84130-39-T(l)

O |
D

e
o
QY
e INVESTIGATIONS OF FUNDAMENTAL
s LASER PROCESSES

Vol I: Computation of Vibration-Rotation
Matrix Elements for Diatomic Molecules
R. E. MEREDITH
F. G. SMITH
/DD
| $L nde

- £ Ay A [ |

May 1971 HUTACE TRt

2 & ; [ f Ay IR o » X )
oyt o 4 i ot A i
& Ay gL 1 e
o e -
AR ; '!‘g.. i A

Sponsored by the Advanced Research Projects Agency,
‘Department of Defense, Washington, D. C.
ARPA Order No. 236, Amendment 38

Contract DAHC-15-67-C-0062

This document has been approvad for public release and sale; .
its distribution is unlimited.

Roproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE 3 _5

Springficld, Va. 22151




| ECESSTON,_for

‘crsmy
058
| nan. e,

v

WHITE SEC
BUFF SEG

y,:;gk

USTIFICATION....ocovesrunencescnrmsnassonenes

O

DISTRIEYTION/AVAILABILITY GOOES

_DIST, | AVAIL, and/er SPECIAE

NOTICES

Sponsorship. The work reported herein is a part of the research under
BAMIRAC (Ballistic Missile Radiation Analysis Center) conducted at the
Willow Run Laboratories of the Institute of Science and Technology for the
Advanced Research Projects Agency, Department of Defense, Washineton,

D. C., under Contract DAHC-15-67-C-0082, ARPA Order 236, Amendment 38,
Contracts and grants to The University of Michigan for the support of spon-
sored research are zdministered thirough the Office of the Vice-President for
Research.

BAMIRAC. The Ballistic Missile Radiation Analysis Center is specifically
concerned with electromagnetic radiation emanating from or caused by
ICBM's or IRBM's in the powered and ballistic phases. In accordance with
DoD Instruction 5100,45, BAMIRAC collects, processes, and disseminates in-
formation obtained from reports of field measurements and from laboratory
and theoretical studies. In addition, it conducts its own theoretical and exper-
imental investigations., BAMIRAC provides for visits of qualified persons and
prepares bibliographies on request. Also, the facility aids ARPA by planning
and conducting various technical conferences. This report represents one
phase of the research being carried out as part of the BAMIRAC technical
effort,

BAMIRAC is under the technical direction of the Infrared and Optics Divi-
sion of Willow Run Laboratories, a unit of The University of Michigan's
Institute of Science and Technology. It draws also upon the capabilities of the
Computation Department of Willow Run Laboratories, and upon those of the
Department of Aerospace Engineering and of other departments of The

University of Michigan, particularly withia the College of Engineering.

Distribution. Initial ¢stribution of this report has been approved by the
Advanced Research Projects Agency and is indicated at the end of this report.

Final Disposition. After this document has served its purpose, it may be
destroyed. ijfease. do not return it to Willow Run Laboratories.



UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA-R & D

{Security classificatian of title. bady of abstract and indexing annotatian must be entered when the overall report is classified)

1 ORIGINATING ACTIVITY (Carparate authar! 2a. REPORT SECURITY CLASSIFICATION
Willow F.un Laboratories of the Institute of Science and Technology, UNCLASSIFIED
The University of Michigan, Ann Arbor, Michigan 2h GROUP
N/A

3 REPORT TITLE

INVESTIGATION OF FUNDAMENTAL LASER PROCESSES (I)
VOL. I: Computation of Vibration-Rotation Matrix Elements for Diatomic Molecules

4 DESCRIPTIVE NOTES (Type af report and inclusive dates)
Technical Report

5 AUTHORIS) (First name. middle initial, last name )

Robert F.. Meredith
Fred G. Smith

6 REPORT DATE 7a.TOTAL NO OF PAGES 7h NO. OF REFS
May 1971 vi +29 13
B8A.CONTRACT OR GRANT NO. 9a.0RIGINATOR'S REPORT NUMBER(S)
DAHC-15-67-C-0062
b. PROJECT NO 84130-39-T (1)

ARPA Order No. 236

¢ -
9b OTHER REPORT NOI(S) (Any ather numbers that may be assigned

Amendment 38 this repe-?)
d.

10 DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

11 SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Advanced Research Projects Agency
Department of Defense

Washington, D, C.

15 ABSTRACT

Emission and absorption of radiation by diatomic molecules is reviewed, and elementary molecular theory
for use in a variety of applied physics and enginecering problems is presented in a semiclassical manner. A
computer code for the numerical integration of the radial Schrodinger equation has been created and is docu-
mented as a subroutine of a code for the computation of the electric dipole-moment matrix elements of dia-
tomic molecules. The effect of vibration-rotation interaction on high v-J matrix eiements is discussed.

FORM l
DD 2% 1473 UNCLASSIFIED

Security Classification




UNCLASSIFIED

Security Classification
KEY WORDS LINK A LINK B LINK C
ROLE wT ROLE wT ROLE wWT
Vibration-rotation matrix
Diatomic molecules
Molecular theory
Dipole-moment matrix elements
v-J matrix elements
__
UNCLASSIFIED

e mesmibdesr PV s i B! s d ! van



84130-39-T(})

INVESTIGATIONS OF FUNDAMENTAL
LASER PROCESSES

Vol I: Computation of Vibration-Rotation
Matrix Elements for Diatomic Molecules

R. E. MEREDITH
F. G. SMITH

May 1971

Infrored ond Optics Laborotory
' Reun Laboratorces
UWellow R \
INSTITUTE OF SCIENCE AND TECHNOLOGY
THE UNIVERSITY OFfF MICHIGAN

Ann Arbor, Michigon




WILLOW RUN LABORATORIES

ABSTRACT

Emission and absorption of radiation by diatomic molecules is reviewed, and
elementary molecular theory for use in a variety of applied physics and engineering
problems is presented in a semiclassical manner. A computer code for the numer-
ical integration of the radial Schrodinger equation has been created and is docu-
nmented as a subroutine of a code for the computation of the electric dipole-moment
matrix elaments of diatomic molecules, The effect of vibration-rotation interaction

on high v-J matrix elements is discussed.
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INVESTIGATIONS OF FUNDAMENTAL
LASER PROCESSES

Vol I: Computation of Vibration-Rotation
Motrix Elements for Diatomic Molecules

1
INTRODUCTION

The molecular parameters most important to the design of chemical laser systems and to
the interpretation of chemical kinetic information are the electric dipole matrix elements of
high v-J molecular transitions. Recently, matrix elements have been calculated analytically
with the perturbation theory for both the harmonic oscillator [1, 2] and for the Pekeris oscillator
[3]. Adequate agreement with experiment has been found for transitions involving low vibra-
tional and rotational 1~ els [4, 5]. However, perturbation methods do nat apply to high vibra-
tional and rotational s ..tes, since these methods neglect the extenrive effects of the interaction
of vibration and rotation. In many applications, exact numerical computation is necessary in

order to achieve the accuracy required.

In Section 2, the absorption and emission process is discussed; the radial Schrodinger
equation is presented; and the electric dipole matrix element is defined. The matrix elements
are evaluated in Section 3, and Section 4 includes a description of the computer code for the
numerical integration of the matrix elements. The angular matrix elements are evaluated in

Appendix 1. Appendix 1i presents a listing of the matrix-element calculation computer code.

