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ABSTRACT

Intense transient electromagnetic pulse fields may drive a ferro-
magnetic shield into saturation, thus reducing the shielding effectiveness
of that shield. Often shielding computations ignore séturation effects due
to the complexity of the equations. This memorandum reduces the complexity
of the calculations by combining the approaches of several authors. The
ferromagnetic material characteristics are incorporated directly into the
field equations, amenable to computer solution.

A math model of the material characteristics is presented. The mag-
netic permeability at a point in the ferromagnetic material is expressed as
a function of H. The boundry conditions of the magnetic field equations in
the time domain are developed. The numerical solution for the field emerg;
ing on the inside surface of an infinite sheet is accomplished by solving a
differential equation subject to the boundry conditions. Certain approxima-

tions are indicated to simplify the calculations. The computer flow diagram
is 1llustrated.
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1. INTRODUCTION

When intense electromagnetic fields, such as the transient field associated
with the nuclear electromagnetic pulse (NEMP), drives a ferromagnetic shield
into the saturated region, a degradation in shielding effectiveness occurs.

In the past the time domain solutions for NEMP shielding computations have
ignored saturation because of the increased complexity of the equations which
must be solved.

A numerical solution, amenable to computer utilization, for pulse'
transmission through an infinite ferromagnetic sheet was derived by
Merewether([l]. A classical finite difference technique was used to solve
the appropriate nonlinear diffusicn equation for the field distribution
inside the ferromagngtic sheet. Although his solution treated nonhomogeneity,
an isotropic material was assumed.

A far more simple solution was presented in a paper by Young [2] and
later in another paper by Ferber and Young [3]. In that brief traveling wave
solution, the diffusion of the fields into the ferromagnetic material is
approximated via solution of a first order linear differential equation.

On that basis, a simple expression for diffusion time for computing saturation
punch through is obtained. That work is useful for rough estimates of the
effect of saturation but is severely lacking in accuracy because of many of
the approximations made. Namely, the material is assumed to be both
homogeﬁeous and isotropic, and the nonlinear effects are ignored. That

is, the permeability is assumed to remain constant. While obviously in the
real world we know that the permeability, at least for the isotropic case, can
be expressed as a single valued function of the magnetic field intensity at

a point in the ferromagnetic material, and is obtainable by curve fitting

to the B versus H characteristics.
-




Some interesting numerical solutions for steady state problems have
been presented based on a scalar magnetic potenfial [4] and a solution
based on a vector magnetic potential [5]. However, examination of
Maxwell's equations for the time transient case, we sec that a scalar
vector potential can not be defined for time transient problems. This
is because definition of a scalar magnetic potential can not satisfy both
the curl and the divergence equation when we look at the differential
equation form of the field equations. However, definition of a vector
magnetic potential is valid.

This memorandum essentially presents Merewether's results [1], however,
incorporates some interesting material from referen;es [4¢] and t6]. Namely,
the technique of incorporating the ferromagnetic matérial characteristics
directly into the field equations, and a numerical approximation to the
differential equation which is amenable to computer solution. It is
hoped in the future that a solution based on a magnetic vector poteﬁtial

can be developed for problems such as this.




2, MATHEMATICAL MODEL OF MATERIAL CHARACTERISTICS

The magnetic behavior at a point in a ferromagnetic material is
conventionally described in terms of the B versus H characteristics where
the anisotropic nature of ferromagnetic materials results in the familiar
hysteresis or B-H loop. We are specifically treating magnetic field solu-
tions for that class of ferromagnetic materials which can be represented as
isotropic media. Thus the magnetic permeability is a scalar point function
as opposed to a tensor function. This scalar point function is derivable

from a single valued averaged approximation of a normal B-H characteristic.

The average B versus H characteristics for a typical annealed low
carbon steel [4] is plotted in Figure 1. This characteristic must be ex-
pressed in mathematical form as a single-valued function of B versus H. In
almost all cases there is considerable latitude in what one may consider as
a satisfactory mathematical representation of an averaged B-H curve. For
the material in Figure 1, an excellent curve fit is obtained with the follow-

ing equations

~4

B = 4000u H = 50.2656x10 H 0 < H<79.5775 ' (2-1)
10’
B =7 ¥, [1 - 0.6exp(-0.0083776(H-79.5775))] (2-2)
79.5775 < H £ 1069.6067
and
B = 0.9998 + u_(H-1069.6067) 1069.6067 < H (2-3)

These expressions are based on rationalized MKS units where B is in webers
per square meter and H is in ampere turns per meter.

