AN INVESTIGATION OF THE EFFECTS OF A HELIUM-OXYGEN BREATHING MIXTURE ON HEARING IN NAVAL PERSONNEL

by

Day Waterman and Paul F. Smith

Bureau of Medicine and Surgery, Navy Department
MF12.524.004-9012D.07

Released by:

J. E. Stark, CAPT MC USN
COMMANDING OFFICER
Naval Submarine Medical Center
18 September 1970

Approved for public release; distribution unlimited.
AN INVESTIGATION OF THE EFFECTS OF A HELIUM-OXYGEN BREATHING MIXTURE ON HEARING IN NAVAL PERSONNEL

18 September 1970

Investigators:
Day Waterman and Paul F. Smith

Submitted by:
J. Donald Harris, Ph.D.

Reviewed and Approved by:
Charles F. Gell, M.D., D.Sc.(Med)
Scientific Director
SubMedResLab

J. D. Bloom, CDR MC USN
Officer-in-Charge
SubMedResLab

Approved and Released by:
J. E. Stark, CAPT MC USN
COMMANDING OFFICER
Naval Submarine Medical Center

Approved for public release; distribution unlimited.
THE PROBLEM

To determine whether or not breathing a helium-oxygen mixture at one atmosphere affects hearing sensitivity.

FINDINGS

No marked effect on hearing was observed due to breathing a helium-oxygen mixture at surface pressures for a period of thirty minutes.

APPLICATION

These findings provide a basis for interpreting the results of experiments in underwater hearing with divers breathing helium-oxygen mixtures.

ADMINISTRATIVE INFORMATION

This investigation was conducted under Bureau of Medicine and Surgery Research Work Unit MF12.524.004-9012D -- Effects of Submarine Environments and Operations on Hearing. The present report is number 7 on that work unit. The manuscript was approved for publication on 18 September 1970 and designated as Submarine Medical Research Laboratory Memorandum Report No. 70-7.

PUBLISHED BY THE NAVAL SUBMARINE MEDICAL CENTER
ABSTRACT

Hearing levels of three subjects were measured at 125, 1000 and 8000 Hertz while the subjects were breathing air and while breathing an 80%/20% mixture of helium and oxygen. No significant change in hearing levels which could be attributed to the effects of the gas breathed were detected during or following a thirty-minute period on helium-oxygen.
THE EFFECTS OF A HELIUM-OXYGEN MIXTURE ON HEARING OF NAVAL PERSONNEL

INTRODUCTION

Experiments on underwater hearing in man have been reported,\(^1\)\(^,\)\(^2\) in which attempts were made to determine the relative importance of the ear canal-middle ear and bone conductive pathways to underwater hearing. The evidence indicates either that the ear canal-middle ear route is not functional underwater, or that, as Sivivan\(^3\) and Ide\(^4\) suggested, the ear canal-middle ear pathway and the bone conduction pathways are nearly equally efficient in transmitting energy from the water to the cochlea. The available data do not provide a basis for deciding between these two alternatives.

In order to obtain further evidence, it is desirable to alter the characteristics of the possible conductive paths and to observe the effects of such alterations on underwater hearing sensitivity. It may be possible to alter the functioning of the middle ear apparatus by introducing helium-oxygen (He\(_2\)) into the cavity. Since an 80%/20% mixture of He\(_2\) has an acoustic impedance some three times that of air, it seems possible that the compliance of the middle ear cavity would change sufficiently to result in a change in hearing sensitivity. In order to test this possibility, the experiment described below was conducted in air at surface pressure.

METHOD

Subjects: Three graduate assistants, two males and one female, served as subjects. All three were in their early or mid-twenties and had no marked hearing impairments. All had some experience as observers in psychoacoustic studies.

Apparatus: The subjects were tested in a soundproof room. Pure tones of 125, 1000, and 8000 Hertz were generated by a Hewlett-Packard 200 ABR oscillator, gated on and off by a Grason-Stadler 829E electronic switch with a rise-fall time of 10 milliseconds, an on-off ratio of 1.00 and a 250 millisecond pulse length. This signal was passed through a Grason-Stadler Model E 3262A recording attenuator and an impedance matching transformer to a telephonix TDH-39 earphone. The He\(_2\) was obtained from a 300 cubic foot bottle and administered through a diver’s full face mask equipped with a two-stage demand regulator.

Procedure: Auditory thresholds were measured at each of the three frequencies. The diving mask was then donned and He\(_2\) was administered. Auditory thresholds were again measured. The subject then continued breathing the He\(_2\) mixture for a period of thirty minutes, at the end of which time auditory thresholds were again measured. Finally, the face mask was removed and thresholds measured for a fourth time. Subjects were instructed to ventilate the middle ear cavity upon changing from breathing air to He\(_2\), and again upon changing back to breathing air. Thus, it was hoped that three distinct effects could be measured: (1) a measure of the effects of He\(_2\) in the middle ear with little or no systemic He\(_2\) present (first threshold under
RESULTS AND DISCUSSION

The results of the various threshold measurements are shown in Table I. With the small sample used, a change in threshold must be about 5 db in order to be significant. From a practical standpoint, any effect ought to be from 5 to 10 db to be reliably detected in underwater experiments with moderate sized samples; because of the rather poor reliability of underwater threshold measurements 1.

