NORTH ATLANTIC TREATY ORGANIZATION
ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT
(ORGANISATION DU TRAITE DE L'ATLANTIQUE NORD)

MANUAL ON AEROELASTICITY
SUBJECT AND AUTHOR INDEX

Edited by

E.C. Pike

This publication is sponsored by the Structures and Materials Panel of AGARD
FOREWORD

The Subject Index and Author Index cover all the chapters in the six loose-leaf volumes of the Manual on Aeroelasticity and were up to date in April 1970. Since that date new chapters of the Manual have been published in the AGARD Report series.

Entries are given by Volume, Chapter and Page number. For example, II/9/56 denotes Volume II, Chapter 9, page 56. The letter S after a Chapter number denotes a Supplement to that Chapter. The letters TG denote the section of Tables and Graphs in Volume VI. The abbreviation INTRO denotes the Introductory Survey in Volume I.

A.J.BARRETT
Chairman, Structures and Materials Panel
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>iii</td>
</tr>
<tr>
<td>SUBJECT INDEX</td>
<td>1</td>
</tr>
<tr>
<td>AUTHOR INDEX</td>
<td>15</td>
</tr>
<tr>
<td>LIST OF CONTENTS OF MANUAL ON AEROELASTICITY</td>
<td>23</td>
</tr>
</tbody>
</table>
SUBJECT INDEX

