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FOREWORD

This work was performed by the Electronics Division of the Georgia Insti-
tute of Technology unger United States Air Force Contract No. F19628-70-C-0169
during the period february 1970 to January 1971.

This report is the result of efforts by a large number of individuals.
Contributors in addition to thgrauthors include 7. G. Bodnar, K. B. Barfield,
T. M. Hedges, and E. C. Burdette. Special acknowledgement is made »f the

contributions of Dr. Allan Schell of the Air Force Cambridge Research Labora-

tories.
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ABSTRACT

For many radar applications, extremely low antenna sidelobes can improve

system performance. Current techniques utilize only the antenna amplitude
distribution to produce lower sidelobes. This report presents results of an

investigation of combined ampiitude and phase tapering to produce lower side-

lcbes. Combinations of phase and amplitude distributions and the resulting
far-field patterns were studicd theoreticaily through computer analyéis.
Gaussian phase tapers with cosine and modified Taylor anplitdde distributions
were studied in detail. Experimental work included the construction of a

dielectric lens for a horn antenna that significantly lowered thé sidelobe

level. Design information was compiled to demonstrate tradeoffs between

amplitude tapering alone and combined phase and amplitude tapering.
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SECTION 1

INTRODUCTION

For many radar and communication applications, extremely low antemna side-
lobes can improve the overall system performance., It is common practice to
taper the antenna amplitude distribution to produce lower sidelobes at the
expense of lower gain factor and larger beamwidth. However, current sidelobe
feduction techniques do not employ 2 modification to the phase distribution in
addition to the tapered amplitude distribution. It is the purpose of this re-
port to present results of an investigation of combined amplitude and phase
tapering to. produce low sidelobe levels.

Specific instances of low sidelobe antennas have been observed at Georgia
Tech when non-uniform phage distributions were produced in folded geodesic lens
antennas and horn antennzs with dielectric lenses. As described in Section II,
phase tapering combined with amplitude tapering produced antennas with unusually
low sidelobes. The approach in this investigation was to start with phase and
amplitude distributions known to produce low sidelobes and to examine the far-
field pattern as the i)arameters controlling the phase distribution were varied.
Rapid phase variations were avoided so that realizable distributions and rea-
sonable gain factors would result,

Initially, combinations of phase and amplitwude distributions and the re-
sulting far-field patterns were investigated theoretically through computer
analysis. Gaussian phase tapers with cosine and modified Taylor amplitude
distributions were corsidered in detail, Horn-lens combinations and line source
arrays were fabricated to confirm the theoretical results. From the results of

the theoretical and experimental work, design information was compiled to show
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: SECTION II
% BACKGROUND
The increasing need for better target discrimination and improved detec-
tion capabilities in radar applications has resulted in more stringent require-
ments being placed on radar antenna systems. In particular, these requirements

have resulted in the demand for antennas having lower sidelobes than are usually

4 % achieved in parctical radar sntennas. Although a great deal of theoretical

work has been devoted to the optimization of anteana directivity for specified 3

1,2,3 and to the synthesis of arbitrary pat:tetns,4 there re-

sidelobe levels
mains a definite need for information concerning the design and comstruction

of efficient, practical antemmas which can meet the exigting directivity and

low sidelobe requirements.

Two notable observations of significant sidelobe reduction with either
minor or immeasurable changes in the far-field gains and 3-dB beamwidth have

been made on antennas designed, constructed, and tested at Georgia Tech. The

results obtained from these observations indicate that phase shaping can be

S S

combined with the ampiitude shaping of antenna apertures to yield efficient

ave

antennas which have very low sidelobes in their far-field radiation patterns.

1, GEODESIC LENS OBSERVATIONS

The first observation of significant sidelobe reduction was made in com-

paring the radiation pattern of a 23.0-inch line source aperture employing a

folded geodesic Luneberg lens5 to that of a similar 23.6-inch line source

TIPS 1 ORI TRARRAATI IS (P IRP S

F 4 aperture which employed an unfolded g:odesic Luneberg lens.6’7 The radiation

patterns of both antennar at 70 GHz are shown in Figure 2-1. At this frequency

N sl - o BlSeciolisiaso el
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both antennas exhibited a 3-dB beamwidth of about 0.5 degrees. The major
difference between the radiation patferns of the two antennas was the dif-
ference in sidelobe levels. The sidelobes of the antenna employing the un-
folded lens were 26 dB or wore down from the peak of the main lobe, whereas
the sidelobes of the antenna employing the folded lens were more than 36 dB
down from the peak of the main lobe. The measured sidelobe levels in the
radiation pattern of the antenna employing the unfolded lens agreed with those
predicted by transforming the primary feed horn pattern through the lens.
However, the sidelobe levels achieved in the radiation pattern of the antenna
employing the folded lens were much lower than the predicted levels. It was
surmised that the very low sidelobes resulted from a modification of the
amplitude and phase distributions of the folded lens aperture due to the pre-
sence of higher order modes in the lens folds. A far-field pattern calcula-
tion using measured amplitude and phase distributions verified that the side-
lobe level improvement was due to the changes in the amplitude and phase dis-
tribution caused by the effects of fol'ding the lens.

The amplitude and phise distributions which produced the observed far-
field patterns of the antennas employing the unfolded and folded geodesic
lenses are shown in Figures 2-2a and 2-2b, respectively. Note, in Figure 2-2b,
that the effect of the lens folds was tc¢ concentrate more energy toward the
center of the aperture and to introduce a symmetrical phase taper (with a
phase lag of about 90 degrees at the edges of the aperture) having two minor
peaks located + 9 inches from the center of the aperture. The increase of
energy near the center of the folded lens aperture tended to compensate for

the loss in aperture efficiency caused by the presence of the phase taper.
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A careful comparison of the two patterns illustrated in Figure 2-1 shows
that the first pair of sidelobes present in Figure 2-la tas merged with the
main lobe of the pattern in Figure 2-lb. Note, however, that the second pair
of sidelobes present in Figure 2-la has been suppressed in the pattern of
Fibure 2-1b. The merging of the first sidelohes with the main beam and the
suppression of the outlying sidelobes was accompanied by some broadening of
the main beam below the -10 dB level. However, the main lobe pattern achieved
is more desirable than the very broad pattern which is usually obtained when
a quadratic phase taper is added to a constant phase aperture distributiona’g.
2, LENS-HORN FEED OBSERVATIONS

