TRI FILE coP¥ TR} Call No.

ESD-TR-71-8I Copy No.

OPERATING SYSTEM VALIDATION TESTING

William C. Mittwede

e e £SD RECORD COPY
BT ATION DIVISION
GENTIFIC & TECHNICAL INFORM
o (TRY), Building 1210
January 1971

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. C. Honscom Field, Bedford, Massachusetts 01730

This document has been
approved for public release and
sale; its distribution Is
unlimited,

(Prepared under Contract No. FI19628-70-C-0258 by The COMTRE Corporation,
I51 Sevilla Avenue, Coral Gables, Florida 33134.)

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

ESD-TR-71-8I

OPERATING SYSTEM VALIDATION TESTING

William C, Mittwede
Kenneth P, Choate

January 1971

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

This document has been
approved for public release and
sale; Its distribution is
unlimited.

(Prepared under Contract No. F19628-70-C~0258 by The COMTRE Corporation,
I51 Sevilla Avenue, Coral Gables, Florida 33134,)

FOREWORD

This report presents the results of an analysis conducted by The COMIRE
Corporation of Coral Gables, Florida, in support of Project 6917, Task
691701 under Contract F19628-70-C-0258. The analysis presented in this
report was performed by William C. Mittwede and Kenneth P. Choate. Dr.
John B. Goodenough (ESD/MCDS) was the ESD Project Monitor.

Publication of this report does not constitute Air Force approval of the
report's findings or conclusions. It is published only for the exchange
and stimulation of ideas.

—
Director, Systems

Deputy for Comma

OF} (o) 3 USAF
sign & Development
& Management Systems

ABSTRACT

This report presents functional testing requirements for use in the validation
testing of computer operating systems. The requirements are structured in a
tabular format and are applicable to the executive/control functions, system
management functions and data manipulation functions of current commer-
cially available operating systems. In concert with the tabulation of require-
ments for each of the operating system functions, further tabulation has also
been performed relating the test requirements to the type of environment that
the operating system must support: batch, real-time, or time-sharing. Basic
testing procedures have been defined to verify the requirements and these
testing methods have then been grouped into test packages.

Section |

Section Il

Section Il

Section IV

Section V

Appendix |
Appendix |l

CONTENTS

Introduction

1.1 Purpose

1.2 Scope

Operating System Measurement

2.1 Current Approaches

2.2 lmitations

2.3 Conclusions

System=Assisted Testing

3.1 Concept

3.2 Event Logging for Post~-Mortem Analysis

3.3 Event Simulation

3.4 Interactive Test Control

3.5 Programmed Test Control

3.6 Conclusions

Functional Testing Requirements

4.1 Approach

4.2 Testing Requirements
Part I: Executive/Control Functions
Part Il: System Management Functions
Part 11l1: Data Manipulation Functions

Test Design

5.1 Test Packages

5.2 Validation Methods
Part I: Executive/Control
Part II: System Management Functions
Part Ill: Data Manipulation

Bibliography

Record of Testing and Measurement Interviews

O WV YV 0O N W w N

VO OO DR N NN NN - -
N N = O O 00 N W = = = O O N O

105

127
129

SECTION |
INTRODUCTION

1.1 Purpose

This is the third report of a series produced by The COMTRE Corporation for the
Electronic Systems Division of the Air Force Systems Command. The first report of this
series, ESD-TR-70-377, presented an integrated functional classification structure applic-
able to the executive/control functions, system management functions, and data manipulation
functions of current commercially available operating systems. The second report developed
selection criteria and the methods for establishing a relationship between these criteria and
the operational requirements derived from the functions given in the first report.

In this report, validation requirements have been developed within the functional
classification scheme for all levels and types of operating systems supporting current
computer configurations. These validation requirements are presented in tabular form
to allow easy selection of pertinent tests based upon fundamental applications of the
Operating System (OS) in question.

The objective of this report is threefold:

1) to assure a high degree of completeness as well as uniformity in
OS acceptance test design;

2) to increase the utility of benchmark programs currently used to
debug, test, and validate operating systems;

3) to identify facilities that can be inserted into operating systems
which will assist in the validation process.

The analysis presented within this report is based upon the assumption that validation
should have two distinct objectives:

e to verify the presence of OS functions and their proper
performance; and

e to observe the effects of benchmarks to assure that the
system does perform as a unit.

Benchmark programs were designed by considering all OS functions as outlined by the
functional classification scheme, determining the types of tests necessary to validate the

functions, and then organizing these tests into a logical series of test packages applicable

to varying system orientations.

The approach taken to the area of OS=-assisted validation was to survey current
techniques in the field of system measurement and to extrapolate relevant techniques for
system validation. Also, several existing and proposed debugging techniques were inves-
tigated for possible application to validation.