Abel's theorem II/2/40
Ablating plates I/7/37-8
Acceleration effects IV/9/14-15
Acceleration potential II/1/13-14
Accelerometers IV/1/25-6,27: IV/5/39: IV/7/25,26
Accident investigation III/5/2
Ablating plates 1/7/37-8 Flutter
Acoustic resonance IV/5/54: IV/7/13
Aerodynamic aspects Volume II
Admittance concept IV/2/25,26: IV/5/39: wings V/2/25-7
Aerodynamic coefficients see Derivatives
Aerodynamic forces
approximations II/5/11-55
generalised
definition I/INTRO/2
formulæ II/Chapter 4: II/Chapter 7:
III/4/27: III/7/7: III/8/9,12,17-20
geometry III/2/20
measurement II/1/22-3
propeller III/9/5,7,10-13
Aeroelastic phenomena
aerodynamic aspects Volume II
classification I/INTRO/1-7,21
design implications III/2/9,54-5: III/3/18-19
history I/INTRO/45-8
practical aspects I/INTRO/44-5
prediction III/Chapter 1
static III/Chapters 2 and 3
Aerofoil section effects
on buzz V/5/48
on pure pitching V/5/21
on wing flutter II/9/1: V/2/5,15-16
Aerofoil theory
comparison with experiment II/10/6-18,48-9
non-stationary (unsteady) II/Chapter 8
symmetric aerofoils II/8/18-38
supersonic and hypersonic II/9/9-28
Aerodynamic coefficients see Derivatives
Aerodynamic forces
approximations II/5/11-55
generalised
definition I/INTRO/2
formulæ II/Chapter 4: II/Chapter 7:
III/4/27: III/7/7: III/8/9,12,17-20
geometry III/2/20
measurement II/1/22-3
propeller III/9/5,7,10-13
Aeroelastic phenomena
aerodynamic aspects Volume II
classification I/INTRO/1-7,21
design implications III/2/9,54-5: III/3/18-19
history I/INTRO/45-8
practical aspects I/INTRO/44-5
prediction III/Chapter 1
static III/Chapters 2 and 3
Aerofoil section effects
on buzz V/5/48
on pure pitching V/5/21
on wing flutter II/9/1: V/2/5,15-16
Aerofoil theory
comparison with experiment II/10/6-18,48-9
non-stationary (unsteady) II/Chapter 8
symmetric aerofoils II/8/18-38
supersonic and hypersonic II/9/9-28
Aerodynamic aspects Volume II
historical review II/1/3-9
methods of analysis II/1/9-25
Aerodynamic centre position II/9/1:
V/1/3,5,7: V/6/19,21,25,28
Aerodynamic coefficients see Derivatives
Altitude effects
flutter
control surfaces III/5/10: V/3/21
panels III/7/14
wings V/2/25-7
mass balance V/4/7,9-12
models IV/6/11-17,20-23: IV/7/14
Aluminium
panels III/7/10-16,18,22,24: III/7/5-9,33,40
cylinders III/7/26-8: III/7/54
“Amplitude response" technique IV/10/5-7
Analogue methods IV/7/1-2
Angle of attack, definition III/2/25-6
Ankylosis I/6/40,51
Apparent mass concept II/6/7,12
Approximate methods
aerodynamic forces III/5/11-55
flutter V/Chapter 6
static aeroelasticity III/2/12-38: III/3/5-11,14
Arrow-head wings II/5/14,36-8: II/10/25-8
Aspect ratio effects
on buzz V/5/49,50
on derivatives II/1/27-30,40-41
on divergence III/2/3
on flutter
control surfaces V/3/8
panels III/7/24: III/7/54/1,50,51
pure pitching V/5/21
wings V/2/10-13: V/6/26
on negative damping V/5/9-10
Asymptotic solution I/4/9
Atmosphere line IV/6/19,20
“Automation" of flutter calculations III/Chapter 4
Autopilot III/Chapter 8
Axes, reference III/2/25
Backlash
control circuit III/5/2
non-linearity I/4/19: I/6/1,2,46-9
powered controls IV/4/7
rigid drives IV/5/39
tabs I/INTRO/44
tailplane III/5/7
Baffles II/8/12-4,44-7,50,51
Balance, aerodynamic
effect on aileron flutter V/6/37-9,42
effect on buzz V/5/50-51
horn Ill/11/45-7
nose II/1/47-52
sealed or internal (Irving) II/11/52-9
tabs III/5/15
Balancing of forces III/2/55
Ballast weights V/3/12,31-32
Basile's hypothesis I/3/37: I/4/11,15,82
Beam vibration
simple beam theory I/2/5-6,8,14: I/3/31:
III/1/4-5,19: III/2/4-30,40-44: II/3/14
thermal effects I/7/12-16,19-21,30-34
Bearings IV/5/7-8
Bending moment idealised III/2/15,20
wing root V/1/3
Bending rigidity panels III/7/15,17,20: III/7/18
Bernoulli's equation II/7/6,9,13,62,63: II/8/14
Biconvex aerofoils damping in pitch II/9/14,18
pitching derivatives II/10/17
Non-linear problems 1/6/24-5
Bifurcation I/6/36,37
Binary flutter approx. formulae V/6/7-42
control surface V/4/6-15
definition I/INTRO/24
Biot number IV/6/26
Biplanes, flutter of I/INTRO/46-7
Blades flapping III/9/13-16: III/10/10,11
flutter I/INTRO/25-6: III/Chapter 9:
III/Chapter 10: V/5/25
ground testing I/4/73-87
Blastius procedure I/8/22
Bodies of revolution, slender II/7/12: 16,32-48
Body-freedom flutter V/2/3,41-4: V/6/42
Body freedoms III/6/4,9,11,22
Bomb, free-falling IV/6/21: IV/Chapter 9
Bond number I/9/23,28,70,71
“Bones” I/INTRO/35
Boom-mounted lifting surface V/1/9
Boundary conditions general aerodynamic II/1/14-15
indicial function II/6/2-4
lifting surface II/5/1-9
slender body III/7/9
structural vibration I/2/4-5: III/7/7: III/7S/9
Boundary layer attached II/9/39-46
“compliance” II/9/42-6,49
displacement thickness II/9/39-42,48
effects II/Chapter 9
panel flutter III/7S/14,29,32,44
idealised II/9/42,45: III/7S/13,14
time-dependent II/9/38-53
see also Separation
Boundary-value problems classical II/1/20
three-dimensional I/4/38: II/5/1,2,5-9
two-dimensional I/2/4-6,11
Box methods II/5/19-29: II/9/31
Bubbles, in propellants I/8/22
Buffering Euler III/7/17
panels III/7/10,12,37-41: III/7S/47-54
skin II/1/7-8
thermal I/7/19-29,35-7
Buffeting I/INTRO/20-21,40-41: III/5/11:
V/5/1,14,41,53
Buzz III/5/10-11: V/5/26-54
Calibration of equipment IV/5/33: IV/10/23
Cantilever wings, flutter III/1/4: III/4/2:
V/6/14,16
Castiglano's Theorem I/7/8
Cathetometer IV/1/15
Cauchy-Riemann equations II/8/4
Centre of gravity effect body-freedom flutter V/2/41-3
control surface flutter V/3/18: V/6/52
Centre of pressure effect III/4/24: III/5/9:
V/1/5: V/2/4: V/4/13
Characteristic equations I/4/3,6,10
Characteristic phase lag I/3/1,24-7
Characteristics, method of II/9/33
Charts, static aeroelasticity III/2/4: III/3/10-11
“Choking” frequency, autopilot III/8/23,28
Circulation function see Theodorsen function
Collocation method see Kernel function procedure
“Comfort stall” (blades) III/10/17
Component Analyser Technique IV/2/3,18-20
Component resolvers IV/5/51-2
Compressibility effects see Mach number effects
Compressor blades see Blades
Computers, use in autopilots III/8/13
dynamic stability III/6/29
general III/1/13: III/Chapter 4S
influence coefficients III/7S/10: IV/1/27
model testing IV/7/1
model flutter III/7S/7
non-linear problems I/6/24-5
panel flutter III/7S/7
propeller flutter III/9/21
Cone, circular II/7/43,58-61: II/9/37,49
Conformal mapping II/2/11,12: II/4/81-4:
I/8/3-38
Continuous media, damping I/3/14-15
Continuous methods I/2/1,12,13
Control, flutter speed V/2/33
Control circuit III/3/2-3,4,18-19: III/5/2:
IV/9/14
Control points, lift functions II/5/51-5
Control reversal see Reversal
Control surface balance I/4/43-5
coupling with airframe I/5/34-5
degrees of freedom III/4/11-12
derivatives II/Chapter 10: II/11/7,33-60:
V/1/TG/4-5,15-24,42-138
flexibility III/3/2-3,4,8,19
flutter III/4/22-3: V/Chapter 3: V/5/26-54:
V/Chapter 6
ground testing I/4/42-9
linearised sonic theory II/4/63-8
pressure distribution III/3/3
profile discontinuity III/5/11
Control systems manual I/4/46-8: I/5/1,6-8
powered I/4/48-9: I/Chapter 5: V/Chapter 4
Dirichlet problem II/9/33
Discrete methods I/2/1-2.12
Displaced frequency method I/4/17, 4/8, 82-3
Displacement functions I/INTRO/6-9
Dissipation function I/4/5-6
Divergence
blades III/10/10-12
general I/INTRO/18, 19, 21-2: III/1/1, 2:
III/Chapter 2: V/Chapter 1
panel flutter III/7/27, 28
record analysis IV/9/10
Donnell equations III/78/45, 47
Doppler equipment IV/9/3-4
Double-sheet method II/9/30
Downwash
calculation II/5/32-3: II/8/8-9, 11, 17
distribution II/5/13, 34: II/6/15
mean II/8/41
points, choice of III/3/24-6: II/4/14-19
variation II/8/13-14
Drag parachutes III/7/37
Duhem integrals II/6/4, 14: II/4/32, 33
Duncan functions I/2/5: III/4/2
Dynamic amplification factors I/3/15-21
Dynamic balance V/3/9-14, 20-28
Dynamic flexibility matrices I/3/29
Dynamical equations I/INTRO/1-5, 12-14
systems I/6/3-38
variables I/INTRO/1-5
Eddy-shedding II/5/8: III/10/21: V/5/2, 22-3
Eddy-current damping IV/5/24-5, 27
Elastic axis III/6/10, 17: IV/1/1: V/3/10-12, 20
Elementary system IV/3/1, 4-5, 18-19
Elevator flutter III/5/5: V/3/24-5
Empirical methods II/3/20
Energy
active I/3/29
dissipation III/8/7: IV/3/14-16, 19, 28-30
formulations I/7/8
kinetic I/2/2, 4, 7, 8: III/8/5, 6, 8-9, 16-17:
IV/3/5-6, 7
potential III/8/5, 6
reactive I/3/29-31
Energy supplied method I/4/17-18
Equations, conditioning of III/1/12, 14:
III/4/13-14, 20
Equations of motion I/INTRO/1-5, 12-14
“Equivalent profile” technique II/10/8, 12, 13
“Equivalent” wing V/6/7-25
Errors, random III/1/19: III/4/21-2
Eulerian equations III/4S/9
Excitation I/3/7, 27-35: I/Chapter 4
in flight tests III/1/15-16: IV/10/14-21
in wind tunnel tests IV/5/13, 20-32, 42-4:
IV/7/25, IV/8/2-3
points of IV/3/21, 29-30
Exciters I/4/15-16, 81, 86: IV/3/3, 29-30
see also Excitation, Force generators
Expansion method II/5/13-14, 27-9: II/8/3
Experimental methods Volume IV
comparison with theory II/Chapter 10:
III/1/22, 24-6: III/9/14-16: IV/10/25
influence coefficients IV/Chapter 1
static aeroelastic effects II/2/51-2: III/3/17-18
Explosive charges III/4/29
External stores
effect on derivatives II/11/63-6: III/1/18
effect on divergence III/2/4
effect on wing flutter III/5/5
models III/1/19: IV/7/6, 17: IV/8/6, 12
optimum position III/2/55
rotary inertia I/2/9
vibration analysis I/2/9, 13
Failure
models IV/8/5: IV/9/7
power controls IV/4/8
structural III/1/1: III/5/2
Fatigue IV/10/3-4: V/3/29, 33
Feedback
effect on flutter III/4/12
force IV/4/11, 13
structural IV/4/5
Fin and rudder
derivatives II/11/60-66
flutter V/3/24: V/4/9, 11, 20
Finite-difference equations I/1/15, 19, 20
Finite-element method I/7/17: III/2/45:
III/7S/6
Flaps
buzz V/5/28-32, 36-9, 43, 50-52
hinge moments III/1/34
Flat spot I/6/1-2, 20-21, 39, 45-9
Flexibility
controls III/3/2-4, 8, 12-13, 19
effect on analysis III/2/28
function III/1/5
helicopter blades III/10/12
influence coefficients IV/1/3-4
propellers III/9/16-18
representation of III/1/4
vehicles III/8/24
wings III/9/19-21
Flexural axis I/1/4: V/2/21, 23: V/6/12, 18,
19, 23-7, 40, 43
Flexural centre V/6/75
Flight tests III/1/15-17, 24-5: III/2/53-4:
III/Chapter 5: IV/Chapter 10
Fluids, motion in tanks I/Chapter 8
Flutter
ailerons V/3/17, 24: V/4/8, 10, 12, 13-14
approximations V/Chapter 6
boundaries
model tests IV/6/18-19
panels III/7/4, 5: III/7S/13, 20-53
whirl flutter III/9/10, 11: III/10/11, 12
calculations
approximate III/6/21: V/Chapter 6
automatic processes III/Chapter 4
in practice III/Chapter 4
light aircraft III/1/25
value of V/3/4, 5
cause. I/INTRO/26-30: V/3/6,17-21:
V/3/21-31
classical V/2/17: V/5/12-14
coefficients V/6/11
control surfaces III/1/7: III/4/22-3:
III/5/8-13,16: V/Chapter 3: V/6/28-54
criteria
approximate V/6/9,10,27,36,38,54
control surfaces V/3/4-5
panels III/7S/54-5
diagnosis and cure III/Chapter 5: III/10/18-19:
V/5/53-4
elevator III/5/5:
V/3/24-5 history
V/2/19-20:
V/8/39-67
equations 111/4/22-3: definition
111/'4/24
fundamentals V/2/28-31,35
general description II/Chapter 7:
V/4/9,11,20
galloping V/5/23
gliders I/8/39-67
gusts
111/3/16-18,33
stalled I/INTRO/32-
V/3/4-5
wings 111/5/4-5:
V/9/19-21:
V/Chapter 1: V/6/8