The second observation of significant sidelobe reduction was made in
the testing of an X-band feed which consisted of a quarter-wave step-matched
dielectric lers mounted in the throat of a horn. The establishment of higher
order modes in the throat of the horn made the lens-horn feed combination
frequency sensitive. The patterns of the lens-horn feed at 9.95 GHz and
10.00 GHz are shcwn in Figures 2-3a and 2-3b, rcspectively. The feed exhibited
the same gain and a 3-dB beamwidth of 27 degrees at both frequencies. How-
ever, the sidelobes present at 10.00 GHz were more than 36 dB below the feak
of the main lobe., The 12-dB sidelobe suppression observed in the lens-horn
feed tests is particﬁlarly interesting since the sidelobe suppression did not
significantly broaden the base of the main lobe. Preliminary measurements of
the amplitude and phase distributions of the feed aperture at 9.95 GHz and

10.00 GHz have indicated that the amplitude distribution is essentially the

same at both frequencies. However, the phase distribution changes noticeably

it
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between 9.95 GH7 and 10.00 GHz. Thus, the improved performance at 10.00 GHz

is due largely to the changed phase distribution.

3. DESIGN APPROACH

The two observations discussed above suggest that the sidelobe levels
in the far-field radiation patterns of highly directive, efficient antennas
can be reduced with no significant changes in the directivity or efficiency
if 1) the usual constant-phase aperture distribution is replaced by a properly
shaped, non-uniform phase distribution, and 2) the existing amplitude distri-
bution is slightly modified to overcome the loss in aperture efficiency which
results from the replacement of the constant-phase aperture distribution by
the shaped non-uniform phase distribution. This approach to sidglobe level
reduction contrasts wi*h the :wre familiar approaches to sidelobe reduction
in that no attempt is made to achieve the maximum directivity for a given
sidelobe level. The required directivities and sidelobe levels are obtained
by combining a practical amplitude distribution with realizable shaping of
the aperture phase distribution. This approach i3 highly practical and avoids

the class of inefficient, supergain antennas.
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SECTION III

THEORETICAL INVESTIGATIONS

As described in Section II, phase tapering combined with amplitude

tapering produced antennas with unusually low sidelobes in research at Georgia

Tech. The approach in the theoretical portion of the contract was to start

with phase and amplitude distributions known to produce low sidelobes and to

examine the far-field pattern as the parameters controlling the phase distri-

bution were varied.

Fourier integral techniques were utilized to analyze the effects of changes

in the aperture amplitude and phase distributions on far-field patterns.

far-field pattern of a line source aperture is given by10

a/2
g(8) = J F(z) e

-a/2

jkz sin edz

where
a is the length of the aperiuvre
z is the distance along the line source
k = 27/) where ) is the wavelength
¢ is the angular coordinate

F(z) is the complex current distribution
This can be written in normalized form as

1
gp) = f? J f(x) eIH% gx
-1

where

Ma 2
b= il sin 6, x = :f

The

-1

(3-2)




Ty

The normalized notation has the advantage that the far-field pattern of the
antenna does not have to be recalculated if the aperture size or frequency is
changed, as long as the aperture distribution is unchanged.

A computer program usirg the Fast Fourier Transform to calcuiate far-field
patterns from aperture distributions was developed that included subroutines
for plotring the input phase and amplitude aperture distributions and normalized
far-field patterr. The normalized 3-dB beamwidth, aperture gain factor, and
first sidelobe level are recorded on each plot of an antenna pattern. The

normalized beamwidth is related to the true beamwidth by

— _ a = )
B normalized A B (3-3)

and the gain factor is defined a511

G = == (3-4)

where

GM is the gain of the aperture, and

G, is the gain of a uniformly illuminated aperture.

Figure 3-1 shows a typical computer-plotted input aperture distribution and
far-field pattern.

Test distributions for which the exact radiation patterns are known were
used to determine the accuracy of the Fast Fourier Transform solution. Among
those tested were the uniform illumination of Figure 3-1, and the cosine-squared
distribution; gain factor errors were less than one percent, and first sidelobe

level errors were on the order of 0.1 dB.

12
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1. CLRVE FITIING

Pol nomial curve fitting techniques were applied to the aperture distri-

bution of the folded geodesic lens described in Section II. Figure 3-2 shows
the amplitude and phase distribution of this antenna and the coaputed far-field 3
1 pattern: the first sidelobe level is -32 dB. The shape of the phase distribu-~
*jon of this antenna is irregular; by successively approximating the shape of
E this curve with higher-order polynomials, the effect of small changes in the
phase distribution on the sidelobe level can be determined.

[igure 3-3 shows the amclitude and phase distribution and computed far-

field pattern for the folded lens with no phase variation (zero order poly-
nomial); the first sidelcbe 'evel is -21 dB. Figures 3-4 and 3-5 show the ef-

fect on the far-field pattern when the aperture distribution is approximated

by fourth and sixth order polynomials, respéctively. The sixth order poly-

ik Okt

nomial approximation produced the best combination of sidelobe level, gain
_factor, and beamwidth. Howevzr, no substantial improvement over the perfor- :
;o mance of the measured phase distvibution resulted from this approach.
The curve fitting experiments did reveal that the sidelobe level is ex-~
tremely sensitive to small changes in the phase distribution, but that the

rapid phase change at the ends of the measured phase distribution (the "curls"

ok i s

in Figure 3-2) were not necessary to achieve the measured sidelobe level.

