental Procedures

Much of the experimental work performed in the past has been of

little value because the experiments have failed to hold enough

variables fixed to learn anything. A good experiment must vary

only a single parameter and observe the effects quantitatively.

This has proved hard to do in retrieval experiments because many

parameters were apparently unrecognized.

Catalog Size. Comparison of two different catalog philosophies

is ineffective if the information in the catalog is allowed to

vary as well. The worst example of this is the researcher who

adds new data to the catalog (e.g. a thesaurus) and then finds

that retrieval results are improved. The question of interest is

not whether retrieval is improved or not, for it certainly will be,

but whather such improvement is greater than if the same added

information were used other ways, (e.g. more through indexing

on the existing attribute set). To be effective, an experiment

must show:

a) improved retrieval for a fixed size catalog, or

b) constant retrieval efficiency for a decreased catalog.

1t

94

Question Set Size. Probably an even less noticed experimental

parameter is the nature of the question set available to the user.

If the catalog is augmented by additional attributes, the user

question set is potentially enlarged, introducing some difficult

experimental decisions.

1) If the user includes more information (additional attribute

specifications) in his questions, this makes retrieval

easier, regardless of whether the new attributes are better

or worse than the old (as occurs in (16)).

2) If the user specifiec the same number of attributes as

before, but taken from a larger selection, retrieval wi.1

be more difficult despite the addition of directory infor-

mation; but user flexibility is increased as well.

3) If the user specifies fewer attributes from a larger

selection, his flexibility can be kept constant but the

questions are easier for him to ask (less information

required) and the answers will include more items (prc-

sumably at a loss of semantic relevance).

No one combination is best for all experiments. The important point

is that the experimenter must know what parameters are varying, and

must hold as many constant as possible.

Relevance Variations. Most experiments in directory construction

will consist of comparing two systems having different relevance

curve shapes. Comparing the results of the two approaches is incon-

clusive unless one system is clearly superior. The pn log pn measure

95

provides a means of comparison since it will show which system is

making most efficient use of its information, measured on a common

basis.

A second problem with relevance variations occurs in variation

between questions within a given system. It is possible to build a

low-information catalog which gives good results for a small set

of questions, and this system will look like a winner in l.mited

testing (a consideration in evaluating the Cranfield results (5)).

An important experimental rule is to find out how many questions

receive high-relevance responses, and use the pn log p measure to

compare such a system against one which yields lower relevance for

a much broader range of questions. Experimentally that may be

difficult, so the best useful alternative is to chose a question

set which represents a true cross section of the capabilities of

both systems. It is difficult to prescribe a good general approach

to circumvent this form of relevance variance, but certainly it

should not be ignored as has been the custom to date.

Scaling. A most important aspect of retrieval experiments is the

possibility of performing small experiments to gain information

about big systems. What is the reliability of data gained from a

small data base as extended to a large data base?

1) Statistical Variance - Of course the small data set is more

likely to have extreme combinations of data which give

unreliable results. Any experimenter working with limited

96

data must make careful statistical checks of his reliability,

or must edit his data to exclude extreme conditions.

2) Attribute Set - As a set of documents grows, its decribing

attribute set will grow au well, but probably not linearly.

Catalog methods which are sensitive to the size of the

attribute set must be viewed with suspicion unless well

analyzed. For example, attribute clustering algorithms

may be presumed to require computation time growing with

the square of number of attributes. Other systems which

store combinations of attributes will find square-law

growth of storage requirements (i.e. combinatorial schemes

(9)). It is probably true that a thesaurus or other

inter-attribute linkage system would have to grow at least

linearly and sometimes as the square of attribute numbers.

3) Questioner Needs - The questioner will need to supply more

information if he is to keep his search length constant

as document set grows. Thus question set& will change,

altering the statistics of retrieval. Any system which is

geared to a given question precision will have difficulties

being scaled, (again a problem in (9)). The amount of

information needed to form a question grows as log12, so

perhaps the full attribute set will grow at this same rate.

If user questions are constrained to stay constant as

the library grows, then user recall levels must drop or

larger searches encountered (which the user presumably pays

97

for in some way). This factor is often overlooked by measure-

ment techniques which give relevance and recall only (3),

while hiding the physically important parameter of search

length.

Cranfield Project Results

The Cranfield Research Project (5) is worth criticizing specifically

because, in general, it was a well thought-out and executed set of

experiments. However, when the criteria of this paper are considered,

the Cranfield work is seen to have still a few weaknesses which cast

doubt on the results.

The principal problem is that catalog size was not held con-

stant. Details of cataloq sizes are not available in the published

reports, but estimates can be made in places. A principal conclusion

of the report is that "simple concept" terms (language II) are

consistently inferior to "single word" terms (language I). The

former are multi-word terms having greater precision (lower P).

It seems, however, that fewer "simple concept" terms were used than

"single word" terms, whereas the reverse would be necessary to main-

tain constant catalog size. I estimate that language I had 50%

more information in its directory, so of c ,,se it did better. Other

similar comparisons between languages having differing catalog

sizes always showed the results we would expect.

Other criticisms are of style rather than technique. The

final language rating system used, "normalised recall", is seen to

be a weighted average pn with higher weights for low recall levels.

98

This rather arbitrary measure seems to assume a linear distribution

of user recall levels. No notice is taken of the fact that other

recall distributions might be more likely in real situations. It is

not that I do not like the measure used; it is that I object to it

being considered superior to all other schemes of arbitrarily

weighting recall levels.

Likewise, the recall-precision curves used here (and by Salton)

are sometimes misleading in their presentation of data because they

smooth out important fluctuations. If these curves were differen-

tiated with respect to recall, they would show "precision" (p) for
n

the added items needed to achieve the next level of recall. For

example, in many of the curves shown, the increment from 80% to

90! recall was done at essentially, exhaustive search (i.e. picking

items at random would do as well), balt this is not easily seen as

presented. They also give undue visual weight to the relevance

of the first few documents retrieved; if the first document retrieved

is irrelevant, it affects the whole slope of the curve.

On another point, it was observed that the Cranfield investi-

gators thought it interesting that relevance ("precision") dacreased

with increasing recall, on average. It should be obvious that there

is no other possibility. If the search system has some information

about the relative pn 's of the documents it must search, the most

probable will be accessed first. If no pn information is available,

documents will be accessed randomly, giving a flat precision-recall

curve. Nothing can possibly give a precision-recall curve with

positive slope.

1I

r
99

nhese factors, plus the fact that many of the interescinq

experiments were run on a small data base, lead me to distrust the

Cranfield results. Their approach and execution were good quality,

but the problem is a difficult one.

In general, the important aspect of experimental work is in

defining the parameters of the system and their relative importance.

The theoretical work done here provides a tool for analysis of the

experiments, but more important it shows exactly which parameters

affect search length. This identification seems overdue in the

retrieval field.

Strategy for Library Construction

The basic result of this work in that library effectiveness

is related to the amount of information in the catalog first, and

all other aspects a distant second. If the library is to become

an effective source of information, then, all that is needed is

to have huge catalogs. There are perhaps a few objections to this

approach, however:

1) Catalog Search Time - As the catalog approaches having

as much information as the main file, the problem of

accessing the catalog will become as great as accessing

the file originally. To overcome this, deliberate re-

dundancy must be introduced into the catalog so that all

varieties of questions can be responded to with low search

times. However, this implies a catalog whose size far

____ ___ _______ _____________ _______ ____________________

100

exceeds that of the main file, which is getting out of hand.

That there are no reasonable alternatives to this catalog

explosion is discussed in Chapter Five.

2) Indexing Effort - Indexing is felt by some to be ineffective

beyond a given depth, so where would the information for

an expanded catalog come from? This would necessitate

splitting library documents into smaller units covering

more precisely defined concepts. Thus the growth of

catalog information can occur in number of items as well

as depth of attributes.

The cost of indexing probably excludes this approach in the foreseeable

future, however.

If the catalog size is to remain about as large as it is now,

the present library system is perhaps the best, namely to service

a small number of questions with adequate resulta and let all other

questions find alternate sources of information. The only alternative

would seem to be to exercise some judgment and throw out the 90%

of all documents which are nearly useless, and index the rest in

depth. There are no signs that such discretion will occur soon.

Actually one other hope is at hand, namely to better utilize

interaction with the !ser. If the user can freely add information

to his question as he recognizes semantic ambiguities, he could

narrow most searches notably. This would imply the need for

emkhasks on low-recall relevance, because the user will supply his

own full-recall sear-'hinq through a series of related questions.

101

Catering to low-recall questions is the only way a library can use

limited catalog resources to satisfy a wide ranqe of questions.

Indeed, in an interactive library, response to low-recall

questions must be emphasized because interaction will encourage

users to explore system semantics through numerous investiqative

questions. Perhaps 95% of all questions will be low-recall in

such systems. This implies the need for a very large number of

low-density attributes, probably generated by authors.

4I

102

CHAPTER 4

MATHEMATICAL ANALYSIS OF FILE DIRE •TORIES

This mathematical analysis of directnries employs two con-

ceptual tools of some interest. First, it defines an ideal

directory against which all real implementations can be compared.

Second, it definers in ensemble of directories, reflecting the various

configurations of file data which a file user might expect to

encounter. Then various diroctory construction schemes can be

compared as they perform nn a given ensemble.

A general lower bound on search lengths is constructed, based

on the difference between the information in the ideal directory

and the information in a real implementation. The interpretation

of this bound serves as a guidb in constructing directories and

in measuring their performance.

4.1 DIRECTORY SYSTE4 MODEL

An ideal di-ectory f is defined as a binary matrix having:

r attributes (columns) a1 ... ai a

3 items (rows) b ... bn ... b1 n s

a binary relationship f(ai bn) - 1 or 0

A question ensemble Q is a set of 3r questions q, each composed of:

an r-bit vector of attribute values, each specified to

be 1, 0, or 0 (don't care).

a probability of occurrence pQ (q).