1.2 Scope

This report defines procedures, software and data for systematic validation testing of
current commercially available operating systems. The validation testing requirements
presented encompass all significant levels and types of operating systems and are structured
to permit selection and generation of tests for any given operating system.

The report is organized into five sections with two supporting appendices. The next
Section presents the current approaches to OS measurement, their limitations, and the
conclusions reached by this analysis. Section 3 is a concept development of system-assisted
testing and Section 4 is a delineation of the OS functional testing requirements. Section 5
is a test design for validation. The appendices comprise a bibliography of documents re-
viewed during the study and a record of interviews with various representatives on the

technical aspects of OS validation.

SECTION 1l
OPERATING SYSTEM MEASUREMENT

2.1 Current Approaches

The performance of operating system measurement has long been an area of interest
within the computer community and is even more important with the advent of third genera-
tion operating systems which often support multiple processing configurations in addition to
multiprogramming capabilities. In many instances system measurement and system validation
are construed to be one and the same thing. Although these two functions can be complemen~
tary, they are, in fact, quite different. Measurement may be considered a system design tool
to ascertain that the best possible performance is being delivered by a system or to determine
why a system is not performing properly. Validation, on the other hand, is a process for
determining if a system's performance is within the requirement specifications for a given
facility. In other words, system measurement techniques are used to "tune" an operating
system in an attempt to achieve its ultimate capabilities and operating system validation
determines if the designed system satisfies a facility's specific requirements. This does not
mean that system measurement techniques would not be useful to a facility in evaluating
prospective systems or for further improvement or testing of its system after acceptance;
however, system measurement techniques are most appropriately applied during operating
system design. Since it is possible that certain measurement techniques may be applicable
to operating system validation, a survey has been performed of some of the current measure-
ment methods.

Currently, there are two classes of measurement techniques that have been developed
for acquiring operating system measurements. These are the hardware instrumentation methods
which involve the attachment of "probes" to various computer components to record activity
in certain areas of the computer system and the software instrumentation method which
involves either a modification to the basic operating system or the addition of software
routines which have access to pertinent areas within the operating system.

In surveying the hardware monitoring devices available today, it appears that they all
provide nearly the same type of measurements. The basic factors provided are CPU utiliza=-
tion, 1/O channel utilization and peripheral device utilization. Other measurements
usually provided include system overhead, data base activity, allocation of time between

problem programs and the operating system, op code usage, time within a given memory

area, number of entries/exits from a given routine, operator response time, number of instruc-
tions executed, etc. Usually, this type of information is then processed and presented in report
form indicating the system's performance activity and utilization.

As is evidenced by the type of measurements provided by the hardware monitoring
devices, the major goal is improving system efficiency or, in evaluation, determining which
system is the most efficient.

The major advantage in using hardware monitoring methods over software monitoring
methods is that the former does not introduce any overhead into the system and therefore o
true operational environment is measured,

A typical hardware monitoring device is the X-RAY system manufactured by the Applied
Systems Division of the Computer Learning and Systems Corporation. A general description
of this system as stated in the X-RAY system manual is as follows: X-RAY is designed to
measure the total efficiency of a computer system. X=RAY provides a data collection,
reduction and analysis facility for accurate reporting of all aspects of system performance
including such major areas of interest as:

1. Computer System Utilization;
2. System Program Overhead;

3. Problem Program Efficiency;
4. Data Base Element Activity.

X=RAY isolates specific areas of operating inefficiency so that system improvement

measures such as the following may be applied:
1. Equipment Configuration Balancing;
2. Job Scheduling Procedure Modification;
3. Operating System Residence Reallocation;
4. Program Structure and Code Optimization;
5. Data Base Reorganization/Redistribution.

The X-RAY recorder samples hardware registers, indicators and lines using a passive
signal acquisition technique. The data samples are recorded on magnetic tape for post=
processing by a software package designated as the X-RAY/Analyzer which produces reports
describing configuration usage, program execution and data base activity. The X-RAY/

Analyzer also provides a facility with the capability to generate its own reports.

Other hardware monitoring devices currently available are:
o The Computer Performance Monitor Il (CPM I1) which is produced by
Allied Computer Technology, Inc. This system is designed to locate
system imbalance and monitor system utilization as a tool in eval-

vation of system operation and program performance.

e The CPA 7700, produced by Computer Programming and Analysis,
Inc., which provides measurements of such items as system wait

state, 1/O utilization, and problem and supervisor time allocation.

® The System Utilization Monitor (SUM) which is produced by Computer
Synectics, Inc. This system measures: wait state time, channel
usage, operator response time, problem time versus supervisor
time, seeks performed, number of instructions executed, number
of cards read/punched, 1/O errors, CPU errors, storage errors,

etc,

e The Dynaprobe system, produced by COMRESS, which is designed
basically to study central processor activity versus data channel
and |/O device usage. This system provides measurements such as
system state, CPU active time, CPU wait time, system idle time,
system active time, channel busy time, device idle time, instruc-
tion class, file access rate, etc.