2. COSInE PHASE DISTR1BUTION

The phase distribution of Figure 3-5 is a well-behaved function, but
would be difficult to express analytically. However, the general shape sug-

gested a sinusoidal variation. A phase distribution of the ferm

14
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s A

$ X) =A (1+ cos ™X) (3-5)
-1 <X<1

5° < A < 50°

was investigated to determine the effect on the sidelobe level of this type of
distribution. A phase distribution with a maximum variation of eighty degrees
resulted in the computed antenna pattern and distributions shown in Figure 3-6,
The first sidelobe level has been lowered to -38 dB, although the gain factor
and beamwidth are less desirable than those produced by the phase distributions
shown in Figures 3-2 and 3-5. However, it was encouraging to find that the same
amplitvde distribution could be used to achieve a reduction in sidelobe level
of almost 100 percent by changing the phase distribution alone,
3. GAUSSIAN PHASE DISTRIBUTION

- The shape of the cosine phase distribution suggested the possibility of
using a Gaussian phase distribution to achieve similar results. Since a
Gaussian distribution is a function of two variabies, the effective width of
the phase distribution could be varied slong with the height. A phase distri-

bution of the form

2
g () = A - e G (3-6)
-1 <X<1

10° < A < 100°

1.75 < C < 2.5

was investigated; a phase distribution with a maximum variation of approximately
fifty degrees and standard deviation of 0.4 resulted in the computed antenna
pattern shown in Figure 3-7. The first sidelobe level is -34 dB, and the gain
factor iz 0.82. This inverted Gaussian phase distribution resulted in the best

combination of sidelobe level, gain factor, and beamwidth for the folded lens

17
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amplitude distribution. The results of the theoretical investigation of
phase distributions for the folded lens amplitude distribution are summarized
in Table 3-1.

As shown in the table, this Gaussian phase distribution results in a
13 dB improvement in first sidelobe level over that obtained with no phase
variation, with a reduction in gain factor of less than six percent. The 3 dB
beamwic.n increases by less than one percent; the first significant heam
broadening occurs at a level of approximately -14 dB.

Of course, it is possible to achieve a theoretical first sidelobe level
of -34 dB using amplitude tapering only. Hcwever, using a cosine-squared
amplitude taper and no phase tzper results in a first sidelobe level of -32 dB
and a gain factor of only 0.67, or 18 percent less gain than is possible using
the folded lens amplitude taper and a Gaussian phase taper.

4, PHASE TAPERING APPLIED TO MODIFIED TAYLOR AMPLITUDE DISTRIBUTIONS

The improvement in sidelobe level possible with phase fapering described
in.the previous section was for only one amplitude distribution, the measured
folded geodesic lens distribution. To be useful, phase tapering has to work
for many different amplitude tapers (and therefore different sidelobe levels).
The modified Taylor distribution was chosen as the amplitude distribution tec
be used in subsequent tests of phase tapering techniques. The modified Taylor
distribution is an ideal choice for testing because it is considered a practi-
cal approximation to the "optimum'" aperture distribution for continuous

sources, and can generate a wide range of sidelobe levels.lz’13
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TABLE 3-1

THEORET ICAL. PERFORMANCE OF SEVERAL PHASE TAPERS

@ FOR THE FOLDED pLENS AMPLITUDE DISTRIBUTION
E thase First Gain 3-dB 10-dB
3 Distribution Sidelaobe Factor Beamwidth Beamwidth
Lavel (degrecs) (degrees)
(dB)
Constant -21 0.87 63.5 )\/a 110 )/a
Measured -32 0.74 68.2 3/a 135 )/a
Curve Fitting -32 0.74 68.2 )\/a 135 )/a
Cosine -38 0.72 67.3 \/a 155 A/a
Gauvssian -34 0.82 64.1 3/a 115 )/a
Cosine-squared

amplitude distri-
bution, Constant
Phase -32 0.67 83.2 \/a 165 \/a
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(a) Modified Taylor Distribution

TITTTIT T R PYA § a T e e e masny

The modified Taylor amplitude distribution is given by

$(X) = I (TfBJl - x2) X} <1 (3-7)
|X| <1
where
X 1is the normalized distance along the source,

I 1is the modified Bessel function of the first kind of
order one, and

3 B 1is a constant to be specified.

The far-field pattern and first sidelobe level can be determined exactly;

the sidelobe level is

R = 4.603 SERLOLE) (3-8)

where R is the voltage ratio of the main beam to the first sidelobte.

Equation 3-8 can be used to determine the constant B for any desired

sidelobe level. Six different values of B were uce1 to generate patterns with

E first sidelobe ratios of approximately 15, 20, 25, 30, 35, and 40 dB, with no

phase variation. For each amplitude taper, phase distributions of the form

2
() =A@ - e Gy (3-9)

-1 <1
20° < A < 100°

1.75 ¢« C < 2.5

were investigated to determine the effect on sidelobe level, gain factor, and
beamwidth. Changes in A correspond to variations in end point phase, or height,

while changes in C correspond to changes in the standard deviation, or width,

21
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of the Gaussian phase distribution. The range of values for A and C given
above are the ones that generated the most desirable far-field patterns
although manv others were tried.

Figure 3-8 shows the aperture distribution and computed far-field pattern
for a modified Taylor distribution with a first sidelobe level of approximately
-30 dB and gain factor of 0.81. Figure 3-9 shows the aperture distribution
and far-field for the same amplitude taper but with a Gaussian phase distri-

bution (A = 30°, C = 2). The first sidelobe level is -36 dB, and the gain

factor is 0.80. However, merely lowering the sidelobe level is not significant;

Figure 3-10 shows the real justification for using phase tapering. This figure
shows the aperture aistribution and far-field pattern for a moiified Taylor
umpiifude éig;ribution with a first sidelobe level of -35 dB and gain factor
of 0.75. Thus, by using bcth amplitude and phase tapering, it is possible to
achieve a higher gain factor for a given sidelobe level than is pcssible using
the "optimum'" amplitude taper alone. Note also that the 3-dB beamwidth is
smaller for the phase tapering case, at a given sidelobe level, than for ampli-
tude tapering alone. The first significant broadening of the beam, using
phase tapering, occurs at a level of =20 dB.