103

Together, Q and f define a file, where an item bn is said to

be relevant to a question q iff for every ai;

f(ai b n) - 1 & q(ai) - 1 or 0

or f(ai bn) - 0 & q(a.) - 0 or 0

Notes. This is the intersection form of question, where an item

must fit all specified attribute values of q to be considered

relevant, and where 'both 1 and 0 in f fit a 0 in q.

The directory is ideal in the sense that ,:he user agrees with

the evaluations of relevance so defined (which essumes that all

semantic problems have been overcome).

The use of f is that whenever an item b is found relevant
n

to a user question q, the item identifier n is returned to the

user to identify the relevant item in the main file.

The ordering of rows of f is determined by the main file,

and this is assumed to be not correlated with the attribute

information.

One restrictive assumption is made here, namely that the items

of a file are statistically independent of each other. This permits

an item by item analysis, which reduces the notational complexity

in the following analysis. This assumption does not affect

generality of the results, for the derivations corld have been

cairied out without it, with a loss of clarity.

Item Configurations. An item can take on a bi'ary configuration c

with probability Pc(c). This defines the ensemble of configurations

104

C, which has 2r members. These prrbabilities are defined by the

user's knowledqe of possible file contents, not by &.,particular

file. The user's uncertainty about an item's configuration is

measured by:

*

if(C) =- C PC(C) log Pc(C) (4.1)
C

The maximum value of H(C) is r, which occurs when attributes take

on values 1 and 0 equally probably and independently within C.

When the attributes have known correlations or unequal 1, 0

probabilities, H(C) < r results.

The ideal directory is just s samples from H(C), so this

defines an ensemble F of directories (files), and an entropy:

H(F) - sIH(C) < r's (4.2)

Implementation. An ideal item configuration c is represented in

the real world by a representation e. There exists an ensemble

E of these e's with each member having a probability of occurrence

PE(e). Thus an entropy H(E) is defined (as in 4.1), which in

general will be smaller than H(C). The probability of occurrence

PE(e) is based on the probabilities of occurrence of the c's it

represents. In some cases, several e's may be alternate repre-

sentations for one c, so exact statements about H(E) must await

the study of special cases.

' Throuqhout this paper, except where noted, log x means loq2x.

105

The representation of an f is defined to be a g, which with its

probability pG(g) is a member of the ensemble G; H(G) - soH(E).

The physical meaning of H(G) is straightforward, being the number

of bits of information used to construct the file directory. If

the directory is a table of values, this bit count is obvious.

If it is a hash-code algorithm, the number of bits in the stored

program (which determines how many different algorithms could be

used) is H(G).

Whenever a particular representation e occurs, this means

that one of the c's it represents would have occur-ed had the

implementation been an ideal directory. For each such e, a con-

ditional probability p(cle) is therefore meaningful. Then H(CIe)

is the entropy of these c's, and:

H(C,E) - H(E) + E p(e) H(Cle) - H(E) + H(CIE) (4.3)
E

4.2 TOTAL-RECALL EXAMPLE

To illustrate the nature and meaning of the derivations con-

structed in this chapter, a simple example is examined first. It

has restrictions on the question set and on implementation tech-

niques allowed, to simplify the mathematics. While the restrictions

may seem harsh, the model does actually fit a number of interesting

situations.

1. Questions:

a) Tetal Recall - every user question is assumed to require

total recall, so every item which miqht possibly fit

the question is retrieved.

106

b) Attribute Values - every attribute has the same fixed

probability of being specified 1 or 0, and all attri-

bute values are specified independently, so:

PQ(a ml) pQ(ai0) -

(4.4)

pQ(ai-n0) - po " 1-Pa

2. Implementations

a) Partition - Only implementations are considered which

partition the set F, so that any one c is always

represented by the same e, and

H(CIE) - 0. (4.5)

b) Representation - only those implementations are con-

sidered which can be represented by an r by s matrix

whose elements are 1's, O's, and O's.

For examples of implementation which fit these restrictions, con-

sider two r-2 implementations:

A. One attribute can be just ignored (with an obvious saving

of storage space), so that, say c2ý-0 and c3=11 are stored

as 10ase , and c -00 and cl-01 are stored as 00-e.2

B. The two attributes can be combined, such as:

co - 00 is stored as 00 - e1

c, - 01 is stored as 01 - e2

c 2 - 10 and c3 - 11 are stored as 10 - e3

(three configurations are cheaper to store than four).

________ _______________ ___________ _________________________ _________ _____________ ___________

107

Items are retrieved whenever the question fits the representation

e, with a 0 in e being interpreted to fit both a 1 and 0 in q. In

example B immediately above, if q - 11 is asked of a file represented

by e3, the item involved will be retrieved whether its true identify

is 11 or 10.

Now we consider the probability of relevance of a particular

item b when it is retrieved through a particular representation e.n

The probability of relevance, pn' is the probability that the item,

when retrieved, actually fits the question asked, averaged over

all questions and all configurations:

If e contains no i's, Pn - 1 (or else it is not retrieved)

if e contains one 0, ir attribute air I
Pn- 1 if ai(q) - 4

Pn " PC (aia) if ai(q) = 1

Pn w Pc(ai"°) if ai(q) - 0
[1 1

Avg.(pn) - lop + Pa Pc(aim1) + 1 PC(aifO)]

- P + 1 pa a 1 - 1

If e contains x O's,

Avq.(p) - 2-

It is more convenient to deal with log pn' so if e has x O's:

log Pn(e) - x log (1 - Pa (4.6)

But now observe that x > H(Cle), because with x O's in e there are

at most 2x c's represented by e; if these are equally probable, then

H(Cle) - x, but if they are unevenly distributed H(Cle) < x

(because log z > log z). Therefore, from 4.6:

108

1

loq p (e) < H(Cfe) log(1 - -- p (4.7)

Averaging this over all e's:

p(e) loq p (e) > - H(CIE) log (1 - pn2aE
1

>- log (1 - H [H(C) - H(E)J

(4.8)

The latter relation occurs because

H(CIE) - H(EIC) - H(C) - H(E)

(which resv.lts frcm taking the average logarithm of:

p(cle)°p(e) - p(elc)*p(c)), and H(EIC) - 0 by 4.5.

Now Equation 4.8, summed over all items retrieved in a file, using

H(G) - s*H(E) and H(F) - s'H(C), gives:
1

n average(log pn) > loq(l - - p) [H(F) - H(G)].
n n 2 a

(4.9)

Simnrle checks show how this bound works. If H(G) - H(F) (the

directory contains all information needed for ideal access), then

average (log pn) - 0, meaning that Pn 1 1 for all items accessed

and that is the mathematical description of perfect retrieval. If

H(G) - 0, then

- < 1)H(F)/s
Pn <- 1- i Pa

This turns out to be (not proven here) the average probability that

a randomly selected item fits a question. It is the level of

relevance one would measure if all items were retrieved randomly

in an exhaustive search of the Zile.

109

This qives a definite upper bound on p. It also helps describe

the trade-offs available in deciding how to allocate directory

information among attributes and items. A principal result here is

that the error level in the directory performance is linear with

the difference between 11(F) and H(G). Further discussion of this

relation appears later in this chapter and Chapter Three.

In s•nmary, the derivation consists of

1) observing how many file configurations are represented

by a single implementation state;

2) Observing that an item must be considered for

retrieval if any of these possible configurations

would fit a given question,

3) Calculating how often the item is erroneously retrieved

because the question fit one configuration under the

specified representation, but another had actually

occurred.

The latter calculations are very dependent on the statistics of the

question ensemble, Q, especially to the extent that Q distinguishes

the various configurations (c's) represented by a sinqle implemen-

tation state (e). The above line of reasoning is developed below

with greater generality.

4.3 GENERAL BOUND DERIVATION

For the qeneral directory analysis, we are qiven:

Q, a question ensemble; q E Q

C, an item configuration ensemble; c C C

E, an item representation ensemble; a E F.

110

Definitions:

* is the symbol for the event that the configuration c fits

q, the question at hand. (# is pronounced "fit".)

P is the probability that item b is actually relevant to q,
n n

within a given implementation:

Pn = p(#Iq,e) - Z p(#Iq,c)p(cle), (4.10)
C

where p(#fq,c) - 1 or 0. (4.11)

Measure to be Evaluated:

The average of log Pn:

Pn log pn E " p(q) p(e) pn log pn (4.12)QE

This measure is not picked for reasons of any hidden significance

but rather because 1) it can be evaluated mathematically, and 2) it

gives interesting results. Other weightings of pn might prove mre

interesting, but probably are much harder to evaluate.

Theorem:

- Pn log Pn I(Q-uC"IE, (4.13)

(The information term is defined by

I(X;Y) - H(X) - H(XIY), (4.34)

and is juwt a short form for expressing differences in entropies.)

Proof: The strategy of the proof in straightforward, in just

expandinq pn and reducing terms when possible. -he tactics are a

little trickier.

LI

111

To evaluate Pn log Pn, we note that

pn - p(#Iqe) - p(#qe)(4.15)
p(qle)

using the identity p(x,y) = p(x),p(ylx) (4.16)

It is an assumption of this model that question statistics are fixed,

and not adjusted by the user to reflect knowledge of the actual

implementation. By this assumpqion:

p(qle) - p(q) . (4.17)

Then usinq 4.17 to restate 4.15, and averaging over Q and E:

Elog Pn - • p(q) p(e) p(#jqe) log P(#gle) (4.18)

QlE p(q)Q E

Now this expression is also valid when E - C, because C is one

possible implementation. Then 4.18 interpreted for C can be sub-

tracted fron the oriqinal 4.18, and the p(q) terms cancel out:

P loq p - Pn(c) log pr(c) - E Z E p(qec#)loq p(#q c)'
n QEC

(4.19)

But p nCc) - 1 or 0 by 4.11, so

pn(c) log Pn (c) - 0, (4.20)

so this term vanishes from 4.19. By the definition of the entropy

function, used on both log terms of 4.19:

"- Pn log Pn HVQ# E) - H(Q#IC) (4.21;

But H(Q#IC) - H(Q#JEC) because the Q# values are dependent on C and

independent of E. Then 4.21 can be reduced by 4.14 to 4.13.