2
DEFINITIONS
2.1. THE ABSORPTION PROCESS
Consider electromagnetic radiation of frequency { (Hz) passing through an absorption cell
of length x (cm) is shown in Fig. 1. The intensity of the radiation entering the absorbing gas is
Io(f) ergs/(cmz-sec). At any point within the cell, the intensity is I{f). By Lambert's law, the

loss in the intensity of the radiation, when it passes through an element, dx, is

Io(f) I(f)

FIGURE 1. RADIANT INTENSITY TRANSMITTED THROUGH
A CELL OF LENGTH x
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dI(f} = -k(HI(f)dx (1)
e = ro(r)e'k(”" (2)

where k(f) is a frequency-dependent function called the absorption coefficient. If the absorption
occurs because of a transition from a lower, discrete level, i, to an upper discrete level, k, the

absorption coefficient is written as

k(f) = SkiF(f - fki) (3)

where Ski is a number designating the strength of the transition; fki is the center frequency of
the line: and, F is a function of frequency which describes the spread of the absorbed radiation
about the center frequency, fki' F is the line shape of the transition. Its form depends on the
process perturbing the levels and thereby spreading them out. For example, if collision pro-

cesses dominate, the shape for near infrared lines is Lorentz.

F(f) = — L : (4)
n[(f - fk.l)2 + )'2]

where y is the half width at the half height of k(f) [1].

Infrared spectroscopists generally describe the electromagnetic spectrum by wave number,
v (i.e., the number of wavelengths, }, in a centimeter), in units 1/cm. Conversion factors be-

tween wave numbers, hertz, micrometers, angstroms, ergs, and kilocalories are

u(cm'l) =f/c

viem™Y) = 10°8/a(&)

1

vem™1) = 1042 (um)

u(cm'l) = E(ergs)/hc ~ 5.035 x 1015 E(ergs)

viem™1) = 1.2028 x 10° E(kcal)
where = frequency in hertz
c = speed of light
E = energy
h = Planck's constant

The strength of a line is determined spectroscopically by measuring the area under the ab-
sorption coefficient. Since the shape factor, F(v - Vki)’ is normalized to unity

J. k(v - v, .)dv =8, . Flyv-p )dv =S (5)
line ki skl line ki ki

where Vii = line center in wave numbers
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The quantum mechanical expression for line strength is given by

833u

ki i i\ | - 2
Ski T3hgc Poe o\ | 1<, 0, 001 (6)

where T : temperature

k - Boltzmann's constant

Ni - the number of molecules per cubic centimete: occupying the lower level
g * the statistical weight factor for the energy level i

The quantity </7(r, t, ¢)>ki is the quantum mechanical average of the electric dipole moment
,Tt(r, H, ¢) between the levels k and i. More wlll be said of <77(r, 1, q;)>ki in the following sec-
tion.

The <ﬁ(r, f, rj>)>ki is related to the Einsteln transition probabilities so that

32714 - ) cm2
Bki ) I<ptr, 0, ¢)>kil molecule-erg-sec (7
3h cey
g 2
_°k cm
Biy = Zzl—Bkl (molecule-erg-sec) (8)
64n4z;§i - 9
Ay —3@;——|</l(r, 0, 8)> ;17 1/sec (9)
A= 81w3 h
ki = OTki" By
where Bki = the transition probability for induced emission of wave number ki

Bik = the transition probability for induced absorption of wave number Yik

Aki = the transition probability for spontaneous emission of wave number Yri

g, = statistical weight

<ﬁ(r, 1, q;)>ki = units esu-cm, where 1 esu = Verg.:cm

Intensity rather than energy-density Einstein coefficients are used. That is,
. oy 4m .
Bki(mtensnty) = ?Bki(energ_v density)

The inclusion of 47 in these relations implies radiation into a hemisphere, rather than intc a
unit solid angle, Hence, the units of Bki are not per steradian.
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2.2, MOLECULAR THEORY
The internal motion of a diatomic molecule is best described by the relative coordinate r,

defined in Fig. 2. The rotational energy (ER) of the molecule is given as

1.2
ER=—2-Iw

Ty 1‘2
(_/\___\ N N -,
CM

m1 m2

||

FIGURE 2. RELATIVE COORDINATES FOR A
DIATOMIC MOLECULE

where « is the rotational frequency, and I is the moment of inertia. Since the rotation axis
passes through the center of mass,

2 2 2
I =Z_‘_‘rimi = mri+myry (10a)
i

where m, and m, are the masses of the two atoms. The moment of inertia may be written in

terms of a reduced mass m

1 = (10b)

where

For descriptive purposes, it is apparent that the molecule can be described by a point
mass of value m a distance r from the origin, as shown in Fig. 3, where Kej are the electronic
coordinates. If it is assumed that the electronic, vibrational and rotational motions are indepen-
dent, a function Y(r, A, $) may be written as a product of functions of a single coordinate [6]:

Ur, 6, ¢) = R(r)qu(cos O)eiMd’
(11)
W(l‘, (7, ¢) 8 R(P)Yg{(g, d))

where J and M are quantum sumbers specifying the total angular momentum of the molecule
and its projection on a direction fixed in space and P}VI = a Legendre polynomial. Y}IVI( 6, ¢) are
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Ke€

XYZ

a

S

FIGURE 3. ORIENTATION OF A DIATOMIC MOLECULE IN
THE LABORATORY FRAME (0, ¢)

associated Legendre polynomials. The functions R(r) are solutions of the radial Schrodinger

equation
2 2 2
d_.‘l(zr_) + ﬂzm[r: - V(r) - 3 + 1):IU(r) -0 (12)
dr h 87 mr

where U(r) = rR(r) and E is the internal energy of the molecule and assumes discrete values.
V(r) is the potential energy of the molecule. To a low order of approximation, the nuclear mo-
tion may be assumed to be harmonic <i.e., vir) = -k(r - re)z/z), and the term J(J + 1)/r2 may
be replaced by J(J + 1)/r2. For this approximation, the internal energy for the ground electronic

state is the sum, E, of vibrational and rotational energies

E = we(v +1/2) + BeJ(J +1) (13)

where wo and B o are spectroscopic constants in wave-number units, and v is the vibrational
quantum number. Absorption and emission occur between two levels labeled v'J' and vJ, re-
sulting in a band structure shown in Fig, 4, Transitions are allowed only between levels so that

AJ - J'-J =+1, The transitions that occur in the smaller wave-number side of the band cen-
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E(em™) K
w,(v' +1/2) + 20 B, vt
we(v'+1/2) +12 Be v J'=3
we(v'+l/2)+6Be vi J'=2
w(v'+1/2) + 2 B, N T
we(v' +1/2) —_— 'J=0
| |
| I
R(1) P(3)
[ |
| |
i
w(v+1/2) + 20 B, v J-4
/
we(v +1/2) + 12 Be v J=3
we(v+l/2)+68e v J=2
w(iv+1/2)+28 J=1
we(v +1/2) v J=¢0
|
]
LAEEEN
b Iy l
P Branch we(v' V) R Branch