Figure 3-11 shows the aperture distribution and far-field pattern for
the case where the amplitude taper of Figure 3-10 is comhined with a Gaussian
phase distribution (A = 20°, C = 2) to produce a pattern with a sidelobe level
of -41.3 dB and a gain factor of 0.75. Table 3-2 summarizes the results
achieved with phase and amplitude tapering and compares them tc the results
possible using amplitude tapering alone. In each case, using phase tapering

results in a higher gain factor and smaller 3-dB beamwidth for the same side-

lobe level.
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THEORETICAL PERFORMANCE OF MODIFIED TAYLOR AMPLITUNE

TABLE 3-2

TAPERING AND GAUSSIAN PHASE TAPERING

Amplitude Phase First Sidelobe Gain Factor 3.dB
Taper Distribution Level Beamwidth
(dB) (dB) (degrees)
9.0 Gaussian
15.2 Constant =24.9 .870 63.7
15.2 Gaussizn
Taper -30.6 .857 63.5
21,1 Gaussian
Taper =36.4 .796 68.5
27.2 Gaussian
Taper -41.3 .750 73.1
32.6 Gaussian
Taper -45 06 ° 709 77 02
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{b) End ioint Phase Requirements

The maximum phase variation required to achieve an improvement in side-
lobe level depends on the amplitude taper. In general, as the amplitude taper
increases, the end pcint phase required to merge the first sidelcbe with the
main beam decreases., As shown in Figure 3-11, an end point phase of approxi-
mately twenty degrees is sufficient to improve the sidelobe level of a modified
Teylor amplitude distribution with a nominal sidelobe level of -35 dB. However,
if the same phase variation is applied to a modified Taylor amplitude distri-
bution with a nominal sidelobe level of -25 dB, the first sidelobe does not
merge with the main beam (Figure 3-12), Increasing the end point phase to
forty degrees {with the same amplitude distribution) does result in the improved
sidelobe level shown in Figure 3-13. Similarly, a forty degree phase variation
does not merge the first sidelobe with the main beam if the amplitude distribu-
tion has a nominal sidelobe level of =20 dB (Figure 3-14), but a sixty degree
phase variation does achieve the improved pattern shown in Figure 3-15.
5. THE OPTIMUM LINE SOURCE DISTRIBUTION

(a) General Line Scurce Optimization

The preceding demonstration of sidelobe reduction by phase tapering
suggests an optimum distribution may be found in which both the amplitude
and phase are svstem variables. Work is now underway to apply non-linear
optimization theory to the problem of line source synthesis. Optimization
theory has long been used in control and communication system synthesis and
recently Sandrin and Glatt14 have applied it to the synthesis of phased arrays.

Basically, the optimization process locates the maximum or minimum of a

real function of the system variables by the method of steepest descent. Let
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Figure 3-12. Modified Taylor amplitude distribution with a nominal
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Figure 3-14, Modified Taylor amplitude distribution with a nominal side-
lobe level of -20 dB with a forty degree end point Gaussian
phase distribution, and computed far-field pattern.
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Figure 3-15, Modified Taylor amplitude distribution with a nominal side-
lobe level of -20 dB with a sixty degree end point Gaussian
phase distribution, and computed far-field pattern.
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S(X) be a complex line source distribution. S{X) may be represented by

complex samples equally spaced at intervals less than )/2. In this work

S(X) is represented by N + 1 samples spaced at A/4 intervals as

N

s(¥) =i S(n/4 1) (3-10) ]
N ! |
2 i

S(X) may also be written in terms of its amplitude and phase distributions as

siX) = A(X)ejp(x) (3-11)

In line source synthesis the system variables are the amplitude and phase of

the line source at each of the N + 1 sample points. As pointed out later the

variables are not independent and constraints must be placed on their values.

Let fj be a function of the system variables. The sequential process for
finding the minimum of fj may be written as
£y (Spyq ®)) = £; (5, (X)) + dvE, (5 (X)) (3-12) 3

where

Sn(x) is the nth state of the soucce distribution,

ij(Sn(x)) is the gradient of fj with respect to the system
variables, S(X), evaluated at the nth state,

d is the step size between the n + 1th and the nth value

of £, and
J
Sy ®) = 5, (%) + VE (5 (0)
The iterative procedure is repeated until the gradient becomes zero indicating

a local minimum has been reached. Several tests are available to determine
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if the local minimum is the global minimum. One such test is to repeat the

minimization procedure several times starting from random initial source dis-

tribution states.,

Constraints may be added tc the optimization procedure by forming a new

system function gj(S(X)) as follows

where

" :

S v m g
88, () = £ (5, ) + ) TEED (3-13)
=l
..\LZ .
i £ (S (;cn)) C
UF§1+1 m' n m
M3
+ 5 e, - £,6,000
m=1~<2+1

fj(S (X)) is the system function to be minimized evaluated at
the nth state of the source variables,

fm(Sn(X)) for 1 <m <M is a real system function to be con-
strained less than the constant Cm’

fm(Sn(X)) for M1 +1lgmg Mzis a real system function to be

constrained greater than the constant Cm’

fm(Sn(X)) for M, + 1 gmg M, is a real system function to be

constrained to be equal to the constant Cm, and

r_ is a real parameter which is decreased in magnitude during

the optimization process.,

The minimization of gj is carried out as described for fj for fixed values of
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the rn'so When a minimum i{s reached, the rm's are decreased and a nevw minimum

is found. The process is repeated until the magnitude of all the rm's are

vanishingly small, The reduction in the r, values allows the constrained
functions to approach their -~onstraint cm's if necessary. Thus a system

function can be optimized or constrained.

The definitions of several system functions which are important and use-
ful in line source synthesis follow. The system functions are divided into

two classes., The first class includes those system functions which are depen-

T ey

dent on the far field pattern of the source distribution. The second class
of gsystem functions inciude those which are direct functions of the source

distribution S(X).

The far field is related to the system variables through a Fourier trans-

1
form and can be expressed as"s

jz—"-Xcosw

6,00, @ = K T atng [ s e A & (3-14)

where

F(Sn(X),(D) is the far field of the n':h state of the source
distribution,

k is the free space wavenumber, and

r and ¢ are as shown in Figure 3-16.

