AD?20313

MAR 19 9Tl

[&E@Eﬂﬂﬂlﬂ |

Il
D~
Massachusetts

COMPUTER ASSOCIATES

division of

APPLIED DATA RESEARCH, INC.

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

Seringfield, V. 22181

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT

REPRODUCE

_LEGIBLY.

Ve

Task Arca 1

Task lrca]I

Contractor:
Contract No.:

Effective Date:

Lxpiration Date:

Amount;

APPLIED DATA RESEARCH, INC.

LAKESIDE OFFICE PARK. WAKEFIELD, MASSACHUSETTS 01880 (817’ 248 9840

FINAL DUUORT = TALGY, 4o g
(Volume 1)
(2) June 1CLE - 3Y Lo cobher A1YAG)
FOQu vl MOy 1
RESLARCH o rALCHY -l DG G
SOIMWIRE PROGI MG NG -

Principal Investigators:

Carlos Chr:stecnscen (617) 245-9540
Anatol W, liolt (617) 745-9540
Project Managycor: P

Robert I, Millstein (017) 245-9540

ARPA Ordor Number - ARPA 1228

Program Code Number - €230
Massachusetts Computer Associates, Inc., Division of ADR
DAHC04-68-C- 0013
21 Junc 1964

30 Septaemnber 1971 — ' ST
$696,600.00 - it il
L ad

Sponsored by . LJ.

Idvancod ! osearels voicets Aacuay

ARPA Ovilor Numter = 1228

Ch=-7102-201 1

i e

B Deman &

@ . APPLIED DATA RESEARCH, INC.

LAKESIDE OFFICE PARK. WAKEFIELD, MAStACHUSETTS 01880 :(617) 245-9540

A REPCHT ON IWVRIT/G |
“{Volume 13~

by
Carlos Chris onsen
Michael S. Wolfberg
Michacl J. Fischer*

CA-7102-2611
February 26, 1971

* Consultant to Applied Data Research, Tuc,
Addiess:; Department of Mathematics, M. I. T.,
Camhridge, Massachusetts

This is the {irst of four volumes of the final report on Task Arca I
of the prcjcct "Rescarch 1 Moechine-Independaont Software
Programminy . 1nis vescarch was supported by the Advanced
Research Projects Agoncy of The Department of Defeonse and was
monitored by U, S, Army Rescarch Office-Durham, Box CM,
Duke Statiow, 2urhom, Horth Carelina 27705, under Contract
DALIC04-68- G043,

ABSTRACT

AMBIT/G is an experimental language for software programming. It is
oriented toward the manipulation of complicated data structures, Two-
dimensional directed-graph diagrams are used to represent the data, and
similar diagrams are used throughout the program as the "patterns" of
rules to modify the data. An AMBIT/G system has been implemented on
the Multics System at M,I.T. The implementation is ostensive and is
intended for experiments in the use of AMBIT/G. It is written partly in
AMBIT/G and partly in PL/I. This report begins with fundamental concepts
and then proceeds to describe the implementation in great detail, The
AMBIT/G programs for the AMBIT,/ G interpreter and the AMBIT/G loader
are described and then displayed in full. Instructions for the input,
execution, and cdebugging of a user program are given, Many examples
are included, carefully chosen to illustrate and teach important features
of AMBIT/G.

& At

[T

—»

CONTENYS

Volume I
Abstract
l, Summary
2. Fundamentals
data graph, constraints, program, general philosophy
specific languages.
3. Representation of Programs

overview, program syntax, correspondence between
program graphs and diagrams

4, The Interpreter
overview, the compiler, interpretation of 'linkrep's,
user-defined functions, error messages.
5. The Loader
overview, error messages, loader syntax, sample
encodement, sample error.
6. Initialization and the Built-in System
hints, built-in nodes, built-in links, built-in function
definitions, built-in rules, built-in data, built-in
functions, sample error,
7. The Debugging Facility
lexical conventions, statements, statement forms,
sample session,
8. The Implementation
credits and acknowledgements, internal view, files,
FL/1 data formats, PL/I implementation of the inter-
preter and loader.
9. Further Work
10, Project Bibliography
Volume 11
11, Examples of AMBIT/G Programs
observations, introductory examples: reversing a list,
two forms of input, function calling, LISP gar-
bage collector, another garbage collector, an inter-
active program, sorting, factorial computation and
recursion . '
Volume III
12, The AMBIT/G Interpreter as an AMBIT/G Program
description, listing.
Volume IV
13. The AMBIT/G Loader as an AMBIT/G Program

description, listing.

15

30

48

65

99

114

152
157

CHAPTER]
SUMMARY

This report {s large, However, the casual reader can obtain a uscful
introduction to AMBIT/G by reading a few pages of the first two volumes,
Specifically, we suggest that he begin with the next chapter of this volume,
nn fundamentals, and then rcad the {irst thrce sections of the second volumne,
concluding with the introductory examplcs, thrce programs for reversing the
order of a list.

The report is large because it contains many complete AMBIT/G pro-
grams and because these programs require diagrams rather than text for their
representation. The general trend of the report is from general and philosoph-
ical discussion to detailed and practical specifications. At the beginning
we do not assume a prior knowledge of AMBIT/G, and at the end we give
listings of large and complicated AMBIT/G programs. Much of this information
is the unrefined output of our current research on AMBIT/G and therefore is
not presented in a tutorial way.

After the chapter on fundamentals, the report proceeds to its main
business, which is the definition and implementation of the AMBIT/G system.
The definition and implementation are, in fact, partly identical since some of
the implementation is written in AMBIT/G. Chapter 3 gives the representation
of AMBIT/G programs in the form of AMBIT/G data and provides the basis for
accepting a program as a data structure on which an interpreter program can
operate. The chapter makes use of an interesting formalism for the specification
of "grammars" for AMBIT/G data.

Once we have a way of thinking of a program as data, we can discuss
an interpreter. Chapter 4 describes the AMBIT/G program (given in Volume III)
which is our interpreter. An especially important part of this chapter is a
discussion of the definition and use of functions in AMBIT/G.

Our implementation of AMBIT/G requires that both data and programs
are presented to the system in an abstract input language (as textual descrip-
tions of dlagrams). Chapter 5 describes an AMBIT/G program (given in Volume
IV) which "loads" pages of this input to produce an internal data graph. The
chapter gives a formal syntax for the input language and includes an example
of the use of the loader,

The AMBIT/G System is not empty when a user program arrives for
interpretation., Certain information on the requirements of the program must
be submitted in advance. More important, a variety of nodes, links,
functions, rules, and pre-set data is built into the system in order to give
the user a practical point of departure for programming. These facilities
are described in Chapter 6.

A special subsystem for symbolic debugging is included in the
AMBIT/G System, so that the user may inspect the data in a natural and
interactive way. Chapter 7 describes the use of this suusystem in detail.

Although the interpreter and loader are both written in AMBIT/G,
there is necessarily an underlying foundation for our Multics implemen-
tation. This foundation is composed of PL/I routines and is described in
great detail in Chapter 8.

Chapter 9 contains some suggestions for further work on the imple-
mentation. The first volume concludes with an annotated bibliography of
the papers and programs which have been produced by the project or are
related to the project.

The second volume consists entirely of example programs, It is
these examples which best display the concepts of AMBIT/G. In fact,
nearly every example was chosen to illustrate a particular aspect of the
AMBIT/G System.

We have already noted that the last two volumes are the complete
program listings for the interpreter and the loader. These listings are
included in the report for three reasons: The programs contribute to the
formal definition of AMBIT/G, they form the basis for the implementation,
and they are large-scale examples of AMBIT/G programming.

The scope of this report is limited to the definition and implementation
of AMBIT/G and does not include other work done as part of the project. The
interested reader is directed especially to our work on character recognition
(Ledeen and Wolfberg), formal definition of BASEL (Jorrand and Hammer),
description of simple AMBIT/G (Henderson), constraints (Third Semi-Annual
Report), and the design of AMBIT/L (Christensen).

CHAPTER 2
FUNDAMENTALS

The project "Research in Machine-Independent Software Programming"
is devoted to the capture and analysis of the techniques of software
construction., By tradition and necessity, these techniques have been
expressed fully only in machine-language programs; and in that form they
are as obscure and exotic in our times as the operations of arithmetic were
in the European Middle Ages. We seek a significant remedy to this
situation by breaking away from current programming languages and
following a fundamentally new approach to software programming. The
practical results of this speculative venture are incorporated in an
experimental programming system called AMBIT/G.

The AMBIT/G programming system is, first of all, a high level
system for the construction of software. The term "high level" is
often applied to a programming language to indicate the use of some
combination of English and mathematical notation. We intend a more
general use of the term. In our broader sense, a successful high level
system provides a complete framework of concepts and techniques for
programming in addition to a language; that is, it channels and supports
the thoughts of the programmer as well as his utterances.

Our work on AMBIT/G has a simple underlying assumption. We
believe that the characteristic activity of software construction is the design
and use of complicated data structures, such as stacks, queues, rings,
lists, and special tables. Indeed, the most important "construction" activity
seems to be the structuring of data rather than programs. Accordingly,
AMBIT/G is data-oriented to an unprecedented extent. At the beginning of
a new programming task, the AMBIT/G user establishes a formal and
"machinable" statement of the representation and properties of his data. Only
when his data design is complete does he begin programming.

English and algebra, as used in COBOL, FORTRAN, and PL/I,
for example, are an effective combination for commercial and scientific
programming. However, these textual, essentially linear notations are not
a natural medium for the description of structure in general or software
data structures in particular. AMBIT/G rejects these notations in favor
of another high level medium, the diagram.

The expository value of a diagram is well known. Flow charts
of programs are very familiar and (more relevant to the present discourse)
informal diagrams of data have been used for years to supplement program
documentation. On the other hand, the formal adoption of a diagram as
the “actual” data is quite unique to AMBIT/G and has a powerful effect;
the diagram becomes an almost machine-like object, changing frequently
in certain places and relatively fixed in others, a passive machine
operated by a program but subject to its own built-in constraints,

THE DATA GRAPH

An early use of informal data diagrams was in the representation
of LISP lists, and many variations have since been used in papers on
software. We obtained a formal model for data by restricting and simpli-
fying the notation rather than elaborating it. The final result is a precisely

defined form of diagram called a data graph. The following diagram is an
example of a (small) data graph.

INT | oP | SYM

The diagram is composed of nodes and]Jinks. A node is a rectangle with

a pode pame written inside; this node name is a type written above a
subname. There may be many nodes of a given type, and these are
distinguished from one another by their subnames. In the diagram above,
for example, there are eight nodes of type 'CELL'; their subnames are the
integers from '20' through '27'. A link is a line which begins at an origin
node, passes close to its link name, and ends (with an arrowhead) at a
destination node. Every node of a given type has a similar set of links.

For example, every ‘CELL' in the diagram is the origin of four links which
are named 'flag’, ‘'r', 's', and 'd', and every 'SYM' is the origin of no links.

The types, subnames, and link names used in the data graph
We selected by the grogrammer for ¢ach particular program. It is the
{acility for building special data structures , not the structures them-
saives, which is bullt into the AMBIT/G system.

Every data graph must be functional, that is, agiven node
(28 origin of a link) and o given identifier (as link name) must specify
no more than one node (o8 destination of the link). This allows
the u.iambiguous “pecification of a “walk" along the links of a diagram
by giving a starting node name and a sequence of link names. Purpose-
ful link walking Is an important activity of software programs.