Flutter engine I/INTRO/26,28
Flutter simulators I/INTRO/17,31
Force generators 1/ INTRO/26-30: V/5/39,40
Free-free system IV/5/28,29
Frequency
analysis curve 1/4/36-40
angular 1/4/1
coincidence V/3/15-17
displacement IV/3/24-7
measurement IV/5/53
natural
choice of IV/3/27
definition I/3/19-20: III/8/7
determination I/3/33
pseudo - 1/4/24
ratio V/3/15-17,18-21
reduced, effect on derivatives VI/TG
requirements V/3/8-9

Frequency parameter
coupled surfaces V/3/7-8
definition I/INTRO/11
determination II/1/3-4

equations 111/4/1,4-9,12-18:
liquids I/8/39-67

Fuel sloshing 111/Chapter 8:

Galerkin method
dynamic stability III/6/23,24,32
panel flutter III/7/4-8,12-21,29,30:

Gaussian integration
111/3/16-18,33
stalled II/Chapter 4:

Gusts
early work 111/6/47-53: V/10/3-4
sharp-edged II/4/29-31

Heating, aerodynamic see Kinetic heating
Height effects see Altitude effects
Helicopter blade flutter III/Chapter 10
see also Rotors
Helmholtz equation II/7/1
vorticity theorem II/8/4,12
Hermitean matrices III/45/11,24: III/6/24
Hessenberg matrix III/45/27
Hinge moment derivatives II/10/34,47-8: II/11/7,33-60
effect on buzz V/5/44-50,54
effect on impedance I/5/19-22
prediction of III/3/17: V/5/44
Hinge position, effect on buzz V/5/50,51
Hinge stiffness, effect on buzz V/5/42,43,46
Hooké's Law I/7/3,22
Horn balance V/3/14
Hsu's method III/3/34-7
Hyperbolic radius II/9/31-2
Hypersonic flow
impulse response II/9/46,53
oscillations II/9/24-8
Hysteresis
damping
curves I/3/4-5,9-10,12
measurement IV/5/11,22
magnetic IV/5/28
stability boundary V/5/30
structural non-linearity /6/21-3,39,49-51: IV/1/10
Impedance
complex I/3/11
experimental determination I/5/29-33
manual controls I/5/6-8
matching V/4/5
models IV/8/11
powered controls I/5/8-33: III/5/6:
IV/Chapter 4
testing I/4/18-20: III/5/6
transfer I/4/26-7
variation with frequency IV/4/9
Impulsive loading I/INTRO/39-40
Incidence effects
buzz V/5/42,43,48
pure pitching oscillations V/5/16-20
stalling flutter V/5/11-12,14
wing flutter V/2/16-17
Incompressible flow theory II/2/10-20
Incident admittance I/INTRO/39: III/4/33
aerodynamics II/Chapter 6
functions II/6/4-46
loading II/6-9:12,15,19-30,33-8,44-7
method I/INTRO/11
response II/1/5: II/6/2,6,14,15,30,33,38,50,53-4
Inertia
axis V/2/23-5: V/5/14
coefficients III/4/13,22
compensation I/4/79-83
coupling III/1/3,9
distribution III/1/3
effect on wing flutter V/2/23-40
forces I/INTRO/1: III/2/20,29: III/3/2,4
measurement of IV/Chapter 3
moment of control surfaces V/3/12,14,18-23,27
determination I/4/64-6,72
fuselage V/7/4,14
rolling V/2/38
spars IV/7/16
tab V/3/27
parameters III/4/24
product of control surfaces V/3/13,14
tab V/3/27
rotatory I/2/9,14
linkage III/5/13-14,15
"inexorable forcing" see Rigid drives
Inflow angle III/9/12-13: III/10/15-20
Influence coefficient method I/INTRO/5,6:
II/6-14: III/1/20: III/1/6: III/4/5
Influence coefficients
accuracy III/4/8
dynamic stability III/6/4-17,24
high temperature structures III/1/23
measurement IV/Chapter 1
panel flutter III/7/5/5,41
static aeroelastic phenomena III/2/26-51:
III/3/11,14-15
three-dimensional supersonic theory
III/5/11,26-7
Influence points IV/1/7-8
Instability
condition for V/5/3-4
prediction of III/Chapter 1
regions II/2/27
Instrumentation
flight flutter tests III/5/1,12,16: IV/10/21-5
ground resonance tests IV/2/10-14
load application IV/1/24-27
measurement of deformation III/8/1-2:
IV/1/14-27
measurement of derivatives IV/5/47-53
model vibration tests IV/7/23-6
rocket, sled and free-falling tests IV/9/6-7
Integral equation
analytical solution II/3/10,16,43-8
method II/2/23-6: III/1/4-5: III/7/9-10:
III/7/6
three-dimensional sonic II/4/3-11
three-dimensional subsonic II/3/3-10
three-dimensional supersonic II/1/5-55
Integration
chordwise II/3/21-9: II/5/43-6
constants V/6/58-71
method IV/5/17-18
numerical II/4/19-24
spanwise II/3/29-33: II/5/46-9
Interaction
aerodynamic and structural III/1/1: III/8/2
autopilot and structure III/Chapter 8
shock-wave boundary-layer V/5/2,8,40-41
Interference
aerodynamic II/1/2
wind tunnel II/10/1,10,40-41
wing-tip tanks /11/64
Interpolation functions II/3/18-19
Iteration methods
automatic processes III/45/13-19
dynamic stability III/6/2,3-20,26-9
non-linear problems I/6/25-8
panel flutter II/1/9-10
static aeroelasticity II/2/36-8

Jacks

Krein circulation theorem II/8/4
Kelvin mode I/7/4-5
Kernel function method
comparison of theory and experiment II/10/19,33,36
lifting-surface theory III/45/10
panel flutter III/75/5
static aeroelasticity II/2/33,47-8
thickness effects II/8/3
doimation of the three-dimensional supersonic theory II/3/31,33-34,40,42,51-5
Kinetic heating
effect on divergence and reversal V/1/10
genereal effects I/INTRO/41
non-linearity I/6/3
simulation of IV/6/25-6
Kirchhoff's formula II/6/38
Küssner effect III/4/31,32,34
Kutta condition II/2/9-10: II/6/2,9,16:
II/8/2,4,7,39,42

Lagrange equations
aircraft flutter III/4/1,9,27
conservative structure I/4/3
dissipative structure I/4/6
general I/INTRO/2,9: III/1/5,6
panel flutter III/7/7
powered controls V/4/2-8
propeller flutter III/9/4
vehicle with autopilot III/8/6,7,15-7
interpolation formula II/1/19
multiplier technique I/2/5

Laplace equation
II/2/10,13: II/4/80,81,86:
II/6/30,32: II/7/1,13,20,48: II/8/4,7:
II/9/28,33
law I/4/76
operator V/4/4
transform I/3/6: II/2/30,31,40
transformation method III/7/8: III/75/6
Lateral control, methods of V/1/7-9
Lateral-antisymmetric motion I/INTRO/5
Launch acceleration I/8/65
Least-squares method III/2/35-6,47-8:
IV/1/10