FIGURE 4, ZEROTH ORDER ENERG
OF A DIATOM]I

Y LEVELS AND BAND STRUCTURE

C MOLECULE

14

-
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ter (AJ = -1) are called P branch lines, and those on the larger wave-number side (AJ = +1) are
called R branch lines. A more realistic model for the potential function produces important
quantitative differences in the energy-level scheme and band structure: but the qualitative fea-
tures are unchanged. For a given energyv level, the label i then becomes i«—— (v, J), and the
wave function is written ;’/‘,J(r, 4, ¢)., The significance of '&vJ(r, 4, ¢) is that the product

:.L‘f.l(r, %y d))'\'/vJ(l', ‘i, &) is the probability that the molecule will be oriented at the angles +, ¢
and that the nuclear separation will be r, Since the molecule exists somewhere in space,

(r, -, ¢)is normalized to

fff&;J(x‘, iy (b)"vJ(r, ot} d))r2 sin v drdde =1 (14)
space

“vd

As a shorthand notation, the symbol [vJ> is introduced

lvl> = Vog(s b @)
<val=yiir, 9 0
and the integral over the coordinates of the product of two functions are written as
<vlfvd> = ﬂf&;}(r, LA ¢)r2 sin  drdJ de (15)
space

This notation is extended .0 include integrals which encompass a third function

< 3'li(r, 5 o) ba> = fﬂ &;.J.(r, 9, e)(r, v, 4(r, 7, o)r° sin idrdide  (16)
space
The quantities <v'J''fi(r, 9, ¢)[vJ> form the elements of a matrix for arbitrary vJ and v'J' and
are called matrix elements. Equation (16) is the definition of the electric dipole matrix ele-
ments. The magnitude of the matrix element <v'J'[7(r, 7, ¢)|vJ> determines the transition
probabilities for absorption and emission between levels v'J'——vJ, according to Egs. (7), (8),
and (9). That is. since the J levels are degenerate in M

<{r, N 8>, Z <v'I'M'|7(r, 9, ¢)lvaM> (17)
MM’

3
EVALUATION OF THE MATRIX ELEMENTS
Accurate evaluation of matrix elements for even morlerately large v and J requires realistic
models for the mechanical potential function V(r) and requires that the vibration-rotation inter-

action J(J ~ 1) r2 £ J(J + 1) r be taken into account when the ¥(r, 4, ¢) are evaluated. The



WILLOW RUN LABORATORIES

general shape of a potential function for a given J is shown in Fig. 5. The contour represents
the minimum and maximum separation of the nuclei (i.e., the turning points of the classical
motion), De is the dissociation energy, Each line in the well represents a possible vibrational
energy for a given value of J. Near the bottom of the well, where the oscillations are small,
the form of V(r)is more nearly parabolic, and the harmonic oscillator approximation is useful.
For moderate v, the details of the well must be known for quantitative work. The appearance
of J(J + 1)/r2 in the Schrodinger equation results in an effective potential energy which, as Fig.

6 illustrates, raises the potential well for the lower portion of a Morse potential,

V. (r)=D_|1 e JT° h? |3 + 1) 18
eff{T) =Dg|1-¢ +—2—8_ it (18)

Wave functions which we computed numerically from Eq. (12), using the Morse potential and
including the vibration-rotation interaction, are shown in Fig. 7. The ordinate in Fig. 7 is the

-1
. . . I . o mE(em )
dimensionless energy unit E = —g0219

A realistic model of the electric dipolec moment must be established. Let If(r, A, ¢) be the
dipole-moment function described in the laboratory frame, The moment fixed in the molecule
([l.F) has a component only along the internuclear axis (Fig. 3). I depends on the electric

E(cm-li

FIGURE 5. V(r) FOR A DIATOMIC MOLECULE (SCHEMATIC)
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FIGURE 6. MORSE POTENTIAL FUNCTIONS AS A FUNCTION OF J IN THE
BORN-OPPENHEIMER APPROXIMATION
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.00 r
-100.00
-200.00 +
-300.00
-400.00 +
-500.00 I

-600.00

POTENTIAL VALUES

-700.00 |

-800.00

-900.00 r

This is a Morse Potential for J = 2, for the Molecule HF
L i L 1 1 y 1 1 L J

-1000.00
.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

NUCLEAR SEPARATION (BOHR RADII)

FIGURE 7. MOLECULAR WAVE FUNCTIONS GENERATED BY SCHR

charge distribution and motion, and it may be described by a coordinate system fixed in the

Hp=- Z:zi +Zer (19)
i j

where the coordinates are relative to axes fixed in the molecule. zi refers to the electronic

coordinates,, and Zj refers to nuclear coordinates, Uf k equals the coordinates which describe

molecule

the charge distribution
pp= plx)

From Fig. 3, the vector 'ﬁ(r, 0, ¢) = (ux, ”y’ uz) may be written as a product of B the mole-

cule fixed dipole-moment function, and the direction cosines

10
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B8 [IF(K) cos (X, Z) = ;s (%) sin /7 cos ¢

¥

(k) cos (v, Z) = ;. (k) sin * sin ¢ (20)

—
It

vy I'F F

fo_, & HF(I\') cos (z, Z) = /AF(K) cos ¥
The matrix elements of /;‘(r, 4, @) are

’ 2 . g R
<V', J'9 M'9 n'l“xlvy J, M, n> = dKJJJ‘drr sin Hdp d'hf’;(l\')l/;,J,M,(l’, 4, ¢'“F cos (X, Z)

%

X @ (K)Y, 10e(r, 7y 6)

where ‘f’n(l\‘) are the electronic wave functions for the electronic state n. The term electric
dipole moment, as it is used in molecular theory, generally means the electron-dependent in-

tegral, That is, ;i(r) is the electric dipole moment, where
u(r) = Jdmb *k) (k)b (K) (21)
n n
The moment is clearly dependent upon r, since Hp and the &(x) generally vary, as the nuclei

vibrate. The matrix elements are now written as

* 2 7 el M M
<v'J'M'|1:x[vJM> = jo drr RJ,J.(r)u(r)RVJ(r)jO IO d» sin 7 de(sin 1 cos ¢)Y?, (4, qs)YJ (0, ¢

% 2 7 27 M M
<V'J'M'fuv|vJM> j drrR’ (")“(")RvJ(")j j d# sin 0 de(sin 0 sin ¢)Y , (5, )Yy (7, )
~ 070

0 v’

L

2 % &z *M' M
<v'I'M' [ lvaM> drr°R_, . (r)u(r)R (r)‘ dv sin dde(cos Y., (4, 8)Y, (8, ¢)
Nz v'J vJ JoJo J

li

o (22)
<v'I'M' qu [vIM> = <v'J'[u(r)|vd><J'M'] sin 4 cos ¢ |IM>
<v'J'M'lpy!vJM> = <v'I'fu(r)lvI><I'M'| sin 0 sin ¢ [IM>
<v'J'M'|uzleM> = <v' I u(r)lvd><I'M'| cos a]IM> (23)

The angular integrals are found by standard techniques, (See Appendix I.) The results are:

l<va'lie, o, o) lva> |2 = Z (l<v'J'M'lux|vJM> 2. l<V'J'M'luyleM>f2
MM'

+ [<va'm qu [vIM> |2) (24)