The dsta graph must also be permanent: that is, nodes and links
cannot be created or destroyed during program eyecution. In fact, the
only permitted operation is the “swinging™ of a link so that its pointed
end moves from one node to another. This restriction reflects the fact
that machines (including memory hardware) tend to be permanent.

Once the fundamental data representation has been established,
certain superficial but useful ~abbreviations” are introduced. For
example, the type is dropped from within a node boundary and is indi-
cated by giving the node boundary itself a distinctive shape. Or link
names are druopped by establishing for each different link a characteristic
point of origin on the node boundary. Such convenience notstions make the
diagram much more readable.

We do not intend thet the programmer write out a large data graph;
an architect does not draw every brick end nail of his bullding. However,
the postulated existence of the data graph provides a reliable basis for the
programmer’s thinking. It is the basis for the design of constraints on
data and the writing of programs .

CONSTRAINTS

If a data graph has p nodes, then each link in the data graph
has p states, one for each possible destination. Further, if the data
graph has a total of k links, then the entire data graph has gk different
states.

The programmer uses formal statements called constraints to
stipulate that certain states of the data graph can never occur during
the execution of his program. A constraint may fix a given link to a
single destination for all time; or it may restrict the link to destinations
of a specified type; or it may establish a more general and dynamic
dependency of the link on other links, When a program is being debugged,
the program interpreter (2 human reader or computer executor) can check
for operations on the data which are inconsistent with the constraints
and report these to the programmer.

Ultimately the data graph must be encoded in bits and stored in
some computer memory. The amount of computer memory required will be
a function of the number of states available to the data graph: therefore,
constraint of the data graph reduces the memory required. Thus constraints
are useful both for debugging the program and for optimization of storage.
Constraints are a vital and growing aspect of AMBIT/G.

IHE PROGRAM

An AMBIT/G program includes a collection of rules connected by
flow lines as in a flow chart. Each rule is itself a diagram and uses a
notation which closely resembles that of the data graph. An example of a
single rule is as follows:

VAR VAR S o

B Y X
P val val val F
. —>
—

CELL {r B CELL

j! Y

INT SYM

25 Al

This rule is executed when "control" enters along one of the incoming
flow lines at the left; and its execution results in control exiting to
another rule along the success or fail flow lines to the right, The
inside of the rule can be interpreted in three paragraphs, as follows:

First frame the data graph as follows: Select 'VAR Y', follow
the 'val' link, and call its destination cl. Is ¢l a 'CELL'

node? Select cl, follow the 'd' link, and answer: is its
destination 'INT 25'? Select cl, follow the 'r' link, and call its
destination c2. Is c2 a 'CELL' node? Select c2, follow the

'd' link, and call its destination ol. Select c2, follow the 'r'
link, and call its destination c3. Is c3 a 'CELL' node? (Should
the answer to a frame question be "no", you have detected the
consequences of a programming error; take the day off and get
undefined.)

Next test the data graph as follows: Is ol an 'OP' node? Select
'VAR X', follow the 'val' link, and answer: is its destination

¢3? (Should the answer to a test question be "no", take the
fail exit from the rule.)

Finally, (if you haven't gone away) modify the data graph thus:
Select 'VAR Y' and set its 'val' link to point to c2. Select c3
and set its 'd' link to 'SYM Al'. (No questions are asked
during modification. When you are done, take the success exit
from the rule.)

The paragraphs just given imply a total ordering of actions
which we now revoke: The actiuns (commands and questions) within
a given paragraph can be interpreted in any order provided that each
variable (like cl) is associated with a node in the data graph (by a "call"
clause) before it is referenced (by a "select" clause).

Every (single-line) link in any rule must be a part of an
anchored walk. An anchored walk begins with a node whose full name
(type and subname) is given in the rule and repeatedly "steps" from one
node in the rule to another, each time following a link from origin to des-
tination. This restriction means that the pattern-match can be implemented
very efficiently; in fact, none of the "searching" characteristic of
general pattern-matching is ever required.

To complete this discussion of programs, some remarks on program
structure (that is, the framework in which rules are embedded) is necessary.
Since most of the unusual and novel concepts of AMBIT/G seem to be
confined to the rules, we seriously considered adopting the program
structure of some existing high level language and we decided that ALGOL 60
was the obvious candidate. The use of an ALGOL 60 framework presented
serious problems, however,

The first problem arose in finding an analog to the ALGOL 60 function
reference., At first it appeared that there was no natural place for functions
in a pattern-mctching rule. Eventually, however, we developed the idea
that the function reference and the data link are not in conflict but, rather,
are two aspects of the fundamental mechanism for assigning structure to data.
The function reference became a new and important part of the notation
for rules.,

Our second problem arose with block structure. The ALGOL 60
block structure is the basis for automatic storage allocation, and recursive
function evaluation., It has been extremely successful and has become a
classic component of high level languages. However, block structure
implies hidden mechanisms for storage management which are in direct

[== T

S iy

conflict with the objectives of AMBIT/G, which seek to give the pro-
grammer close control over all his data. We rejected block structure
because we could not find a simple and practical way to control its
machinery.

Other problems of a less fundamental nature arose and we
were forced, after all, to accept a minimal program structure, far simpler
than that of ALGOL 60, which involved the use of success and fail flow
lines to connect rules and a very general mechanism for function definition

and reference.

GENERAL PHILOSOPHY

The designer of a programming language soon leamns that the goals
he has set for himself are in conflict. A language should be powerful yet
easily implemented, rich in expression yet easily leamed, application-
oriented yet general purpose, concise yet readable, easily programmed in
yet efficiently compiled. Most existing languages are readily classified
along one or more of these dimensions and often are noteworthy because of
an extreme position with respect to one of them, PL/I is noted for being
pcwerful but difficult to implement; BASIC is at the other extreme, ALGOL 68
is rich in expression ; SN')BOL 1 is easily learned, SIMSCRIPT is application-
oriented; ALGOL 60 is general purpose. APL is concise; COBOL attempts
to be readable, EULER is easily programmed; FORTRAN can be efficiently
compiled,

The motivation in the design of AMBIT/G was not simply to decide
upon a position with respect to each of the above parameters and then build
yet another language, distinguished from the others only by the particular
combination of choices made, Rather, it was to study some of these apparent
con:licts in an attempt to see just how they influence language design, and
based on the insights so gained, to build a language which overcomes the
weaknesses and limitations which any compromise, no matter how carefully
chosen, necessarily imposes,

10

This seemingly impossible undertaking has indeed succeeded, at
least in its initial stages, and the particular solutions take one of two forms.
Some of the conflicts among goals disappear with radical changes in pcr-
spective, Other conflicts, which we were unable to so eliminate, can be
parameterized so that the user and not the language designer is able to choose
the point of compromise.

Four main ideas emerged from these considerations:

a) Data is of primary importance and should be designed
first with the care usually given to the language im-
peratives.,

b) Two-dimensional representation permits humans to deal

with greater complexity than is possible with linear
representations,

c) People seem to have an ability to comprehend spatial
pattems of far greater complexity than temporal.

d) Redundant information in the form of constraints can be
highly useful both to people and to the machine,

How is it that these ideas have been overlooked for so long? To some
extent, they are not new, LISP, PL/I, ALGOL 68 and BASEL certainly have
the ability to deal with highly structured data, SNOBOL owes much of its
success to the pattemn-replacement idea, Certain explicit constraints such as
declarations of array sizes and data type are present in several languages,
But the exciting discovery is that the ideas are not independent and cannot
realize their full potential in isolation,

Many languages, as we have noted, can deal with highly structured
data, However, few languages make it convenient to manipulate data which
is not basically tree-structured (or at least acyclic). In LISP, for example,
one can create arbitrary structures through the use of the functions RPLACA
and RPLACD, but it is an exercise reserved for the expert,

11

m b‘ m‘ k‘

[ST

&

[=N - P

[S

| T2

i

An important reason for the preference for hierarchial data is that it
can be linearized in a fairly natural way using parentheses, precedence, and
other devices. But these methods do not generalize nicely to cyclic structures,
so a conceptual barrier arises between the two types of data, The net result
seems to be that users are encouraged to force all their data into the often
inappropriate hierarchial mold. In two dimensions, however, cyclic graphs
are as easily represented as trees, and it becomes natural to break away
from tree structures wherever appropriate,

Pattern-matching gives SNOBOL a gestalt capability and in many
cases results in surprisingly perspicuous programs. However, string data
tends to have only limited sorts of interesting pattems, so many SNOBOL
programs use the pattern-matching facility mainly to emulate the structured
data found in other languages. By generalizing the types of data that can be
manipulated, many more interesting types of pattems. become manifest and
the gestalt methods of programming can handle a far larger portion of the
computational task.

Designers of programming languages have often regarded declarations
as nuisances which are eliminated wherever possible and which are useful only
if a language is to be "compiled". It is true that such constraints enable
more efficient implementations of a language, but they also serve two other
distinct and equally important functions, First, they greatly facilitate de-
bugging by establishing a set of conditions under which the program must
operate; any attempted violation indicates an error, The subscript bounds
checking of PL/I and the type-checking of ALGOL are such conditions. Second,
declarations of constraint are a reliable form of comment and thus help con-
tribute to documentation, The programmer who says on a comment card that
his program never stores a number bigger than 100 into the variable X states
this as a matter of belief; the programmer who includes that statement as an
explicit constraint knows it to be true as a matter of fact., The significance
of this distinction cannot be overestimated in a typical program which is modi-
fied many, many times before completion.

While constraints can be extremely valuable, it is difficult with most
programming languages to envision very many different kinds other than the

12

ones alluded to above., However, once data with complicated and dynamically
‘changing structure is introduced, there becomes a much more pressing

need for constraints. The added generality provides more directions in which
program optimization is possible and necessary. But most important, con-
straints, together with the two-dimensional representation, are the tools

the user needs to control the greater complexity possible with the more general
data.

SPECIFIC LANGUAGES

AMBIT/G has been implemented several times in the past four years,
and these implementations are listed in the Project Bibliography included
in this report. Most of the remainder of this report is devoted to the
most recent of these implementations, an AMBIT/G system on Multics.

We have already stated that the AMBIT/G system is experimental and
is a vehicle for expressing basic ideas about programming. On one hand,
the system carries the use of diagrams to an extraordinary extreme, includes
very carefully developed facilities for definition and use of functions, and
endows the data with unprecedented independence. On the other hand, we
have excluded features which we considered to be trivial (rational arithmetic),
over-sophisticated (block structure), or peripheral (graphic input-output).
The resulting programming system is a theoretical model, not a practical
language for software programming.

The AMBIT/G language described in this report is the most important
result of the project. It is the basis for future development of both theory
and practice. However, a very different language, AMBIT/L, has come to
light, rather unexpectedly, as part of the project.

AMBIT/L is the result of a vigorous specialization and simplification
of AMBIT/G to produce a practical language for list-processing. It has
an applications area quite similar to that of LISP, but it uses the diagrammatic
pattern-replacement style of AMBIT/G. The language is described in a
separate paper listed in the bibliography and submitted with this report.
Under auspices other than this project, it was fully implemented and then
successfully applied to the construction of a large software system for
interactive algebraic manipulation.

13

Thus two specific languages have resulted from the project;: AMBIT/G,
an adaptable framework for testing principles of language design, and
AMBIT/L, a practical embodiment of the current results of our work on

" dilagrammatic programming.