Lenz's law IV/1/76
Levers, measuring IV/1/25,27
Liapunov method III/75/6,17,20
Lift-curve slope
effect on flutter V/5/23-6
tail V/1/5
wing V/1/5
Lift functions II/3/40,49-50,60
Lifting-line theory II/1/20: II/3/1: II/6/21:
II/11/19: III/45/10
Lifting-surface methods
automatic processes III/45/8-11
matrix form III/45/6-6
oscillating finite wings II/1/20-22
Lifting-surface theory
comparison with experiment II/10/19,25,
28,29,43
derivatives II/8/37
three-dimensional
incompressible II/6/27
sonic II/4/1,11-36
subsonic II/3/1
two-dimensional subsonic II/6/16
Lifting surfaces, thickness effects II/9/7-20
Light aircraft, flutter III/1/26
Limit cycle
panel flutter III/73/47,51,52,55
single-degree-of-freedom flutter
V/5/30,35,46-50
Linear Differential equation II/1/11-12,133
Linear superposition II...
Linear systems II/1/23
Linearised equation II/10/10
Linearised theory
comparison with experiment II/Chapter 10
damping moment coefficient II/9/18
derivative V/6/18
expectation II/2/18-20
stability boundaries II/9/14
status II/1/18-19
three-dimensional II/4/1,4-11: II/5/1
two-dimensional II/Chapter 2
Linearity, assumption of I/INTRO/2,3,10:
I/4/1: III/1/7: III/2/8: IV/3/2
Liquid effect on flutter III/75/45
Liquid propellant dynamics I/Chapter 8
Liquid surface motion I/8/21,27,61,68-9
Lissajous figures I/4/80: IV/7/25: IV/8/3
Load application IV/1/14-1,26-7
Load c.i.s IV/1/14
Loading
acoustic I/2/15
aerodynamic III/2/4-5
dynamic I/2/14
initial II/6/5,7
pulse II/6/12,14,27,30,33
see also Indicial loading
Loads see Aerodynamic forces
Local linearisation method II/9/2,20-23,31,35,41
Logarithmic
circuit IV/5/16-17
decrement III/6/30,31: III/7/12,32:
IV/3/19-20: IV/5/10,15-17
increment III/7/25-6
spiral IV/5/15
Longitudinal-symmetric motion

- LOrentz coordinates
- Lumped parameter method

Mach number, critical

- buzz
- control surface flutter
- lateral control
- models
- janel flutter
- powered controls
- root bending moment
- sonic theory
- stallng flutter
- wing flutter
- wing stiffness requirements

Magnetic analysis method

- Magnetic tape

Magnetic tape

- Manoeuvrability, rolling

M.6:

- added to small models
- and spring systems
- distribution
- equivalent
- generalised
- ratio
- Manoeuvring
- aileron
- blades
- control surfaces and tabs
- failure of support
- pre-flight calculations
- test apparatus

Mathieu functions

- admittance concept
- automatic processes
- damping effect on resonance
- dynamic stability
- flutter problems
- general application
- generalised forces
- panel flutter
- static aeroelastic phenomena
- structural influence coefficients
- Maxwell model
- Membrane

Mirrors

- Optical

Missiles

- missile method
- profiles
- missiles

Modal methods

- uses of I/INTRO/42

Models

- buzz
- construction IV/Chapter 7
- control surfaces
- failure IV/9/5
- falling body
- flexible
- flutter
- high-speed
- history of types
- instabilities
- layouts
- light-weight
- low-aspect-ratio
- low-speed
- materials
- mathematical
- mathematical
- similarity IV/Chapter 6
- sledge-carried IV/Chapter 9
- support IV/6/6
- small, ground testing
- thermalastic IV/7/22
- transonic

Modes

- adjacent
- all-moving tailplane
- branch
- choice of
- deformation
- propeller-rotor
- control surfaces
- damping effects
- definitions
- determination
- excitation
- flexural, of missile
- natural
- normal
- calculation
- definition
- errors
- excitation
- properties
Oscillations
- bending V/5/10-11,26
- control surface V/5/26-54
- decaying IV/3/5,15-19,23: IV/5/10-14:
 IV/10/16-21
- flapping II/10/28
- flutter IV/5/18-20
- forced V/5/41,46
- harmonic II/2/8-9: III/4S/7,9: III/6/1:
 V/5/5
- modes, definitions II/10/4
- "POGO" I/8/19,65
- pure pitching V/5/6-10,15-21
- quasi-periodic V/5/32,33
- relaxation I/6/33-4
- self-excited V/5/6,22-6,41-2,46-7,50
- short-period V/6/44
- sinusoidal IV/5/4: V/5/16,18,28,33,34
- small II/7/65-8
- types of 1/6/35

Oscillator, electronic IV/2/10: IV/5/26
- Oscilloscopes IV/5/14-16,21,26,52,53: IV/8/3
- Every ellipsoid II/7/46

Panel flutter I/INTRO/25: II/9/42,49-51:

Perturbation methods I/6/7-16
- Phase-angle sweep IV/3/10-11
- Phase criterion 1/4/15
- Phase-plane method I/6/3-7
- Phase portraits I/6/3-7,31,32
- Phase resonance, excitation at IV/5/26-31
- Phase-shifting network IV/1/515,21,49,53
- Phase stabilisation III/8/27
- Pick-ups IV/2/10: IV/Chapter 5: IV/7/25

Piston theory
- automatic processes III/4S/8
- general II/1/15-17: III/1/14: III/4/7-9
- hypersonic II/4/46: II/9/18-19,24-5,40
- panel flutter III/Chapter 7: III/Chapter 7S
- sonic II/2/41
- supersonic II/2/18-19: II/10/16,43: III/2/49

Pitching axis V/5/18,20
- Pitching moment
 - aeroelastic effects III/2/17,22,24
 - derivatives II/10/24,25-33,45,46: II/11/7
- Planforms
 - effect on flutter V/2/5-15,20
 - optimum V/1/7,9
- Plastic behaviour I/7/6
- Plate theory III/2/45-6: III/7S/49

Plates
- ablating I/7/37-8
- thermoelasticity I/7/12,15-16,21-7
- vibration and stiffness I/7/30-38
- see also Panel flutter

Plotter, automatic III/4S/29
- Plunging wing II/Chapter 6
- "POGO" oscillation I/8/19,65
- Possio's equation II/10/10
- Potential energy, minimum I/2/3

Potential flow theory
- general II/1/9-10: II/5/1
- in flutter prediction V/5/36-40,43
- in panel flutter III/7/10: III/7S/45,46
Potential functions II/Chapter 8
Potentiometers IV/7/25
Power plant, representation of III/9/3-4
Powered controls
buzz prevention III/5/11
control rotation frequency V/6/32
flutter V/Chapter 4
impedance measurement I/1/24: IV/Chapter 4
non-linearity I/6/2: III/1/7,8
special problems I/INTRO/45: III/5/6
Prandtl number IV/6/26
Pressure
difference, formulae III/2/31-2
differential (panels) III/7S/49,51,52
distribution, measurements I/10/23
dynamic
and stiffness ratio IV/8/10,12
at control reversal III/3/2,7-8,12,17-18
at divergence III/2/24,51-2
compatibility and swep V/1/1-23
panel flutter III/7/15-17,20: III/7S/18,30-45
loading II/9/24,25
perturbation I/5/6-7
plotting IV/5/43,44-6
Pressure potential procedure I/5/31-3
Prolate spheroid III/7/46
Propellant dynamics I/Chapter 8
Propeller flutter III/Chapter 9
Proper vectors I/4/5
Prototype flutter investigation III/1/14-15,17
Pulsation see Frequency, angular
Quasi-static
approximation III/7/6,7,29
definition I/INTRO/5
derivatives I/INTRO/10,38-9: III/1/15
effects III/2/23,17,23:
stiffness I/3/24
tility III/6/1: III/7S/10,49
"Raft" mounting IV/5/41,42
Raked wing II/10/43,44
Ramberg-Osgood equation I/7/6
Ranges, aeroballistic IV/6/21
Rayleigh-Ritz method
flutter equations II/5/9-11
general I/2/3-5
in automatic processes III/4S/4
panel flutter III/7/4: III/7S/5,25
static aeroelastic phenomena III/2/24
Rayleigh's principle I/2/3: I/4/11-12:
III/6/19,26
Reaction, measurement of IV/5/32-46
Real-gas effects II/9/28
Receptivity relations (Maxwell's) II/6/46-7:
III/2/25-6: I/1/4,5,6,7,10
Record analysis IV/9/10-13
Recording see Data recording
Rectifier IV/5/50
Reference axes I/1/1-3
Relaxation modulus I/7/5