QED

It

112

4.4 A WORKING APPROXIMATION (RIGHT-HAND SIDE)

As it stands, the right-hand side of 4.12 is intelliqible only

to information theorists. For many file cases, it is quite diffi-

cult to obtain an exact expression for I(Q#;CIE) because correlations

between the terms cause severe complications. However, a Qeneral

form can be developed which oives insight into most cases. This

shows in essence:

"- n log pn > K[H(C) - H(E)J , (4.22)

where K is a constant not dependent on E, and equality occurs when:

H(LIC) - 0 , and

H(CIE) - E H c(aiE) (4.23)

i

(a restriction on the correlation between attributes in E).

To show this:

I(Q#;CIE) - H(CIE) - H(CIEQ#) by 4.13 (4.24)

H(CIE) - 11(a1 in CIE) + H(a2 in CIE a1)

+ H(a3 in CIE a 1 a 2) + ... (4.25)

H(CIEQ#) - H(a 1 in CIEQ#) + H(a 2 in CIEQ* a)

+ H(a3 in CIEQ# a a 2) + ... (4.26)

This decomposition is based on simple probability manipulations,

as in Gallaqer (19), paqe 22. We compare the two expressions term

by term. As an example consider the second term of 4.26, expanded

on the possible conditions of a2 in Q:

! I

113

H(a2 in CIEQ# a1) a

E p(E[N2 (e)" Q(a 2 -1)H(a 2 in CIe#al,Q with a2=-!)
E

+ PQ(a2=O)H(a 2 in Cje#alQ with a 2=O)

+ PQ(a02=0)H(a 2 in Cje#al,Q with a 2 =0)]. (4.27)

wh.ere N2 (e) - pQ(a2=0) + pQ(a 2 -1)Pe (a2 1) + pQ(a 2 =O)Pe(a 2 =0)

(4.28)

':he first two terms of 4.27 are zero because a2 in c must have the

same value as a2 in q if c fits q. Thus, for example, when q is

known tn have a 2 w 1, and c is known to fit q, then a2 = 1 in c,

and there is no entropy.

The third term requires deeper analysis. To this end, a

notational simplification is introduced:

H(a2 in Cle) - H e(a 2) (4.29)

That is, H describes an entropy within the c's represented by e.e

Then 4.27 can be rewritten:

H E(a 2I#QaI) I Ep(e)[N 2(e))lp Q(a -)H e(a 2al#,Q with a2=0)E

(4.30)

Now this entropy term can be bounded:

H e(a 2a #,Q with a 2=0) < He(a21a1#,a2-0 in Q) (4.31)

(This follows from the inequality H(Xly) < H(X), which is a con-

sequence of log x > log x.)

114

Equality in 4.31 "curs when H(a 21a #q) is the same for every

q having a2-0. This condition can be reached by making a1a2

independent of the remaining attributes. For a demonstration of

this, consider the relation of a1a2 to a3 :

if H e' a) 1 H e(a2la) (4.32)e'213a.21

then for the question q1 having a 1 for a3 and O's elsewhere:

H e(a 2la #q1 - Hea 21a8,a 3-l) - H e(a Ia) . (4.33)

Lxtendinq this reasoning to other q's shows that independence

between a1a2 and the other attributes in e produces for every q

having a 2-o:

H e (a2I #7) - H e (a) He (a 2a #,Q with a2 0) (4.34)

Thus, the independence condition is sufficient foi: equality

in '..31. Full independence between the attributes in e is not

necessary for equality, however, if Q is so badly correlated as to

not test so~me attribute combinations, but these degenerate Q's

ar3 not of interest here. The consditions of 4.34 also occur, regard-

l1,sl %, when pQ(ai-CO) - pQ(a1-l) for all aiV

It is not cor-rect to substitute 4.34 Into 4.31, so a firm

oound on 4.30 is not directly available this way. However, the

reasoning in-,olved indirates that attribute indep3ndence within e

is a desirable design goal.

For all othei. coaditions, 4.30 is difficult to analyze, so that

the strategy used here is to complete the 1&,alysis using attribute

independence in e, and then discuss possible variations.

115

TInder the conditions of 4.34, 4.27 reduces to:

H(a2 in CIEQ#aI) < E p(e)[N2 (e)]0-pQ(a 2 -')H (a 1 a2) (4.35)
E

Now the N 2(e) terms provide a little trouble because it is

necessary to average their reciprocals. As seen by their definition,

4.28, these terms are essentially independent of e under two

conditions:

1) if pQ(a-0) is close to 1, it determines N,

2) if pQ(,-I) - pQ(a-0), then N is fixed.

In virtually all file conditions of interest, one or both of these

conditions is true, and the variation in N (e) from the average N
2 2

is quite small. In general, variability in N2 (e) does not inter-

fere with the inequality, but the demonstration of this is not

worth the difficulty. Ignorinq the variation in N2 , 4.35 reduces

to (using 4.29):

H(a2 in CIEQ#a1) < N2-1pQ(a 2-0)°H(a 2 in CIEaI) (4.37)

Returning to 4.26, and performing the same process on each term:

H(C!EQ#) - N1 pQ(a 1)H(a 1 in CIE)

+ N2 pQ(a 2=0)H(a 2 in CIE a1) + (4.30)

If the statistics of pQ are the same for all attributes, then the N.1

are constant over i, as are the pQ(a i-). fIhen using 4.25:

H(CIEQ#) < Ni (ai-J)H(C E), and (4.39)

I(Q;CIE) > i Qi H(CIE), from 4.24. (4.40)
N.

116

But, H(CIE) - H(EIC) + H(C) - H(E) (see 4.8). (4.41)

The 11(EIC) term is always positive, and should always be made as

small, as possible by design (meaning that each c is represented

by only one possible e). When it is dropped, 4.40 becomes:

N. - p (ai-0)
i (Q#;CIE) -- NI Q[IIf(C) - H (E)] (4.42)

with equality when H(EIC) = 9, and attributes are independent

within e (4.23).

Working Bound. Thus we get a lower bound on I(Q#;C E) for those

file conditions where:

With H(CIE) constant, H(CIQ#E) is maximized for those E's

which have no correlations within e:

H(ai in Cleraj...ak) - H(ai in Cle) (1.43)

I hypothesize that this condition is true for all files, but this

is very difficult to confirm or contradict. It works for extreme

cases of correlations in Q and C, as well as for the simple case

where pQ(ai.l) - pQ(ai.O). If an exception is found, it will be

with mild correlations, and the degree of error in 4.42 will be

small. For the purposes of all further discussion here, the hypoth-

esis will be assumed to be true.

A second qualification on the derivation was the assumption

that the modifying constants for each attribute entropy term in

4.38 were equal, due to using the same statistics for every attri-

bute in Q. When this does not happen, modified entropy CApressions

117

are necessary, of the form:

H(C') < ZW. H(ai in C) (4.44)
i

where the Wi are weights for the various attributes.

When H(C') and H(E') are thus defined and substituted into 4.42, the

bound holds for the more general case. For discussion purposes,

the normal H(C) is used below, but H(C') should be substituted

for cases where it makes a difference.

Now the theorem 4.13 can be used to arrive at:

Pn log Pn > K°[H(C) - H(E)] (4.45)

The constant K can be easily evaluated by the observation that if

H (E) - 0, pn "(#q):

- p(#q) log p(#fq) > K-XI-C) (4.46)
Q

The bound can be restated in alternate form (equally useful)

by summing over all items:

I5

- p Pn log p >-- K[H(F) - H(G)J, (4.47)
n

This is the working version used for the application discussions.

Interpretations. The principal value of this bound is its quanti-

fication of file access efficiency relative to directory size.

'n addition, several second-order effects, due to assumptions and

inequalities used, Indicate methods which should be used to mi,,:mize

the size of the access error. These aspects of selecting E are

discussee here:

118

1) Correlations in E. Equality in the bound is approached

under the conditions of the hypothesis 4.43, namely no

correlations within the attributes of e. The meaninq

of this is perhaps not obvious, but it simply says that

the information left out of the directory should not be

correlated. For example, if a pair of attributes is highly

correlated (synonyms or antonyms), then at least one of

the pair should be represented in the directory (and the

data for that one can be used to help access the other).

A second phase of this same restriction is that the

directory should not create correlations where none

existed in C. Mostly, this is just common sense and

nothing new. However, a little of this does creep in

whenever a composite attribute is used in a directory.

For example, if a directory stores the union of two attri-

butes rather than the attributes singly, a little of the

representation information describes the pair-wise relation-

ship between them, and is not useful for those requests

which specify only one attribute or the other. This is

discussed further in the next section when _Ile imple-

mentations for total recall are considered.

2) H(EIC#) - 0. A logical design goal is that any configuration

be represented by a unique directury state. Other possi-

bilities result in a waste of dire-)ry information. This

says that a book entering a library should a&-'ways have an

obvious classification with no ambiquity. Otherwise the

indexinc alqorithm needs to be made more sptcific.

I.

119

3) Unequal Usage of Attributes. The conditions which caused

introduction of the weighted entropies H(C') and H (E')

cause some attributes to be more important than others.