14

CHAPTER 3
REPRESENTATION OF PROGRAMS

The diagrams with which the programmer represents his program are
represented in the AMBIT/G system as ordinary AMBIT/G data and are accessi-
ble to him in the same manner as any other data. This allows one to write
programs which construct other programs or which modify themselves. It also
permits the interpreter itself to be expressed as an AMBIT/G program, which
we have chosen to do in order to give a formal desctiption of the semantics as
well as being an aid in the production of an implementation. The interpreter
and the implementation are described elsewhere in this report,

OVERVIEW OF THE PROGRAM REPRESENTATION

The description of the program representation is in two parts. First we
define a class of data graphs which we call program graphs and which consti-
tute the class of legal inputs to the interpreter. Second, we attempt to show
how to find a diagram which the program graph represents. We note that there
is not a one-to-one correspondence between program graphs and diagrams; a
given diagram may be represented by many different program graphs and con-
versely, many different diagrams may have the same program graph for their
representation (e.g. diagrams which differ only in the positions of the nodes
on the page).

Two diagrams with the same set of possible representations are se-
mantically equivalent. However, we will see that it is possible for a diagram
to be represented by two or more distinct program graphs upon which the in-
terpreter will behave differently and perhaps produce differing results., This
may occur, for example, when a rule contains calls on functions which have
side-effects, Diagrams which lead to two or more inconsistent interpretations,
even though syntactically correct, are considered to be semantically undefined
and not a part of the AMBIT/G language.

15

Briefly, a rule is represented by a collection of nodes of a small
number of pre-defined types and certain of their links., The nodes in general
represent the pileces of the diagram such as the boxes and the arrows, while
the links represent the relationships among the pieces.

These same nodes carry other links which are used to record mis-
cellaneous information generated during the process of execution of the pro-
gram. Such information includes the results of compilation of a rule, the calls
on user functions which are currently active, and the arguments and results
being passed to user functions, Further mention of these links is deferred to
the chapter on the interpreter,

PR SYNT
hapes and Lin e Represen n

A program graph is a collection of nodes of the pre-defined types
‘rule', 'linkrep’, ‘noderep’', 'diamond', and 'flag’', called program repre-
sentation nodes, together with the links shown in the table below. The .
shapes used to picture these node types and the relevant links are shown
following the table.

16

Links defined for a rule in state ‘clear’

Node
JIype Link Destination Meaning
rule success rule success exit.
fall rule fail exit.
contents linkrep encoding of rule
contents.
linkrep mode flag mode of the link
(‘frame', ‘test’' or
‘modify').
org diamond list of talls.
name noderep 1ink name.
dest diamond list of heads.
next linkrep used to form list.
diamond next diamond next element in
heads or talls list.
value noderep the list element
itself.
noderep variablility flag tells whether or not

the node is a dummy.

rep* user node the node of the data
graph represented by
this rule node.

*Defined only if the ‘variability' link points to ‘flag fixed'.

17

rule :

nodere) :

SUCCeSS

contents

ariability

rep

18

linkrep :

diamond :

flag :

mode

next

rg - |[name dest

next

value

19

. . P— — . —

Lo]

ey,

b S A Sl Bl i T R D e AR N B Rl . il e 4 W T} L &

The syntax of AMBIT/G is specified by a "grammar" consisting of
special diagrams. As in BNF, we introduce meta-linguistic v-ariables which
we call property symbols and represent by hexagons containing a character
string. However, unlike BNF, we do not think of our grammar as generating
a graph but rather as a means of testing a graph for certain well-formedness
properties. Given a data graph, our grammar rules allow us to assign one or
more properties to certain nodes of the graph. A hexagon from which emanates
a double arrow is a defining instance of that property. A given node of the
data graph is defined to have that property if the pattern beginning at the
destination of the double arrow can be matched to a subgraph of the data
beginning with the given node. Forexample, the syntax rule

(oo >L B cell

says that every node of type 'cell' has the property 'foo', whereas the rule

< >:g> cell
goo

down

integer

20

§ays tnat oniy 'Cell 5 whnose auwil LR pulllld tva Ve Ui Lyps Hitsygol

‘have property 'goo’.

A property symbol may be used to qualify other nodes appearing in

the diagram. For example, the rule

cell
< hoo >'—_—$>
down
s
\ goo

says that a 'cell' has the property 'hoo' providing that its 'down' link points

to a node with property 'goo'. This may be abbreviated as

cell
hoo

down

=5

Two other notations may be employed in writing syntax rules, A

section of the pattern may be enclosed in a dotted box to indicate zero or
more repetitions of the enclosed pattern, For example,

e eccececccraccomctcnnny
'

cell cell
< list ReXl g,

end

21

specifies that a ‘cell' is a 'list' if either it is the node ‘'cell end' or if
‘cell end' can be reached from it via a chain of 'cell's along the 'next' link.

Finally, we allow an arrow of the pattern to branch, meaning an al-

ternative is allowed, For example,

L cell
terminator

cell

end

g oot 6 02

atom ;

means that a 'cell’ is a 'terminator' if its 'next' link points either to

‘cell end' or to an 'atom'.

The Syntax of AMBIT/G

A collection of program representation nodes is by definition a pro-
gram if some 'rule' node in the collection is assigned the property 'rule'
by the following grammar. Any node with that property is a valid place at

which to begin execution,

22

Grammar for AMBIT/G :

sSuccess

contents

~

linklist >

\g stop

NG

] N i
< linklist —b LT next | €09
Em—

< linkrep >

- > w>-w .-

23

4
frame test f

mode

g “a"‘\
Y

<noderep_list> <node representatio> <noderep llst

e Bw m e e e Eme *m e e = sy

i \ :
<noderep_listj‘: f

|
| "

l L]
<10de__re presentatior>
| 24

éode_representat1;r>

\V4

< user_node >:-—:—'—:§

fixed

variability

dummy

variability

(any node of the system)

Additional Restrictions

In addition to the restrictions imposed by the grammar above, we
constrain the "“sharing" that may take place among nodes. Informally, we
require that no node "belong" to the representation of more than one link,

More formally, we say that a 'diamond' D belongs to the 'org' ('dest’')
list of a 'linkrep' L if D is not the node 'diamond end' and also D is accessible
from L by a path beginning with an 'org' ('dest') link from L and then continuing
with zero or more 'next' links from 'diamonds'.

We say that a node N belongs to-a 'rule' node R if either:
a) N is not the node 'linkrep end' and N is accessible from

R by a path beginning with the 'contents' link of R and
continuing with zero or more 'next' links from 'linkrep'

nodes; or

b) N is a 'diamond' which belongs to the 'org' or 'dest' list
of some 'linkrep' node which belongs to R; or

c) N is a 'noderep' node which is the destination of the
'value’' link of some 'diamond' which belongs to R; or

d) N is a 'noderep' node which is the destination of the

'name’' iink of some 'linkrep' node which belongs to R.

We then require that each 'linkrep', 'diamond' and 'noderep' node
belongs to at most one rule, and in addition, each 'diamond' belongs to the
'org' or 'dest' list (but not to both) of one 'linkrep' node.

CORRESPONDENCE BETWEEN PROGRAM GRAPHS AND DIAGRAMS

In this section, we show how, given a program graph, to find a
diagram which that graph represents.

A 'rule' node together with the nodes which belong to it represent a
single rule, diagrammed by a rule box. The suoname of the 'rule' node is
written in the upper-left comer of the rule box. The success and fail

26

o == e e oy =N @

—

exits of the rule lead to those rule boxes represented by the destinations
of the 'success' and 'fail' links respectively.

Each ‘'noderep' node belonging to the rule corresponds to a node
box in the rule, A dummy 'noderep' ({.e., one whose 'variablilty' link
points to 'flag dummy') is represented by a node box with no contents. A
fixed 'noderep' whose 'rep' link points to a named node corresponds to a
node box containing the full node name. At present, we have no way to
diagram a fixed 'noderep' whose 'rep' link points to an unnamed node.

Each 'linkrep' node corresponds to an arrow of mode specified by
the 'mode’ link. The number of heads and tails of this arrow are determined
by the lengths of the lists of diamonds hanging on the 'dest' and ‘org' links
respectively. The 'tails' and 'heads' of this arrow are attached to the node
boxes corresponding to the '‘noderep' nodes which are the destinations of
the 'value' links of the 'diamond's in the ‘'org' and 'dest' lists respectively.
The spur of this arrow is the node box corresponding to the ‘noderep' node

at the destination of the 'name’ link.

An example should help to make these ideas clear,

27

Exanple of Rule Representation

Sugarcd form of rule:

e er— —— o - — — prs L e

P —— e =

' cell .—]n ht > cell
oS o

down

—\T
cell
Y

Desugared form of rule:

link type
_nght cell

cell link
X type
link]

down

28

e —— Ay -' —

Data representation of rule:

29

Gummy *

type
cell

CHAPTLR 4
THE INTERPRETER

The AMBIT/G interpreter is an agent which, given an AMBIT/G data
graph and the starting rule of a program represented within that graph, modi-
fies the graph in successive steps according to one of the many possible
interpretations of the AMBIT/G language.

Not all AMBIT/G programs wiil produce the same results on all imple-
mentations of the language; such programs we consider to be {ll-formed. The
decision to> admit the possibility of certain syntactically correct programs whose
semantics are unspecified {s a compromise at best. It has the obvious disad-
vantage that it may be difficult or impossible to determine mechanically
whether a given program is {ll-formed, so that one may unwittingly use an
illegal program to produce correct results at one installation and later have it
fail at another.

On the other hand, to attempt to specify completely the effects of ex-
ecution of all syntactically correct programs severely restricts the range of
possible implementations at perhaps a considerable cost of efficiency. More
seriously, one is forced to define and describe the results of "tricky" or
pathological programs which should not be written anyway, greatly complicating
tne definition of the language.

Ours is not a new approach. FORTRAN for example does not specify the
value of a DO-variable after normal exit from a loop. PL/I likewise has many
"implementation-dependent” parameters.

OVERVIEW OF THE INTERPRETER

This section gives an informal description of the operation of the inter-
preter., It presupposes the reader is familiar with the representation of programs.
It also uses the notation for describing paths through the graph that is defined
in the chapter on the AMBIT/C symbolic debugger. While some attempt was
made to be complete, this section should be regarded principally as an introduc-
tion to the formal definition of AMBIT/G.

30

The interpreter operates on a rule by rule basis, going through a
cycle of several phases for each rule,

Most of the information recording the progress of execution of the
program is stored in the several links originating from the 'rule' and 'noderep'
nodes which represent the program; hence this information is available dy-
namically for inspection and modification.

Each 'rule' node has a 'state' link which tells the current status of
execution of that rule. State 'clear' indicates a rule ready to be executed
for the first time. Such a rule must first be compiled, after which its state
is set to 'compiled’.

Execution then proceeds through the rule in three phases: 'frame’,
‘test', and 'modify', as indicated by the 'state' link. In each phase, 'linkrep's
of the corresponding mode are examined one at a time in the order specified by
the compiler and the appropriate action is taken. 'linkrep's of mode 'frame'’
cause dummy nodes to be matched (bound) to nodes of the data graph; those of
mode 'test' cause the destinations of links to be tested, and those of mode
‘'modify ' cause links in the data graph to be altered.

If any of the tests fail, thke rule fails immediately ~- the remainder of
the 'test’' phase and the entire 'modify' phase are then skipped, and the inter-
preter proceeds to the rule specified by the 'fail' link. If all the tests succeed
then the 'modify’' phase is performed as described, after which another interpre-
tation cycle begins with the rule at the destination of the 'success' link. In
either case, the state of the rule just executed is set back to 'compiled' to
indicate that compilation need not be repeated on subsequent executions of that
rule. Of course, if a user modifies a rule, he should reset the 'state’' link to
‘flag clear' which indicates that rule is in the 'clear' state.