LY

LINE SOURCE ¢

Figure 3-16, Line soucce coordinate system
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The integral in the above equatioa is recognized as the Fourier transform

integral. Computationally thc Fast Fourier Transform algorithum is used to

preatly increasc the speed of computation,
The first class of system functions are as follows:
1. Directivity at an angle ¢ = P

Fﬂsahc%)
13-15)

LX) =

»

i

L3

F X, ¢) d o
Q

2. RMS sidelobe level.

; r 1 r

: = a2 2 . -
£,(S(0) N T (S(x)’@)d‘P"'jF (SX), 9) dp| (3-16)

m

[ (Pz
where <y and % define the angular limits of the mainbeam.

3. Maximum sidelobé'iébél.

- ‘:crl
MSLL 1
- (p, = ) \ 2 . e
CPZ (‘P]_ L UO MSLL - F (S(X) ,<p)

£4(S (X)) =

" ]

+ ; d¢
MSLL - F~ (S(X), ®)
2

where MSLL is the specified maximum sidelobe level,
) and ¢, define the angular limits of the mainbeam, and

The initial value of M3LL should be set greater than all

sidelobes of F2(S(X),w).
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6.

Beamwidth of mainbeam at a specified level below peak.

Te determine the beamwidth the angle of maximum radiation is
first located as O.. @ is then increased until FZ(S(X), ©)
drops to the specified level at ¢ = Py @ is returned to 9, ;
and then decreased to locate P j
Super gain ratio.
Let kx = (2n/A) cos ¢ in the Fourier transform integral of ]
Equation (3-14). The integral then becomes

© -]

j . cos X jkX
IS(X)e A & = JS(X)e & (3-19)

- ©

2n/h < kx < 2n/h\

which describes the spectrum of the radiation pattern. To ob-
tain the spectrum of the evanescent waves the wavenumber limits

must be extended to iufinity. The supergain ratio may then be

defined as
[soc) e * & dk
e ‘=0
fS(S(X)) = (3-20)
2/ © jk X
J' j S®) e * &K dk
=24/ -

Gain factor or efficiency.

£ @)
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where S'(X) is the constant amplitude and phase distribution.
7. Mean square error hetween the calculated fpt field power pattern

and ;'degired far-field power pattern.

) e : '
e =" e e - Fem, cp)j do (3-22)
|o [ s ! .
whgre F zlis the desired far-field power pattern.

d
8. Monopulse difference pattern semsitivity ratio.16

- \,/3 J 3 (P F (S“(X), t,o) d =p
fs(S"(X)) = - -0 : . it

(3-23)

T, E
[ FE"m, 9 de]
. to . o4
where S"(X) is the source distribution ésébciated with the

difference pattern of a monopulse antenna.

9. Signal-to-noise ratio.

2
V. F(SX), ¢) ' Eol SRS
£g(SX)) = 2 : Ge24)

T

n 2
[ e Pem, 9 o
Yo

where Nz(m) is the angular distribution of noise power and

V@s is the power of the plane wave signal at ¢ = ¢s.

The second class of system functions includes the following:

1. Size of the line source.

f10 (SCD) = N A4 | (3-25)

2. Phase variation limited to the iuterval -PMAX < P(X) g PMAX,

= 1

(5-26)
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where the initial state of P(X) must lie within the

restricted region.

Amplitude taper of the source.

N/2
1 Y A (A4 1) (3-27)

£f,6&)) = L ®R+LOZ-DIL
A(\/& 1) i=-N/2

R e

Ve

i=-N/2
where L is a constant weighting factor.
Smoothness of the ampliirude distribution.
N/2 +1

£,60) =5y ) @Q/4( - 1)) - A4 1) (3-28)
=-N/2

where A(A/4 (-N/2-1))= A(A/4(N/2+1)) = 0. E
Smoothness of the phase distribution.
]

N/2 ?

£,(500) = -%r y MGG - 1)) - P4 1)) (3-29) a
)
i=N/2 + 1

Error between an amplitude distribution and a naturally occurring

amplitude distribution.

N/2
N R 2 r
£,5(5K) = § 2, (A (A4 1) - A4 1)) (3-30)
=-N/2

where An(x) is the naturally occurring amplitude distribution.
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7. Error betmeeh;zﬁphhse distribution and a naturally occurring

phaso distribmtion.
N/2 | -
£, (S(X)) - %? - (Pn(h/4 i) - P{A/4 1))2 - (3-3D)

10
[

i=-N/2

where P X) is *he naturallv occurring phase distribution.

st ey e

(b) Optimization of a Hn"opulse Line Source. Distribution

An approach to the syntuesis of optimum monopulse line source distribu-

: tions is outlined below. In canventional amplitude monopulse systems, two

smngle beam patterns, one~with msximmm radiation at 9 = w/2 + 2/2, the other

with maximum radiation at o /2 - o/2, are added together to form a sum

~pattern-with—nmximummata@ =.x/2 and subtracted'to form a'différenceipattern. .

eqivalently two source distributions with maximum radiation at ¢ = /2 are
phase shifted, one: by k X cos (n/2 a/Z) and the other by k x cos (n/Z - a/Z),
and adued together torform_a sum distribution and subtracted to form a difference
distribution. For ease of analysis it is assumed that the single beams have
the same pattern shane, differing only by a cons tant angular shift o. This is
indeed an approximation as the beam patterns are usuaily distorted in the shift
process. However, much insight concerhing mouopulse sohrte synthesis may be
gained from the simpler analys15. 2 - b |

- If S(X) is the complex. distribution associated with a single beam pattern

with maximum radiation in the ¢ = m/2 direction, then the sum distribution is

given by

S(X)ej k x cosi{n/2=-c/2) + S(X)ej k x cos(n/2+a/2) (3-32)

5, X)

" S(x)e-j k x sin(a/2)

S(X)ej k x sin(a/2)

28 (X) cos (k x sin a/2)
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and the difference distribution is given by

sd(x) - s(x)ej k x co:(n/2-a/2) _ S(f()ej k x co§(n/2+a/2) (3-33)

-j k x sin (a/2)

- S(x)ej k x sin(a/2) - s®)e

= j 2 S(X) sin (k x sin /2)

Thus, in synthesizing monopulse line source distributions, the complex line

source distribution 8(X) is the significant system variable.