To minimize H(C'IE') for a fixed H(CIE), the information

in H(E) should be concentrated in the more heavily weiqhted

attributes.

4.5 RETRIEVAL BOUNDS (LEFT HAND SIDE)

For a given library system, when we have determined an infor-

mation level for the bounding relation, 4.47, retrieval performance

can be bounded by thie p log p term. The bound says that

-Pn log Pn must be larger than t'-. information level determined

by the design parameter of directory size. Large values of

-pn log Pn can be achieved only by making individual pn's smaller.

Thus, a smaller directory (smaller H(G)) causes a larger I(Q#;CIE),

causing smaller pn's, which means that relevance for each file

access is reduced. However, there is some latitude in the form

in which this decreased relevance appears.

The critical parameter is how the relevance error is dis-

tributed amonqst the various items, b 's. First observe that:n

E E p(e) Pn " constant - s-p(#1q) (4.59)
n E

since Pn - p(#*qe)

That is, the number of items in the file which fit q is the

same regardless of how the file is organized. Due to file organi-

zation, the various Pn's may be adjusted, reflecting uncertainty

120

about the exact identity of the relevant items, but the summed

Pn must always give the same expected value. The strategies

for dividinq up p(#fq) are analyzed here according to desired

retrieval performance characteristics.

Total Recall. If every question requires total recall, then every

item with non-zero p must be accessed. To achieve maximum

-pn log pn with fewest non-zero pn's, all non-zero Pn's should

have the same value (equivalent to choosing a message ensemble of

fewest messages for fixed entropy). That is, there would be X

items in the file with p = FX , and s-X items with p a 0.

While this distribution is difficult to achieve in practice, it

gives a rigid lower bound on full-recall search length.

Note that when HME) = 0, K°H(C) - -p(#)log p(#), so

-Pn log Pn >- p(#)log p(#). The only solution to this is pn - p()

and X - s, indicating exhaustive search of the file is required,

as we would expect.

To achieve a flat pn distribution, the information in the

catalog G must be evenly taken from all attributes in F. This

means that every question asked gets about the same amount of infor-

mation from G. Further, the information must be evenly related to

all items, so that no items are left to access by chance. All of

this is achieved if the information reduction by whict, G is pro-

duced from F is achieved by unioning F's attributes into new

composite attributes in G. That is, G will be implemented with many

121

fewer attributes, each having a relatively high probability of

relevance to each item (large P, sometimes P>!).

This lower bound on search length for total recall can be

manipulated to show search length directly whic!h is:

H (G)

search length (total recall) > s*p(#fq) H(F)

For most interesting cases where H(G) is a minor fraction of

H(F) and s is large, these search lengths are quite large, and

often unacceptably so. For the typical case of p(#Iq) - s-
".5

search length is greater than, say, s

An interesting technical problem occurs when attributes are

combined together in the manner necessary to achieve flat pn

distributions. Some correlations enter E in that any bit which

represents a union of other bits will contain information about

relation between bits as well as about the individual bit values.

This multi-bit information is wasted whenever a q is received

specifying only one attribute value from the combination. The

inefficiency involved is often about 30%, although it varies in

extreme cases. Systems which achieve flat pn distributions may

effectively utilize only about 70% of the cataloq information,

but this does not say such systems are bad, just that they are less

efficient than the bound first predicts.

122

Mixed Recall. For many applications, especially libraries, users

do not always want all file items related to their question, but

want "one good book", or a few references, etc. The question

ensemble must include, then, some description of the recall levels

prescribed by the users. For example, each level of recall

might be equally likely, so that a file system must be prepared

to serve a full range of recalls.

For mixed recall, the p(#Iq) can be redistributed among the pn

such that some pn are not too small, while many pn are quite small.

The items with large pn get accessed for short-recall questions,

giving very short searches in those cases. However, total recall

searches are extended, sometimes to exhaustive search of the file.

This form of directory is best accomplished by creating G with a

random (or pseudo-random) samplinq of data from F. Thus, for ony

one question, there will be a few items which are completely described

(relative to that question), and give very good p n's. Most items

will have fewer descriptive bits relative to q in the catalog,

yielding poor pn's. Exact analysis of resulting average search

lengths has not been attempted, but the results would still not give

short search lengths.

Favored Questions. A third approach is to give very accurate

answers for a few select questions, at the cost of very poor search

lengths for most qurdtions. In systems of this sort, users who

wish to ask the evuda'tions for which poor response will be obtained

just take their questions elsewhere, and this greatly reduces average

search lengths.

123

This selective responsiveness is achieved by having G contain

just a subset of the attributes of F. Thus, questions which are

stated in terms of the selected attributes will get very good

service, and other questions will fare less well. Unfortunately,

for H(G) less than half H(F), the number of well-serv.d questions

is quite small, often on the order of i few percent.

The above three variations on Pn distributions sumarize all

options available. Indexing and codinq schemes used in practice

yield some combination of these three effects.

The most important aspect of this discussion of coding tech-

niques is that generally the variations achievable in average

search length are second order ones. The first order effect in

reducing search length is the size of H(G) relative to H(F).

Search lengths can gett quite smal1 only when G contains nearly

as much information as F.

4.6 ORDERING

All the previous derivations assumed that the main file was

ordered (had addresses assigned) by some criterion other than

attribute values. If the file can be arbitrarily reordered, then

for any single state in the directory, there can be u! different

states in the file. Thus for each bit confiquration of the directory,

there are sa g's in G. Then

H(G) < log a! + H (directory),

where equality is reached if the information in the directory is

uncorrelated with the orderinq information.

124

Equivalently, it can be observed that in a file ordered on

attributes, any particular file location b will take cn about

1/s as many item configurations as before ordering, so

H(CIE) > H(CIE unordered) - loq2s.

The conclusion of this is that ordering is part of the imple-

mentation, and H (C) includes ordering information. Thus the

criteria for selectinc information to be stored in the directory

apply as well to selecting ordering algorithms.

1

125

CHAPTER FIVE

COMMENTS ON FILES IN GENERAL

The previous analysis has assumed a directory-type system witi

the main file stored on an item-by-item basis. Are there other

methods of file storage which give shorter searches for equal

storage costs? For specific cases yes, but in general no. But

that remains to be shown.

5.1 THE GENERAL FILE SEARCH LENGTH PROBLEM

Given a file F cf s items and r attributes, and a question

ensemble Q, what is the minimum average number of bits which must

be examined in any implementation to find the items of F which fit

each question?

This is an open prohlem. The best that has been done to date

is some limited bounds on special cases. The information available

from special cases strongly supports the conjecture that presently-

used simple file organizations give near minimum search lengths.

I feel that a theory can be developed analyzing the limits

of usefulness of each bit of an implementation, thereby bounding

the number of bits necessarily examined for each question. This

might be done by the observations.

1) Each bit must be equally Aikely I or 0 for efficient catalog

construction; it can be shown that alternatives always give

lonqer searches.

125

2) The 1 condition must represent the occurrence of a set of

x attribute configurations for a set of y documents; if x

is large, then y is small, and vice versa.

3) F'or each 1 occurrence, further information must be examined

to identify which document within the set of y is being

described, and which configuration within the set of x has

occu.rred.

4) Due to the logrithmic cost of state storege, it is better

to work at the extreme values: one configuration over many

documents or many configurations for one document. Thus,

most efficient storage occurs fcr conventional item-by-item

storage, or inverted files, but not in between.

A few holes exist in this argument so a proof cannot be claimed,

but a few clever insights will probably prcduce a proof of this

nr .,ure someday.

Presuming the argument is correct in o. jective, then it suffices

to study only item-oriented files or inverted files. All present

evidence indicates that if one example is to be studied, the item-

by-item organization is the best such example.

NO-Directory Analysis. The Appendix develops a combinatorial analysis

of direc*oryless item files. It gives a lower bound on search

length regardless of the ordering of the items. It gives a means

of predicting full-recall search lengths as attribute set size (r)

varies. It also provides a tool for exploring the effects of storage

redundancy on file access.

127

If this combinatorial analysis is compared with the previous

entropy analysis, for the case where H(G) - s log s, it is found

that the entropy analysis gives a much tighter bound on search

lengths. ibis is because of the very poor approximations made

for distribution of pair-distances in buckets in the combinatorial

analysis of search length for arbitrary organization.

Despite its looseness, the combinatorial bound does show that

search lengths approach the full file length as r becomes large with

respect to t (t - number of attributes specified in a typical ques-

tion). Both systems thus agree that as the user demands increased

flexibility in accessinq a file, his average search length must

increase.

Redundancy. The most important use of the combinatorial approach

in the Appendix is in analysis of file redundancy. That is, if

items are repeated in appearance in the fila, how does this inprove

search lengths? This question is difficult to investigate by

any means other than the combinatorial one.

"•hat analysis says that the lower bound on search length

decreases linearly with redundancy. That is, if each book in a

library appears twice, search length is halved. Farther, the error

in the combinatorial lower bound appears to be roughly constant over

various levels of redundancy, so that the theoretical linear inverse

relationship should carry over into practical cases. The simple

examples which can be calculated tend to confirm this.

128

The combinatorial analysis, however, was performed for a very
1

limited set of conditions, namely P = attributes and no correla-

tions in either questions or attributes. There is no reason to

expect the results to differ in ceneral for othez systems, but

the possibility exists.

The stronq implication of the above reasoning is that theri

is no way to store information efficiently in a file to give short

search lengths for large r. Further, redundant coding in the file

gives only linear improvement in search lengths, which is little

help when these lengths were very long initially. The only possi-

bility left is that a directory might be of benefit if it is made

big enough.