Representation
of aerodynamic forces I/INTRO/9-12
of controls I/INTRO/8
of damping I/INTRO/8-9
of structure I/INTRO/5-9: I/2/1
of structural deformation I/Chapter 1
of suspension, in ground tests I/4/51-62
= non-rigid I/INTRO/6
Resonance
ampStude I/4/9
curves I/4/8-10,19-20: IV/3/7-9,10
effect of damping I/Chapter 3
many degrees of freedom I/3/21-37
modes I/INTRO/6,7: I/4/51-60
phase I/3/20,23,33-3: I/4/9,19-20,80-81
position of IV/10/10-14
principle I/3/31-5
pseudo: I/3/33-5
single-degree-of-freedom I/3/15-21
testing in flight I/INTRO/35
Resonance tests see Ground resonance tests
Response
amplitude I/4/19
calculations, in practice III/Chapter 4
curves IV/5/23
dynamic III/4/26-35
forced I/3/35-7
indicial II/6/2,4,14,15,30,33,38,50
jacks IV/4/1
measurement IV/8/2: IV/10/21-3
prediction III/Chapter 1
quadrature IV/2/19,20
to atmospheric turbulence III/4/33-5
to single impulse III/4/29-33
Restrain, variable I/5/35-4
Reversal, control I/INTRO/19,22-3: III/1/2:
III/3/2,6-7,18: V/1/1-10
Reverse flow theory I/5/15: I/6/46:
II/8/37: III/2/49
Reynolds number effects I/INTRO/11:
IV/6/6-7: IV/8/12: V/5/15,20,21,25
Riemann's method II/2/28-30
Rigid-body freedoms III/1/12,15
Rigids II/4/35-42
Rigidity see Stiffness
Ring analysis I/7/18-19
Ritz-averaging method I/6/16
Rivet slip I/6/1,2: I/1/7
Rocket impulse units I/4/29-30: IV/10/23-5
see also: Excitation
Rocket models IV/6/20-21,23: IV/Chapter 9
Rocket tests
buzz V/5/43
Rockets, liquid dynamics I/8/15-19,62,65-6
Rolling
manoeuvrability V/1/6-8
moment III/2/17: III/3/8,13
Root, wing
fixed V/2/33,37
freedom V/2/40-44
lift distribution III/7/3-7
Rotor flutter III/Chapter 9
Rotors, non-rigid III/9/13-18
Rudder see Fin and rudder
Safety factor, flutter IV/6/27
Safety margins IV/8/12
Saint Venant torsion I/1/5: IV/7/16
Sand method, vibration testing I/4/76
Scale factors IV/6/4
Schmitt trigger circuit IV/5/30,49
Secondary effects, structural I/2/14
Second-order theories II/9/34-8
Self-excitation IV/5/27-31,42-4
Sensor-actuators IV/4/20: IV/3/11-14,27
Sensors I/5/41-6
Separation
 effect on unsteady forces II/9/38
 localised III/1/7
 models IV/6/7
 panels III/7/23
 shock-induced III/5/3,10,11: V/5/21, 30,31,42,48,53
 slender wings II/7/61-74
 stalling flutter II/9/51-3: V/5/14-15
Servo controls III/4/11-12: III/5/13,15,16: III/Chapter 8
Shakers I/3/31-6: IV/2/4,11-14-18: IV,7/25
Shapes, natural
 definition I/4/4
 determination of I/4/25,35-6
 excitation of I/4/14-16
 blades I/4/85
 suspension effects I/4/60-61
Sheet-and-stringer structures, thermoelasticity I/7/17
Shear
 conical III/7/33: III/7S/47,55
 conical III/7S/43
 cylindrical III/7/23-33: III/7S/7-8,14,15, 41,54,55
 steel III/7S/43
 thickness requirements III/7/25,26,29, 30,32,41
 vibration analysis I/2/15
Shock-wave boundary-layer interaction V/5/2,8,40-41
Shock waves
 effect on buzz V/5/40-43
 effect on panel flutter III/7/22
Short-period oscillation III/1/12
Similarity
 parameters IV/6/4,6-25-6: IV/7/12-13:
 IV/8/7
 relations III/1/18
 requirements IV/Chapter 6: IV/7/12-13:
 IV/8/7
Simulators, flutter III/1/13,15
Sine curves IV/3/11-14,21
Singularity
 logarithmic II/3/33-4: II/4/24-31
 vortex II/7/61
Sinusoidal
 forcing IV/4/3: IV/8/3: IV/10/5
 generators IV/5/51-2
 oscillations IV/5/14: V/5/16,28,33,34
 "Skeleton line" technique II/10/8
 Skin thickness V/2/22
Sled-carried models IV/6/20-21: IV/Chapter 9
Slender-body theory
 general II/1/19: II/Chapter 7: III/1/14: III/4/6
 static aeroelastic phenomena III/2/49
 thickness effects II/9/33-8
Slender-wing theory
 comparison with experiment II/10/30,43
 general III/4/6
 indicial aerodynamics II/6/6,7,32-3,36
 thickness effects II/9/33-8
Slotted tunnels II/10/40-41
"Slow oscillation" assumption III/7/17
Small perturbation method II/1/11: II/5/5: II/8/3
Snaking I/INTRO/20,44
Sommerfeld radiation II/2/10,21
Sonic flow
 two-dimensional theory II/2/33-41
 three-dimensional theory II/Chapter 4
Spars, model IV/7/16,17-18,20-21
Splitter-plate V/5/51,52
Spoilers
V/1/7: V/5/41,42,52-3
Spray, propellants I/8/21-2
Spring
 bearings IV/5/8,37
 constraints III/2/20
 constant IV/5/10,20,25,34
 rate (stiffness) IV/6/6,17,19
 tab IV/6/2,39: III/7/8: III/5/1,14-16:
 V/6/53
Spring support technique V/2/40
Springs
 calibrated IV/1/22
 elastic II/4/3-15
 stabilized (of oscillations) IV/5/29,30,31
Stability
 analysis III/8/13
 boundaries
 helicopter blades III/10/17
 panels III/7/35,38-41: III/7S/15,19,20, 24,7,33,39,52
 propulsion III/9/8-9
 supersonic thin wing II/9/14
 calculations IV/6/29-32
 conditions III/8/25-8
 definitions I/INTRO/14-17
 determinant I/5/37-41
Stagnation point, choice of II/8/38-42
Stagnation pressure and temperature IV/6/12-17
Stalling flutter see Flutter
Static aeroelastic phenomena II/Chapter 2:
 III/Chapter 3: V/Chapter 1
Static balance V/3/11-12,17,18-20,22-3,28
Static margin V/6/47
Steady-state solution I/4/9
Steady-state stresses III/4/30
Step-by-step methods, non-linear problems I/6/23-4
Stick jerking I/INTRO/35
Stiffness
 aerodynamic III/1/17
 all-moving tailplanes V/4/15-21
 beams I/7/30-38
 bending III/5/6: III/8/6
 compensation I/4/76-83
Target towing III/7/37
Telemetry IV/10/26
Temperature distribution in structure I/7/1
Test functions III/4/14-16
Tests
 equipment IV/1/11-26: IV/2/4-14:
 full-scale I/INTRO/35-6,42
 impedance IV/Chapter 4
 techniques IV/2/14-21: IV/Chapter 5
 types I/INTRO/42
 vibration IV/1/23-6
 see also Model tests. Ground resonance tests
Theodorsen function II/2/15: II/6/14;21,22:
III/6/30: VI/7/G/2-4
Theory
 comparison with experiment II/Chapter 10:
 III/1/22,24-6: III/9/14-16: IV/10/25
 Thermal stresses I/INTRO/41: I/2/1: I/7/10-16,
 32-4: III/4/25: V/1/10
Thermistors IV/5/30
Thermoelectricity I/Chapter 7
Thickness effects (aerofoil) II/Chapter 8: II/Chapter 9: V/2/15-16:
V/5/9-10,31,43,48
Thrust, propeller III/9/11-12
Thrust orientation III/8/1,2,14-28
Thrust rods IV/2/14,15,16
Time parameter I/4/2
Torque motor III/8/21
Torque tube I/5/27-9
Transducers IV/1/19: IV/2/12:
IV/9/6: IV/10/23
Transfer Function Analysers (TFA) IV/4/13
Transfer functions III/1/21: III/6/31-2: III/8/22,26
Transients I/4/35-40: IV/3/5,16-23: IV/5/13,17,18:
IV/9/13-14: IV/10/17-28
Transonic effects
 control surface flutter V/3/29: V/4/15
 wing flutter V/2/3-4,11,15,16,25
Transonic flow
 comparison of theory with experiment
 II/10/14,35-42
 derivatives II/11/30-32
 general II/1/12-13,17