In surveying the software measurement systems available today it appears that they pro-
vide the same types of information as provided by the hardware monitoring systems, with
one important exception. This exception is the fact that the software measurement systems
provide the capability of presenting the causal element. In other words, that program
which caused an event to occur can be determined. This factor is very important in answer-
ing utilization questions during system monitoring and is a definite aid in "tuning" a system,

The software measurement systems surveyed were:

e Boole and Babbage, Systems Measurement Software (SMS/360),
Configuration Utilization Evaluator (MCUE, Version 1) (CUE,
Version 2). This system extracts and analyzes data describing
hardware usage, data=cell or disk head movements, transient

supervisor call routine loading, etc.

e Boothe Resources International, Inc., Computer Installation Man-
agement System (CIMS/1). This system records and analyzes data
describing job step nomenclature, CPU utilization, hardware usage,

I/O requests, etc.

e Webster Computer Corporation, S/360 Disk Operating System,
Machine Utilization Reporting System (DOS MURS). This system
extracts and analyzes data describing program nomenclature, CPU
utilization, core utilization, I/O wait time, operator ID, etc.

o Computing Efficiency, Inc., COMPUMETER. This system extracts
and analyzes data regarding the utilization and cost related to
the computer system, the computer operators, and the programming
staff,

o Computer Learning and Systems Corporation, Computer-Aided
System Evaluation (CASE), This system utilizes simulation to deter-
mine file requirements, file utilization, and input component util-
ization,

Two measurement systems of interest which have been developed and utilized are the
Data Collection Facility (DCF), presented by T, B. Pinkerton (see reference 13 in the
bibliography) and the instrumentation methods utilized in the measurement of Multics

(see reference 15 in the bibliography).

The DCF was developed as a monitoring system for a time-sharing system, The
monitoring system itself was designed into the operating system providing information
which is more detailed than data sampling methods but not approclching' hardware monitor
resolution. The interesting facet of this system is the minimal amount of interference that
is introduced into the system by the DCF (this factor can affect system assisted validation).
Also, the conclusions reached during the research performed in support of the development
of DCF are very important and should be considered in the design of any software perform-
ance measurement system. These conclusions are:

e attempt to associate overhead caused by measurement with processes
independent of those being measured;

e defer analysis of data for post processing;

e provide capabilities to choose among data to be extracted;

e attempt to utilize continuous data extraction rather than

sampling;

e provide a monitoring system which is an integral part of the
operating system and can be used during normal operation.

The measurement of multics is interesting in light of the development of measurement
techniques as an integral part of the system design. Also, the utilization of hardware de-
vices in conjunction with software and integrated into the system provides for the utiliza-
tion of the best features of both types of measurement. The instrumentation of Multics
was utilized during system design and was directed primarily toward an understanding of the
internal operation of the operating system rather than measuring throughput, system capacity,
or the characteristics of the system load. However, areas of interest which are directly
applicable to software validation testing are the tracing package and simulation script
utilized by the system. The tracing package performs a continuous looping function in
which the calendar clock is continuously read. Normally successive clock readings will
vary by the loop transit time, large differences are caused by control being given to
another process. By analyzing the output of these recorded differences and by utilizing
a known operational scenario it would be possible to validate system interrupt handling,
algorithmic scheduling and proper peripheral utilization. The simulation script is much
like a known benchmark program in that it offers a known measurable operational scenario.
It is important in system validation testing that a known or controlled operational scenario
be utilized and the simulation script method offers this type of scenario.

2,2 Limitations

The major limitation uncovered in the survey of commercially available software
measurement systems is their dependency upon the operating system, This is caused by the
measurement system's requirement to extract necessary information from core. This extrac=
tion is dependent upon timing parameters and format of information which is a function of
the individual operating system. Therefore, each measurement system is written to perform
with a particular operating system. Thus, for each operating system, a unique measure-
ment system is required. It was found that the majority of software measurement systems only
provide their service for the IBM 360 system. Also, software measurement systems tend to
introduce a certain amount of overhead into an operating system. Although it is usually
stated that this is usually stated that this is a minimum factor, it must be considered never-

theless.

The hardware measurement systems surveyed offer the same type of information as the
software measurement systems and are able to perform this function without introducing
overhead into the operating system. However, the hardware measurement systems lack.
the flexibility of their software counterparts and, although they can present utilization
factors, they cannot present the utilization causal factors which is possible using software
measurement systems.