Two system functions compete for optimization. First, the gain facter of

O R L I O i - i

the sum pattern f6 and second, the monopulse difference pattern sensitivity
rat;io f8'° A possible first solution would maximize the monobulse difference
pattern sensitivity ratio with the gain of the sum pattern I?;onstrained to be
greater than some desiral.aleh level. A second solution would maximize a new

system function formed as a combination of the difference pattern sensitivity

ratio and sum pattern gain factor. A combination of these two functions was

St e

suggested by Kinsey16 and is given by
; X
£1,(50)) = (£,(5, @) €,(5,X)) (3-34)

1f unrealizable amplitude and phase distributions are synthesized using
the optimization process, source constraints (system functions flO through
f16) are added to the optimization process to smooth the synthesized solution.

Constraining the super gain ratio to values near unity also helps in achieving

realizable distributions.

e B4 4 lba s ik e
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SECTION 1V

EXPERIMENTAL WORK

The previous section described theoretical sidelobe levels that are pos-

sible when hoth phase and amplitude shaping of the aperture distribution are

ey et e

tsed, The purpose of the exrerimental work was to determine if these results
could be achieved with practical antennas. The major portion of the work con-

centrated on a precision X-band square horn with an eight-inch aperture, al-

though several other antennas were studied in less detail. The experimental
work would have been impossible without a convenient means ~f measuring the
aperture amplitude and phase distributions; a brief description of the system
used in this work is given below.

1. NEAR-FIELD PROBE ]

Measurement of the phase and amplitude aperture distributions of antennas
can be accompligshed at Georgia Tech with a large precision X-Y-Z positioner
that is used withh a phase and amplitude receiving system to probe the near-field
of antennas directly. This unit is located in the basement of the Electronics
Divicion building, an& is securely mounted in concrete to minimize the effects
of vibrations. The positioner is 14 feet square, but can be positioned to an
accuracy of + 0.025 inches. Over smaller segments of the probed area, accuracy
is + 0.005 inches; see the Appendix. All exposed metal parts and the area
behind the probe are covered by panels of microwave absorbing material. The
near-field probe and positioner are shown in Figures 4-1 and 4-2. A detailed
description of the positioner is given in the Appendix.

Figure 4-3 illustrates a typical measured near-field pattern of a horn

antenna. The E-plane normalized aperture distribution and computed far-field

39
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Figure 4-1.
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Front view of near-field probe and X-Y-Z pos’tioner.

o |

SN PP

VY

L oiadi

e




AR R AR RS

Side view of near-field probe and X-Y-Z positioner.

"2-

Figure 4
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pattern are shown in Figure 4-4; the measured far-field pattern is reproduced
in Figure 4-5. The agreement between the predicted and measured far-field
patterns is very good, even for the higher-order sidelobes.
2. SQUARE HORN

An existing X-band horn antemna, with an amplitude aperture distribution
similar to the distribution of the folded geodesic lens studied in the theore-
tical work, was choser as a test horn for the experimental work. The H-plane
amplitude and phase distributions were measured using the near-field probe;
the aperture distribution and computed far-field pattern are shown in Figure
4-6. Note that the normal phase distribution for this antenna is quadratic,
a result typiéal for conventional flared horns.

The Gaussian phase distributions discussed in Section III were substituted
for the measured quadratic phase distribution of the test horn. The most im-
proved far-field pattern was obtained with a Gaussian phase distribution with
a standard deviation of 0.5 and an end point phase of approximately fifty
degrees; the aperture distribution and computed far-field pattern are shown in
Figure 4-7. TI: substitution of a Gaussian phase distribution for the measured
phase distribution resulted in a theoretical improvement in sidelobe level,
gain factor, and beamwidth. As shown in Table 4-1, modifying the phase dis-
tribution with a dielectric lens should result in an 11-dB reduction in side-~
lobe level, an improvement of more than eight percent in gain factor, and a
six percent narrower 3-dB beamwidth.

A dielectric lens was designed for the test horn to modify the existing
phase distribution to approximate the Gaussian phase distribution of Figure 4-7.
Due to budget limitations, no aétempt was made to match the lens using zoning

techniques.
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a. Near-Field Measurements

Pigure 4-8 shows the measured phase and amplitude distribution and com-
puted far-field pattern of the lens at 9375 MHz. The phase distribution is
similar to the distribution without the lens, and only a small improvement in
the computed pattern is achieved. However, the lens was frequency sensitive,
and better results were achieved at frequencies between 9285 and 9405 MHz.
At these frequencies the measured phase distribution approaches the desired
shape, although the amplitude distribution is also modified by the lews.
Figures 4-9 and 4-10 show the measured phase «nd amplitud: distrivations arnd
computed far-field patterus for fraquencies of 9385 and 9405 Muz, respectively.
The results of the experiments with the test horn sre sumantized in Table 4-1.

The improvement in sidelobe level is greater tnan 10 db at 9385 and 9405
MHz with the lens, although the gair factor is s?ightly lower than for the
antenna without the lens. This s a significant improvement in performance,
egpecially when compared to the thecretical performance achievable with
amplitude tapering alone. For example, at 9405 MHz, the gain factor (0.71),
first sidelobe level (~37 dB), and maximum sidelobe level (-33 dB) for the
test horn with lens compare favorably with the theoretical gain factor (0.67)
and sidelobe level (-32 dB) of an antenna with a cosine-squared amplitnde
taper. Similarly, the normalized 3-dB (76.4 )\/a) and 10-dB (135 4/a) beam-
widths of the test horn with lens are narrower than the correspcnding 3-dB
(83.2 )/a) and 10-dB (165 )/a) beamwidths for the cosine-squared taper.

b. Far-Field Measurements

The far-field patterns, both with and without the lens, were measured at

several frequencies., Figures 4~11 through 4-14 show the measured patterns at
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9385 and 9405 MHz of the test horn with leng, and without lens, respectively.
The patterns with the lens are essentially the same as the patterns with-
out the lens down to a level of -10 dB; below this level, the beamwidth with
the lens in place is slightly larger., The reduction in sidelobe level is
clearly shown, although the noise level on the antenna range made it difficult
to determine the exact sidelobe level with the lens installed. However, the
improvement in sidelobe level at hoth frequencies was at least 6 dB. If only
the close-in sidelobes are considered, the improvement is even larger, which
is consistent with the predicted far-field patterns discussed in the previous

subsection.