N
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o]
l<v'3' (e, 0, ¢)Ivi> |2 =(J + l)j R(r)u(r)R(r)r2dr R Branch
0

o o
= (J)j R(r)u(r)R(r)r2 dr P Branch (25)
0

or, rewriting the integral in the matrix element notation

= J+1 R Branch
b<v'atli(r, 0, ¢)lvi> l?' = |<v' 3 u(r)! vi> i2{ (26)

J P Branch

THE MATRIX-ELE:\ENT PROGRAM

Presently in use is a program to generate numerically the <v'J'|u(r){vJ> matrix elements
which appear in Eq. (26) of the preceding section. A listing of that program is given in Appendix
II. In order to calculate these matrix elements, three separate calculations must be performed.
First, the radial Schrodinger Eq. (12) must be solved in order to obtain the radial wave func-
tions for the initial and final states. Next, the dipole-moment function ;:(r) must be generated.
Finally, the integral appearing in Eq. (25) must be numerically calculated. The calling program
to hansle these calculations is SSM.,

Before the Schrodinger equation can be solved, some potential function must be assumed.
The SSM program provides for three types of potential functions: the Morse; Dunham; and
Rydberg, Klein, Rees {7, 8, 9] (RKR) potentials. The Morse potential, 3, can be generated from

the low-order spectroscopic constants of the molecule and has the form

2
w
Vi) = 5241 - e72A42
ee
with
TR 1/2
B = 5
e
and
r-r
e
£ =—
e

where § is the dimensionless molecular coordinate and w B and weX are spectroscopic constants.

The Dunham potential has the form of a power-series expansion:
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n r - l‘e i
V(r) :Zai .
-0 €

where the a, are constants related to the spectroscopic constants., The RKR potential is also
found from the energy levels of the molecule. However, the procedure is quite complicated.

In the program, this potential can be entered as a number of energy values tabulated at various
nuclear separations, . The program uses a third-degree polynomial interpolation to calculate
the potential at the points necessary to obtain the differential equation solution. In spectroscopy,
energy is usually expressed in wave-number units: thus, SSM has been written to accept the de-
fining parameters in those units. However, the Schrodinger equation-solution subroutine

(SCHR) requires that the energy be expressed in dimensionless units, therefore, a subroutine
MORSE is provided to obtain the proper, dimensionless Morse parameters. The Dunham con-
stants must be entered directly in the dimensionless units, The conversion to the dimension-

less quantities for the RKR potential is handled internally by SSM,

The solution of the radial Schrodinger equation is accomplished by the SCHR subroutine,
The SCHR subroutine is patterned very closely after a Fortran II program, by Zare and Cashion
[10, 11)who base their work on a paper by Cooley [12]. When given an initial energy estimate,
the subroutine uses a three-point central difference predictor-correlator formula to generate two
partial wave functions. One of these satisifies the boundary condition at small r, and the other
satisfies the boundary condition for large r. The continuity of derivative of the two partial wave
functions is then used to generate a new energy estimate. The iteration continues until a toler-

ance on the energy change is reached.

Our only significant modification to Zare and Cashion's program was the use of double pre-
cision arithmetic in the finite difference equations, the energy values, and the sum accumula-
tions. The general accuracy of the program has been discussed elsewhere [11], but of particular
interest here is the orthogonality of the calculated wave functions. Because the radial
Schrodinger equation is of Strum -Liouville Form for the exact wave functions, the orthogonality

relation holds.

f R.l(r)Rj(r)rz dr=0 i%j

where R.l and R, are arbitrary radial molecular wave functions. Values of similar inteprals
evaluated by SSM for the numerically generated wave functions were generally about 10'8 and

-6 .
were less than 10 = in all cases.

The initial energy estimate which SCHR requires is calculated by another subroutine,
MANENG, which evaluates a term expansion to obtain the approximate energy for the desired

state of the molecule.

13
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E(v, J) :ZYH(V +%)C[J(J s
tj

The Y ; are related to the spectroscopic constants of the specific molecule under investigation.

(
The dipole moment is approximated as a polynomial of the form

n I - l‘e i
p(r) =ZMi -
i-0 €

The Mi are related to the rotationless matrix elements, which are experimentally measured,

The value of i(r) is found at the same radial increments at which the wave functions were found
by the SCHR subroutine; then it is multiplied, point by point, by the wave functions of the upper
and lower states, to give the integrand ofva. J,u.Rerz dr at those points.

The composite trapezoidal rule is used to perform the numerical integration, Higher order
integration schemes are unnecessary, since wave functions have already been generated at a
large number of points in the numeric differential equation solution process. The position of
the lines and the Einstein transition probability, Av'J yge are calculated and printed out after

the matrix element <v'J'|;(r)|vJ> has been calculated.

14
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Appendix |
EVALUATION OF THE ANGULAR DEPENDENT MATRIX ELEMENTS

It is a postulate of the quantum theory [13] that the probability of electric dipole radiation

from an upper state J'M’' to a lower stute JM is

647 f 2
Ag MM —TI<J M'7i(0, ¢)[IM> | (27)

3he

The spontaneously emitted intensity of such radiation is

M,th (28)

Love,am = Ny J'M',IM

On the other hand, the intensity of a line is the sum of the intensities of all possible transitions

hetween the degenerate states M' and M

L Q&TNJ MZZ|<J M 70, o) |am> |2 (29)

In Eq. (29), the sum over the final (unprimed) states may be taken first, leaving &y terms in the

sum over the initial (primed) states. Equation (29) is usually written as

44/ N
6471 3P’ o= 2
Iy~ 3 <———2J, - 1> Z : [<3™™M'|7i(1, ¢)|IM> | (30)
¢ M'M

where it is assumed that natural emission is taking place, making all the NJ'M' equal,

The expression for the emitted intensity of radiation from a level J' to a level J is

IJ,’J = NJ,thJ,,J (31)
where AI' 3 is the Einstein spontaneous transition probability, From Egs. (30) and (31)
ooy
64545 2
A —m Z [<I'™™' “1(” ¢)'JM>’ (32)
M'M

The sum in Eq. (32) must be unchanged by interchange of the initial and final states, where-
as AJ.,J is not changed because of the factor 1/(2J' + 1), The sum is therefore an invariant
property of the pair of levels J' and J for both emission and absorption, whereas AJ,’J is not.
One must distinguish between the matrix elements, which are between|<J'M'| and |JM>|, and

their sum, S(J', J).