2.3 Conclusions

From the material surveyed on commercially available measurement systems, it appears
that these tools are truly useful to a facility in "tuning" an operating system to best satisfy
its operational requirements and that they can provide a means for obtaining more efficient
utilization of the system, |t is quite plausible to consider that ultimately system measure-
ment will be performed by a hybrid system, encompassing the best features of hardware and
software measurement systems. The problem of requiring a different measurement system for

each operating system has no apparent solution because of the inherent differences among

operating systems. This will continue to be the case until standardized measurement
recording requirements are imbedded within each operating system during design.

The simulation tool surveyed appears to be a highly useful device for a facility
attempting to determine the hardware/software configuration that best satisfies its require=
ments but does not apply to system measurement as performed by the systems surveyed.

The type of information obtained by both the hardware and software measurement
systems can be very useful in evaluating the capabilities of different systems when used
in conjunction with a standard benchmark program. However, these measurements appear
to have little significance in the validation of operating systems with the exception of
determining which system best utilizes its resources and which system could best satisfy

peak loading conditions.

SECTION Il
SYSTEM-ASSISTED TESTING

3.1 Concept

Many of the services afforded an application program by the system supervisor
are rather easily validated by simple test programs. For example, the capability to
issue 1/O commands, request the time of day, take a core dump, etc., can be tested
in a fairly straightforward manner. The difficult system area to validate is supervisory
and management control. For example, the areas of dynamic allocation, multiprogram-
ming control (scheduling and dispatching), job and task management, total system man-
agement, etc., are representative of those functions that cannot be directly observed.
Insofar as a test program is usually a single application program operating independently
of any other application program, it is difficult, except in trivial cases, to develop
the timing inter-relationships which cause the system to exercise its supervisory control
functions.

For this reason, this section presents several approaches which, if implemented,
will allow the behavior of the supervisor to be observed in a manner that is not now
commonly possible. Each of these approaches involves additions and modifications
to the design of existing supervisor programs. Some of these capabilities are fairly
easily provided with the addition of a minimal amount of coding; others may, in
some supervisory structures, require extensive program re-design. It is felt, however,
that these modifications will permit a level of system validation that has not been
previously possible. A further benefit, though of somewhat less importance than
the validation aspect, is that the ability to observe a supervisor's control operation
will also facilitate debugging operations when supervisor errors are encountered.

The concept, called system assisted-testing, is based upon the inclusion within the
supervisor of a number of routines which record various system actions for immediate or
subsequent visual verification, other routines which create conditions to which the
control program must respond, and selected facilities which enable certain system control

variables to be dynamically modified during supervisor validation proceedings.

Since validation procedures are normally conducted quite independently of
nomal system operation, each of the procedures mentioned should not be permanently
installed within the operational supervisor. Rather, the concept is based upona
special mode of operation called, perhaps, the validation mode, wherein the super-
visor will be dynamically augmented by the addition of the validation routines.

Thus, if the validation mode is specified during system initialization the super-
visor nucleus would be modified to enable linkages to the actual validation routines,
These routines, depending upon the design of the particular system, could then be
either loaded as a part of the system nucleus, established in a privileged supervisor
partition, or called dynamically into a transitional area when referenced.

A disadvantage to this approach is that the supervisor being validated is some-
what modified from the actual operational supervisor. However, this disadvantage
is compensated for by the fact that the resident operational supervisor will have a
smaller main storage requirement and/or a somewhat faster mode of operation when
validation techniques are inactive. Since the frequency of validation procedures is
quite small compared to normal operating time, the tradeoff of time and core seems
justified.

The following Subsections present four system=-assisted validation techniques. Each
attempts to provide a slightly different technique and is independent of the others.
Thus, any or all might be incorporated into an existing or proposed system depending
upon the level and type of validation desired.

3.2 Event Logging for Post-Mortem Analysis

The first technique is based upon a capability implemented by the designers of
the General Electric Comprehensive Operating System IIl (GECOS Ill - see Reference
5 in the Bibliography). To the authors' knowledge, this technique was not available
in operational versions of the system, but was, instead, incorporated into pre-production
testing of the system,

The capability should be invoked by a system control card or an operator key=in
during system initialization. Invocation enablesasystem trace or logging routine which
will record the occurrence of various events upon a log file on a dedicated output
device. A fairly high blocking factor should also be provided to reduce I/O inter-

ference. The log file is available for subsequent analysis by a series of general

10

purpose routines which will reduce the data collected to a series of charts depicting
an overview of system operation.

Most of the event logging routines (/O buffers, trace file write, initializa=-
tion) need not be imbedded within the supervisor nucleus. Rather, they can be
loaded into a permanent area for execution when the capability is activated. The
required changes in the supervisor nucleus are fairly minimal and should not signi-
ficantly alter the nucleus size.