Two rules have a special interpretation associated with them;
‘rule error' causes an error message to be emitted and execution to terminate;
‘rule stop' causes a normal return from the currently executing user subroutine,
or if at the top level, a normal program stop. For both of these rules, the
action is taken immediately and any contents of the rule are ignored.

3l

THE CO

MPILER

The compiler is not invoked until just before a rule is to be executed,

and on each call, it compiles only the single rule which is its argument,

Compilation consists of sorting the 'linkrep's by mode and ordering

those of mode 'frame' so that later during interpretation every dummy node of

the rule will have been bound to a node of the data graph before it is referenced.

The compiler reports an error if such an ordering is not possible.

sent the rule.

Compilation does not modify any of the links originally used to repre-

Rather, it adds information to the representation of the rule by

setting additional links on the nodes of type 'rule', 'linkrep', and 'noderep’,

as shown in the following table:

Additional links defined for a rule in state 'compiled'

Node

rule

linkrep

noderep

Link

frame

test

modify

nextl

sets

Destination

linkrep

linkrep

linkrep

linkrep

diamond

Meaning

Head of a properly ordered list
of the 'linkrep's of mode 'frame’'.

Head of a list of the 'linkrep's of
mode 'test'.

Head of a list of the 'linkrep's of
mode 'modify’.

Used to chain together the ele-
ments of the 'frame’', 'test’,
and 'modify’' lists.

If the node is a 'dummy’, points
to the 'diamond’' in the 'frame'
list which will bind the 'rep'
link during execution. If the
node is 'fixed', it points to
'diamond matched'.

32

The 'frame', 'test'. and 'modify' links of the 'rule' node are set to point to
the three new lists of ‘linkrep's which the compiler creates using the 'nextl’
link of the 'linkrep's. In addition, the compiler sets the 'sets' link of each
‘noderep' to point to the 'diamond' of the 'linkrep' which is supposed to bind
it, if any. (All the other 'frame' links which locate the node should just
verify the prior setting.)

The compilation algorithm.is fairly simple. First, all af the 'noderep’
nodes belonging to the rule are marked as matched or unmatched according to
whether they are fixed or dummies. The 'sets' link is temporarily used for
this purpose. At the same time, the 'linkrep's are chained together in one
big list, called the active list, temporarily using the 'nextl' link.

The active list is then scanned for an entry which is eligible for
processing. An entry is eligible if the 'noderep's hanging from its 'org' and
‘name' links have ali been previously matched and, in the case of 'test' and
‘'modify' 'linkrep's, the destination 'noderep's have been matched as well.
Whenever such an entry is found, it is removed from the active list and pro-
cessed, The active list is then rescanned. When a complete pass over the
active list fails to locate an eligible entry, the scanning phase terminates.

The processing of a 'linkrep' depends on its mode. 'test' and 'modify’
‘linkrep's are processed simply by placing them at the ends of the 'test' and
'modify’' lists respectively. 'frame' 'linkrep's are likewise placed on their
respective list, but in addition, any destination 'noderep's are marked as
being 'matched', possibly making additional 'linkrep's eligible for processing.

At the termination of the scanning phase, a non-empty active list indi-
cates an error, for the rule then must contain a node that cannot be matched.
If there has been no error, the three new lists of 'linkrep's are then attached
to their respective points on the ‘rule' node and compilation of the rule is

complete.

In response to a successful compilation, the interpreter changes the
state from 'clear' to 'compiled’.

33

Below is an augmentation of the syntax of AMBIT/G to describe compiled

rules.,

o

<(ompiled_rule

<f linkli t\
rame_lin S/

frame

frame linklist

t--t’j—_‘yest

modify

- et > e e e e - e e - -

34

test linklist

modify_1 1nklis>

end

| .
élodify_linkliit>_—;:_—_‘t;> ond
<node_repre sentatio>
atche
fixed
S ariability
\ |
§ >
|
< user_node>
sets
ariability

‘P"

[

35

THL INTERPRETATION OF 'linkrep's

Each 'linkrep' appearing in a rule denotes an elementary action
which is elther a call on a user-defined function or the execution of a
primitive operation. Which action is actually taken by the interpreter when
it encounters the 'linkrep' L is determined dynamically and depends on;

a) the mode of L;

b) the number of arguments of L;

c) the types of the arguments of L; and
d) the f-name of L.

The mode of L is the destination of its 'mode' link and is either
‘flag frame', 'flag test' or 'flag modify'. The arguments of L are those nodes
of the user's data which are matched to 'noderep' nodes hanging off the
‘org' link of L (see Figure 4-1), The f-nime of L is the node 'L/name/rep/"
(see Figure 4-2).

s next and

rep rep

oral - rgziy
N

Figure 4-1: Arguments of L
36

e

name

p———

— s

rep

f-name :

Figure 4-2: The f-name of L.

The mode of L determines the class of the action to be taken: modes
'frame' and 'test' result in a class read action, while mode 'modify' signifies
a class write action. Basically, a read action is taken to obtain one or more
values and is the generalization of reading a link. A write action returns no
values and is executed solely for its side effects; it generalizes link writing,

For a 'linkrep' L of class read (write), a call is made by the interpreter
on the primitive function 'read_function' ('write_function') with the f-name
and list of argument types as parameters. This primitive retums a node of
type either 'rule’ or 'builtin'., If the node is of type 'rule', the interpreter then
makes a class read(class write) call on a user function with execution beginning

with that rule, Otherwise, the interpreter performs the action corresponding to
that 'builtin' and class read (write). In most cases, this action is simply to

pass the arguments (and sometimes other information) to the corresponding

primitive routine,

37

I'or a class write action, there is nothing more to do. However, a
class read operation returns one or more results. These results are then
us~d by the interprcter either to set or to test the value of the 'rep’ link of
the 'nodecrep's hanging off of the 'dest' link of L. In mode 'test', equality
must hold between corresponding results and 'rep' links or else the rule
fails. In mode 'frame', a given result may be used either to set the 'rep'
link or to verify a prior setting. Which of the two occurs depends on the
setting of the 'sets' link of the particular 'nodcrep'. If it points back to the
‘diamond' through which it was located, then a setting action takes place
(see T'igure 4-3) ; otherwise, a verification occurs (see Figure 4-4). An
inequality in the verification indicates an error which the interpreter then
reports,

next

rep

2nd result :

Figure 4-3 : Conditions for the setting o1
the 'rep' link,

38

Some diamond

other than
d2 :

rep

2nd result :

Figure 4-4: Conditions for the verification
of the 'rep' link.

USER-DEFINED FUNCTIONS

There are three parts to a user-defined 'function: the definition, the
call, and the return.

Function Definitions

A user function is defined by associating a 'rule’ node with a particular
call-class (i.e. read or write), f-name, and argument-type list. This Is per-
formed by a class write call on the primitive 'read_function' to define a cldss
read call, or on 'write_function' to define a class write call,

AMBIT/ G does n.nt have any sort of block structure, and there is no
well-defined collection of rules which can be called the "body" of the function.

39

| S

Rather, a given rule can be shared by any number of functions; this permits

multiple-entry functions as a special case.

Function Calls

Once the interpreter determines that a user function is to be called,

it performs the following set of actions:

a)

b)
c)

d)

e)

It sets up 'pipe's on the 'rule' node of the
caller for the transmission of values between

the caller and the function;

It sets 'ptr next_rule/value' to the starting rule
of the function to be called;

It saves its current status on the ‘rule’' node of
the caller;

It sets 'ptr ret/value' to point to the 'rule’' node
of the caller, thus enabling the function to lo-
cate the call; and

It begins interpreting 'rule go'.

Thus, all of the information relevant to the call is saved with the caller. The
actual links used are shown below and summarized in the table which follows.

save

saveret

40

Links used in calling user functions

Node
txge

rule

Link

tails

spur

heads

state
savel

saveret

Destination

Meaning

pipe

user node

pipe

flag

linkrep

rule

List of 'pipe's which contain the
actual tail arguments to the user
function called from within this rule.

The actual link name that caused
the user function to be invoked.

List of 'pipe's which contain the
actual head arguments or which
will receive the results of the user
function called from within this
rule, depending on the class of
the call.

The mode of the link causing the
call on the user function.

The actual link representation that
caused the call,

Used to save the old value of
‘ptr ret/value’'.

4]

The arguments passed to the function depend on the class of the call,
whether read or write, In either case, the interpreter builds two lists of 'pipe's
equal 1n length to the ‘org’ and ‘dest’' lists of ‘diamond's on the calling 'linkrep’.
The actual origin arquments are then copied into the 'value’ links of the ‘tails’
‘pipe‘s, i'or a class write call, the actual destination arguments are similarly
copled into the 'value' links of the 'heads’ 'pipe's, but for a class read call,
these links are instead set to undefined (the node 'undef undef'). In either
case, the f-name which caused the function to be invoked is stored as the des-
tination of the 'spur’ link of the ‘rule' node of the caller, sometimes useful when
the same code is to be used to implement several slightly different but similar
functions.

The interpreter does not go directly to the desired function; rather, al)
function calls lead to ‘rule go' which has a default definition which causes an
immodiate branch to the function. The reason for this indirection is to enable
the user to extend or modify the action taken by the interpreter on a function
call, for the user nced only replace the defau't contents of ‘rule go' with his
own. It is to be emphasized that 'rule go' exists in the user's data hHase and
is interpreted in just the same way as any other user rule. An example of an
extension requiring modification of ‘'rule go' is the recursion package which
extends the interpreter to handle recursive procedures. The reader is referred
to the ‘factorial’ example for more details on this (at the end of Volume 1),

The status that is saved consists of the state of the interpreter (whether
‘frame’', ‘test’, or 'modify’'), the current 'linkrep’ (the one causing the call),
and the old value of 'ptr ret’'. This information is saved on the links 'state’,
‘savel’, and 'saveret’ respectively.

The ordinary AMBIT/U programmer may ignore most of the above details.
He only needs to know that for a class read function, the arguments are to be
found in the 1ist of 'pipe’s located by 'ptr ret/value/tails' and that the results
to be retumed by the function should be stored in the 'pipe’s located by
'ptr ret/value/heads'. Similorly, for a class write function, both
‘ptr ret/value/talls' and 'ptr ret/value/heads’ contain arguments.

42

Function Retums

To retum from a function, it suffices to branch to ‘rule stop', but
the programmer is instructed to branch always to ‘rule ret', which has a
default definition of always branching immediately to 'rule stop'. In this
way, a modification of ‘'rule ret' will allow function returms t¢ be intercepted
much in the same way as function calls can be monitored by altering 'rule go'.

When the interpreter interprets 'rule stop', it performs almost an exact
inverse of the five steps involved in a function call by doing the following:

a)- It tums its attention to the rule located by
‘ptr ret/value' and halts if that value also
happens to be 'rule stop';

b) It restores the previous setting of ‘'ptr ret/value'
from the ‘saveret' link;

c) It restores its previous status from the ‘state’
and ‘savel' links;

d) It processes any results produced by the
function and frees the 'pipe's for later use; and

¢) It continues with the interpretation of the rule.
Recursion Faults

During the execution of a function a rule may be encountered whose
state is ‘frame’', 'test’', or ‘modify’', indicating that the rule is currently
suspended because it contains a8 function call which is now being processed.
This can occur only as a result of an attempted recursive function call. In
this case, the interpreter does not try to exe-ute the rule but rather points
‘ptr next_rulo/value' at it and then branches to ‘rule help'. AMBIT/G does
not support recursion, 8o ‘rule help' normally branches immediately to 'rule error’,
However, the user may supply his own version of ‘rule help' to save
the important information of the rule about to be executed, reset its state to
‘compiled', and then branch to it. This is the final handle needed by the re-
cursion package.