 incorrect data III/5/9-11
Trigger circuit IV/5/30,49
T-tail
 derivatives II/11/60,62
 flutter II/1/16: III/1/16: III/5/7:
 V/3/24: V/4/19-20
 models IV/7/8,13: IV/8/6
Tuned systems IV/5/22,4-31: IV/10/17-29,21
Turbulence, atmospheric III/4/33-5: III/9/23-3:
IV/10/3-4
 see also Gusts
Twist, axis of III/1/2
Twisting moments III/2/15,20
Two-mode analysis III/7/16,24: III/7S/39,
45,49,51,52
Two-root procedure III/45/14-15,21
Tyres, interference from III/5/12
Unsteady theory II/Chapter 8: III/6/30
U-shaped interconnections V/4/20-1
Valves (powered controls) I/5/11-17,23-7:
IV/4/2-7,15-18
Vane, auxiliary oscillating IV/10/15
Variational method I/2/5,12,13
Vector response plot IV/10/12-13
"Vectorial analysis" technique IV/10/5,7-14
Velocity measurement, models IV/9/3-4,5-6
Velocity potential
 delta wings II/4/74-8
 expansion III/5/13-14,51-5
 in half-space II/5/11-29
 in whole space II/5/30-31
 low-aspect-ratio wings II/4/69-78,98-102
 method II/2/10-15
 perturbation II/7/6,8,10,12,14-16,17-18,61
 rectangular wings II/4/36-68
 wing-body combinations II/4/78-98
Vibration
 analysis I/4/31-40
 by inversion (magnetic analysis) I/4/35-40
 graphical I/4/32-3-5
 spectral I/4/32-3
 beams I/7/30-38
 engine III/5/2,3
 ground testing I/Chapter 4
 plates I/7/30-38
 propeller III/5/2,3
 still-air III/6/22-5
 structures I/Chapter 2
 thermally induced II/7/30-32
 types of III/5/2-3
 wind-induced V/5/25
 "Vector", flutter tests III/4/33
 Virtual Work principle I/1/15-16,19-20:
 I/7/8-9: III/2/4
 Viscoelastic behaviour I/7/4-6
Viscosity
 air, effect on derivatives II/11/2
 propellants I/8/26-7,72
 von Mises method see Mines
Vortex distribution method II/15-18
Vortex generators III/5/10: V/5/53
Vortex lattice theories II/9/30
Vortex position and strength II/7/62-5,68
VTOL III/9/1,12,13,21-2
Wagner-Kappus Torsion-Bending Theory I/1/5
Wagner's function II/611: II/8/13: III/4/31,32
Wake
 finite II/1/15
 functions II/8/25-34
 line II/8/5,7,12
 vortices II/8/11
Wattmeter IV/5/52-3
Wave equation II/1/10-11
Waves
 standing II/2/2: III/7/32,47,55
 travelling II/7/23-5,33-7: III/7/11,20,32,
41,47,55
Wavy walls II/9/45,49,51,52: III/7/5/11-12
control circuit V/4/1,7,14-15
derivative IV/5/4,28
determination of I/INTRO/8
distribution, wing III/3/5
effect on wing flutter V/2/14,17,23-26,7
elastic IV/5/8
errors in data III/5/11-12
fin III/5/7,8
in flutter prevention I/INTRO/36,37
measurement of IV/1/1: IV/4/15: IV/7/23
non-linearities I/5/41-51
plates I/7/30-38
propellers III/9/9-9
requirements III/254: III/I/16,17: V/3/I8
scale IV/6/8-17,20,21,22,23: IV/7/13
springs I/3/8-9
static, definition IV/4/17
structural III/1,14
tests III/I/6: III/123
torsional III/I/8: III/5/6:
IV/8/10-11
Still-air tests IV/5/I2,22,30,37
Strain
components I/I/7,8,19
energy I/I/8-10,19: I/2/2-4
Strain-gauge
beams IV/I/19-23: IV/7/25
pick-ups IV/5/47: IV/8/2,3
Stress formulation I/7/7-8
Strip derivatives II/I/4-7: III/I/17-18:
III/4/4-5: V/I/6
Strip theory
general II/I/19: II/I/2: III/4/4-5
in approximate formulae V/I/6
indicital aerodynamics II/I/27,53
panel flutter III/I/11,13,14: III/7/83
propellers III/I/10
validity III/45/10
* with three-dimensional effects II/I/5-15
Structural
deflection I/Chapter 1: III/Chapter 8
efficiency IV/6/8-17,20,21
parameters III/I/24
Structural aspects of aeroelasticity Volume II
Structures
associated (SA) I/I/4-2-5
dissipative I/I/2-3,5-10
non-linear I/I/4-16-20: I/Chapter 6
orthotropic III/7/8/9
real (SR) I/I/4-2,5-10
representation of III/I/5-10
types of I/I/2-2
vibration I/Chapter 2
Subsonic flow
comparison with experiment II/I/10-6,9-19,35
three-dimensional theory II/Chapter 3
two-dimensional theory II/I/2-20-27
Superposition
integral II/I/6
principle II/I/68
Supersonic flow
comparison with experiment II/I/10-43-7
derivatives II/I/30-32
general considerations II/I/115
piston theory III/I/4/7
three-dimensional theory II/I/42-3:
II/Chapter 5
two-dimensional theory II/I/28-33: II/I/10-14
Support, models III/I/19: III/I/52: IV/I/57:
IV/I/66
Support, structure
ground tests IV/I/8,9: IV/I/214
see also Suspension
Surface integrals II/I/3-9
Surface methods III/I/30-32,40: III/I/14
Surface theory III/I/16: III/I/73
Suspension (ground testing) II/I/50-72
Sweepback effect
on approximate formulae V/I/6,12,24-6,29,32
on bending oscillations V/I/5-10,11,15
on body-freedom flutter V/I/242
on buzz V/I/50
on derivatives II/I/1-30
on dynamic pressure V/I/2,3
on lateral control V/I/7-9
on loss of lift V/I/5
on negative damping V/I/9-10
on panel flutter III/I/52,21,22,39,41
on, root bending moment V/I/3,4
on static aeroelastic phenomena III/I/2-3,
5-6,16,19
on wing flutter V/I/5-15,24-29,31
Sweep wing
experiments II/I/10-24,28,46,50
two-dimensional treatment II/I/18
Swirl I/I/8/11-12
Tabs
dampers V/I/29
'dual-safe V/I/29
flutter V/Chapter 3: V/I/47-54,66-71
grounded III/I/5,15,16
hinge moment II/I/1,33,34
mass-balancing V/I/38
servo III/I/5,15,16
spring V/I/6/2,39: III/I/1,7,8: III/I/5,14-16:
V/I/39: V/I/53
types V/I/25
Tachometer IV/I/210
Tail surfaces
derivatives II/I/11-60-63
main surface flutter V/I/6,11-28,58-60
static aeroelastic phenomena III/I/2-30:
III/I/34
Tailplanes
all-moving III/I/2: III/I/57: IV/I/6-7:
V/I/4-15-21
effect on body-freedom flutter V/I/242
error in flutter calculations III/I/22
flutter analysis III/I/5-7
ground resonance tests III/I/122
see also T-tail
Tanks
liquid dynamics I/Chapter 8
tip II/I/16-3-6: III/I/18-25: III/I/2,4,55
Taper, structural I/I/9
Taper ratio effect
on derivatives II/I/11-27,30,40
on flutter V/I/2-13-15: V/I/6,14-18,26,33,34
Weber number 1/8/70
Wedge profiles
 comparison of theory with experiment II/10/16,18
 hypersonic flow II/9/46-9
 oscillating II/9/23-7
Weight functions II/3/19-24
Weighting methods III/2/33-6
Weissing method III/2/49
Wing flutter III/Chapter 9
Wielandt's method III/4S/17-19,25: III/6/19
Wind tunnel tests
 comparison with theory II/Chapter 10
 derivatives II/11/27-30: IV/Chapter 5
 high-speed IV/6/9-20
 low-speed IV/6/20
 media other than air IV/6/24-5
techniques IV/Chapter 7: IV/Chapter 8
 see also Models
Wind tunnels
 blow-down IV/7/6,20: IV/8/4,11
 interference II/10/1,10,40-41: IV/5/53-4:
 IV/7/13: IV/9/11-12
 operation IV/8/3-4
 resonance II/10/11
Wind-induced vibrations V/5/25
Wing theory Volume II
Wing tips
 effect of shape on flutter V/2/9-10
Wing-body combinations
 sonic theory II/4/78-98
 slender II/7/14-16,48-61