Operation: When initialized for validation, each time a specified event

occurs, an event record will be constructed and transferred
to the system log file. The event record should look somewhat

like the following:

JOB OR INTERRUPT
EVENT SYSTEM TASK OR RESOURCE
TIME OF DAY CODE REFERENCE NUMBER | NUMBER | ERROR CODE ID

The following events are indicative of the conditions that should cause the production
of a logging record:
01 Recognition of a new job submitted to the system
02 Placing a new job on the scheduling queue
03 Removing a job from the scheduling queue and placing it in the
executing job mix
04 Removing a job from the scheduling queue for another reason
(e.g., operator command)
05 |Initiating a task within a job
06 Assigning a single resource to a job or task (allocation)
07 Releasing a single resource by a job or task (de-allocation)
08 Removing a single resource from a job or task (operator—directed action)
09 Assigning the CPU to a task
10 Removing the CPU from a task
11 Loading a program page or segment
12 Releasing or overlaying a program page or segment

13 Rolling out a program area

11

14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

Rolling in a program area

Initiating core compaction

Normal task termination

Abnormal task termination

Job termination

Interrupt occurrence (A certain selectivity should be provided for
the types of interrupts logged. For example, 1/O interrupts
might well be excluded.)

Exceeding a pre-specified program limit (core space, time, records, etc.)

Hardware error occurrence

Program error occurrence

Recognition of a new system resource

Deletion of an existing system resource

Receipt of a computer operator command relating to a resource or job

Initiation of symbiont routine

Termination of symbiont routine

Start of output symbiont processing for a specific job

End of output symbiont processing for a specific job

Validation technique: A pre-planned scenario of system benchmarks

should be prepared to simulate normal system operation. Only
those system events relating to speeific test objectives should

be activated; the others should remain dormant. Once the log
file has been obtained, it will be processed by one or more

data reduction programs to produce a map of the internal system
actions of interest. This map, in turn, can be visvally validated
to assure that the event sequences correspond to the actual

steps the system is required to perform,

The following layouts are examples of the types of data reduction
maps that could be produced to validate various operating system

functions:

12

Scheduling Process
For each job scheduled:
time of day the job was scheduled
other jobs remaining in the job scheduling queue
length of time each job has been in the scheduling queue

any resource assignments that have been made to unscheduled
jobs

Time Slicing or Priority Dispatching Algorithm
job/task name
time processor assigned to the task
time processor removed from the task
Degree of Multiprogramming or Time=Sharing
For each job scheduled or terminated:
time of day
job initiation or job termination indicator
job name
number of jobs/tasks currently active in the job mix
Peripheral Device Allocation
For each peripheral device:
time assigned to @ specific job/task
time released by a job/task
job/task name
If dynamic allocation is available, then the following information should
also be included:
time of job/task initiation,
time of job/task termination.
If the device is added or deleted from the system, then an appropriate

message should also be included.

13

5. Memory Management
a) Paged memory environment

For each job:
time of day
identification of page loaded or removed
indicator for pages loaded: was previous page swapped out prior to loading ?
number of pages currently active for the job

b) Non-paged environments

For each instance of storage compaction:
time of day
previous memory map
new memory map

For each instance of program roll out:
time of day
program (name) rolled-out
program (name) causing roll out
previous memory map
new memory map

For each job using an overlay structure:
initial core storage assignment

any modifications to core storage assignments with the corresponding time of
day

For each instance of overlay:
time of day
core area overlayed
name of overlaying segment
6. Symbiont Processing
a) Input symbionts
time symbiont is initiated

time symbiont is terminated

14

For each job:
time job is initially recognized by the system
time job is placed on the scheduling queue
time job is entered into job mix

b) Output Symbionts

time symbiont is initiated
time symbiont Is terminated

For each job:
time job is terminated
time symbiont processing is initiated for the job
time symbiont processing is completed for the job

7. Task Sequencing/Program Temination Control

For each job, list the following events and the respective time of event
occurrence:

job initiation

task initiation

task termination

job termination

device allocation

device de-allocation

program error occurrences

hardware error occurrences

program |limits exceeded

8. Hardware Error Control

This display should list all non-scheduling related events that occur from the
time of error recognition until a new job is selected from the scheduling
queve. This should produce a trace of all interactions that might occur due

to unrecoverable errors (e.g., re-allocation of resources, suspension of

intermediate processing, etc.).

15

The event logging facility thus imposes a minimal impact upon the system
undergoing validation and allows a rather comprehensive post-mortem analysis of the
system control functions being tested. The suggested examples of data reduction are
by no means complete. Rather, they are indicative of the varying types of functional
verification that may be provided. A comprehensive test employing this technique is
limited only by the ingenuity of the test designer and the extensiveness of the event
logging facility. Furthermore, this approach may be extended to validate new func-
tional capabilities incorporated into future operating systems.