43

ERROR MLESSAGES Ol THE AMBIT/G INTERPRETER

The following is a list of the various error messages which may be

typed out as a result of the interpreter's detecting an error condit'on. The

use of three periods is to indicate a symbolic node name will be typed

according to the state of the data.

o

System imple entation error in the interpreter probably due to
improper data; a frame does not match because " ... " 1is not
the same as " ... " .

System implementation error in the interpreter probably due to
improper data: a frame does not match because a link with origin
'"+... " and name " ..." points to destination " ... " instead
of " . e ." R

System implementation error in the interpreter probably due to
is not of

improper data; a frame does not match because” ...

typc " LA N] .

System implementation error in the interpreter due to an over-
sight by the implementor: a rule took an unexpected fail exit.

The interpreter i{s attempting to interprat a non-rule.
The interpreter is reporting a user-detected error.

The interpreter is attempting to interpret the rule” ..." which
is In an unknown state of " ..." .

44

10.

11,

12.

13.

14,

15.

16.

17.

18.

The interpreter is attempting to resume the interpretation of

rule " ,..." which is in an unknown state of " ...

The interpreter has detected an attempt to execute an undefined

reading function.
The interpreter hac detected a wrong number of tails or heads
a read-call on the builtin "link".

The interpreter has detected a wrong number of tails or heads
a read-call on the builtin "type".

The interpreter has detected a wrong number of tails or heads
a read-call on the builtin "read_functiorn.” .

The interpreter has detected a wrong number of tails or heads
a read-call on the builtin "write_function” .

The interpreter has detected a wrong number of tails or heads
a read-ca!l on the builtin "name" .

The interpreter has detected a wrong number of tails or heads
a read-call on the builtin *1link'" .

The interpreter has detected a wrong number of tails or heads
a read-call on the builtin "char" .

The interpreter has detected a wrong numbar of tails or heads
a read-cali on the builtin "locate” .

The interpreter has detected a wrong number of tails or heads
a read-call on the builtin "load” .

45

on

on

on

on

on

on

on

on

on

19,

20,

21.

208

23.

24,

25,

26.

27.

28.

29.

30.

The interpreter has deteécted a wrong number of tails or heads on
a read-call on the builtin "add" .

The interpreter has detected a wrong number of tails or heads on
a read-call on the builtin "subtract" .

The interpreter has detected a wrong number of tails or heads on
a read-call on the builtin "multiply" .

The interpreter has detected a wrong number of tails or heads on
a read-call on the builtin "divide" ,

The interpreter has detected a wrong number of tails or heads on
a read-call on the builtin "sign" .

The interpreter has detected that the frame is inconsistent with
the data graph.

The interpreter has detected an attempt to execute an undefined
writing function.

The interpreter has detected a wrong number of tails or heads on
a write-call on the builtin "link" .

The interpreter has detected a wrong number of tails or heads on
a write-call on the builtin "read_function” .

The interpreter has detected a wrong number of tails or heads on
a write-call on the builtin “write_function" .

The interpreter has detected a wrong number of tails or heads on
a write-call on the builtin "link' " .,

The interpreter has detected a wrong number of tails or heads on
a write-call on the builtin "char" .

4o

o

32.

33.

34.

35,

36.

37.

The interpreter has detected the "success" exit from a rule leads
to" ... " , which is not a rule.

The interpreter has detected the "fail" exit from a rule leads to

* .. ", which is not a rule.

The interpreter has detected a wrong number of results returned

by a user function.

The compilation phase of the interpreter has detected the mode of
alinkis " ... " , which is neither "flag frame", "flag test", nor

"flag modify".

The compilation phase of the interpreter has detected that a rule
contains an unreachable node.

The compilation phase of the interpreter has detected that the
destination of a "variability” link is " ... " , which is neither
"flag fixed" nor "flag dummy" .

System implementation error in the interpreter or 1oader probably

due to improper data; & frame does not match because a link with
origin " ... " and name " ... " points to destination" ... ", which
is not of typ2 " ... ".

47

CHAPTLR &

THE LOAD R

The AMBI[/G loader is called as a built-in read function as in

the following samplc rule:

start

Although all other built-in functions are defined in English, the loader
was written as an AMBIT/G program, and thus its listing serves as a
precise definition of its characteristics. However, we shali describe

in this chapter its characteristics from & user or programmer viewpoint.
Volume IV of this report contains a description of the loader as an
AMBIT/G program. A programmer may wish to study the loader as an
example of a large AMBIT/G program, but studying the AMBIT/G interpreter
would also serve this purpose, and is probably more useful.

There is no important reason for the loader's being built-in other

than convenience and efficiency ard the bootstrap problen; of how to load
anything (the loader itself). As a function, however, the loader uses no more
facilities than any AMBIT/G user function. A similar statement cannot be
made, of course, for other built-in functions such as the primitives to read
and write links. As the system exists, however, the loader is known to the
‘interpreter as a primitive and is also known to the system in the way in which
initialization leads to the start of execution. Namely, the initializer calls

48

upon the interpreter with an argument of ‘rule start' shown as a sample rule
above. That rule is interpreted (and compiled); this amounts to an automatic
call on the loader, Note how ‘rule start' includes a modification link which
causes the modification of its own 'success' exit after loading to the first
rule of the loaded program (or data).

OVERVIEW OF THE LOADER

The loader is called as a function with no arguments and one result,
That result is a rule node which is meant to be the starting rule of the user's
program, If the loader is called other than by an interpretation of 'rule start’
the result may be used or not according to the programmer's fancy.

The loader reads source input one character at a time from the source
file (e.g., 'foo.ambitg') by making read calls on the built-in function 'char'.
It analyzes its input one statement at a time., Normally, a statement corre-
sponds to one input line; however, many statements may be included on one
line by using semicolons, and there is a method for continuing any statement
across any number of input lines,

As dictated by the statements it reads, the loader deals with one en-
coded page at a time, We consider the true input to the loader to be pages
of diagrams, Each page is hand-translated from these diagrams into several
statements which represent the diagrams, but do not include coordinate
(position) information., Just those aspects of connectivity which are essen-
tial to the AMBIT/G meaning of the page are encoded,

As the loader processes a page, it does not create any data, Recall
that all AMBIT/G nodes were created at initialization, and their existence
is permanent for the duration of AMBIT/G execution. All the loader does to
AMBIT/G data, therefore, is connect various nodes by links which it sets.
Usually, any link set by the loader was undefined (pointing at 'undef undef'),
but no check is made for this, The loader is also capable of defining links,

which it does by making write calls on the built-ins 'read_function' and
‘write_function’,

49

The loader makes extensive use of the built-in 'locate’', often to find
an unnamed node of a given type. In such a case, if that node is not linked to

be accessible from an accessible node it is lost in the data base forever,

Although the loader is used to load data, data can include an AMBIT/G
rule as a qlorified node, The loading of programs ‘makes extensive use of
this feature. The loading of a rule causes the representation of that rule in
AMBIT/G data according to the specifications given in the chapter on represen-
tation of programs. In making up the representation of a rule, the loader
links together a 'rule' node with unnamed 'linkrep's, 'diamond's, and 'noderep's
along with the various named nodes used in rule representations., Each named
node explicitly mentioned in a rule is located by the loader and ends up as the
destination of a 'rep' link of a 'noderep' in that rule's representation.

Since the loader can be called by a user program as well as by the
initial 'rule start' it does not output anything to the terminal unless an error
condition is detected. An error causes an indicative message tc ba typed

and execution to be terminated.

ERROR MESSAGES OF THE AMBIT/G LOADER

The following is a list of the various error messages which may be
typed out as a result of the loader's detecting an error condition, The use
of three periods is to indicate a character string will be typed according to
the state of the data or the loader input, The following line is typed along
with every loader error message except the last:

AMBIT/G Error: detected by the loader at statement n on page p
where n i< an integer, and p ts a page-title (string of characters).

1, System implementation error in the loader probably due to improper
data; a frame does not match because " ,,. " is not the same as

2, System implementation error in the loader probably due to improper
data; a frame does not match because a link with origin " ... " and
name " ,,, " points to destination " ,,. " instead of " ,.. " .

50

10.

11.

12,

13.

System implementation error in the loader probably due to improper
data; a frame does not match because " ... " is not of type " ..." .

System implementation error in the loader due to an oversight by the
implementor; a rule took an unexpected fail exit.

The first statement read by the loader does not begin witha " - " ,

" ... " is an unknown statement.

A type-name is missing on a node on a loader page.

A page-name is missing for a "-rule-" or "—ruleref-" on a loader page.
There is an unknown "-" line in a rule contents on a loader page.
There is an incomplete statement on a loader page.

" ... " is an extra special character on a loader page.

" ... " is an undeclared page-name on a loader page.

System implementation error in the interpreter or loader probably due
to 1mpr0p'er data; a frame does not match because a link with origin

" ... " and name " ... " points to destination" ... ", which is not
of type " ... ".

51

AMBIT/G L.OADER SYNTAX

In designing the syntax for the loader, we established some require-
ments based on the readability of a loader page. A loader page is intended
to be a sequence of text lines representing one physical page or sheet of
AMBIT/G diagrams. Such a page may be arbitrarily large and contain dia-
grams representing any mixture of rules, data, and link definitions,

We shall provide a grammar for the syntax in a BNF-like specification
language, However, we will first give informally the lexical conventions
which apply to loader input to produce the syntax of a statement,

The readability requirement affects the interpretation of spaces, tabs,
and new-lines (carriage retums) . Since we can't determine by reading, spaces
and tabs are not distinguished; furthermore, to avcid a requirement for count-
ing, any amount of space on a typed line is treated as a single space. Since
a reader cannot see trailing space it is ignored. Similarly, since the exact
position of a left margin can be uncertain, leading space is ignored, Since
line spacing is difficult to see, any blank line (even if it contains a space)
is ignored., A loader page should otherwise include only visible printing char-
acters of the ASCII character set,

Another requirement of the syntax is its ability to represent AMBIT/G
node names which may consist of any sequence of printing characters, Thus
when a special meaning is given to a character, such as semicolon, there
must also be a method of inputting a semicolon as a normal text character.
This has been accomplished by giving the dollar sign a special meaning as
a protection character, Namely, when a statement includes a dollar sign
which is itself unprotected, that dollar sign protects the very next character
fiom having special meaning. The following list presents all printable char-
acters which have special meaning in the loader syntax:

Any of these special characters must be protected in order to be understood
as a normal text character. Any other character may be protected by a dollar

52

sign, but protection has no effect; this means a user can't go wrong if he
protects a character when he is not sure whether it has a special meaning.

When a dollar sign ends a text line, it can be considered as a pro-
tection of the new-line (or carriage return) character. Normally the end of
a line denotes the end of a statement, If a line ends with an unprotected
dollar sign, however, that special meaning is nullified, and instead the
statement is interpreted as continuing on the next line, Any number of
continuations may be given. Note that since leading and trailing spaces are
ignored, it may be necessary to protect a space at the beginning of a line
which is part of a continued statement.