5.2 DIRECTORY 1-UNCTIONS

The problem with a directory is that it is a file and it too

must be accessed. If it is as large at tie original file, then

certainly the directory search problem is no smaller than the

original file search problem. There are two reasons to believe

that putting information into a directory serves only to shift

the search problem from the main file to the directory:

1) The bound derived in Chapter Four shows a linearity in the

utilization of H(G), provided all the bits of H(F) are used

equally oftrin. That means that no one bit it, H(G) is

more important than any other bit, so there is no infor-

mational advantage for putting the bits in the directory.

129

2) The vaguely defined line of proof in Section 5.1 would be

applicable to bit patterns no matter how they are organized,

so information in a directory is seen as just a recoding

of file data. But such recoding cannot reduce the number

of bits which must be accessed.

A confusinq aspect of directory analysis is the role of item

ordering in the main file. If the items are ordered according to

attribute informatio' chis serves to reduce the demands on the

directory by log s! bits. That analysis leaves open the question

of whether or not directories can be cascaded, with each level of

a directory to a directory gaining log s! bits.

No such gain is possible. The previous anal'sis neglected to

point out that when H(F) was unordered, the catalog was required

to store file addresses in addition to attribute information.

The ic'eal directory then theoretiqally must store H(F) + log a!

bits, but this was ignored because the directory can itself be

ordered to reduce the storage requirements by log s! bits. Then

when the main file is ordered, the gain of log s! in the directory

occurs only if the directory remains ordered itself. But this

means that the directory order is fixed and no flexibility is left

to effect another log s! savings.

So the directory does not really play a role in utilizing

the nrdering information, but it has other practical uses.

130

dvanta•.ae of Directories.

1) Redundancy - Generally, information in a directory auqments

file infoxrmation rather than replacinq it as it miqht

theoretically do. Thu5 a directory is a form of redundancy

which does 'ndeed reduce search lenqths. But search

lengths are at best linearly reduced with redundancy, "o

for a substantia] reduction in searches a lot of directories

are required.

2) Coding - its directory will often contain its information

coded in a form much mo:re convenient for searching than

the data of the file. This is particularly true in a

library, where 'he relationship between a bok and an

attribute may be spread across several chapters of text,

but can be defined in a few words on a catalog card. This

effect in what makes the redundancy of the previous pint

effective. Further levels of redundancy would be achieved

by finding additional codinqs of the same information.

3) Speed of Access - Since the directory is smaller, Li

general, it can be stored in a storage device which has

faster access times than that of the main file. For

exanple, a card cataloq is more easily searched than a

shelf of books, and core memories are much faster than the

disk files they hold directories for. Ihis effect is small,

averaqed over all questions, since the amount of fast-

access information in seal I compared to the size of the

file. The exception to that in when file 4c:ceszi im effe('tivly

131

limited only to those questions which can use the directory

information, in which case the speed difference is of

course significant.

4) File Position W)inters - When a file is ordered on usable

information, a syatem of pointers is necessary to quide

access to various entry points in the ordering sequence.

For example, this function is served by 1) the range

indicators on the front of each tray of a card catalog,

2) column headings on a page of a dictionary, or 3) a

hash code algorithm of a computer file. This p'Anter

information is quite small compared to the size of the

file, but serves a vital role in util izing the ordering

information of the file. This pointer data is distinct

from the other uses of a directory, and requires a differ-

ent analysis.

Perhaps a little theory will explain this position information
*

a little better. If s items are put in order, there are s! ways

of ordering them, so that one ordering represents log2s! bits of

information. By Stirlings approximation:

log2 S! Z s log s - s log2 e + ! log2 2fls

Z s(log s - 1.44).

This approach was developed by Prof. P. Elias. who is preparing a
paper showing further results in this area.

132

Thus a set of r-bit items can be represented, when ordered, by

about r-loqs + 1.44 hits. This theoretical minimum can actually

be approached by difference codinq, whereby the items are ordered

by increasing -,alue, and each item is coded as the difference in

its value over the previous item. While this coding is compact,

search lengths are quite bad because findinq an item in the middle

of the file requires adding up all the differences from the

beginning. AS sliqht redurdancy is added, search lengths can be

reduced, as in this scheme:

1) Order the items by increasx.ng value, and store only the

r-log2 s least significant bits.

2) Create a directory which gives the value of the high-order

log2s bits for each item by using a unary difference code:

If the log s bits of item bn have value x greater than that

of b n-, this is coded as x l's and a 0; the zero being a

marker to separate codes. This costs at most 29 bits in

the directory: s I's and s O's.

3) Searching requires an exhaustive search of the directory

(2s bits), and a single access to the main file (occasionally

more than one) for each configuration present and accessed.

ibis scheme requires 2 bits per item above the r-log s bits, rather

than the 1.44 bit theoretical minimum. However, it gives fairly

short searches which beqin to approach the theoretical minimum.

Further redundancy yields shorter searches yet, but not by such biq

marqins.

In short, a little position information in a directory is

necessary to utilize the ordering of the main file, but the amount

133

of directory information is quite small for this function. Beyond

that, additional information in the directcry yields only slight

help in total search length for general cases.

5.3 OHER FILE ORGANIZATION TEINIQUES

The preceding discussions failed to mention a number of standard

filing techniques. This is because of the previous assumptions

that the fi]3 is static (or has many more references than updates)

and that question sets were of the partial match type. Alternatives

are discussed here.

Hash Coding. In some systems, a mathematical algorithm is used to

calculate a file address from the information supplied by the user.

11is in used when:

a) The user supplies the full key describing the data, rather

than a partial specification, and

b) Not all keys are equally likely, but rather there are "hot

spots" in the key field such that some key areas are

more densely used (for example, in zipcodes the city areas

get more mail of some types than country areas); this still

assumes a large selection of keys for the items used,

The normal file method when b) is not a problem (keys are

equally likely), is to:

1) Order the file by key values,

2) When searchinq, estimate from the specified key where in the

file it will appear, by its value relative to the larqest

and smallest key,

11 4

3) After the first access, compare the specified key with

the retrieved key, create a new estimate of item location

by interpolation, and repeat this step until the item is

found.

When the key values are unevenly used, however, the above procedure

takes lonqer than it does on random keys. To offset this, the hash

code procedure is used to map the original keys into a new set

which are evenly used (i.e. the hashing algorithm is selected to

break up the correlations in the key field).

This proceduFe always takes adjacent key values and distributes

them randomly over the new key field, for that is how correlations

are broken up. This has real troubles with incompletely specified

questions, however, btcause searches for such questions depend on

adjacencies of similar keys to reduce search leng hs. That is,

the hash code effect of scattering iteris with similar keys is

exactly the wrong thing to do when dealing with partially specified

keys. Hash codes therefore appear in only a limited range of

computer file problems, and are r-t really applicable tu. large

files.

An alternative (and sometimes augmentation) to hash coding

is the use of redundancy in memory. If memory has more slots

than items, the items can be distributed according to a linear

distribution of keys ratler than the uneven real distribution. The

more redundancy available, the more even the distribution will be,

and the faster the searches. This problem has not been fully

analyzed to date.

135

List Structures. One system which is frequently corsidered for

files having several access paths to each item is list structuring.

Here each item having a particular attribute also contains a pointer

to another item containing that attribute. Access to the attribute

then consists of following a chain of these pointers from item to

item through the file. Frequently items are ordered in the chain

by some other attribute value.

She list system can be seen to be nothing more than a directory

system where the directory is scattered throughout the file. That

is, the pointers of the list system are th- same as directory entries,

only stored differently. The difference between the systems lies

in mem•ry allocation in rapidly chanqing files.

List structures store their pointers alonq with the data, so

as the file shrinks or expands, in total or in parts, the memory

allocation of pointers is handled automatically with allocation

for the data. Further, the algorithm for accessing the pointers

does not change as their quantity changes. If the pointers were

segregated into a separate portion of memory, that portion would

hav'e to be expanded and contracted to meet changing file needs,

and would have to be continually restructured as various portions

of the file become larger ("hot spots" in the file).

The directory system has the ar(vantage that with SegregateO

pointers, the pointers can be searched without having to access

the items of the file. This is an advantaqe in all systems where

the file is in a storage facility which is not fully random access

(and very few large files can be put ii a true random access facility).

136

The directory is especially superior if it can be stored in a faster

access mechanism.

7his is the typical trade-off between speed of up-date and

speed of access. For files where new data is added more frequently

than old data is accessed, list structures offer very easy addition

of new items at the cost of slower access during retrieval. For

files with more frequent accesses, directories permit location of

items with fewer memory accesses, but require more effort to up-date.

Note that the search-length analysis for list systems is the

same as for a directory system, with equivalent trade-offs between

recall and relevance, etc.

Inverted Files. A common problem in file storage is whether to

store data:

a) Item-oriented, where each item is coded explicitly with a

list of its related attribute values; the items being

ordered according to some attribute values, so that some

of the attribute information can be omitted and replaced

by the item address.

b) Attribute-oriented (inverted), where each attribute is

coded explicitly with a list of related items; a multi-

attribute search requires a logical intersection of the

item lists under the specified attributes; the attributes

can be arranged in order so that some item occurrences

can be predicted by attribute address, and these item

identifiers can be omitted from the attribute lists.

I

137

In storage costs, these two systems are theoretically identical,

but practically it is usually better to organize on the set having

the greatest number of elements. That is, for r attributes and s

items, the inverted file is better if r>s, for two reasons of coding

efficiency:

1) For an attribute-item occurrence of density 0, each occurrence

should cost log P bits in theory, but that requires

difference coding for the normal case of small P. For

convenient retrieval the full coding is used, so the cost

is log r bits in an item file and log s bits in an inverted

file. Thus if the file is organized on the larger of r

or s, then the inefficiency is minimized.