3.3 Event Simulation

One of the major problems in validating an operating system is to create a
series of time—related events to which the system must react. Insofar as the system is
proceeding at a rate measured in nano- or migreseconds, it becomes virtually impos-
sible for a human operator to cause specific events to occur within selected time con-
straints. At best, he can provide events at a tolerance measured in seconds. Furthermore,
a comprehensive test of a time=sharing system, for example, requires the close coordination
of a number of remotely located terminal operators which only further compounds the problem.
The technique of event simulation has been used quite successfully to test and
validate special purpose real-time and/or time-sharing features. In particular, the
event simulator provides an almost unique capability to test system overload and other
time~dependent relationships.
To prepare for event simulation, the test designer creates a time-dependent
scenario of system events, The types of events to be considered are those that are external
to the system; activation (log-on) of a local or remote terminal, arrival of an input
message, arrival of a line=control interrupt, activation of an operator interrupt, etc.
Each of these events is tagged with the time of day, to the best resolution provided by
the system (millisecond , microsecond, or nano-second), that the event is to occur. If
the system is extremely complex or if the number of terminals or event type is large, it
may also be advisable to develop an event generation program that can create a random

sequence of events within the time tolerances specified.

16

Each of the generated events is placed on an on-line event file and the super-
visor is modified at system initialization time to disable the actual events. Further,
an event recognition routine is loaded with the supervisor. This routine sets an inter-
val timer interrupt to occur at the specific time of each event on the event file. A
standard set of benchmark programs can then be initiated to provide a multiprogram-
ming batch mode of processing. At each interval timer interrupt, the causing event
is read from the event file and the event recognition routine causes a linkage to be
established to the proper interrupt handling routine.

An additional modification must be inserted in each interrupt handling routine
to process the event from the linkage information provided by the event recognition
routine. Further, if the interrupt handling routine masks out any other events, this
information must be returned to the event recognition routine so that future events
will be held pending until the mask is removed. When the event file is exhausted, the
system should be notified to terminate validation operations and to notify the operator
of test completion.

As indicated earlier, this technique is frequently used to validate real-time
oriented systems. Consequently, it seems quite likely that the modifications to the
supervisor described will already exist in a vendor's pre-production version of the
system, When this is the case, this capability can be easily provided by the vendor
for the validation sequence. When such a capability has not been developed by the
vendor, the modifications to the operating system will be quite extensive. However,
if the event sequence to be tested is considered critical to operational performance,
such modification may still be justified.

It should also be noted that no capability to display the results of event occur-
rence and system reaction has been specified. In this area, it is recommended that
the event logging for post-mortem analysis capability (see Subsection 3.2) be employed
to validate the event processing sequence.

3.4 Interactive Test Control

This validation technique is based upon the concept that the individual performing
system validation should be allowed to interact with the system to structure and record

the results of selected activities of the system. Jerry Grochow has described g capability

17

3.4 (Continued)
provided to the MULTICS system designers which utilizes a PDP-8 computer to display

varlous system statisties and to selectively modify the system during operation (see

Reference 7 in the Bibliography). The capability described herein is based somewhat

upon this concept though it does not necessarily entail the use of a separate proces-

sor.

A dedicated on-line console device is designated for the use of the system valid-

ator and a privileged partition is provided for the interactive test control program. This

program should be designed to display various portions of the system supervisor area on

the console device and to, upon command, modify selected system variables within

the supervisor, All references to the system supervisor are symbolic to prevent in-

advertent modification of actual core locations by the system validator.

In essence, the interactive test program would provide the validator with the

following on=line commands:

1

2)

Display logical system elements = This command will provide a

structured display of the various logical elements comprising the

system, These elements would consist of, but are not limited to,

the following:

main storage allocation,
secondary storage allocation,
resource allocations,

current job mix,

dispatching queue,

scheduling queve.

Halt or proceed with validation run = This command will cause temporary

suspension or resumption of system processing. Suspension would nomally

be invoked prior to displaying the various system elements or prior to

modifying a system element. Resumption would cause the test sequence

to continue,

18

3)

4)

s)

6)

Modify selected system control elements = This command will set selected
system variables to a specified status. Then, the system validator can
create overload conditions by restricting the amount of core or number of
devices available or by reducing the number of entries permitted in
scheduling, dispatching and 1/O request queues. Further, he can modify
resource availability to either include or exclude specific devices to satisfy
his immediate test objectives.

Proceed until specific conditions arise = This command will permit the
system to run uninterrupted until a specified condition occurs. Normally,
the validator would issue this command to allow the system to create the
necessary testing environment that he wishes to validate. The types of
conditions that would be recognized are suggested by the following:

- 'n' entries in a dispatching, scheduling, or /O request queue,

- specific job initiation or termination,

- activation of a specific supervisor routine (e.g., a roll-out),

- an elapsed time interval, etc.

Force event occurrence - This command will cause the invocation of

the processing routine which handles a selected event. The types of

events to be invoked would be:

the hardware error control routine,

the program error control routine,

an external interrupt,

a power failure, etc.