15
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s, 9) = ) LMo, o)lam> 2 (33)
M'M
S(J', J') is called the strength factor of the line and should not be confused with the line strength

skj' Its relation to the individual transitions is best seen in Eq. (29), In (29), if the sum over

VM 'is carried out first, then
S 3) = 1"+ 1)) l<a'M 1726, ¢)lam> & (34)
M
The integrals in (34) are written explicitly in Eq. (22). It can be shown that the integration

over ¢ contributes the factor 1/2 to Hy and “y and 1to My Also, it may be shown that M is
restricted to the values M = M' + 1 for My and “y’ and to M = M’ for Iy S(J', J) is given by

S@', J) = (23" + 1)[%(<J'M'| sin 0lIM' - 1> |2 + |<3'M'| sin 6lIM" + 15 |%)

+ |<I'™™M'| cos 0|IM"™> IZJ (35)

The integrals in (35) may be evaluated using the recurrence relations for associated Legendre

functions:
1 1 1
(2J + 1) cos OP.]IV{ =(J'-M'+ I)PN{H +(J'+ M')PN{_I

M'-1

1 1] |
(20 + 1) sin 6P} = (' + M@ + M - DRI L @ - M+ )@ - M+ 2R (36)
, . M' _M'+1  _M'+1
(23" + 1) sin 0P, = Py 37 - Py, 3
Values of J are clearly limited to J' + 1. The results are:
. 1] |_ 1] 1
l<am] sin ola, mr - 1> |2 = oM )7+ M) Dol o
oM LRV L
[<3'M'| sin 8l3, M' - 152 = & " 12)(".] ROl J=J+1
art 1 2_(J"M"1)(J"M') - T
[<3'M'| sin 6], M' + 1> = ST J=J-1
(37)
1 1] 1 1]
<amsin ola, s > F - S g it gt
1] 1 1 1
<] eos ola, > 1* = (o M) 1=
, w2 @' -M DI+ M +1) o
'<J'M|COS0|J,M>| _WT— J=J"+1

16
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For R branch transitions (1 - J' - 1), 8(J', J) is the sum of the first, third, and fifth terms in
(37).

S5(1', J) = (23" + 1)(5}1;—1—) = J+1 Rbranch

for the P branch (J = J' + 1)

]
S, J) = (27" + 1)(2%1—}%) =i P branch

This is the result stated in Eq. (25).

The details of the evaluation of the matrix elements have no direct bearing on our computer
program or its results, The angular dependent parts are clearly separated in advance, and the
selection rules J = +1 are built in. If quadrupole, Stark, or electric field-induced absorption or
emission is to be investigated, however, the transformation properties of the particular tensor

operator must be understood so the proper selection rules and streng *: factors may be used.

17
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Appendix i
LISTING OF THE SSM CODE

PRECEDING PAGE BLANK

19
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NOT REPRODUCIBLE

1 C . 'MON P{2005),S112005)+45212005) 4U(2005) yRMAX yRMINy N,
2 IR IIESyEZERDEPSyMAXIT
3 REAL®*H StM,p
4 REAL ¥
5 DATA Ky ICK/10,40/
[} DATA PPP/YPRNT/
7 <AL "HSUSA s MUCON, LAMRDA MOy M1y M2, M3 MG M5, M6y MT , MR, MG M1 O yM11
" JATA MU gML gM2 ¢ M3, MYy N5 MO MT, M8, MG, MICyM11/12¢0,./
Q DIMENSTUN WL200) 3k ST20C) 4+MI20C5) s VEFLZ) 2 JAY(2)
11 205002005 )y 3ETLLD),TYPIS Q)
1¢ Ay EMANAL) s CUMMIS ) o EMOR(2)
14 4ol 4) yPMNANEL 3)
156 DATA WE2BEJREIMUSUBA/ 4139404y 20+75644G168E~89,957341/
I6 DATA WFXE /90,057
17 C PKR PUTCENTTAL PARAMETCRS
14 JATA W/ 1u9894,4 1482944947292, 94603149445434,
1o 142550, 3608734938921 09367054 9343354931R75492%9 314
' 2293950 49233514920193,.91687R4913419.9979R, 46008,
¢l 320476 9Ce 0234 Te 960UB o 99TIR 4 913419, ¢4168784¢4201934,
22 4233516926350 e92971%10 9318754 9343554 193670549389214
¢ 3 DGCIT300428504944543,946031694T72324949254,94929,/
R DATA "S/‘5'0025v'625006280'63lvob35v.b39'.6"4'
P LetSUpobBh00h294bTCoehTIpeb6869eTJlreTlbyaT33,
2 CelS8y, 7‘1{-.-830'-q«’.’1v1.\123'1;115'1-137'1‘253'
27 ALe31T91a3799104419145C391656T914633¢1e7014177241.847
R 9109229200992+ 10892422392434692:.55542, 764/
P IATA Ne/aly
w INTEGER OO
51 CATA LI/
22 1aTA PNAME/PMORSY " JUNHY , PPKRY/
33 UATA ST/ 10%=14/
a5 NATA XNU/Z'NO Y/
37 JATA TYPLS/'S1 S2 W M1 CALCP0OT PYSIPTS2MNUT Y/
18 GATA TCy TERRGISsQUIT/0,04=10, *DUNE?/
29 INTEGF: VoyWwHICHS, VFE
(D) CALL FOCVTEHRLUS,.Q)
41 MAXTT=]D
42 ARTTELZ 46}
43 ) FORAATLYIDU YLU NFED THE EXPLANATION 2 7,
44 L ' (ENTFR YES DR NC)')
45 CALL >ETPEX({®20,])
Lt Pradtly 25)ANSWER
4 CALL SETPFRX{Y *,1)
L THLANSRER oF . oXNO) GO TO 16
4% ARITELZ,10)
LIN 1) FORMAT({* 1SS CALCULATES THE [NTFGRAL OF THE ¢,
51 IPPRODUCT SILT)*S20T) v 1) 4 I=1,N"/" AN STEPS *,
[P VUl K={RMAX=RMIN)/N o THREE POTENTIAL FUNCTIUNS'/
53 30 APE AVAILAPLD FOR GENERATING S1 AND S2 ,.%/
Sa ' GINUICATE THE DESIRED OPERATINN BY ENTERING THE
55 SetTAPPROPIATEY /' OPERATION TYPE W4EN REQUESTED, Y,
56 6% THE ALLUWE) TYPES ARE (9 /%Q0M"PRMT®Y ,T10,
57 CYORINT EVERY KT T POINT®/,T10y* OF THE FOLLOWING POTINTIALS.'/,
58 HT1CyY IT KelTo0 TURN PRINY CFF,'/,% mS1 ®%,7T10,
59 TYGENERATE WAVE FUNCTICN S1%/¢ w52 we 7110,
60 UPGENERATE WAVE FUNCTION S§2¢/7¢ nwm "*',T10,
61 COCALCULATE M USING MO.M] (M2,M30 /% nmML w9 ,T10,
62 IPSET ALL MUI) = 1.,0°/% "CALC"'yT10,*PERFORM ¢,
&3 2'THE INTEGRATION®'/Y "pOT %9 ,T10, 'GENERATE *,
a4 3THE POTENTIAL FUNCTIONS/?' ®PTSI"?Y,T10,4HLIST,
€5 4" S1 ( EVERY KNTH ) 0/0 WPTS29 9,710, 2K LH",
€6 FaXy'S2  { PIINT PRINTED )¥/% "MOUT"S ,T12 41H",
(x4 C2Xgt'M { DEFAULT Ka10)')
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68 WRITE(2,11)

69 11 FORMAT( ' "DONE"?*,T10*RETURN TO MTS?)
70 IC=C

71 IERR=0

72 15 WRITE(2,20})

73 20 FORMAT{'OENTER TYPE PLEASE?)
14 ISTEP=0

15 CALL SETPFX(?2%,1)

76 23 READ(]1¢25+FRR=3]1 )TYPEIPP

n 25 FORMATIA4,I5)