Table I indicates that no significant changes occurred in auditory sensitivity at 125 or 1000 Hertz as a result of breathing the HeO2 mixture. A minus-8 db change occurred at 8000 Hz, a fact which appears to be significant, since all three subjects exhibited a depression of sensitivity which ranged from -5 to -11 db immediately after switching to HeO2. However, with continued respiration of HeO2, the effect tended to disappear.

If HeO2 in the tympanic cavity were responsible for the initial shift at 8000 Hz, it would appear that some adaptive process tended to restore hearing to normal levels, or that systemic HeO2 tended to produce an improvement in high frequency sensitivity which counteracted the decrement produced by tympanic HeO2. Concerning the first possibility, it is known that gas is exchanged between the surrounding tissue and the middle ear cavity 5. During the thirty-minute period of HeO2 respiration, the build-up of the gas in the tissues would not be so great that tissues would be saturated, nor would all nitrogen (N) be eliminated 6. Conceivably then, middle ear He could have been partially replaced by N through gas exchange between the cavity and surrounding tissues. Subjects were instructed to ventilate the

Table I. Mean changes in auditory thresholds at three frequencies due to respiration of 80% Helium-20% Oxygen breathing mixture. Values are in decibels relative to hearing levels prior to administration of HeO2. Negative values indicate depressed sensitivity.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>1st HeO2</th>
<th>2nd HeO2</th>
<th>3rd HeO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>1.6</td>
<td>.6</td>
<td>3.3</td>
</tr>
<tr>
<td>1000</td>
<td>-.7</td>
<td>-1.7</td>
<td>-.7</td>
</tr>
<tr>
<td>8000</td>
<td>-8.0</td>
<td>-3.0</td>
<td>-1.7</td>
</tr>
</tbody>
</table>
middle ear cavity only after changing from air to HeO\textsubscript{2}, and from HeO\textsubscript{2} to air. Spontaneous ventilation occurs at such a slow rate (1–2 ml per 24 hours5) that a compensatory amount of HeO\textsubscript{2} may not have been delivered to the middle ear via the Eustachian tube during the HeO\textsubscript{2} breathing period. Thus, the middle ear would contain less and less He and more and more N as the experiment continued.

Concerning the second possibility, that HeO\textsubscript{2} has a facilitatory effect on high frequency hearing, there appears to be no evidence to support such a view. Had such an effect occurred, it would have been revealed by the post-HeO\textsubscript{2} threshold measurement.

Brandt6 measured underwater hearing levels at 125 through 8000 Hertz, using divers breathing HeO\textsubscript{2} at 105 feet, and found thresholds to be significantly higher by about five dB than thresholds measured at the same depth with divers breathing compressed air. This effect was attributed to the presence of HeO\textsubscript{2} in the middle-ear cavity. Such a finding is not incompatible with the present data. It is conceivable that an interactive effect between respired gas and pressure occurs such that little or no change occurs at surface pressures, but a significant amount does occur at greater pressures. Such is the case with gas narcosis7. However, rather than assume such an interaction, it would be well to study such effects directly in a dry chamber. Later, Hollien and Brandt stated that no differences in thresholds were found in a comparison of hearing between air-filled and HeO\textsubscript{2}-filled middle ears9. They felt that this indicated that the middle ear mechanism is not functional underwater since the presence of HeO\textsubscript{2} in the middle ear would alter the impedance of the middle ear cavity. This impedance change was presumed to produce a change in sensitivity. The present data show this not to be the case.

CONCLUSION

It may be concluded that respired HeO\textsubscript{2} at surface pressures has little or no effect on hearing sensitivity at 125 and 1000 Hz. A small decrement in auditory thresholds may occur at higher frequencies. However, the effect, if any, is not of sufficient magnitude or generality to be of practical importance. This does not preclude the possibility that effects may be found at pressures greater than one atmosphere.

REFERENCES

AN INVESTIGATION OF THE EFFECTS OF A HELIUM-OXYGEN BREATHING MIXTURE ON HEARING IN NAVAL PERSONNEL

Interim report

Day WATERMAN and Paul F. SMITH

Hearing levels of three subjects were measured at 125, 1000 and 8000 Hertz while the subjects were breathing air and while breathing an 80%/20% mixture of helium and oxygen. No significant change in hearing levels which could be attributed to the effects of the gas breathed were detected during or following a thirty-minute period on helium-oxygen.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helium-oxygen in Navy diving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underwater hearing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underwater communication</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>