Although it was not possible to achieve the optimum theoretical improve-
ment in both sidelobe level and gain factor with the dielectric lens, we do
believe that the usefulness of phase tapering techniques has been demonstrated.
It would be more practical to design an antenna with a Gaussian phase taper,
thereby avoiding the problems associated with the design of a practical dielec-
t:ic lens.

3. STANDARD GAIN HORN

A brief investigation of the feasibility of using a Gaussian phase taper
to improve the sidelobe level and gain factor of an X-band standard gain horn
revealed that a theoretical improvement of 4 dB in sidelobe level was possible,
with a 10 percent higher gain factor. However, because of the mismatch pro-
blems encountered with the dielectric lens for the square horn, no attempt
was made tc confirm the theoretical results. The measured aperture distribu-
tions and computed far-field patterns for the standard gain horn with the

measured phase distribution, and with a Caussian phase distribution are
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Figure 4-12. Measured far-field pattern of the test horn at
9385 MHz.
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shown in Figures 4-15 and 4-16, respectively. The results are summarized in

Table 4-2.
TABLE 4-2
THEORETICAL PERFORMANCE OF STANDARD GAIN HORN WITH
QUADRATIC AND GAUSSIAN PHASE DISTRIBUTIONS
Phase First Sidelobe Gain 3-dB Beamwidth

Distribution Level (dB) Factor (degrees)
Measured -30 0.66 74.3 )/a
Gaussian =34 0.73 69.1 )/a

4. LINE SOURCE

Shaping the aperturc phase distribution with a dielectric lens is a diff-
cult task, as discussed in the previous sections of this report. For this rea-
son, an existing line source antenna with eleven 2lements was chosen for study.
This antenna is an X-band linear array of monopoles spaced at three-eights of a
wavelength. The amplitude distribution was generated by placing probes across
the front of a sectoral horn which were conrected to the array with small semi-
rigid coaxial cables. Figure 4-17 shows the measured aperture distribution
and computed far-field pattern of this antenna with an essentially constant
phase distribution. Figure 4-18 shows the computed far-field pattern for this
antenna with a theoretical Gsaussian phase distribution. A reduction in side-
lobe level of & dB should be: possible by modifying the phase distribution alone.
However, it was not possible to modify the phase distribution without also
modifying the amplitude distribution, as shown in Figure 4-19. There is a sig-
nificant dip in the amplitude distribution at the point where the change in
phase begins. This was observed in every case examined, with the depth of the

distortion in the amplitude pattern a linear function of the change in phase,
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i.e., the more rapid the change in phase, the deeper the dip in amplitude
(Figure 4-20). This appears to be a classic case of mutual coupling in a
linear array.

Unfortunately, independent control of both amplitude and phase was not
available in the experimental setup, as phase control was obtained by changing
the length of the cables feeding the array. No provision was made for changing
the amplitude distribution. However, in a phased array with fully independent
control of phase and amplitude, it should be possible to achieve the theoretical
reduction in sidelobe level.

One useful result of the line source experiments is the demonstrated poten-
tial of the X-Y-Z probe and positioner for the analysis of mmtual coupling in
phased arrays. The rapid evaluation of changes in design and the detection of

bad elements in the array are some of the possible applications of this system.
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SECTION V

LTI 511

DESIGN INFORMATION

The antenna designer will make the final decision to include phease
tapering in his design procedure, or to use conventional amplitude tapering
alone. The information in this section is presented as a guide for the de-
signer who must make this choice.

A series of computed patterns which were chosen as representative of
the best gain factor and beamwidth performance possible at specific sidelobe
levels using a combination of modified Taylor amplitude and Gaussian pﬁase
tapering will be given in Part 1. These can be used directly to compare the
performance of existing antennas (with constant or quadratic phase variations,
for example) to that possible using a combination of phase and amplitude
tapering that is close to the optimum.

Part 2 consists of a series of computer plots of gain factor and side-
lobe level vereuz :mplitude taper for many different Gaussian phase tapers.
These can be used to determine the degree of improvement possible using phase
tapering, and whethef the improvement is worth the additional expense involved
in shaping the phase distribution.

1, OPTIMUM PHASE AND AMPLITUDE TAPERS

The series of curves shown in Figures 5~1 through 5-8 can be used to de-
termine the optimum modified Taylor amplitude and Gaussian phase distributions
to achieve sidelobe levels from -15 to -50 dB. For sidelobe levels of -15 and
-20 dB, amplitude tapering alone is superior to a combination of amplitude and
phase tapering. However, for levels lower than -20 dB, phase tapering improves

performance. A description of the modified Taylor amplitude and Gaussian
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phase distributions was given in Section III, Table 5-1 summarizes the data
shcwn on the figures and lists “he equations used to generate the aperture
distributions.

2. GAIN FACTOR CURVES

Figures 5-9 through 5-18 show the gain factor and sidelobe level as
functions of amplitude taper (modified Taylor) and maximum phase variation,
In Figure 5-9, the phase is a constant; in Figures 5-10 through 5-18, the
phase distribution is Gaussian, with a standard deviation of 0.5 and end point
(A in Table 5-1) between 20 and .00 degrees. The constant phase curve is re-
peated on each plot for comparison.