78 CALL SETPFX(' ',1)

719 DO 30 )TYPF=],9

80 IFITYPELEQLTYPESULITYPE)) GO TO 49
&l 30 CONTINUE

83 IFITYPE.EQeQUIT) CALL SYSTEM
14 IFITYPELNELPPP) GO TO 31

5 JFLIPP,GT.0) K=1IPP

J6 JCK=5

&7 IFLIPP.LELO) ICK=0Q

RS )pR=0

89 G3 T0 15

90 31 IF{)ERREQeN) WRITE(2,435)

al 35 FORMATI*NTHAT®*S CLOSE,y BUT THIS ISN'*'T HORSESHOES?')
92 TERR=JERF ¢]

93 JFIIERRLLT.3) GO TO 15

G4 WRITE(2,437)

08§ a7 FORMAT(*1COLOR ME GOME?/1#1)
CTY CALL SYSTFM™

97 40 IFRR="

og 50 GO TUI10U +100,300,400+500+6004700,800,500), ITYPE
99 100 IF(SETIA)LLELD.} GU TO 60C
1CO 110 THITCEQQ) WHICHS=)TYPE
101 JFIlCGTLOMWHICHS=IC
102 JFUIPPLLELO) 0D TG 115
1¢3 V=VEF(WHICHS )
1C4 J=1ppP
1C5 )yPP=0
106 GO TO 136
107 115 [IFUIS.GT.C) GO TG 130
1C& [Ss=10
1€9 WRITE(24+120)WHICHS
110 " 12 FURMATUYOENTER VeJsLAMBDA AND MAXITINO OF ITER) FOR S7?,
111 111,% (NAMELIST=&INS)?)
112 G TO 135
113 130 WRITE(29133) .
114 1339 FORMAT(POENTER S PAR??S?)
115 135 CALL SETPEX(?727,1)
11¢ NAMECLIST/ZINS/VeJdoNOJsLAMBDAMAXI T ,COMM
117 READ(1¢INS4ERR=135)
118 CALL SETPFX(' *,1)
119 136 VEE(IWHICHS)=V
120 JAY (WHI1CHS)=J
121 137 CONTINUE
122 V=VEE(WHICHS )
123 J=JAY({WHICHS)
124 PCON=FLOAT (J*(J+1)) = LAMBODA _
125 R=RM)N
126 o ,
127 C POTENTIAL GENERATION

128 D0 150 I=1,N
129 GO TO (14141424143),1P07
13¢ C MORSE )
131 141 RFACT=1,0-EXP(~0OBETA®*{IR-DRE})

132 Ull)=0DE*(RFACT#RFACT~1.0)
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132 TEEOCIN oMNEe Oe) ULTI=UTTI+RCUN/ (R%R)

144 G ThH 148

135 L nHA NOT REPRODUCIBLE
134 la RF=(R=0O7 ) /ORE

137 JOL)=BWERRE%RF

138 Stivyy=0,

134 Jit laa [(=144

lal Lok SUMUN=SUAUUS (T I ®AC [ (Y *RF 2] ]

lal LD =0 00y e SHPABU-DNE

142 (RO %P e Do) ULEY=ULL)#RCON/ (13%p)

lad ST Lo

l1e4 ‘ K

lab [e3 Tall LAGTRO(RS g WoNWeR oy ULAGE 39614548 165)
lao UCCY=JLAGRMUCHIN=-NNE

1«7 TEERrOr GNEe Y ULTY=Ull ) +RCON/IR%R)

148 14%  p=bew

149 1500 L INTINWF

1% " CLUTADL DATIAL LWNERGY FSTIMATE

151 CALL ™ALENR IV o J e eNG)

152 o=l s KYCHN

153 LlbRT = IG=T1 0k

1%4 CNAVE =R 2 i)

154 LOSEARSREDRCANKFZV Q)

154 AN WA {CHS Y =0 7 ERFI/ZUCON

157 FOSLA=E0S/MUCON

15% v PINES="

187 [rlICnel b)) GV THL 2090

le? CALL ScTPEX(Y ' ,1)

161 WRITECZ9252M 000 d) 9321 9Ny k)

1¢2 2ho FORMATLINO 6T 1o o 'PATENT FAL FUNCTIING/

163 10 4 1PDF la.h))

loa C CALL SCHR T JBTAIN clGeNFUNCTIUN

1h4 25) CHIwWRL=Y JORSCHO (WHICHS)

lto EX TR AWHICHS ) =F7ERG/MUCON

107 [TFOLONVRG NE Do) WRITELZ29y291)FPSCM

16 ¢ CHIECKR FCF CUNVEPSFNCE

10 PaLa FARMAT(Y SPECIFIFN FRRE? FPS=', 1PF1 4,74 NOT OBTAINED.)
170 [TFUKNCDES oMFoV) WRITE(29292)KNODE Sy V

171 & VHECK FNe CLRRECTY NUMRER (CF NCDES

172 20 FURMAT(* SUOL'*™N HAS ', 12, NODES “UT V IS',124" ).E.",
173 1* WARUNG EIGENFUNCTICN')

174 SFTIWHICHS) =10,

175 [HUITYPLLEQL2) GO TO 53¢

176 [FIDN4.I NN GO TC 193

177 WHICHS=2

175 1TYPE=2

172 6O 10 137

184 193 TF(IC)Y 530,415,530

181 300 WRITEUL2,305)

182 375 FORMAT('CEMTER MOoMlyM2, AND M3 AS FOLLOWS :' /
183 1 GINM MO=  (Ml= ees GELEND' )

1R4 NAMELIST/INM/MO ¢M1, M2, M3 4 M4 4 M5 ,M6 M7, P8, MO, MI10O ML L
185 CALL SETPFX('?',1)

186 READ(L s INM)

187 C CALCULATE MOMENT VALUES

1&8 CALL SETPFX(' ?,1)

189 WRITEL243C6) MOy ML yM2,M3

170 306 FORMAT( *OMOMENT TERMS ARE:®/,T10y4F 15.6/)
191 R={RMIN-DRE)/DRE

162 HC=H/DPF

102 NN 350 )=1,4N

194 MUT)=MOS(MLEINM2e( M ML (MS e (MO (MTH(MBEIMIS{MI0+M] ] 2RI &R} SR}
195 L*R}*R}*R)*R)*R)} #R) *R) &R

196 R=R+HC

22
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197

21y

2;’3
2¢4
225
226
2e7

2a
Pt

2775
22)
231
23¢
232
D
PR
226
217
257
23
240
241
242
2443
264
245
246
247
248
7249
250
251
25¢
253
254
255
256
257
25R
2549
260

545

350 CUNTINUE
KK=[TYPE

IF1IC NELO) KK={C NOT REPRODUCIBLE

StT{KK) =] 0.
[FEIC)I53u,15,530
4310 SeT{ITYPF-1)=19,
N 450 [ =1 4N
450 M(1)=1,0
Hu T 15
533 D505 JL=163
TE(STTIIC)aLTNG) G TP 510
595 COGNTIMUE
1C=")
G50 Ta 5
AIO wRITU Lyl TYPES(IC)
SIT FORMAT(PUPLEASE SET *'yA4)
U TULLLO91 430004 IC
1MTeCRaTE PYONDYCT SLESZEM
993 S'M=0, o
D7 5315 1 =14\
XLOG=ALCCEAZSISIOT) ) ) +ALCGLABSES2IT ) ) +ALNG(IABSIMUT ) ))
D(l)= .
[F{XLioelTe=173e) CJ T7 535
PLII=S1UT)*S2(1)*M(])
SUM=SUMe P ()
SULT)=Sur
235  CuNTINUe
DETERMENE LINE PESTITIONM
PYGR=ALS{EINS L [)-FMOR{2) )
PMAN=ASS(EMANIL)=EMAN(2))
AREAS(SUM=, S (P (1 )+P{N)))*H
ASQ=i-La%e?
AA=3,13AD(20%A5 G PMALER]
HSUmM=pn
[PP=1aLS{IPP)
TRINSUL o CF ol )ak [ TE(Z2 9330} (P(T)yI=Ly Ny IPP)
5360 FARMAT( - 0k vy SLES2AMI/{IH 4 1PEFLlea))
TREHSUN el ca=L1ARITE(GyS3TIISUI T I=19Ny1PP)