2) Theoretical minimum stc-. ;ge requires ordering on both

dimensions: Attributes within an item-file can be ordered

so that the first log r its have predictable attribute
Plog0P

patterns, and need not be stored explicitly; likewise in

an inverted file item ordering can reduce the number of

attributes actually stored. This saving is seldom

achieved because it is small relative to the additional

complexity of search algorithm which results. The loss

of efficiency in not ordering is minimized if the file

is organized on the larger of r or s. This factor does

not apply if the file is not ordered at all, even in its

main dimension of organization, for in that case both

organizations are equally inefficient.

I ___

138

In search length costs, the size of the user question is impor-

tant. If the user tends to specify numerous attributes yielding

a small response, the item file is best. Conversely, a few attri-

butes and a long consequent response are best handled by the inverted

file. In-between cases are dependent on the physical configuration

of equipment available. Inverted files require substantial short-

term memory to hold item lists during the process of intersection

of the lists from several attributes. Further, inverted files do

not have a complete description of an item anywhere, so they are at

a strong disadvantage where users require the full item description

as output. Ytem file3, however, tend to require searching a greater

percentage of the file bits, especially when the number of attributes

is large. Inverted files give approximately the same search lengths

for all questions, while item files will give a large vcriance in

search lengths, depending on the number of specifiee, attributes

which fall into the set on which the items are ordered.

In short, the trade-off between item files and inverted files

is decided on factors local to each implementation. It is inter-

esting to note, however, that all Analysis to date indicates that

any in-between organization (organized partly on items and partly

on attributes) is always less efficient than one or the other

extreme case.

5.4 AREAS OF FURTHER RESEARCH

There are a number of very interesting topics in file organi-

zation which deserve further research. They have been mentiored at

I I

139

various points in this document, but deserve more specialized

attention. These are problems for which solutions are quite

possible, I believe, if the right theory is found.

1) Find a tiqht lower bound on search length for partial match

questions, regardless of file organization.

2) Find a decent bound or estimate for search length in redun-

dant files, for large redundancies (say a factor of s).

3) Develop a theory which predicts an "optimum" user question

ensemble based on file statistics (especially inter-

attribute correlations); this involves figurina out what

the user objectives are in asking questions of the file,

and assumes that users adopt their questions to fit the

information available.

4) Find a means to better analyze the problems of file access

with fully-specified keys, namely: A) the effects of small

redundancies on search length, and B) the trade-offs between

retrieval speed and update speed.

5) Find methods to extend the p loq p analysis to give more

detailed answers for partial-recall questions, such as a

search length bound for questions with all recall levels

equally likely.

I will be happy to hear from or talk with anyone with interest or

results in these areas.

140

APPENDIX

A COMBINATORIAL ANALYSIS OF THE BUCKETING PROBLEM

A partitioning problem which appears in several forms in

computer-related topics is discussed harf, in its guise as a file

organization problem. It is the question of how to allocate file

information into memory "buckets" so as to minimize the average

number of buckats which must be searched to answer user requests.

The approach used is a combinatorial one, in essence counting those

attribute combinations which occur most frequently in the user

requests. One result is a rigorous lower bound on search lengths

for partial-match and near-match types of requests, within certain

file organizations and with simplified file statistics. A second

result is a measure of improvement of search length as file storage

redundancy is introduced (items repeated in the file).I
A.1 THE BUCKETING PROBLEM

Given: An r-dimension binary space, called "key-space".

A set of s items, which appear as marked points in

key-space; s<<2

An ensemble of user questions, each question being

a sub-volume of key-space.

A set of B buckets, each of which is to "cover"

a fixed size sub-volume of key-space.

Objective: Partition key-space (i.e. divide key-space points

into bucket assignments) so as to minimize the

average number of buckets required to cover user

questions (average search length).

141

Specifically, the file problem consists of s items in a file,

each of them having a key which is one of the 2r binary keys in

key-space. When a user asks a question, (e.g.) "'W•hch file items

have keys whose first three bits have value one?", he is specifying

a sub-space of key-space which is to be searched. The file response

to this question is a list of all marked points (file items) which

appear within the user-selected sub-space. Each file bucket con-

tains some subject category or other sub-se. of the key-space,

and the objective of file organization is to select bucket sub-sets

which minimize search length.

A key characteristic of the analysis here is that the key

information describing each file item is much greater than sufficient

to just distinguish the s items. That is, r>>log 2s. The user may

identify a single item through many different descriptions, each

one giving only part of the key information. This flexibility of

access for the user is what makesfile organization difficult, and

files where r-log2s are not interesting. Of course bucketing is

only one of several ways to organize such a file, but meaningful

answers derived for this special case will gi,,e needed insight

into file storage in general.

TO further simplify the mathematics of this analysis, the

following assumptions are made:

1) The s marked points occur independently and equally likely

throughout key-space, or equivalently, all key-space points

are equally likely to appear in the file (thus each bucket

can be assigned an equal chunk of key-space, without need

to compensate for correlations).

H

142

2) The uneven distribution of marked points in buckets can be

tolerated (p oper use of a directory can compensate for such

unevenness). While each of the B buckets will have the

same expectcd xW>er of s/B items in it, the actual number

will vary due to the random process of selecting file

points. We assume this causes no trouble, but the resulting

analysis is therefore not fully descriptive for files with

tight memory packing or high update rates.

User Question Statistics. For the sake of discussion here, two

forms of user question ensemble are studied. These are unrealistically

simplified, of course, but yield good insight into the more compli-

cated real situations.

Partial Match Requests: The user specifies a 1 or 0 value for

ary t of the r attributes, and he wants items which exactly

fit all those t values. The 2t(r) such questions are
t

equally likely to be asked. Each question specifies 2r-t

points in key-space, which will contain on average s2-

file items.

Near Match Requests: The user specifies a full r-bit key,

giving a ;-,e or zero for each bit, and he wants those items

which fall within Hamming distance d of the specified point

in key space (i.e. all points which come near the specified

point). The 2r such questions are equally likely. Each
d d

question specifies E (r) keys, containing r (r)s2-r

X-0 X X00 x
file items on averaqe.

143

Example A-i: A Fil.n for Partial-Match Requests

The user specif;ies t of the r attribute bits, and he wants all

items falling within the intersection of those t attribute values.

11 11 11Presume r - 15, s - 2 , B - 2 , and t - 11. Thus the 2 buckets

will contain on ave:cage one item each. Presume that each bucket

will cover those points having the same first 11 bit values. For

example, the 16 keys described by .iflol0iOll001 0 will all be

assigned to one bucket. This is the conventional ordered-file

method of organization.

When a question is received, its first 11 bits are used to

compute bucket addresses, with each 0 replaced alternately by 1 and

0. For example, th, question 30001010101,'.11 specifies eight of3I
the first eleven bits with three missing, so that 2 8 buckets

must be accessed to examine all points covered by the question.
O h 211 15

Of the 2 ~11 different user questions:

24% have 4 of the first 11 bits missing, -aqiring 16 accesses

48 0 01 3 ,0 it I' '' ' 0 0 8 to

24% 2 ' '' t2 4 is

4% f 1'' ' 2

.07% O f 0 " I t of of t o ' 1 o f

Thus, searching in this example requires 8.77 bucket accesses on

average.

144

Example A-2: Near-Match Requests

In this ca~e each user question specifies a full 15-bit identi-

fication, and asks for all items within Hamming-distance one of the

11 11point specified. Presume r - 15, s - 2 , B - 2 , d - 1. As in

Example 1, each of the 211 buckets will contain on average one item.

Each question specifies r + 1 keys: the point specified and the

r adjacent distance-one points.

For this example we will assume a file organization in which

each bucket covers the points within Hamming-distance one of some

specified center point, totaling 16 points (i.e. having the same

geometry as a question). The center points of the 211 buckets

will be the legal 211 codes of the Hamming single-error-correcting

code of 11 message bits and 4 check bits. The proper bucket address

for a file item is found by performing "single error correction"

(if necessary) on its 15-bit identifier to determine the nearest

11of the 2 legal code words (the bucket address).*

In this system, ot the 2 possible questions, 7% hit bucket

center points and can be answered from one bucket only. The other

r + 193% have two points each in buckets, requiring 8 accesses.2

Thus the access requirement of this organization averages 7.64

buckets per request.

*This file s.ystem was suggested by Professor Peter Elias.

145

Strategy of Analysis. The problem parameter of interest, average

search length, is very difficult to compute directly for most cases

of file organizations and question ensembles. The first step of

analysis is the derivation of a search length bound which is simplier

to compute. Some examples are given to indicate the tightness of

the bound. Then this bound is used to examine the effect on search

length of 1) file size, 2) type of question asked, 3) type of

organization used, and 4) use of redundant file implementations.

As a goal of the analysis, three particular results are primary:

1) Proof that average search length must continually increase

as key-space size (r) is increased, regardless of file

organization used.

2) A demonstration that file storage redundancy (repetition of

items at various points in the file) improves search lengths,

but not rapidly.

3) An indication that partial-match and near-match questions

offer the same order-of-magnitude difficulty in access.

A.2 SEARCH LENGTHI BOUND

Defirition: TQ Is the number of questions in Q. Thus Q is

composed of questions qi t<i<T Q all equally likely.

Definition: P is a partition on keyspace, beinq a particular

assignment cf key points to buckets (a file organ-

ization).

Definition: L is a search lenqtli for m I' and V, namely t ja

averaqe number of buckets accessed for questions in j.

146

For each q1 £Q, a search length I is required, and

L - average

Theorem:

V!L < 1 , 2.B.W(Q.P) (A.1)
L T- TQVl(Q)

where '(Q) is the number of points co,'ere1. by a request in Q,

and W(Q,P) is a count, within a bucket of P, of the pair-wise

co-occurrences of points in the questions of Q

(better explained below).