Wings
 arrow-head II/5/14,36-8: II/10/25-8
 comparison of theory with experiment
 II/2/14: II/Chapter 10
 cropped delta II/7/24-5,58-61
 deformation II/1/10-18
 delta
 comparison of theory with experiment
 II/2/14
 indicial aerodynamics II/6/31-3,41-3,52
 influence coefficients II/2/6
 slender-wing theory II/7/29
 three-dimensional sonic theory II/4/74-8
derivatives II/11/8-32: VI/TG/4-5,11-14,
 26-41
flutter V/Chapter 2: V/5/6-26: V/6/10,11,
 13-28,58-60
low-aspect-ratio I/2/6-7: II/4/69-78,
 98-118: II/11/19-26: II/2/5,6,30,45-6:
 III/3/14,16
raked II/10/43,44
rectangular
 comparison of theory with experiment
 II/10/25,38,43,50
 indicial aerodynamics II/6/30-31,34,43-5
 slender-wing theory II/7/23-4,29
 three-dimensional sonic theory II/4/36-68
slender I/2/6: II/7/10-13,17-31,61-74: II/9/9-20
 see also Wing theory, Wing-body combinations
AUTHOR INDEX

Abbott, F.T. Jr. III/9/24
Abramson, H.N. I/Chapter 8: 1/8/28,29,30,31,32,50: III/75/64
Ackerel, J. II/1/9: II/9/20: III/75/10,16,41,49
Acum, W.E.A. II/3/2,5,7,40,41: II/4/119: II/5/31,58:
II/Chapter 10: II/10/55,57: III/11/32,67; III/75/58,60,61: IV/5/58
Adams 1/5/24
Adams, J. V/5/41,59
Adams, M.C. II/4/69,71,82,100, 120: II/7/1,12,74: II/9/33,57
Aiken, W.S. Jr. III/3/20: V/1/11
Aitken, A.C. III/4/13,23,24,36
Alexander, A.J. II/10/25,30
Alexander, H.R. 1/6/46,54
Allfrey, T. I/7/39
Alkene, A.Y. II/9/20,54,55
Allen, D.I. II/3/24
Allen, H.J. I/1/19
Ambartsumyan, S.A. III/75/68, 69,77
Anderson, M.S. III/75/80,83
Anderson, R.A. I/2/15
Anderson, W.J. II/9/42,45,59: III/75/10,11,12,44,67,70,73, 74,80,81,86,89
Andrew, L.V. II/9/33,57
Andrews, R.E. I/6/55
Andronow, A.A. I/6/55
Argyris, J.H. III/1/6
Armstead, A.L. I/8/29,50
Arnold, F.R. I/6/54
Arnold, L. III/1/25: II/5/15,57: IV/5/57
Arnold, R.N. I/2/17
Asher, G.W. III/75/76: IV/2/21
Atkinson, C.P. I/6/37,54
Bagdasaryan, Z.E. III/75/68,69, 70,77,78,84
Baille, J. III/75/88
Bairstowl, L. I/Intro/46: II/1/4
Baker, B.B. II/6/57
Baldock, J.C.A. III/4/37:
III/Chapter 5: V/3/35: V/4/20,21
Barboni, R. III/75/85
Barling, W.H. II/11/67
Barnby, J.G. IV/7/27: V/2/9,44
Baron, M.L. I/2/17
Barr, G. III/75/86,89,90
Barrekelette, E.S. I/7/40
Barnett, S. IV/1/28
Basil, B. I/3/2,37:
I/4/1,20,82
Bateman, H. II/2/11,42
Bauer, H.P. I/8/28,29,31
Beam, B.H. II/10/32,47,58: IV/5/55
Beatriz, C. I/Chapter 4(C): I/4/49
Bellerby, P.J. IV/10/28
Belubekian, M. III/75/84
Benham, P.P. I/7/39
Bennett, R.M. III/9/7,10,11,13, 22,24,25
Bencositer, S.U. I/2/8,16: IV/1/27
Benun, D. I/Chapter 5: V/1/12
Berlot, R.R. I/8/30
Berry, J.G. I/2/17: I/8/18,31
Betts, D.B. II/10/33: II/11/45
Betz, A. II/4/72,82,120
Biela, R.L. III/10/21
Billing, H. II/8/43
Birchall, P.C. II/3/37,42
Birnbaum, W. I/Intro/29: II/1/5,18: IV/7/3
Block, S.D. II/10/16,55
Bland, S.R. III/75/66: III/9/7, 10,11,24,25
Blasius, H. I/Intro/49
Bleich, H.H. I/2/17: I/8/31
Blenk, H. I/Intro/50
Block, D. III/75/94
Boersma, J. II/2/40,45:
V/TC/4,8
Bogliubov, N. I/6/55: III/75/51

Bohon, H.L. III/75/71,73,76, 77,78,80,89
Bolas, H. I/Intro/48
Boley, B.A. I/Chapter 7: I/7/38,39,40,41
Bollay, W. IV/7/3,26: V/5/56
Bolotin, V.V. III/7/47:
III/75/59,62,63,64,65,67,70
Bosschaart, A.C.A. V/3/36
Bratt, J.B. II/9/1,54,60:
II/10/6,17,23,28,35,40,52, 54,56,57,58: III/10/22:
IV/Chapter 5: IV/5/54,55, 56,57: V/5/18,20,55,56, 57,61
Brebner, G.G. II/11/68: V/6/56
Bremmer, H.I/2/45:
II/5/56
Brewer, Griffith. II/Intro/49
Bridgeman, K.B. II/10/40
Broadbent, E.G. I/4/49:
III/Chapter 1: III/Chapter 4:
III/4/36,37: IV/10/8,27:
V/2/14,19,21,45: V/3/23,35:
V/4/20,21: V/6/25,55,56
Brock, J.E. I/6/25,54
Broglio, L. I/7/40: IV/1/28
Brooke Benjamin, T.
III/75/11,94
Brooks, G.W. III/9/25: III/10/22
Brown, A.N. III/75/76
Brown, C.D. IV/7/3,26: V/5/56
Brown, C.E. I/1/19:
II/7/16,75
Brown, R.A. III/75/70,74
Browne, K.A. III/9/1,24
Bruhn, G. II/9/27,56
Brusilovskii, A. III/75/82
Bryan, G.H. I/1/1,45
Bublik, B.M. III/75/75
Buchan, A.L. II/10/56
Budiansky, B. I/2/17:
I/8/29,50: III/2/55: III/7/10,35,36
Buivol, V.N. III/75/86
Bullen, N.I. III/4/7
Buerg, J.M. I/1/6
Burgess, M.F. IV/1/29
Buroh, H. IV/10/27
Burnall, W.J. V/2/16,44
Burton, G.E. IV/10/28
Busemann, A. I/1/18:
II/9/11,21
Buxton, G.H.L. III/75/57: V/3/28,36
MANUAL ON AEROELASTICITY