We have described how an individual statement may spread over
several lines, The complementary ability to include several statements on
one line is provided by using an unprotected semicolon as a statement term-

inator,

Input fo the loader may include comment statements anywhere, A
comment statement begins with an asterisk and ends either at the end of a
line (which is not continued) or at an unprotected semicolon., Within a
comment it is not necessary to protect any other special characters.

The loader performs its inputting by calling a function named
‘get_statement'. That function takes into account all the lexical conventions just
described, It reads the input stream character by character and produces an
output stream of one loader statement each time it is called, Its output does
not include null statements nor comment statements, Protective dollar signs
are removed, and unprotected special characters are converted into objects
which are not ASCII characters, but serve as an extension to the character
set, We will, however, denote these special objects in the loader syntax
by the corresponding ASCII character, Each space produced by ‘get_statement'
is also one of these special objects; it will be denoted by 'SP'.

Spacing and the use of separate lines are used inthe loader syntax

grammar for readability and do not affect the meaning. Ends of statements
are denoted by a semicolon, but recall a semicolon is required to end a

93

statement only when more toxt follows on the same line, Meta=variables
(non-terminals) are underlined strings consisting of alphabetic characters
and hyphens.

A vertical bar in the grammar represents disjunction. A matching pair
of vertical brackets indicates they enclose an optional construct; namely, the
syntax allows for either zero or one occurrence. A matching paic of vertical
curly braces indicates they encluse a construct which may be repeated any
number of tines, including zero,

The grammar is designed not to be minimal nor reflect its implemen-
tation; it is supposed to be easily understood and to correspond to what it
represents, The grammar provides the definition of a ‘loader-input’' which
is the string of characters which the loader processes as a result of one
invocation unless an error condition is detected. One ‘'loader-input' consists
of any number of ‘loader-page’s finally followed by a ‘start-statement'. Each
‘loader-page’ begins with a header which should contain a 'page-title’ since
that title is typed when an error is detected by the loader on th>t page, Then
any number of 'data-node’'s are specified; each one may either refer to a
‘node’ in the data of a given type (possibly unnamed) or a ‘rule’ or a refer-
ence of a rule (‘ruleref') ., Next (and last) on a page are representations
of links (‘data-link's) to be initialized in the data. This includes ‘'success’
and ‘fail' links connecting rules on the page.,

A rule is an elaborate generalization of a node with a substructure
resembling the super-structure of a 'loader-page’'. Namely, each ‘rule’ begins
with a header and then contains specifications of 'rule-node‘'s followed by
‘rule-link's . Unlike a ‘page’', the end of a rule is clearly indicated by an
‘~=endrule-' statement,

To permit the mentioning of 'data-node‘'s in 'data-link's each node
specification includes a '‘page-name’ which is an identifier whose scope is
the current page, (We now reaiize this kind of identifier would have been
better named 'instance-name’, but '‘page-name’ is used throughout programs
and documentation so it has been kept; we apologize to the reader,) ‘'rule’
and 'ruleref' specifications also include a ‘page-name' for the same reason,
The user should think of the page-name as corresponding to a box in the

54

AMBIT/G diagram: either a box representing a node, a larger one representing
a rule (with contents), or a rounded rectangle representing a rule reference,
We have found it convenient to choose page-names in the spirit of encoding
AMBIT/L diagrams: the page may be thought of as having a grid of rows and
columns, Rows are named 'a', 'b‘', ‘c', etc., and columns are named with

the integers beginning at ‘l', A page-name is then chosen according to the
coordinate position of the hox it represents. For example, 'h3' is the third
column of the second row. The decision of whether to adopt this suggestion

is at the user's discrotion, He may prefer to employ words of mnemonic value,

Within a rule, 'rule-page-name's serve the same purpose as
‘paga-name‘s, but thelr scope is only the current rulo, Thus if o page contoins
more than onu rule, e¢och rule moy tnclude the very same rule-pege-nasnics,
ond furthermore, they may be the sume au page-nomes employed on the
loader-pugye at large.

The syntax allows for specification of ‘data-link's and ‘rule-link's
in two different forms: using a textual ‘link-label’ or by referencing a node
by its page-name. The latter form corresponds to the more primitive view
of a link with a spur to a node, The loader processes a ‘'link-label' xyz by
treating it as a spur to the node ‘'link xyz'.

These explanatory notes huve been intended to give the reader a
“push” into the grammar; we do not consider it necessary to discuss all of
its details, Following the grammar is a small sample of the encodement of
a complete th:«2-page AMBIT/G program,

99

Grommar of L.oadar Syntux

1.

3.
4,
Se
8.
7.
8.

10.

1.
12,
13,
14,
15,
16.
17.

18,

loador-input —) {loiudor-page} start-statement
Joader-page -=) paqo-hoader

{data-node}

[-itnks- ; { data-link }]
page-hcader —> -page-[[SP) page-title] ;
data-nodo —) node | rule | ruleref
node —> typed-node | named-node
typed-node = page-name sep type ;
named-nodo —) page-name sep type sop subname ;
rule — rule-header

{rule-node)

[=== {rulo-link}]

-endrule- ;
fule-header —> -rule- (SP] page-namo [SP Jabel] ;
rule-node —) unnamed-rule-node | tested-typeci-rule-node |

typed-rule-node | named-rule-node
unnamed-rule-node —> rule-page-name ;
tested-typed-rule-node — typed-rulo-node ? ;
typed-rule-node - rule-page-name sop type :
named-rule-node =) nulo-page-name sop type sep subname ;
rule-link —— nule-link-org sep rule-link-name sep rule-link-dest ;
rule-link-org — rule-link-org-dest
rule-link-name —) frame-rule-link | test-rule-link |

modify-rule-link

rule-link-dest =) rulz-link-org-dest

56

19,
20,
21,
22,
23,
24,
25,

26,
27,
28,

29,
30,
3l.

32,
3.
34,
3s,
36,
37,
38,
39,
40,
41.

42,
43.
44,

frame-rule-link — basic-rule-link
test-rule~lin —> rasjc-rule-link ?
modify-rule=-link —> basjc-rule- |
basic-rule-link —> labelled-rule-link | spurmred-rule-link
abelled-rule-link —> link-label
8 - =]ink) : qule-paye-pame
rule-link-org- —-> rule-page-name |
([SP) [rule-page-name {list-sep rule-page-name} (SP]])
nuleref —> -nuleref- [SP) page-pame [SP label] :
data-Jink —> doflinks | Unk
deflinks —»
~deflinks-{ §P) type [SP] ([8P] link-name {)ist-sep link-name} [§P)) :
Unk —> link-org sep link~-name sep link-dest :
link-org —) page-name
link=-name —> labelled-link | spurred-link
abelled-link —> link=-label
spurred-link — :page-name
Atart-statement —> -start-[[SP] Jabel] :
Lpage-pame —> lmited-identifier
ale-page-name — limited-identifier
lahal —> subpame
Uink-labe} —> subname
type —— identifier
subname y identifier
sep. — sPl.,l/
list-sep — 8P|, I[sP]
page-title — (any string without statement terminator)
limited-identifier —_) (any 1de__nt1_f§g_r which does not begin

with a minus sign)

45, identifier —3 (any string of printing characters)
(END)

A SAMPLE ENCODEMENT

Below is an actual listing of the file 'reversel.ambitg’ representing
the small yet complete three-page AMBIT/A program which follows,

reversel.ambitg 12/30/70 2035.3 est \led

=pagoe= rl-l

]l inks~-

-deflinks=- p (d)
~deflinks- end (r)
-deflinks- ¢ (r,d)

-page= rl-2
al X

o

(Y%,]
acocQcatSsT T s Aa

[~

v

(Cont' on next page)

58

-page~- rl-3
=rule~- rl reverse-l
al p vy

al p x

bl

b2 ¢c?

L3

al d bl

al dl b2

a3 d b2

aj d! b3

b2 r! bl

b2 r b3
-endrule-

ruleref=- r2 stop
=) Inks~-

rl success rl

rl fail r2

-gstart- reverse-l

59

reversel
P
d
end

60

rl-1

0"‘-—'Xﬂ

e

char

61

rl-2

; ,L ;]
T

S

62

A SAMPLE ERROR

The following page is terminal output of an AMBIT/G run on
Multics which causes a loader-detected error condition (number 12).
Following the listing of the run is a listing of the program which
caused the error. The arrows added to the output indicate lines typed
in by the user.

63

TT«0 89€° ZanT 4

004 -3403S-

-3 NAPpUI-

(Te) juopidunyg™peas (Id ‘te)
A 119 1q

X 119> e

004 T4 -3|NJ-

noA 03 o3y -a%ed-

uns 1S3 ¢zt o0L/LZ/TT 331)1que-00y
23jque-003 ad

SET+0 ZLTI ST T1IneT 4

‘Wl) peol ()s NUIL 3yl BUISSID0LD SBM 1334d1d3uUy Y]
*w34RIS NI, NI Y] BUPIIMIIIUY L IYM PIIINDD0 40443 S|IY]

*3a%ed

43pe0o| e uo aweu-32ed paseddpun ue sy 19,
WwNOA 03 0113y ,, 33ed uo § JUIWIILIS Je JIpeo| 3yl AQ paIiIdINIP $40443 9/118NWY
9/118vv
003 23jque

ZT+0 8h7° TINaT 4
S4asn £ Z0°I"/0°8 peol ‘I €T SI1IINK

nwy

64

CHAPTER 6
INITIALIZATION AND THE BUILT-IN SYSTEM

To make an AMBIT/G run using the Multics AMBIT/G System a user
must prepare two source files. One file is for normal input to the system;
it will be read by the AMBIT/G loader and by the user's program callir.g
upon the built-in function which reads from the input file, The other file
is read only by the AMBIT/G initializer early in the run and it plays no
further role after initialization is complete; this file is called the hint file
since its role in the system is considered to be outside of the definition of
the AMBIT/G language. We call the contents of the hint file "hint informa-
tion” or just "hints",

This chapter describes the syntax and semantics of the hint file,
and a user's view of the initialization process is given, It also contains
a complete description of the initial state of the AMBIT/G System as seen by
a user's program, This includes all built-in nodes, defined links, initial
links, and built-in rules. All built-in functions other than the loader are
described and their built-in definitions are given,

HINTS

A hint file has three parts. It begins *vith any number (including
zero) of settings of hint variables which control the AMBIT/G System ini-
tialization, These variables have default settings for every run, but the
hint file can override the default settings., However, these overriding
settings must be consistent with initialization of the built-in data and
functions. The following table outlines this information.

Hint Variable ef Value Meaning, Restrictions
smallest_integer -999 ‘integer's are built-in nodes, and
largest_integer 999 these variables establish the range of

created ‘'integer' nodes.
'smallest_integer' must not be greater
than 'largest_integer'. Note that

65

function_arguments 10
defns_size 5000
names_size 1000
name_length 25

'largest_integer' should be greater
than the number of statements included
on a loader page, since the loader
tallies a count of statements using
'integer's.

This variable indicates the maximum
number of tail arguments which can

be included in a function call, It
also is an upper limit on the number of
of arguments for which a function may
be defined. It must be at least 2.

This variable is used to limit the size
of the segment used to store function
definitions, A larger number does not
raise costs, but it must be less than
65000, Its moderate setting may be
useful for catching errors in a program
which gets into a loop defining too
many functions. It must be at least
347 plus twice the value of
'‘function_arguments’.

This variable indicates the maximum
number of names which may be accomo-
dated in the symbol table (names_seg-
ment). It must be at least 200.