Proof. This inequality has two parts, with ay, intermediate variable

N introduced to link the parts. N is the average number of keyspace

points in a bucket accessed which actually fit the user question

being searched.

Part 1.

Fcr each question qi' there is an average number of useful

points, ni, which are accessed in each of the Li buckets searched.

Since V(Q) is the total number of points specified by each qi:

nI *L1 0 V(Q), or ni 'V(Q)/.L . (A.2)

The average of ni over all questions ia N, which is the average

number of useful points obtained whenever a bucket is accessed in

the file system.

N - average (ni) - average(V(Q)/L) > V(Q)/L, (A.3)

147

where the inequality on average reciprocal search. length follows

from (1/x) > l/x, with equality when all £i are the same.

Part 2.

To define the function W(Q,P), an intermediate definition is

useful:

Definition: A Question-Point-Pair (QPP) is a counting unit

which occurs whenever two points in a bucket

occur together in the same question.

Definit:in: Wb (Q,P) is the number of QPP's in a bucket b of P

under the question ensemble Q.

7hat is, W(Q,P) gives a count of the number of times a pair of

points which share a bucket also share a question. A pair of points

which fall together under m questions produce a value of m QPP's

in their bucket total. A question which covers nj points in a

bucket will produce (2J) QPP's.

Consider now a specific bucket, b, and Ull those questions which

access it. Each such qj covers nj of the points in the bucket. It

is not important how many such questions there are, so we do not

bother to assign bounds to J. Nb will be defined as the average of

useful points accessed for this bucket:

average (n) = Nb (A.4)

or equivalently, n n - £ Nb (A.5)

To calculate W(Q,P), first re-express nj in terms of its deviation

from average:

n -N b * 'x -0 . (A.6)

j b j

148

Then the QPP's are summed over all qj's accessing the bucket:
1J

Wb(Q,P) - J) - A-E n (n -1)
J J

r (Nb+Xj)(Nb+x.-l)

-- E (N-l)(N) + (N -l)x + Nx + X. 2 (A.7)
2. b-1 b b-i bx j3

The midd.e twi terms are zero due to A.6, and t~hp last term is

always kjqitiva, so A.7 becomes:

Wb(ý,.k) > i(Nb-l)E Nb ' (A.8)
SbJ

with equality when all n. are equal.J

Bu E N b can also be calculated another way. !t is the number

of point references in b, so if each point is referenced Y times,

and there are Z points in b, then:

EN - En a Y'Z (A.9)J J

Since all buckets have the same number of key-space points, Z - 2r/B.

Since every key-space point is referenced equally often, all the

T TQ'U(Q) references in the system are divided equally among them:

Y - T 'V(Q)2 -r. Then restating A.9 and solving for N in A.8:
Q

T Nb T Q*V(Q)/B (A.10)Q

W (QP) > -(N -l).V (Q"TiB (A.11)
b 2 b

Nb < + (Q1)+
(A.12)

Nb + T Q V(Q)

with equality when all n. are equal.IJ

149

Merger of Parts 1 and 2.

Since N is the average of useful points in all bucket accesses,

there must be at least one bucket whose average Nb is as large as N.

Therefore there must be at least one bucket in the file such that:
V(Q)/L < Nb . (A.13)

For the files of interest in this paper, W(Q,P) is the same for

all buckets, so this proves the theorem. QED

A.3 EXAMPLES OF BOUND CALCULATIONS

Example A-l continued:

For the partial-match example described above, we count QPP's

as follows: Two points which are distance-one apart may co-occur

in (rtl) different questions, since the t specified attribute
t

values may appear in any of the r-l attribute values the points have

in common. Of the (16)-120 point pairings in the bucket assignment
2

of the example, 32 are distance-one pairings. Extending this to

higher d1stancer"

pair number of X questions = QPP's
distance such pairs in common

per bucket

132 ,14131) 364 11,648

132 48 C1) - 78 3,744

123 32 12 384

4 8 (1i) 1 8

120 15,764
-W(Q,P)

150

For the partial-match questions we have already found these

values:

V(Q) - points per question - 2t 24 = 16

T9 = number of questions - 211 15) 211.1365Q 11
11

B -2

Then using the theorem (A.1):

24/L < + 1 + 2"15,764 - 2.44
16.1365

L > 16/2.44 - 6.5 bucket accesses.

This compares with the actual ," t ue of L - 8.77 accesses calculated

previously. The difference comes because the various questions in

Q access the buckets with unequal efficiency.

Example A-3: A Different Filc Organization

For comparison, suppose the file organization of example two

were used with the file problem of example one. That is, points

will be assigned to buckets in d-1 spheres, for use with partial-

match questions. The QPP's of this organization are:

pair number (r-d QPP's
distance of pairs t

1 r - 15 364 5,460

2 (r) - 105 78 8,190
2

120 13,650

For this case, N < 1.25 + 1 - 2.25 points per access, so that

L > 7.1 bucket accesses.

I

151

This implies that the sphere-packing of example two is an inferior

organization for the partial-match question. Direct search length

calculations for this case are a bit tricky, but can be carried outI to show a real value of L - 12.

Example A-3 shows the principal weakness of the estimator.

It was derived assuming an equal dis,'ribution of accessed-points

over bucket accesses, namely that all n. are equal. In Example A-3,1

due to the peculiar geometry of the organization, each bucket

access yields one point or five points, nothing in-between. This

produces a wide variance around the mean of two, so the bound is

not very close to the real value of L.

Large r Examples

Figure A-1 shows the conditions of Example A-1 extended over

a range of r values, giving a comparison of real and estimated

search lengths. Figure A-2 shows the same information for a larger

file system, with one million buckets.

These figures indicate that the bound tends to understate search

length by a factor of 2 to 3 for large r. Calculations for other

examples confirm this as a typical error, although the error may

get notably larger for poor organizations (such as in Example A-3).

A.4 COMPARISON OF FILE SYSTM24S

One application of the search length bound is to compare the

relative dificulties in accessing files of various types. How do

near-match questions compare to partial-match questions in access

difficulty? What is the best geometry of organization for each

question type?

Lum um u m mnm mm

152

10001

B 2 /.0
U s:1 2"/ .- "•

0

4- I•/" .- "

10- 10IA/ ,,T" -

" ~I,,

-, REAL SEARCH LENGTH
I- PARTIAL MATCH QUESTIONS0 ORDERED FILE

ESTIMATED LENGTH
I'NPARTIAL MATCH QUESTIONS

, ORDERED FILE
-.... ESTI MATED LENGTH

NEAR MATCH QUESTIONS
SPHERICAL FILE

1

10 20 40 60 80 100

r - NUMBER OF ATTRIBUTES (dimension of key-space)

FIG. A.1 SEARCH LENGTHS ON 2000 ITEMS

153

106111 1 1

105 -B = 220 lop _
SI~ = 20 /

-1o4-

103-

a) /"

ot /

1 00.- •IlREAL SEARCH LENGTH-
ca PARTIAL MATCH QUESTIONS

, ORDERED FILE
w . ESTIV.ATED LENGTH

0~PA.R'TIAL MATCH QUESTIONS10- ORDERED FILE

.ESTIMATED LENGTH

NEAR MATCH QUESTIONS
SPHERICAL FILE

10 20 40 60 80 !00 200

r NUMBER OF '%'i -'RIBUTES (dimension of key-space)

FIG. A-?. SEARCH LENGTHS ON 10" ITEMS

II

II

154

Figures 1 and 2 compare partial-match and near-match question

types, with each using the file organization matching its geometry.

For these curves, the number of buckets and questions is held con-

stant as key-space size is 3creased. For the near-match questions, F
this means that .he Hamming distance d of the question must increase.

20For example, at B - 2 and r - 100, each question covers all

points within distance 26 of the specified center point. Actually,

these sphere distances are not integers, and approximations must be

used to handle the fractional parts.

The clear implication of these curves is that near-match

questions are more easily handled for large key-spaces, but only

by a factor of two or three at most. Intuitively, this is justi-

fied by the observation that some partial-match questions require

an exhaustive search of the file (i.e. access all buckets), while

that does not occur with the near-match questions. This advantage

for near-match questions must be balanced against two other factors:

User Flexibility: The number of questions that a user can ask

which cover a given point in key-space indicates his flex-

ibility in specifying a file item. When all questions cover

2r-t points, this is proportional to T

Partial Match: T - ()2t
Q2p t

Near Match: T,, - 2 r

For small r, with fixed t, TQp > TQn, and significantly so

in many cases. However, the value3 are euxal around r = 4t,

and near-match questions offer the greater flexibility for

larger r.

155

User Information: The amount of information a user must specify

in posing a question is:

Partial Match: t bits

Near Match: r bits.

As r gets large, this becomes a very significant difference,

which will rule out near-match questions for most applications.

In the balance, it appears that partial-match questions have

the advantage for all values of r, but the advantage is small in

many cases. The outstanding exception to this rule would be an

application where r>>4t and the cost of user-supplied information

can be kept low without reducing flexibility. I cannot think of

an example of such an application.

When considering the question of what bucketing system to use

with a particular question type, the bounding procedure permits

two observations to be made:

1. The QPP calculations weight low-distance point-pairs much

more heavily than high-distance pairs; therefore, bucket

assignments should emphasize the preservation of low-

distance pairings within buckets. The two organization

systems discussed above appear to do this better than any

other possible partitioning.

2. Equality in the bound is best approached when each bucket

accessed tends to yield the same number of useful points

(all n. are equal). This condition appears to be very diffi-

cult to approach in practice, but perhaps is a good thinking

tool.

I

156

A.5 GENERAL LOWER BOUNDS

The search length bound can be used to derive a lower bound

on search length regardless of file organization. This involves

finding an upper bound on the number of QPP's, W(Q,P), which can

appear in a bucket.