937 FURMAT(OVLIMDIVINUAL ARFA SUMMATICN STEPS'/{1H , 1P6F1L.3))

EITF auTPuT
TROISTE GEal) B0 TD 548
WETTF (2, 842)00%Y
AITE(2¢ 540 )PNAME(TPOT)
CRITE(24562)C 0™
WRITF(1,541) .

Sau FUSHAT (0 V1 v2 Jl J2 <KS1 M S2> <S1 M S2>%%2 NU(',A4,
1) NULTERM)?/,0 7)

Sl FOFMAT('C V1 V2 Jl Jg <S1 M 52> Aty
1 LINE POSITION®/ 419X 4" ESU SFC-1 CM-17)

542 FORMATI'L *,5A4])
WRITE(Z4563)VEE(L)yWEE(2)yJAY{L1)yJAY(2))AREA4ASQyPMOR,,PMAN

WRITF(34544) VEELL) 9 VEEL2) o JAY(1) 9 JAY(2) yAREA,AA,PMAN

563 FORMATI® *4413,1P2EL3.59CP2F10.2)
ik FORMATL! ' o413,1P2E13.540PF13.2)

H’(JAY( l).FO.(.UR.JAY(Z).EQ.O) GJ TU 2¢15
IF(DOJ.EGCeC) GU TO 2018

JAY{l)=JAY(l)-1

JAY(2)=JAYI2)-1

Sry=nld-1

ISTEP=ISTEP¢]

IF(ISTFPGT.4C) ISTEP=C

WHICHS =1

1TYPE=]

GO Tu 137

23
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261 2915 nry=o
262 G TN 15

263 C  SET UP POTENTIAL FUNCTION PARAMETERS

266 0G0 WRITE(Z,610)

265 610 FUPMAT('C3 PUTENTIAL TYPES ARE ALLOWED 2'/
266 1' MURSE (1) 4DUNHAM{2) AND FALLON RKR{3)°

267 2/* ENTER A 1,2, OP 3 FOP THE TYPF DESIRED®)
268 SFT6)=10,

269 CALL SFTPEX(?27,]1)

270 PEAD(1,615)1POT

271 b15  FUMAT(T1C)

272 CALL SETPEX(® *41)

273 GU TC (620,A30,660),1P0T

274 620 WRITE(2,622)

275 622 FNRMAT('CFOR MNRESE PLTENTIAL ENTER *,

276 L YEITHER DE ©7 WEXE,"/* AND WEoHE AMD !

217 2UMUSUBA IN 1/CH4*/% THE NAMELIST T USE 1S "MURS"*)
270 NAWELTST/MORS/DL o Wi XE oWE o RE ¢ BE y MUSUBA/

279 LINPUT/Nk o ing BS o MUSUBA /B [N/RMAX ) RMINy Ny EPSCUN
28r De=0.C

2e1 WEXE=U .0

26 CALL SETPEY (127 ,1)

283 REAU(1yMPRS) NOT REPRODUCIBLE
284 CALL SLTPEX(® 741)

2rs CALL MOKSF(DFyAFy WEXE RE o BE o BET A MUSUBA)

286 G0 10 €50

287 63) WRITE(Z,632)

288 €32 FURMAT('U DUNHAM POTENTLAL WiLL BF USED.?)
289 WE=41 45404

290 BE=2U 656

201 WEXE=3ue "5

272 kE=,916RE=3

263 UF=WT*k/ (40 #WEXE)

294 GO TO 650

295 Aed WRITF (£y602)

2% b4s  FURMAT(YC  <Kr HF POTERTLAL WILL BE USEO?)
267 TFUSFETCT1,0Ta0,) €O TO 65C

298 CVRT=.579172

200 N 645 [=14Np

300 Fo(Id=t SCL1V/CVRT

301 645 CUNTINUF

3c2 DE=4715u.

303 PE=.901E-8

304 SET(7)=10.

305 650 DRFeRE/,5201 726-8

306 MUCON =MUSUBA/ 63,2198

307 DOE =DE *MUC ON

3¢ DWE=WFEMUCON

309 DBE TA=BETASMUCON

310 BWE=(WE*WE#MUCON) /{44 *RE)

311 WRITE (246521 DEs WEXE \REJRETA

312 652 FORMAT('ODE o+ WEXE o RE AND HBETA IN 1/CM ARE: Y/
313 1 1H ¢ 1P4E1546)

314 WRITE(2+655) DRE

315 ¢ SET UP RANGE AND INCREMENT FOR INTEGRATION

31k 655 FORMAT{'ORE = *(FLl0e7+* o+ ENTER RMAX,RMIN,EPSCON AND'
v 1* N USING NAMELIST ®RINw) '
318 CALL SETPFX('?%,1)

319 REAU(L4RIN)

320 CALL SETPFX{* *,1)

321 H={RMAX=RMIN)/FLOATIN}

322 1FLITYPE-~6)50415y50

323 70C  CONTINUE

324 CALL SFETPFX(' *,1)

24
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325 WRITE(29750) TYPES(1),4(SL(1)el=1yNyK)
326 75C¢ FORMAT(IHO,20X,A4/(1P4EL6,.T))

327 GO T0 15

328 A00 CONTINUE

329 CALL SETPFX(* *,1)

33¢C WRITE(2+750)TYPES(2)4(S2(1)el=1yNeK)
331 GO TO 15

332 QU0 CONT IMUE

333 CALL SETPFX(* *,1)

334 WRITE(2,750) TYPES{3) 9 (M(]1) oI=] ¢N,yK)
3135 60 TN 15

336 END

337 ¢ SCHRODINGER EQUATION SOLUTICN PROGRAM
328 FUNCTTON SCHP (WHICHS)

339 REAL#*8 Y PoeHyH2 yHV¢PM,DF ¢F4DOLDyCE,YOUT 4 YINyYMoE, EOLD
340 1eGNy ]

34] DATA PKNT/5,/

342 CUMMOM P 3S19S2sUeRMAX RMINg Ny KNONES yEZERDLEPS ¢yMAXIT
343 DIMENS IO PL2005)4,S1(2005)452(2005) ,u4{2005),Y(3)
344 INTEGER WHAT yWHILICHS

345 PRNT==10,

346 TFI(MAXIT.GT.) GO TU 5

347 MAX] T==MAXIT

343 PRNT=10, NOT REPRODUCIBLE
349 g

150 5 Nl=N=]