This variable indicates the maximum
number of characters which may be used
in a name., It must be at least 14,

The second portion of the hint file specifies the names and counts of
all types of terminal nodes (having no links), which are to be created in
additon to the built-in nodes. The given count must be greater than zero. The
following list indicates the built-in terminal type names and the number of

nodes which are always created.

Terminal type

flag
link
builtin
undef
boolean
char
special

66

Count

13

36 (built-in) + 100 {for user)
15

1

2

128

integer
type

largest_integer - smallest_integer + 1
(19 plus additional ones defined by the

user in the hints)

The hint file may inclucde one mention of any of the built-in terminal
types other than 'integer' and ‘'type'. The given associated count will be
added to the built-in count. For example, if the user wishes to extend the
class of nodes of type 'char' by eight more nodes, he would include in the
second portion of the hint file the terminal type name "char" and the integer
'8'. Thus 136 nodes of type 'char' would be created.

The third portion of the hint file specifies the names, counts, and
maximum number of links of all types of non-terminal nodes which are to
be created other than the built-in nodes. The given count must be greater
than zero.

Since various non-terminal nodes are used to represent a user's pro-
gram and the need for certain other nodes varies according to the ways in
which a program uses functions, the overriding mechanism is more complex
than for terminals. If the hint file does not mention a built-in non-terminal
type then the number of nodes of that type created is the sum of the built-in
count plus the default additional count, However, if a built-in non-terminal
is included in the third portion of the hint file the given count is added to
the built-in count, thus overriding the default additional count, Furthermore,
the given number of links is added to the built-in number of links. The given
number of links for a built-in non-terminal may therefore be any positive
integer including zero. The given number of links for user-defined non-

terminal types must be greater than zero. The following list presents the relevant

information for built-in non-terminals,

Non-Terminal Type Count Default Additional Number of Links
Tule 6 50 12
linkrep 1 500 6
pipe 4 100 2
cell 4 + function arguments functicn_arguments 2
charconn 103 1900 2

67

ptr 2 0 1
noderep 13 500 3
circle 42 0 1
diamond 15 1000 2
pname 2 100 3

A type name must not appear more than once in the hint file, Also,
a built-in terminal cannot be promoted to a non-terminal,

Hint Syntax

The syntax of the hint file corresponds to the requirements for
simple use of PL/T input functions. Below is given a grammar for the syntax
in a BNF-like specification language, Spacing is used for readability and
does not affect the meaning, Meta-variables (non-terminals) are underlined
strings consisting of alphabetic characters and hyphens. A vertical bar in
the grammar represents disjunction, A matching pair of vertical brackets
indicates they enclose an optional construct; namely, the syntax allows for
either zero or one occurrence. A matching pair of curly braces indicates
they enclose a construct which may be repeated any number of times, in-
cluding zero,

68

Grammar:

1. hints

2., set-hint-variable

3. terminal-spec

4, non-terminal-spec

5. hint-variable

6. integer

7. digit

8. type

10, NL

N N

L

3

{ set-hint-variable NL }
; NL
{ terminal-spec NL }
“* NL
{ non-terminal-spec NL }
“* NL

hint-variable = integer

"type" SP integer
"type" SP integer SP integer

smallest_integer | largest_integer |
function_arguments | defns_size |
names_size | name_length

[-] digit { digit }
o|l1|2[3|4]|5]6|7]8]9

(any (non-null) string of printing characters ,
except double quotes must be in pairs)

(space composed of any (non-pull) mixture
of spaces and tabs)

(new-line (carriage retum))

69

An Example

A rhort example of a hint file follows as an actual listing of the
file 'reversel . hints'. This file is the mate of the file listed as an ex-
ample in the chapter on the loader. Furthermore, the 'reversel’' program
is discussed in detail as the first example in Volume II of this report.

reversel.hints 12/30/70 2035.3 est \ed
l;lll
llpll 2 1
“end" 1 1
llcll u 2

70

BUILT-IN NODES

As it reads the three portions of the hint file, the initializer creates
all nodes which can be used in the AMBIT,/G run. It then attaches names to
the named built-in nodes. These are named nodes of the interpreter and
loader and other nodes which are part of the AMBIT/G System.

An AMBIT/G programmer should avoid using any built-in nodes in
his programs other than for their intended purpose. The programmer is ad-
vised not to use type names which are built-in for anything but their intended
use. For example, a programmer should not employ nodes of type 'circle’ in
a program to represent an arbitrary variable.

The following is a comprehensive list by type of all named built-in
nodes. (Their order corresponds to orderng in the implementation of the
'nodes_segment',)

flag

clear compiled frame test modify
ok no def undef fixed
dummy any general

Unk

heads spur tails state success
contents frame test modify fail
savel saveret mode org name
dest next next! value sets
variability rep link' read_function write_function
locate type char load add
subtract multiply divide sign pname
node

bujltin

link link' read_function write_function locate
name type char load add
subtract multiply divide sign error

71

undef

(all intejers between smallest_integer and largest_integer; e.g. <.

undef

boolean

true false

char

NUL SOH STX ETX
BEL BS HT LF
SO SI DLE DCl
NAK SYN ETB CAN
FS GS RS Us
$ % &

* + ' -

1 2 3 4

8 9 2 5

? @ A B

F G H 1

M N o] P

T 19) \Y w

[\] -

b c d e

i j k 1

p q r 5

w X Y 2
— DEL

special

SP / ' !

*

integer

-5 -4 -3 -2
2 3 4 5

EOT

DC2
EM
SP

O QAo

Aﬂ5m|

-1

ENQ:

FF
DC3
SUB

m\Ao-.

< D R g |

—_— s 3 O

0
)

ACK
CR

DC4
ESC

-— g 0 e N MMV N o™

type

(any user-defined types plus:)

flag
integer
ptr

free

cell

free

charconn

free

ptr

ret

noderep
(none)

circle

a
f

r

char
prev_char
end_line

link builtin undef
type rule linkrep
noderep circle diamond
stop error help

tl ml bhegin
end h

end h

end

next_rule

b c d

free dest 1

ret rule fl
next_pname pname_list pname
find1 find2 char_a
save_pname special find_pname

73

boolean

pipe
pname

ret

end

dl

1

m]
node
char_b
paren

char
cell

start

d2
mode
tl

org
first ch

page

special
charconn

end

n
proceed
name
last_ch
line

diamond

end

pname

end

matched

BUILT-IN LINKS

unmatched h

The following is a complete list by node type of all defined links

which are built-in, (Their order corresponds to ordering in the implementation

of the 'nodes_segment' and "defns_segment',) All built-in link names are

nodes of type 'link', and therefore the given names are their subnames.

rule

state
spur

linkrep

org

next

cell

next

charconn

next

ptr.

value

success

tails

name

value

value

value

fail saveret savel heads
contents frame test modify
dest next nextl mode

74

noderep

rep

circle

value

diamond

next

name

next

BUILT-IN FUNCTION DEFINITIONS

variability

node

sets

Each of the built-in functions is initially defined as if write calls
has been made on 'read_function' and ‘write_function', These built-in defi-
nitions are initialized (in the 'defns_segment') before built-in links are
defined. The following table summarizes these definitions. All built-in
link names are nodes of type 'link' and therefore the given names are their
subnames. (Their order corresponds to ordering in the implementation of
the 'defns_segment',)

Read/ Write

read
read
read
read
write
read
read
read
read
read
read

Link- Name

load
type
sign
char
char
add
subtract
multiply
divide
locate
name

Definition
'builtin load'
'builtin type'
'builtin sign'
’builtin char'
'builtin char'
'builtin add'
'builtin subtract'
'builtin multiply'
'builtin divide'
'builtin locate’
'builtin name'

Tail Types
(none)

(any)

intzger

(any)

(any)

integer, integer
integer,int jer
integer,integer
integer,imeger
type,charconn
(any) ,charconn

rC.d read function ‘'builtin read_function' cell, (any)

read write_function 'builtin write_function' ccll, (any)
read link!' 'bufltin link'' (any), (any)
write read_function ‘builtinread_function' flag, (any)
write writc_function 'builtin write_function' flag, (any)
write rcad_function ‘builtin read_function' cell, (any)
writce write_function 'builtin write_function' cell, (any)
write link' 'builtin link'* (any), (any)

Although all of the above definitions are bui!'t-in, it is only necessary
that thce fourth last one be built-in, The cxistence of that one definition can
serve as a bootstrap to definc all of the others,

BUILT-IN RULES

The initial AMBIT/G data graph includes six built-in rules, Two of
thesc cxist only as 'rule' nodcs since the interpreter never attempts to look
at their contents: ‘rule stop' and 'rule error', The other four built-in rules
are initialized in the 'clear' state to be as follows. Note that the first two
rules have nc contents,

* @ commmm. e eem so mao

. om ———— o er e e cmemteme

—_—
help 0
-—-ﬂ error ’

ret
stop l

g . . Cems . - o — v ame - o ———

go
ptr
next_rule
r = -t
! .
‘— succcss\r >
go ———- ’?’“ P
b e . e e @E—— et e e e——— 0o 76..._. e e cecem . mme

start

start

load >

B

BUILT-IN DATA

The initial AMBIT/G data graph includes various nodes which are
initially linked together in addition to the representations of the four
above rules. All other built-in nodes have their buiit-in links undefined
(pointing to 'undef undef'). The following diagram shows the initial data.

77

ptr cell next cell next cell e
ret free end
value o
stop

ext N o =4 —\
O free)P_.x__va end }%&_‘,() next

—

vmrrmmm 7
onn ar nn harconn harconn
charconn next | charconn _n_ext-_> charco next| charc next | charc lnext
free end

lV j
100 nodes
next next
end
fixed
alue

sets |value

ariability

T

— L
@

78

BUILT-IN FUNCTIONS

A description of each of the built-in functions (except the loader)
of the AMBIT/G System is included here. Each description includes all
possible error conditions and messages, Although a built-in function will
normally be invoked by a call which depends upon its built-in definiion,

a program may give a built-in function as the definition of what is invok.d
for any arbitrary link name, etc.., When the AMBIT/G interpreter processes
a link, it first finds out the definition of that link name as applied to the
tails of the link, If that definition is a built-in then the interpreter checks
for the number of tails and heads of the link; it reports an error if there is a
discrepancy. The interpreter then gathers the arguments of the built-in
function and performs a direct call on it as part of its interpretation,

To make it possible for the interpreter to be itself a legitimate AMBIT/G
program, two nodes of type 'builtin’' are involved with the reading and writing
of links, The node 'builtin link' should be given as the head argument of a
write call on ‘read_function' (or ‘write_function') to define for reading (or
writing) a particular link name as a true link on a particular type of node,
The node 'builtin link'' is given as the head argument of such a call when
defining a link to invoke the primitive link reading (or writing) function. This
difference will be clarified for the reader by his observing the listing of the
AMBIT/G interpreter where it processes these built-in functions. There is
only one built-in function which is the primitive link reading function (and
one for writing), and it will be described below,

type (read)

This function is called with one tail argument and one head result,
The result of this function is the node of type 'type' which corresponds to
the type of the argument, Since every node has a type there are no error
conditions for this function,

link' (read)

This function is called with two tail arguments (arg1 and arg2)

79

[By L. 3]

and one head result. The type of arg1 is first determined; if arg 2 is not
defined as a true link on nodes of that type, error condition ‘rl1' is sig-
nalled. Otherwise, the link with origin arg4 and name arg2 is read, and
its destination is retumed as this function's result., If the sought link is
defined but has never been written, the result is the undefined node
‘undef undef'.

The error messages for this function follow,

rl1: An attempt is being made to read an undefined link
with origin " ... " and name " ... " .