The magnetic permeability at a point in the ferromagnetic material
is expressible as a function of H by the following relation. ’

w2 - (2-4)
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By substitution of (2-1),(2-2), and (2-3) into (2-4), we obtain formulas for

the permeability as single-valued functions of H. The curve showing relative
permeability versus the magnetic field intensity H shown in Figure 1 was plotted
based on these formulas and is presented to illustrate the strongly nonlinear
behavior of the ferromagnetic material. For very strong saturating fields the

relative permeability of the material approaches unity as we expect it to.
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3. MAGNETIC FIELD EQUATIONS IN THE TIME-DOMAIN

The differential equations applicable to the fields diffusing through
ferromagnetic material such as steel, operated in the saturated state, are

obtainable from Maxwell's equations. Namely:

WE = - g% (3-1)
UxHi = oF (3-2)
and 9B = VD = 0 (3-3)

VA = podd (3-4)

If we consider the geometry illustrated in Figure 2, where we will
investigate the propagation of a plane electromagnetic wave through a sheet
of infinite extent and of thickness "a". To simplify the problem the wave
is considered only to have a "y'" component of magnetic field intensity and
propagating in the positive "x'" direction. On this basis, and by performing

the curl operations indicated in equations (3-1) and (3-2) we obtain the

relations
oH _ , .
> - oE o (3-5)
oE oH

and 5; = p—a—t- (3-6)

-
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Now, for a wave propagating into the sheet illustrated in Figure 2, the fields

in Region I can be described by the following mathematical relation:

E(x,t) = EI (t - -’ci) - E] (t+ %) (3-7)

Ey (t-3) Ej(t+3)
H(x,t} = S—-t_, 1 ¢ (3-8)

Mo o

In region II, the electromagnetic ficld components are found via
solution of equation (3-4). From this, and (3-5) it is readily found that

the applicable differential equation reduces to:

5 .
9 ng,t) i Qng,z) (3-9)

ox

Now the boundary conditions which must be satisfied between the three
regions are obtainable from evaluating the equations for E and H in regions I & 111
at the surfaces. For instance, by evaluating (3-7) & (3-8) at x=o we obtain:
E(o,t) + N H(o,t) = 2E(t) (3-10)
Similarly, from the equations for E and H for region 111 (not presented) we obtain:

E(a,t) - noli(a,t) =0 (3-11)

The problem at hand is the solution of the differential equation (3-9),
subject to the boundary conditions (3-10) and (3-11). Utilizing the curl

relations (3-5) and (3-6), the boundary condition equations become:

Qe

-a—%H(o,t) +n_Ho,t) = 2E]) ' (3-12)

.
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Figure 2. Plane Wave Propagation through an Infinite Sheet




%-5% H(a,t) - nOH(a,t) = 0 (3-13)

The electric field transmitted through the sheet into region III, which

is of prime interest, is given by (at x = a):

Es(t) = nl(a,t) (3-14)

We will proceed to indicate a solution for H(a,t) based on numerical methods.

9~
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4. NUMERICAL SOLUTION AND COMPUTER FLOW DIAGRAM

To solve for the field emerging on the inside surface of the infinite
sheet, it is necessary to solve the differential equation (3-9) subject to
the boundary conditions (3-12) and (3-13). As a first step, a rectangular
mesh of points is described in the x-t plane. In the x direction nodes are
taken at uniform spacings between x =0 and x = a. In the t direction, nodes

arc taken at uniform spacing fromt =0 tc t = Tl’ where T1 is the maximum |

estimated duration response time. The derivations in (3-9), (3-12) and

(3-13) are then replaced by the difference approximations: ;
H(x + 1,t) + H(x - 1,t) - 2H(x,t) op H (x,t +1) - H(x,t - 1) (4-1)
A2 2At
x
+»
P H(+ 1,t) - 2H(t) l]
6](t) = o g 7 o) (4-2)
1 H(a,t) - H(a-1,t)
0o = U - - nH(a,t) (4-3) ]
X |
' ‘ T
Where in the previous equations the permeability is taken as the mathematical ]
model of the form indicated in Section 2.0 of this memorandum, and is evaluated |
at each point in the mesh once each iteration cycle. The solution is offected *

by rearranging (4-1) to solve for H(x,t), and by proceeding sequentially through
the array through sufficient iterations until the solution has converged to
reasonable accuracy. The subject of convergence will not be discussed here,

but in computer programs investigated in [4] and [6] it was found that sufficient
accurancy is obtaiﬂed with well under 100 iteration cycles. Accuracy will be

relatcd to mesh coarseness, magnitudes of the driving field, the material

permecability math model, and other factors.
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A computer flow diagram-is indicated in Figure 3. By computer execution,

| accurate time domain solutions for the wave emerging on the far side of the

metal sheet can be obtained.
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Figure 3. COMPUTER PROGRAM FLOW DIAGRAM FOR SOLUTION OF
DIFFUSION OF ELECTROMAGNETIC PULSE THROUGH FERROMAGNETIC
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5.0 CONCLUSIONS

When pulse amplitude of an incident electromagnetic wave drives the
surface of a shield into saturation, degradation in shielding effectiveness
occurs. The method described in this memorandum permits accurate computer

solution for the time response of the wave propagating through a ferromagnetic

sheet.