An interesting feature of these curves is the existence of a break point
for cach phase taper. For example, in Figure 5-10, using a twenty-degree
Gaussian phase taper actually increases the sidelobe level for amplitude tapers
less than approximately 17 dB. However, phase tapering improves the sidelobe
level for larger tapers. As the end point phase is increased (Figures 5-11
through 5-18), the break point occurs at smaller amplitude tapers, although
the gain factor also decreases. The break point coincides with the merging
of the first sidelobes with the main beam. In most cases, the minimum phase
taper that results in the merging of the first sidelobe will provide the best
gain factor; a larger phase taper will result in a lower gain factor,

Figure 5-19 shows an example of the use of these curves. At a sidelobe
level of -35 dB, the gain factor with phase tapering is higher than the gain
factor using no phase variation., However, at a sidelobe level of -20 dB,

the gain factor is higher when the phase is held constant.
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TABLE 5-1

OPTIMIZED MODIFIED TAYLOR AMPLITUDE AND
GAUSSIAN PHASE DISTRIBUTIONS

First Amplitude Phase Gain 3-dB

Sidelobe Distribution Distribution Factor Beamwidth

?EX? IO(B\/I--_:?_) AQ - &2 (\/a degrees)

(B) (a)

15 1.12 0 .996 52.7
20 2.3 0 .940 58.4
25 - 2.3 60 .870 58.9
31 8 .2 40 .845 63.8
36 4.0 30 .796 68.5
41 4.8 20 .750 73.1
46 5.5 20 .709 77.2
48 ) 40 .697 77.9
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SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

The theoretical analysis of the shaping of aperture distributions has
demonstrated that higher gain and narrower beamwidth are possible at many
sidelobe levels when conventional amplitude tapering is replaced by combined
phase and amplitude tapering. The potential improvement can be easily de-
termined by referring to the design information included in this report. It
was empirically determined that a Gaussian phase taper produced the best com-
bination of sidelobe level, gain factor, and beamwidth for a large variety
of amplitude tapers.

Experiments with a horn antenna confirmed the theoretical results; a
significant improvement in sidelobe level was achieved by shaping the torn
phase distribution with a dielectric lens. Measurements on a standard gain
horn and a line source array demonstrated that similar results should be pos-
sible with these antennas.

Recommendations for further work are 1) to determine the optimum phase
distribution, and 2) to analyze a practical antenna system, such as a monopulse
tracking radar antenng, to determine the improvement in total system perfor-
mance possible through combined phase and amplitude tapering of the aperture
distribution.

We are convinced that combined phase and amplitude tapering is an im-
portant new technique which may result in a significant improvement in the

sidelobe performance of practical antennas.
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APPENDIX

1. INTRODUCTION

A Scientific-Atlanta X-Y-Z near-field probe and positioner has been installed
in a specially constructed laboratory in the Electronics Research building at
Georgia Tech. The positioner (shown in Figures 4-1 and 4-2) enables the aper-
ture distribution of a transmitting antenna to be measured with a receiving
probe that is capable of being positioned anywhere on an 8 foot by 8 foot X-Y
plane, located parallel to the plane of the aperture. Displacement of the plane
in the Z direction can be varied over a 3 foot range. Vsﬁch an aperture distri-
bution may be used as input data to existing computer programs for predicting
far-field patterns of antennas.

The positioner can be reset to any point in its three-dimensional coordinate
system with an accuracy of + .025 incﬁes. Because of this accuracy, it is pos-
sible to closely duplicate a particular test situation. Thus, accurate far-
field patterns for a variety of antenna types can be determined from experimental
measurements without the use of an outdoor antemna test range.17The indoor mea-
suring system mﬁkes péssible the permanent installation of equipment whiéh could
not be lefé outdoors.

In addition to its use in determirning far-field radiation patterns, the
X-Y-Z positioner can be used in the evaluation of compact ranges, in aperture
blockage investigations, in tuning phased arrays, and in microwave holography.

2. ZIN3TALLATION
During the congtruction of the laboratory room in which the positiomer is

located, no special provisions were made to reduce reflections. However,
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microwave absorbing material was mounted on the entire front area of the posi-
tiorer frame. Also, a movable wall, approximately 16 feet by 12 feet, was con-
structed from wood and covered with ébsorbing material. This wall is positioned
to intercept the main beam of the antenna being tested. Figure 4-2 shows the
wall located a few feet behind the positioner to provide a background with a
low reflection level. During operation, absorbing material is placed at any
location on the floor that could be a possible source of reflection.
3. MEASUREMENTS AND ALIGNMENT

Relative phase and amplitude measurements were made to ensure that all the

cables and rotary joints were operating properly. With a constant voltage in-

put to the probe, the positioner was moved in the X-Y plane while the phase and

amplitude of the system were recorded. Over the 8 foot by 8 foot plane, the
measured phase was constant to within + 5° and the .mplitude to within t 4 dB.
In another checkout test, a precision phase shifter was inserted in the system
between a phase-locked transmitting source and an antenna. The phase shifter
was rotated in 5° steps up to 180° and tracking in the phase-amplitude receiver
was observed. Tracking was excellent and the relative phase measured with the
receiver agreed to within + 0.4° (measurement accuracy) of the phase shifter
setting.

After the initial system checkout tests were completed, the positioner was
mechanically aligned. With the use of a clinometer, alignment was accomplished
by the adjustment of the eight screw-type jacks located under the positioner.
During the leveling procedure, the lower horizontal bar was found to have a
slight bow near the center. Aliénment in the X-Y plane was done using a jig

transit which could be focused at close distances. Figure Al is a three-dimensional
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error map showing deviation in probe position from a true X-Y plane. Readings

were taken every five inches along the X-axis and every five inches along the

Y"’iXi.S 0

This error map describes the mechanical error present at the time of mea~
surement, but could be significantly reduced if necessary. Deviation over the
X-Y plane varied from -.040 to +.005 inch, referenced to the four corners-of the

plane. This corresponds to a realtive error of .0225 inch (referenced to the

middle of the error plane), or a phase error of approximately 5° at X-band.

In practice, a test antenna may not radiate over the entire 8 foot by 8 foot

3
3
3
E

area; whether or not the inherent phage error is significant depends on the
electrical size of the antenna being measured. Looking at the error map, the
area with the least error is near the center of the plane. Measurements on- the
horn and line source antennas described in Section IV were taken in this area
1 where the relative phase error was extremely small.

The positioner was tested using standard gain and hog horn X-band antennas.
Far-field predictions were made from the measured aperture distributions and in
both cases, the results obtained were consistent with far-field measurements

taken previously.
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