351 H= (RMAX=RMIN)/FLOAT(N)

352 H2= H *%H

353 HV=H2/12,

354 E=FZFR{

386 TEST==-1,

356 DE=3,

357 N 171 IT=1,MAXIT

358 PiN) =1, 0F=39

359 Gh=U(N)-E

360 GI=U(NL)=-E

361 [F(G1.6E40,0) GO TN 10

362 SCHR=-1(: 4

36> RE TURN

364 ¢ START INWARD INTEGRATION

365 Lf: PINL)=P(N)®DEXPIRMAX®OSOK T{CN )=( RMAX=H ) #DSQRT{G())
366 : Y(LI=(]«=HVEGN) 2P (N)

367 Y2I=01le=FVEGI)®P (N1

368f MzN=2

366 oty Y(3)=Y(2)+LIY(2)=Y(1))#H2*CI*®P(M+1))
are Gl=U(M)-F

371 DIV=1e=1HVEGI

372 ITFCABSIDIVIWGT. 140E=30) GC TO 65

373 M1=Ms]

374 PM=P (M])

375 D) 56 JsM]lyN

37+ LD PLJ)=PLJ)/PM

377 Di) 60 1=1,3

378 60 Yil)=Y(1)/PM

379 GI=U(Ml) =&

380 GO TO 46

sl 05 P(M)=Y(3)/01V

382 IF(DARS(PIM]),LE.NABSIP(Mel))) GO TO 90
3R3 IF(MeLEs2) GO TO 90

g4 Yil)=v(2)

385 Y(21i=Y(3)

386 M=M=1

387 G TN 46

388 an PM=P (M)
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386
390
391
392
393
394
395
396
307
398
149
4.0
401
402
403
404
4c5
406
407
4cn
4G
410
a1l
412
413
414
41%
4le
417
41R
419
420
421
42¢
423
424
425
426
4217
428
420
430
431
“3?
433
434
415
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

26

an

C

[

147

[
V4

149
149

150
152

C
171
500

172
C
173

178

4SAVE=M RODUCIBLE
YIN=Y(2) /P NOT REP

MY 96 J=M N

PLJI=P(J)/PM

P(1)=1.0E-20

START UUTWARD INTEGRATION

Y{l)=Q,.

Sl=Utl)-0
Y(2)={1l.~-HVEGI ) %P (])
DO 132 12244

YO3)=Y( 2} (Y (2)-Y 1)) eH2RGIRP{]~1) )
SI=U(T1)-E
DIV=1.-1iveG]
IFLABSIDIV)GT, 1.0E-30) GO TO 130
I1=]=-1

OM=p(11}

n120 J=t, 1l
v{J)=P(J)/P™

M 125 J=1,3
Y(JI=Y(J)/P4
GI=Utll)-E

U010 11D
PLIY=Y(3)/01V
Ytly=v(2)

Yt2)=Yt3)

COMTINUE

PM=p (M)

F=l.5E30

[F{PM FEde) OGN TO 147
YOUT=yYtljs/snn

Y=Y (3)/PH

D0 1640 J=1,M
PLJI=P(J)/PM

DF=N,

DY 146 J=1,yN

GENF2ATR ENERGY CORRECT ION

DFE=RF=-PEJI %P L)
F{=YOUT=YIN®2.,#YM) /H2¢U(M)~E

J0LI=Nt

IFtr JLT. 100300 GO TO 150
F=1ls0E30~1,

DE==F

DE= DABS(.N0001%E)

60 170 152

DE==F/0DF

EULD=FE

C=E+Dt

TEMP1=0ABS(DOLD)~ DABS(DE)
TFUTEMPL .GT.TEST) TEST=TEMP]
IF(TEST.LT.0.1G0 TO 171

CHECK Far CNONVERGEMCE

IF(UABS LE-EDLUI sLELEPS) GO TO 172
IF(PRNT.GTo0e) WRITE(29500) [T DEWFOULD9EYF
FORMAT(IH 415,1P4F15,6)

SCHR=1,0

G0 Y0 173

SCHR=Q,0

COUNT NUDES

KV=Q

NL=N=-2

DO 192 J=3,NL
IF(PLJ)«LT.04) GO TO 178
IF(P(J-1)) 18041924192
lF(P(J-l)).19201870184
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4%3
454
458
456
Hwe
4%t
]
G460
4€ )
4e?
LY
LY
4h%
460
4t 7
hbh
Y
N7t
471
a4,
473
4746
41"
4 Teo
477
4T
47
4 ¥y
Gt}
4P
4%3
A
4%
b6
4n7
G
HLit'
Her
4%]
4</
4
444
495
4ar.
497
4an
4¢<9
LIuv
5C1
SC?2
503
5C4
5U%
5C¢
SC7
SCh
533
51¢
511
512
513
514
END UF

N

14y
Ine
144

{27

1949
l(.)?

VANTI
2%
IR

159
L)

1F(P{J+1111924182,1082
FFIP{U=21)17104192,192
THIPL g+ 1) GEGDGIGN TO 192
[F{o{u=-21)1192419C, 103
1F{PlJe1) suFaue) GL THY 192
1F (P (J=2)elCoDe) GU TO 162
KV=KV+l

cuMNTIHUT

SHEDSORT{=-H%NE)

G') TO {2004 30U ¢ WHICHS
DIVERFL TN LS B

SL{dl=0{J) /5N

el T 4l

YY oo J=1yN

$2(4)=P (J) /50

F2evn=g

KRNI =Ky

L N LN

LMD

NOT REPRODUCIBLE

SUACUTTRE T SEMZRATE TMITIAL ENERSY

s JRENUTINE AANENA{V o dy b))

INTEOFRE YV V

N eSiuM Y{beh)

J.“T/\ V/W.,qlﬂ.'ljs,-qr_\.g.ﬁ, -Q32v‘l-’025'2v'5.9[:“1ﬂ20-9555'-.795d0
11el3Wr=29= 30 11F=44=5,8F=64Ce1=2e153F=346,23E~5¢y=2,06EFE=6y
PV a1 a1t 0t a6 =Ty=6e5=99 00900200 slor=lel5%=11¢00s0estesCo
3gLeslie 9o s a9 llasCaygial/

VA=FLLAT(V) +.5

IX=rLOAT (dx(J+]))

[=",

VP=l,/Yx

Y 350 VY=L ek

T ERVIYE ATA §

SE4aVPEY (VY11

Jr=1,

[HldX oL T4aB) 0O TU 300

DY P2RY Jd=2460

JP S gxh e

=L aY (VY e JJd)evpeyp

LTI Mgr

SUTHE

R %8 0

Sut 2 il Tl SENFRPATE MURSE DIMEASTONLESS PARAMETERS

SURE T INE AP SE{DE g WE g WEXE ¢ RFyul o LETA,MUSUBA)
LEAL SISUSA MUCON

UL IS YSA /o). 219K

[T N T Y]

alEE LN

IFLARSIDE) S TLABSIWEXE)) GO TC 29

WXzwp X2 ICHN

Yz{uxn) /{4 0X]

Ne=i/oycnd

ol TR 30

N=AUSTNDE*MUCUN) \
WYX= (Wt ) /{4 4%0))

wiXE= X/ VULON

P=5Q~T{1./¢E)

wE=PK 5201 J2F=8

BTz T {wy

CETA=RT/MILUN

<P TR

e

27
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