~]13-

s




REFERENCES

[1) "“Electromagnetic Pulse Transmission through a Thin Sheet of Saturable
Ferromagnetic Material of Infinite Surface Area”, D. E. Merewecther,
I.E.E.E. Transactions on Electromagnetic Compatibility, Volume EMC-11,
No. 4, November 1969.

(2] '"Ferromagnetic Shielding Related to the Physical Properties of Iron",
F. J. Young, paper presented at I.E.E.E. Symposium on Electromagnetic
Compatibility, Scattle, Washington, July 1968.

[3] "Shiclding Electromagnetic Pulses by Use of Magnetic Materials",
R. R. Ferber and F. J. Young, [.E.E.E. Symposium on Electromagnetic
Compatibility, Atlanta, Georgia, October 1969.

[4] "The Three-Dimensional Nonlinear Magnetic Field Boundary Value
Problem and Its Numerical Solution", D. J. Kozakoff and F. 0. Simons, Jr.,
1.E.E.E. Transactions on Magnetics, December 1969.

[S}] '"Nonlincar Magnetic Field Solutions based on a Vector Magnetic
Potential', F. 0. Simons, Jr., D. J. Kozakoff, and R. C. Harden, paper
presented at 1.LE.E.E., International Conference on Magnetics (INTERMAG),
Washington, D. C., April 1970.

[6]) "Magnctic Field Solutions for One Class of Nonlinecar Boundary Value
Problems", . O. Simons, unpublished doctoral dissertation, University
of Florida, June 1965.

-14-




Unclassified

Mreunty Clacaificatinn

DOCUMENT CONTROL DATA-RL D

(B00eite 200s0iliration ol 1000, Smdv 0l 00010 ) Bnd NGO 0Ing Arretotian Gumsl bo Ontoewd Bhon 1o es0rell ropnst Is ¢loseitiod)

0. OWeusna 1ime AC 1V TV (L operere SuiBey) a0, MLPOA Y JECYNITY CLAINIFIC O 1ION
Sperry Rand Corporation ‘ Unclassified
Space Support Division it e

| Huntsvi Alaba None

s REPOATY iV

Diffusion of Transient Electromagnetic Fields through Saturated Ferromagnetic
Media.

=
6 LEBCMPTIVE NOTED (Type of repart and neivelive dotoe)

Final (Inclusive dates N/A)

5. SV THORIBI (Firel noswe, Biddle minel, loe! nooe)

D. J. Kozakoff

I I

r ACPOAY | e TOT AL 0. 00 Pacls M. ne. OF AEPS

June 1970 19 6

0. CONTRACLT ON GRANT KO 00, OMIGINATON'S REPORT NUMSLES)
None assigned - \

[ ] . a‘v.u-cn REEOR T 018! (Any SIN¢ mumbere Dot Moy be ssoigwd
2 None as of 13 April 1971

10. DB YRIBYTION STATEMENTY

IApprovcd for public release, distribution unlimited.

0. SUPPLEMENTAAY O TCS 13. SPONDORING MILITARY 4C TIVITY

U.S. Army Engineer Division,
P.O. Box 1600 West Station
Huntsville, Alabama 35807

b—_——_

LLTI3E

Intense transient electromagnetic pulse ficlds may drive a ferromagnetic
shield into saturation, thus reducing the shielding effectiveness of that
shield. Often shiclding computations ignore saturation effects due to the
complexity of the equations. This memorandum reduces the complexity of the
calculations by combining the approaches of scveral authors. The ferromagnetig
material characteristics are incorporated directly into the field cquations,

amcnable to computer solution.

A math model of the material churacteristics is presented. The magnetic
permcability at a point in the ferromagnetic material is expressed as a func-
tion of H. The boundry conditions of the magnctic field cquations in the time
domain are developed. The numerical solution for the ficld emerging on the
inside surface of an infinite sheet is accomplished by solving a differential
cquation subject to the boundry conditions. Certain approximations are indi-
cated to simplify the calculations. The computer flow diagram is illustrated.

DD .':::..1473 Unclassificd

Secunity Clossilscotion

-15-




Unclassificd

i
Sorueity o 1 s niler 000 oq

(X ]
ARV BOROY

Li%en & Lima O

wina ¢

KoL e o 20LE [ 1

aoLe

Shielding Effectivencss

Ferromagnetic Shield

Electromagnetic Pulse Fields

Nuclear Electromagnetic Pulse

Scalar Magnetic Potential

Vector Magnetic Potential

Magnetic Field Equations (Time-Domain)

H-Field Saturation Lffects

-16-

Unclassificd

Security Claseaihicotion