Invoke or release the event logging routine = This command will cause
the event logging mechanism described in Subsection 3.2 to be initiated
or terminated. Normally, the event logging routine, if available, would
be dormant until the actual test environment is created (command 4) and
then activated, By using the event logging capability, the validator

is afforded a rather comprehensive post-mortem analysis of the system

reaction to his structured test.

19

3.5 Programmed Test Control

This validation technique is quite similar to the previous technique except that
the validator does not have on-line access to the system. Instead, all of the on=line
commands are made available to a privileged executing program which will direct the
activation of selected conditions and monitor the results of the system reaction to these
conditions, All of the commands described in Subsection 3.4 would be available to the
privileged program in addition to a more comprehensive display of supervisor status var-
iables.

It is felt that this approach is more realistic for smaller systems or for those that
do not provide an on-line console capability.

3.6 Conclusions

This Section has described four areas in which a system=-assisted validation method-
ology can be employed to increase the information available from the operating system
validation process and the amount of control the system validator can exercise over the
process. The implementation of these recommendations should involve a considerable
amount of design review to further ascertain the types of information that are relevant
to system testing/validation objectives. These recommendations constitute only the first
step in an attempt to increase the precision of the validation proceedings.

However, it is noteworthy that most systems, particularly the larger and more
complex operating systems, utilize a large number of testing aids during the system debug
cycle. The fact that these aids are normally unavailable to the system validator decreases
the sophistication, and ultimately, the value of the validation process itself. Conse-
quently, when it is known that extensive system debugging aids exist, it is strongly
recommended that the system validator be made aware of these aids in order to design
a more comprehensive program for ensuring that the proposed operating system fulfills
the requirements of the intended application.

In this regard, the addition of a criterion to the system evaluation process whereby
a vendor is also evaluated on the level and sophistication of his system testing aids is
worth consideration. While testing/validation aids would not be a firm requirement,
the award of "bonus points" for effective testing aids should encourage vendors to make
available many of the routines which have already been developed and which would

facilitate the design of more extensive and exhaustive system control tests.

20

SECTION IV
FUNCTIONAI TESTING REQUIREMENTS

4.1 Approach

The functional testing requirements are delineated by a tabulation within the integrated
functional classification structure (see Reference 12 in the Bibliography). This method ensures

a comprehensive listing of test requirements for test implementation selection.

Since different types of operating systems exhibit different operational characteristics,
each functional requirement is related to a particular system type, viz., real-time, batch,
time-sharing, etc. The criticality of each functional requirement is denoted by designa-
ting it as a fundamental or special case requirement. Finally, each requirement is
referenced to a test package which is defined in Section 5.

This particular method of structuring operating system testing requirements provides a
means by which test designers can procedurally relate any operating system to possible
testing requirements.

4.2 Testing Requirements

Operating system testing requirements are presented within three functional areas:

Part I: Executive/Control Functions,
Part Il: System Management Functions,
Part 1ll: Data Manipulation Functions.

The testing requirements for each area are structured using a tabular format. For the
Part | functions, this format consists of four columns entitled Functional Area, System Type,
Capability Level, and Cross Reference to Test. The column entitled Functional Area contains
a delineation of the functional areas within an operating system and the testing requirements
found within each area. The column entitled System Type delineates the type of system
within which each requirement occurs: RTS, Real-Time System; BPS, Batch Processing
System; TSS, Time-Sharing System; ALL, all of these system types. The designation MPS
in the System Type column indicates that the requirement is peculiar to multiprogramming

systems, The column entitled Capability Level denotes whether a requirement is fundamental

to a system type or occurs in special cases. The final column, entitled Cross Reference to
Test, contains the alphabetic designation of one of the Test Packages presented in Section

5. For example, the letter "A" in the final column indicates that the recommended testing

21

of its associated criteria is included in "Test Package A - System Foundation" while
the letter "C" in the final column indicates that the recommended testing of its associated
criteria is included in "Test Package C - Normal Operation Control, etc. An example
utilizing the system is as follows: It is necessary to validate Abnormal Termination which
is fur;cfionol area 1,1.5.3 on page 29. This function references test package "B",
Turning to test package B, page 57, it is found that item "16" is Abnormal Termination
Functions. Item "16" references Part |, Function 1.1,5.3, techniques (a)-(f). This ref-
erence is then found on page 74 and the validation technique stated is to "Force abnomal
termination, and then observe the ensuing system action."” Also, for certain requirements,
a single asterisk or double asterisk is placed in the last column to denote the following:

* This system control function is somewhat unwieldy to test unless
one of the techniques suggested in Section 3 is employed. Conse-

quently, the given test should be replaced by a system=-assisted

technique, if available.