Iink* (write)

This function is called with two tail arguments (arg! and arg2)
and one head argument (arg3) . The type of argl is firstdetermined;
if arg 2 1s not defined as a true link on nodes of that type, error condition
'wlq’ is signalled, Otherwise, the link with origin arg1 and name arg 2
is written to destination arg 3. The previous destination of that link is

losto
The error messages for this function follow:

wli: An attempt is being made to write an undefined link

with origin " ... " and name " ,.. " to destination * ... " .

locate (read)

This function is called with two tail arguments (arg1 and _arg2) and

one head result., In general, arg! is a ‘type’' node and arg 2 is a list of
printing characters; this function is used to locate by type (arg1) and

subname { arg 2) a particular node. If a null fubname is given a unique node

of the given type is located.

When initialization of an ~MBIT/G run is complete all nodes are
created according to the hints, During the execution, a call on 'locate’

80

either uses up a fresh node of the given type or it finds a named node
which has already been located for the first time., Normally, the lcader
locates all nodes during the loading of data and rules., arg2 is supposed

to be a (possibly empty) list of connector nodes of type 'charconn’'. These
are forwardly-linked by 'next' links, and 'charconn end' terminates the list,
Each othe: (if any) ‘charconn' node of the list has a 'value' link which is
supposed to point to a node of type 'char' which represents a printing char-
acter,

If argl is not of type ‘type’, error cendition 'loc 2' is signalled. If
an element of the list of arg2 is not of type ‘char', error condition 'loc 3' is
signalled. If an element of the list of arg2 does not represent a printing
character, error condition 'loc 4' is signalled. If a connector of the list of
arg 2 is not of type 'charconn', error condition 'loc5' is signalled. If the
length of the list of arg 2 exceeds the maximum length of a name (according
to hinrt variable ‘name_length'), error condition 'loc6' is signalled.

After all above checks are passed, if arg2 is a non-empty list it
is treated ac a specification of the subname of the node being located. If
that node is already known, it is returned as the result, If it is not already
known (including the null subname case) a fresh node of the given type is
obtained to be retumed as result. If, however, all nodes of the given type
have already been located, errcor condition 'loc 7' is signalled. If a non-null
subname was given and & fresh node is to be obtained, but the system cannot
accoinmodate another name (according to hint variable ‘names_size'), error
condition 'loc 8’ is signalled.

The error messages for this function follow,

locl: The first argument of a call on the builtin "locate" is
" +es ", which is not of type "type".

loc2: The second argument of a- call on the builtin "locate" is
" oes ", Which is not of type "charconn" ,

8l

loc3: The second argument of a call on the builtin “locate"
is a list beginning with " ... " which includes a node
of type “charconn” whose “value” link points to " ... ",
which is not of type “char".

loc4: The second argument of a call on the builtin "locate"
is a list beginning with " ... " which includes " ... ",
which {s an unprintable charac:er,

locS: The second argument of a call on the builtin "locate"
is a list beginning with " ... " which includes a node
of type "charconn" whose "next" link points to " ... ",
which is not of type "charconn”.

loc6: The second argument of a call on the builtin "locate"
is a list of characters beginning with " ... " whose
length exceeds capacity.

loc7: A call on the buiitin "locate" is causing an attempt to
locate a new node of type " ... " with second argument
" ..o ", and there is none. '

loc8: A call on the builtin "locate” with arguments " ... " and

" .ee " i8 causing an attempt to create a new name, and
that would exceed capacity,

name (read)

This function is called with two tail arguments (arg1 and arg 2) and
one head result. arg1 is any node, and this function returns the subname
of the node as a list of its constituent characters. This result list is
connected by ‘charconn’' nodes removed from a "free" list of 'charconn's
headed by the 'charconn’' node arg 2. The list given as arg 2 and the result
list are forward-linked by 'next' links, and 'charconn end' terminates these
lists. Each other (if any) 'charconn' node of the list has a 'value’ link for
pointing to a 'char' node.

82

If arg 21is not a node of type 'charconn’, error condition ‘m1‘ is
signalled. If a connector node of the list given as arg 2 includes a node to
be used other than a ‘charconn’, error condition 'm 2*' is signalled. If the
given list of ‘charconn's does not include enough of such nodes for retum-
ing the subname, error condition 'm3' is signalled. If arg1 has no .subname,
the result is ‘charconn end' and the given "free" list is not affected; other-
wise, this function has the side-effect of removing those 'charconn' nodes
which it uses from that "free" list.

Note this built-in function is available to a user program, but it is
not used anywhere in the system other than one call in the interpreter to
execute the function on behalf of the user's program,

The error messages for this function follow,

mi: The second argument of a call on the builtin "name"
is " <o " , which is not of type "charconn".

m2: The second argument of a call on the builtin "name"
is a list beginning with " ... " which includes a
node of type "charconn"” whose "next" link points to
" +ee ", which is not of type "charconn".

m3: The second argument of a call on the builtin "name"
is a list of nodes of type "charconn" beginning with
" «ee " which is too short to accommodate the subname
of [1] ce e " .

read_function (write)

This function is called with two tail arguments (arg4 and arg 2) and
one head argument (arg 3) . It is used to define a reading function whose
definition is arg3. The link name which will later invoke that reading
function is arg2. arg4 is used as an indicator of the number and types of
tail(s) which will be required to invoke that reading function, If there should
be no restriction on the tails, argl should be ‘flag general' , Otherwise,

83

LB

arg4 must be a list where nodes of type 'cell’ are the connectors. 'cell's
are forwardly-linked by 'next' links, and 'cell end' terminates the list.
Each other (if any) 'cell' node of the list has a 'value' link to point at the
list element. Each given list element represents one tail argument of the
reading function being defined., If the element is 'flag any' that particular
tail argument may be any node, Otherwise, a list element must be a node
of type 'type’ to indicate the type of that particular tail argument which is
required to invoke the reading function. If arg2 is 'cell end' an attempt is
being made to define a reading function with no tail arguments.,

If a definition is made when arg4 is not 'flag general' whose domain
overlaps with that of a previous definition of the same link name, the newer
definition overrides the previous one for the overlapped domain, This is
discussed further in the section describing ‘read_function (read)'.

arg 3 must be either a node of type 'builtin’ or ‘rule’. If arg3 is
'builtin link', this is an attempt to define a link for reading; therefore, arg4
must be a list with exactly one element which is a 'type’' node.

If arg 3 is neither of type 'builtin' nor type 'rule’, error condition
'‘drfl’ is signalled. If argl is neither 'flag general' nor of type ‘cell’, error
condition 'drf2' is signalled. If an element of the list given as arg1 is
neither 'flag any' nor of type 'type', error condition 'drf 3' is signalled. If
a connector node of the list given as arg1 includes a node other than a ‘cell’,
error condition ‘drf4' is signalled.

If arg 3 is 'builtin link', then this is an attempt to define a link for
reading. If arg1 is not a list of one element, error condition 'drf5 is sig-
nalled. If another link cannot be defined for the given 1.ype because that
would exceed the maximum number of links given in the hints, error condi-
tion 'drf6' is signalled,

In defining any reading function, if the system cannot accommodate
that definition (according to hint variable 'defns_size') , an error condition
‘drf 7' is signalled. If the number of elements of the list given as argl
exceeds the maximum number of arguments of a function (according to h'nt
variable 'function_arguments'), then error condition 'drf 8' is signalled.

84

The error messages for this function follow.

3

The head pointer of a write~call on the builtin
"read_function: is * ... ", which is neither of
type “builtin" nor of type "rule".

drf2: The first argument of a write-call on the builtin
"read_function" is " ... ", which is neither the
node "flag general” nor a node of type "cell",

drf3: The first argument of a write-call on the builtin
"read_function" is a list beginning with " .., ",
which includes a node of type “cell" whose "value"
link points to " ... ", which is neither the node
"flag any" nor a node of type "type".

drf4: The first argument of a write-call on the builtin
"read_function" is a list beginning with " ... *
which includes a node of type "cell" whose "next"
link points to " ... ", which is not of type "cell".

drfs: A write=-call on the builtin "read_function" is an
attempt to define the link " ... ", and the first
argument is " .,, " , which is not a list of one
1ode of type "type".

drf6: A write-call on the builtin "read_function" is an
attempt to define the link " ... " on nodes of type
" «ee ", and another link cannot be defined for
this type,

dri7: A write-call on the builtin "read_function" is causing

an attempt to make a new definition, and that would
exceed capacity,

85

dri8: The first argument of a write~call on the builtin
“read_function" is a list beginning with " .., "
whose length exceeds the maximum number of
arguments allowed for a function definition,

write_function (write)

This function is called with two tail arguments (argi and arg 2)
and one head argument (arg3) . It is used to define a writing function
whose definition is a8rg3. The link name which will later invoke that
writing function is arg2 . argl is used as an indicator of the number
and types of tail(s) which will be required to invoke that writing function.
If there should be no restriction on the tails, arg4 should be 'flag general'.
Otherwise, arg1l must be a list where nodes of type ‘cell' are the con-
nectors, 'cell's are forwardly-~linked by 'next' links, and ‘cell end' ter-
minates the list, Each other (if any) ‘cell' node of the list has a 'value’
link to point at the list element, Each given list element represents one
tail argument of the writing function being defined. If the element is
‘flag any' that particular tall argument may be any node. Otherwise, a list
element must be a node of type 'type' to indicate the type of that particular
tall arsument which Is required to Invoke the writing function. If arg2 Is
'cell end' an attempt is being made to define a writing function with no tail
arguments.,

If a definition is made when arg4 is not 'flag general' whose domain
overlaps with that of a previous definition of the same link name, the newer
definition overrides the previous one for the overlapped domain, This is
discussed further in the section describing 'write_function (read).

arg 3 must be either a node of type 'builtin’ or ‘rule', If arg3 is
'builtin link', this is an attempt to define a link for writing; therefore, argl
must be a list with exactly ore element which is a 'type’ node.

If arg 3 is neither of type 'builtin' nor type ‘rule', error condition 'dwfl’
is signalled, If arglis neither 'flag general' nor of type 'cell', error condi-
tion 'dwf2' is signalled. If an element of the list given as argl is neither
‘flag any' nor of type ‘type’, error condition 'dwf3' is signalled, If a connect-~

or node of the list given as arg1 includes a node other than a 'cell', error

86

condition 'dwf4' is signalled,

If arg 31s 'builtin link’, then this is an attempt to define a link for
writing. If arg1 is not a list of one element, error condition 'dwf5’' is
signalled, If another link cannot be defined for the given type because
that would exceed the maximum number of links given in the hints, error
condition 'dwf6’' is signalled.

In defining any writing function, if the system cannot accommodate
that definition (according to hint variable 'defns_size'), error condition
'dwf7' is signalled, If the number of elements of the list given as arg1l
exceeds the maximum number of arguments of a function (according to
hint variable ‘function_arguments'), then error condition 'dwf8' is sig-
nalled,

The error messages for this function follow,

dwfl: The head pointer of a write-call on the builtin
'write_function” is " ... ", which is neither of
type "builtin" nor of type "rule".

dwf2: The first argument of a write-call on the builtin
"write-function” is " ... ", which is neither the
node "flag general" nor a node of type "cell".

dwif3: The first argument of a write-call on the builtin
"write_function" is a list beginning with " .., "
which includes a node of type "cell" whose "value"
link points to " ... ", which is neither the node
"flag any” nor a node of type "type".

dwif4: The first argument of a write-call on the builtin
"write_function" is a list beginning with " <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>