VOLUME I
INTRODUCTORY SURVEY

PART I
STRUCTURAL ASPECTS

VOLUME II
PART II
AERODYNAMIC ASPECTS

VOLUME III
PART III
PREDICTION OF AEROELASTIC PHENOMENA

VOLUME IV
PART IV
EXPERIMENTAL METHODS

VOLUME V
PART V
FACTUAL INFORMATION ON FLUTTER CHARACTERISTICS

VOLUME VI
PART VI
COLLECTED TABLES AND GRAPHS

General Editor
R. Mazet

CONTENTS OF VOLUME I

W.J. Duncan
Introductory Survey
Aug. 1959*

PART I - STRUCTURAL ASPECTS

CHAPTER 1
W.S. Hemp
Analytical Representation of the Deformation of Structures
Aug. 1959

CHAPTER 2
J.M. Hedgepeth
Vibration Analysis of Aircraft Structures
Aug. 1959

CHAPTER 3
B.M. Fraeijis de Veubeke
Influence of Internal Damping on Aircraft Resonance
Nov. 1959

CHAPTER 4
ONERA Staff
Theory of Ground Vibration Testing
May 1960

CHAPTER 5
D. Benun
The Influence of Powered Controls
Aug. 1959

CHAPTER 6
D.L. Woodcock
Structural Non-Linearities
Apr. 1960

CHAPTER 7
B.A. Booley
Thermoelasticity
Feb. 1968

(A revision of the original chapter by H.L. Bisplinghoff, Aug. 1959)

CHAPTER 8
H.N. Abramson
Liquid Propellant Dynamics
Dec. 1967

CONTENTS OF VOLUME II

PART II - AERODYNAMIC ASPECTS

CHAPTER 1
I.E. Garrick
General Introduction
June 1960

CHAPTER 2
A.L. van der Vooren
Two-Dimensional Linearized Theory
July 1960

* The dates given relate to the acceptance of the manuscript by AGARD
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>AUTHOR</th>
<th>TITLE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>D.E. Williams</td>
<td>Three-Dimensional Subsonic Theory</td>
<td>Jan. 1961</td>
</tr>
<tr>
<td>4</td>
<td>D.E. Davies</td>
<td>Three-Dimensional Sonic Theory</td>
<td>Nov. 1960</td>
</tr>
<tr>
<td>5</td>
<td>C.E. Watkins</td>
<td>Three-Dimensional Supersonic Theory</td>
<td>Nov. 1960</td>
</tr>
<tr>
<td>6</td>
<td>H.Lomax</td>
<td>Indicial Aerodynamics</td>
<td>Nov. 1960</td>
</tr>
<tr>
<td>7</td>
<td>D.L. Woodcock</td>
<td>Slender-Body Theory</td>
<td>Apr. 1962; Nov. 1967</td>
</tr>
<tr>
<td>9</td>
<td>M.T. Landahl and H. Ashley</td>
<td>Thickness and Boundary-Layer Effects</td>
<td>Mar. 1969</td>
</tr>
<tr>
<td>10</td>
<td>W.E.A. Acum</td>
<td>The Comparison of Theory and Experiment for Oscillating Wings</td>
<td>May 1962</td>
</tr>
</tbody>
</table>

CONTENTS OF VOLUME III

PART III – PREDICTION OF AEROELASTIC PHENOMENA

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>AUTHOR</th>
<th>TITLE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E.G. Broadbent</td>
<td>An Introduction to the Prediction of Aeroelastic Phenomena</td>
<td>Feb. 1963; Sep. 1967</td>
</tr>
<tr>
<td>2</td>
<td>F.W. Diederich</td>
<td>Divergence and Related Static Aeroelastic Phenomena</td>
<td>Nov. 1963</td>
</tr>
<tr>
<td>3</td>
<td>F.W. Diederich</td>
<td>Loss of Control</td>
<td>Aug. 1964</td>
</tr>
<tr>
<td>4</td>
<td>E.G. Broadbent</td>
<td>Flutter and Response Calculations in Practice</td>
<td>Apr. 1963; Sep. 1967</td>
</tr>
<tr>
<td></td>
<td>H.G. Küssner</td>
<td>Flutter Calculations as Automatic Processes</td>
<td>Nov. 1967</td>
</tr>
<tr>
<td>5</td>
<td>J.C.A. Baldock and L.T. Niblett</td>
<td>Diagnosis and Cure of Flutter Troubles</td>
<td>Apr. 1962</td>
</tr>
<tr>
<td>6</td>
<td>A.I. van der Vooren</td>
<td>General Dynamic Stability of Systems with Many Degrees of Freedom</td>
<td>Nov. 1961</td>
</tr>
<tr>
<td></td>
<td>D.J. Johns</td>
<td>A Panel Flutter Review</td>
<td>May 1969</td>
</tr>
<tr>
<td>8</td>
<td>H. Lazennec</td>
<td>The Effect of Structural Deformation on the Behaviour in Flight of a Servo-Control in Association with an Automatic Pilot</td>
<td>July 1968</td>
</tr>
<tr>
<td>9</td>
<td>W.H. Reed</td>
<td>Propeller-Rotor Whirl Flutter</td>
<td>Sep. 1967</td>
</tr>
<tr>
<td>10</td>
<td>N.D. Ham</td>
<td>Helicopter Blade Flutter</td>
<td>Sep. 1967</td>
</tr>
</tbody>
</table>
PART IV - EXPERIMENTAL METHODS

CHAPTER 1 D.J. Martin and T. Lauten Measurement of Structural Influence Oct. 1961
 Coefficients
CHAPTER 3 H. Gauzy Measurement of Inertia and Structural Feb. 1961
 Damping
CHAPTER 4 J.C. Hall Experimental Techniques for the June 1964
 Measurement of Power Control
 Impedance
CHAPTER 5 J.B. Bratt Wind Tunnel Techniques for the Jan. 1961
 Measurement of Oscillatory Derivatives
CHAPTER 6 C. Scruton and N.C. Lambourne Similarity Requirements for Flutter Nov. 1960
 Model Testing
CHAPTER 7 L.S. Wasserman and W.J. Mykytow Model Construction Jan. 1961
CHAPTER 8 L.S. Wasserman and W.J. Mykytow Wind Tunnel Flutter Tests Jan. 1961
CHAPTER 9 W.G. Molyneux Rocket Sled, Ground-Launched Rocket and Jan. 1961
 Free-Falling Bomb Facilities

CONTENTS OF VOLUME V

PART V — FACTUAL INFORMATION ON FLUTTER CHARACTERISTICS

CHAPTER 1 K.A. Foss Divergence and Reversal of Control Feb. 1960
CHAPTER 2 D.R. Gaukroger Wing Flutter Feb. 1960
CHAPTER 3 A.A. Regier Flutter of Control Surfaces and Tabs Feb. 1960
CHAPTER 4 A.D.N. Smith Flutter of Powered Controls and of Apr. 1960
 All-Moving Tailplanes
CHAPTER 5 N.C. Lambourne Flutter in One Degree of Freedom Aug. 1960
 Revision Feb. 1968
CHAPTER 6 W.G. Molyneux Approximate Formulae for Flutter Apr. 1960
 Prediction

CONTENTS OF VOLUME VI

PART VI — COLLECTED TABLES AND GRAPHS

A.I. van der Vooren The Theodoresen Circulation Function. Jan. 1964
 Aerodynamic Coefficients