** This function is implicitly validated by one or more of the tests

designed to verify other operating system functions. Consequently,
a unique test validating this function is unnecessary.

For the Part |l functions the tabular format consists of the columns Functional Area,
Capability Level, and Cross Reference to Test. Each of these columns contain the same
type of information as described for like columns occurring in the Part | tabulation.

For the Part Ill functions the tabular format consists of the columns Functional Area
and Cross Reference to Test. Again, each of these columns contain the same type of

information as described for like columns occurring in the Part | tabulation.

22

4

1.0
1.1
1.1.1
1.1.1.1

1.1.1.2

1.1.1.3

1.1.1.4

TESTING REQUIREMENTS - PART I: EXECUTIVE/CONTROL FUNCTIONS

FUNCTIONAL AREA

JOB MANAGEMENT

Job Control

Scheduling

Algorithmic Scheduling

recognition of job priorities

recognition of resources allocated/not allocated
recognition of scheduling delay time

recognition of job type (I/O, processor, etc.)
capability to modify job priorities by operator
capability to modify job priorities by user

capability to modify scheduling algorithm

Time Initiated Scheduling

recognition of time-of-day as a scheduling parameter
recognition of job deadline time as a scheduling parameter

recognition of an elapsed time interval as a scheduling
parameter

Event Initiated Scheduling

recognition of specific events or interrupts

Program Initiated Scheduling

capability to initiate scheduling of symbionts

capability to initiate scheduling of subprograms/subtasks

CROSS
SYSTEM TYPE CAPABILITY LEVEL REFERENCE TO TEST

RTS,BPS fundamental C

BPS fundamental cx
BPS fundamental (G
BPS fundamental C

BPS special cases C

BPS special cases C

BPS special cases C

BPS special cases C*
BPS special cases C

RTS, BPS fundamental C

RTS,TSS fundamental C*
BPS,TSS special cases C

ALL special cases

144

1.1.1.4

1.1.1.3

1.1.1.6

1.1.2
1.1.2.1

FUNCTIONAL AREA

(cont'd.)

capability to provide scheduling for immediate execution
capability to provide scheduling for asynchronous execution
capability to provide scheduling for subsequent execution
Conditional Scheduling

recognition of task completion/abnormal termination
recognition of internal switches set by prior task
recognition of error code set by prior tasks/job steps
recognition of externally set switches

specification of conditional logic on job control cards

capability to specify conditional scheduling at the job
level

capability to specify conditional scheduling at the job
step level

capability to specify conditional scheduling at the task level
Scheduling Queue Maintenance

capability to maintain scheduling queues

Resource Allocation

Core Storage Allocation

capability to provide static (fixed) core allocation for:

program expansion,

1/O buffers,

SYSTEM TYPE

CAPABILITY LEVEL

CROSS
REFERENCE TO TEST

ALL
MPS, ALL
RTS,BPS

BPS,RTS
BPS
BPS
BPS
BPS
BPS

BPS

BPS

ALL

BPS
ALL

special cases
special cases

special cases

fundamental
special cases
special cases
special cases
special cases

special cases
special cases

special cases

fundamental

fundamental

fundamental

(@)

O O 0O 0O 0O 0

C*

C**
C**

T4

1.1.2.1

1.1.2.2

FUNCTIONAL AREA

(cont'd.)

common areas,

subtask execution.

capability to provide dynamic core allocation for:
program expansion,

1/O buffers,

common areas,

subtask execution.

capability to provide dynamic core allocation through
storage pools

capability permitting common (shared) core allocation bet-
ween tasks of the same job

capability providing storage protection against unauthorized
program access

capability to provide storage protection against unauthorized
I/O processor access

capability to provide storage write protection

capability to provide storage read protection

I/O Device Allocation

capability to dynamically allocate devices/files
capability to allocate actual physical devices

capability to allocate devices according to access method

capability to allocate devices according to device type

SYSTEM TYPE

CAPABILITY LEVEL

CROSS
REFERENCE TO TEST

BPS,RTS
ALL

MPS,ALL
MPS, ALL
MPS,ALL
MPS,ALL
MPS, ALL

MPS, BPS
MPS, TSS
MPS, ALL

MPS, ALL
MPS,ALL

MPS,TSS
ALL
TSS,BPS
ALL

fundamental

fundamental

special cases
special cases
special cases
special cases

special cases
special cases
fundamental
fundamental

fundamental

fundamental

special cases
special cases
special cases

special cases

C**
C**

(@)

O 0O O 0

9z

1.1.2.2

1.1.2.3

1.1.3

1.1.3.1

1.1.3.2

FUNCTIONAL AREA

(cont'd.)

capability to allocate devices by symbolic references
capability to provide exclusive allocation of devices/files
capability to provide shared allocation of devices/files
Common Subroutine Allocation

capability to support serially reusable subroutines
capability to support ree<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>