Near-Match Questions. It can easily be shown that a pair of points

can share at most 2 distance-1 near-match questions, and then only

if the pair is distance 1 or 2 apart. Thus, for distance-1 questions,

the number of QPP's can never exceed twice the number of pairings

in a bucket, no matter how well the file is organized.

For a bucket covering 2r/B points, there are (2) pairings.
2E/B

Then max. W(Q,P) - 2(2). Recall that V(Q) - r+l for distance-I

questions. Putting this all in equation A.1 gives:
2 2

(r +)2 (r + 1)

(r+l)+B2- 2() (r+l)+2(- -1)
2B

Example: For the values of Example 2, r - 15, B - 21, Eq. 14

gives:

L-> 16 + 30 a 5.6 accesses regardless of organization.

This lower bound compares with a real L of 7.64 with Hamming-sphere

type organization.

While this bound was easily found for d-l questions, it is

poor for large r, and is not so easily ixtended to larger distance

questions. The partial-match problem is more easily analyzed.

i1

157

Partial-Match Questions. A simple analysis, similar to the preced-

ing near-match one, assumes a bucket geometry whose pair distances

are one-half distance-i and one-half distance-2 (the best ratio

possible). The details are omitted here, but the result is:

L > B-t
B>t(A.5)S

- t t -r
2 r r-l

For the values of Example 1, r - 15, t - 11, this says that

L > 4.44 accesses regardless of file organization.

This hound could be improved somewhat with more complicated argu-

ments, but it remains weak for larger values of r (when 2r/B>>r).

For a large bucket analysis, assume that a bucket is optimumly

packed with respect to every point it holds. That is, for a given

point, all of its d - 1, 2, 3, ... x neighbors are in the bucket,

up to the point that bucket capacity is reached. This assumes

that the bucket holds points for a sphere of radius x, where x

is fixed by:

x
r 2 r/B, since the point has (dr distance-d

neighbors.

This optimum packing gives an upper bound on the number of QPP's

possible in a bucket:

QPP's <~ 2 r- 1l r H t

r-l B1 £ r-(t2 B dIn! t d (A.16)
dal

158

Then, substitutinq A.16 into A.I:

-r+1 r-l -1 x r r-le2 *B-2 B 7 ()(r) xV(9) -1 < d1 d d 7 (rt)
L -d

d=l (A.17)
(t)
tx x ?

V()< x r-t x r ror, (L () where x is determined by F () = 2/B.
d-O d0O

(A.18)

Solving this relation requires several tedious steps which will

be omitted here. Using the Vandermonde Convolution Formula and

numerous variable changes, it was determined that:

r-t r -t r-t t
E (dt) E (d)2 + (x-t/4 (A.19)

dMO d=O

Using A.19, and Stirling's Bound:

Z)< z) <_ 2 2 z el1/12z

y - Z/2 2

r-t r-t t r-t t r-t 2
L 2 /+)-<x-t/4 2 - / +2 Tr)

r-t -t

2- 2- (B
L -r

<- 2 (B- +J ý =t)")

1

L >
B- t

B- + -T (t)

(A.20)

tI

159

As r becomes very large, the radicail term goes to zero, and L

approaches B. That is, as r bec4 ,!s big with t fixed, file access

approaches an exhaustive search no matter how the file is organized.

A.6 REDUNDANCY

The above analysis assumed that every file space point was

covered by only one bucket, so that any question referring to that

point had to access that bucket. Now we permit a point to appear

some number of times, M, in different buckets. For each question,

then, there is a choice of M buckets in which to inspect the point.

In this system the file implementation takes M times as much memory

as the minimum configuration. lHow does this redundancy help to

reduce search time?

The number of questions accessing a given point remains con-

stant, but they are now divided over M occurrences of the point.

Equivalently, t;he number of buckets B in the system is increased

by M, but the size of each bucket is unchanged so the W(Q,P)

values remain the same. Evaluating the basic bound, A.1, then

shows that L decreases proportionally with M:

L (1)

L(M) - C LMlC 'M+1

where C and C' are constants, and L(l) is

the non-redundant search length.

The constant C' is virtually always larger than one, so L(M) is

just inversely proportional to M.

160

There is one flaw in this analysis, due to the error in the

search length estimator. If the non-redundant system has long

search lengths due to uneven distribution of points in buckets

(Example A.3), redundancy can permit a more even distribution and

consequent reduction in inefficiency. That is, the real search

length will come much closer to the lower bouii in a redundant

system. The extent of this effect is not known, but is probably

limited to small M. It generally can produce at most a factor of

2 or 3 improvement in L, for that was the degree of error ir, the

original bound.

Actual search times in a redundant system are very difficult

to compute. Two examples of limited range are given here.

Assume Partial-Match questions and ordered file organizations,

w~th M copies of the file organized on disjoint sets of attributes.

Case 1. r - 100 B -2 t -20

M Theoretical Real Search

Bound Length

1 L > 33,557 L - 115,381 accesaes

2 L > 16,778 L - 48,211

3 L > 11,186 L - 30,427

4 L > 8,195 L = 22,496

Case 2. r - 66 B -211 t - 11

1 L > 408 L - 758

2 L > 204 L - 445

3 L > 136 L - 329

4 L > 102 L - 269

5 L > 82 L 230

161

This analysis of the effects of item repetit:ion is the only

treatment I have found which is useful on the redundancy question.

Though flawed by some looseness for small M, it is a rigorous lower

bound which cannot be surpassed. It provides a firm conclusion

that storage redundancy cannot give remarkable decreases in search

length.

A.7 CONCLUSIONS AND CONJEC7URE

The above derivation has provided a rigorous lower bound on

file search length. While the bound is not particularly tight, it

is much easier to calculate than real search lengths in some organi-

zations. Further, it becomes possible to calculate search length

bounds irrespective of file organization used, and to extend the

results to large key-spaces.

The conclusions Yeached for the model used were:

1) File search length grows with increased flexibility avail-

able to the user; as the number of attributes available to

the user grows larger, the search length approaches exhaustive

search, regardless of what file organization technique is

employed.

2) Redundancy in file implementatioii can only linerly decrease

sear.ch lengths, with some exceptions for small redundancies;

if each file item appears M times in the implementation,

this reduces search length only to 1/M its non-redundant value.

3) Partial-match and near-match question types fall into the

same range of difficulty for file access; this implies that

.I

162

other question types (such as Boolean sums of products of

attributes) will tend to cause equivalent search lengths.

For mathematical convenience we have taken a file problem

with specialized statistical properties as the subject of this

discussion. Real library problems are of course different in these

aspects: 1) Not all questions will be equally likely (e.g. real

users tend to specify more l's than O's as attribute values),

2) not all file keys are equally likely (attributes will be corre-

lated), and 3) only a limited range of file organization techniques

was allowed here (e.g. directory techniques were not discussed).

Despite these limitations on the model used, I feel that the

results obtained are generally indicative of what would be found in

the more complicated cases if we could analyze them.

_ _ __ _ _

163

BIBLIOGRAPHY

General

1. J.C.R. Licklider
Libraries of the Future
MIT Press, 1965.

2. Y. Bar-Hillel
Language and Information, 1964
See especially Chapter 13, "The Future of Machine Translation".

3. G. Salton
Automatic Information Organization and Retrieval
McGraw-Hill, 1968.

4. M. Minsky and S. Papert
Perceptions, An Introduction to Computational Geometry
MIT loress, 1969. See especially Chapter 12.

Interesting Work of Narrower Interest

5. C. Clelerdon, J. Mills, and M. Keen
ASLIB - Cranfield Research Project (2 vols.)
Cranfield, England, 1966.

6. J.A. Swets
"Effectiveness of Information Retrieval Methols"
American Documentation, January 1969, p. 72-89.

7. M.M. Kessler
"Comparison of the Results of Bibliographic Coupling and
Analytic Subject Indexinq"
American Documentation, Vol. 16, No. 3, July 1965, p. 223-233.

8. F. Jonker
Indexing Theory, Indexing Methods, and Search Devices
Scarecrow Press, 1964.

9. S.P. Chosh and C.T. Abraham
"Application of Finite Geometry in File Organization for Records
with Multiple-Valued Attributes"
IBM Journal of Research and Development, March 1968, p. 180-187.

.1

164

Statistical Association Studies

10. Statistical Association Methods for Mechanized Docunentation
1964 Symposium Proceedings, Edited by Stevens, Giuliano, and
Heilprin; National Bureau of Standards Miscellaneous Publication
269. It contains:

11. F.B. Baker, p. 149-155
"Latent Class Analysis as an Associative Model for Information
Retrieval"

12. J.H. Williams, p. 217-224
"Results of Classifying Documents with Multiple Discriminant
Functions"

13. H. Borko, p. 245-251
"Studies on the Reliability and Validity of Factor-
Analytically Derived Classification Categories"

14. J.B. Lovins
"Error Evaluation for Stemming Algorithms as Clustering Alrogithms"
Journal of the American Society for Information Science, Vol. 22,
No. 1, Jan. 1971, pp. 28-40.

15. G. Salton
Information Storage and Retrieval
NSF Report No. ISR-16, Cornell University, Sept. 1969. It contains:

16. J.W. McNeil and C.S. Wetherell
"Bibliographic Data as an Aid to Document Retrieval"

17. E.L. Ivie
"Search Procedures Based on Measures of Relatedness Between
Documents"
MIT Doctoral Thesis, June 1966, Project MAC TR-29.

18. K.S. Jones and D. Jackson
"Current Approaches to Classification and Clump-Finding at the
Cambridge Language Research Unit"
Computer Journal, May 1967, Vol. 10, No. 1, p. 29-37.

Mathematical Tools

19. R. Gallaqer
Information Theory and Reliable Communication
Wiley, 1968.

I _____

