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U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM .
Block Italic Transliteration Block Italic Transliteration
A A a ‘A, & P p P » R, r \
B 6 B & B, b C ¢ C ¢ S, s
B » B o v, v T ¢ T m T, t
rr r a G, € y y 7y U, u
O = a4 e D, 4 ® ¢ ® ¢ F, f
E o E o Ye, ye; E, e X x X x Kh, kh
K = R x Zh, zh u u 4 y Ts, ts
3 3 2, 2 Y s ¥ Ch, ¢h
H u H u I, 1 W w U w Sh, sh
R 2 R & Y, ¥ W = W y Shch, shch
K x K x K, k P » B s "
n a A a L, 1 B N ¥ Y, ¥
M x M u M,n b » b !
H x H x N, n 9 3 o E, e
O o 0o 0, o D » Do Yu, yu
1 n o« P, p A s A a Ya, ya

* ye initially, after vowels, and after », p; e elsewhere,
en written as ¥ in Russian, translitsrate as y¥ or ¥,
The use of diacritical marks is preferred, but such marks
may be omitted when expediency dictates. '
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FOLLOWING ARE THE CORRESPOMDING RUSSIAN AND EMGLISH
DESIGMATIONS oF THE TRIGONOMBTRIC PUNCTIONS
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Russian

sin
acos

tg
otg
sec
cosec

sh

111

English

sin
cos
tan
oot
sec
cso

sinh
cosh
tanh
coth
sech
csch

-1
st
tan-1
cot~1
sec-1
csc~1

sinb-1
cosh-1
tanh-1
coth-l
sech~1
cseh-1

log




This collec¢tion includes work with numerical
hydrodynamic methods of weather forecasting. A
number of artlcles 1s dedicated to certain
aspects of obJective analysis of meteorological
fields and to development of methodology of
operational forecasting by numerical methods with
the ald of electronic computers.

The collection is dedicated to scilentific
colleagues, engineers, weather forecasters,
students of higher courses in hydrom¢ .eorologic
institutes and universitles, interested in the
problems of calculating weather ahead of time by
hydrodynamic methods.
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v IMPROVEMENT OF THE METHODOLOGY OF FORECASTING
THE BARIC FIELD FOR SEVERAL DAYS

S. A. Mashkovich

A generalization 1s glven of an earlier proposed
[2] linear three-level forecast model. The effect
of horizontal turbulent mixing in the vorticity
equation and effects of surface friction are
considered additionally. The system 1s com-

puterized. An evaluation of the forecasts 1s

Works [2], [3] proposed a forecasting system, which is based
on a linear three-level model of the atmosphere. The formulation
of the problém was based on a method proposed by Ye. N. Blinova.
This system 1s used in the work of the hydrometeorologic center of
the USSR for forecasting ground pressure for several days.

The present article 1s dedicated to the improvement of the
. mentioned forecasting methodology. Namely, in the vorticity equation
. a component describing horizontal turbulent perturbation is con-

sidered additionally; furthermore, the effect of surface friction
is drawn in.

In this instance linearized vorticity equations and heat
inflow equations are written respectively in the form:

FTD-MT-24-1T4-70 1
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t;.+-;r)u+=-%;- ST,
22) 2 _ge st "';’)83'";?,"7!"

T3 o) 2ucost L (1)
lere the following designations are introduced: Yy - stream:runctibn,
w - vertical component of velocity, t - time, 6, X - spherical
coordinates, w - angular velocity of earth rotation, a - index of
circulation, § = p/P, p -~ pressure, P = 1000 mbar, ag - radius of
earth, g - acceleration of gravity, kl and k2 - coeff. clents of
turbulent mixing, R - gas constant, Yq and y - dry adiabatic and
vertical temperature gradients, A - Laplacean operator in spherical
coordinates.

Let us introduce dimensi.aless variables according to the
formulas

1‘-;?'- '_;':,.' '-;"o

%} ;;_2417ﬂl‘~

and designate

Pe GZRPR 1

T
(2wa,con¥)p g

Then system of equations (1) takes the form (primes on letters
have been omitted):

- &y _.L...._.Ai- w.-. _.i
ot o007 Tar e U Qg 8

g HP e agt = — S jany, (2)

We introduce the following designations for the operators:

’-'l:‘,"*';w"’r)"'"?‘r"if."“' (3)

FTD-MT-24-1T74~70 2



Thcn equation (2) can be written in the form:
rizn-24E 4t - rum (he)

Lym— K7 I (ib)

We conslder processes in the lower half of the atmosphere,
namely: in the layer located between sea level (Z = 1) and the
isobaric surface of 500 mbar (g = 0.5).

As boundary conditiones we take:

w=k"3% when Tml ir'—-i—,. (5a)
9¢®) _ o when el =05 . (5b)

Condition (5a) speaks about the fact that at the lower boundary of
the considered layer of atmosphere exist vertical motions conditioned
by the effect of friction in the boundary layer (see [1]). Condition
(5b) designate assumption about the quasi-barotropic nature of
motions in the middle part of the atmosphere. It allows writing
equation (4b) at a level [ = o in the form

s

Ly=0 when =’ (6)

Consequently, the stream function at a level [ = cc can be
found from equation (6) independently of the solution o" system (4).
The solution of the equations (6) 1s written in the form

"’"“‘.}:-.”:-“(""‘.'" ) pae. - (1)
where 3 9:._ — T .

Pﬁ(e) - associlated Legendre polynomial.

FTL-MT-24-174-70 3
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Let us break the considered area of the atmosphere into two
layers (see Fig. 1). We will consider a three-level mocel of the
atmosphere including sea level (g = 1), 500 mbar (¢ = cc) and a

;ertain intermedliate level 7 = cn.

Fig. 1.

L=Ln

S e ana 7 A

Integrate each of equations (U) over the vertical coordinate
within 1limits: 1) fromgy = 1to [ = Zns 2) from [ = g, tot =¢..
Here indices 1, n, c, mean that the quantity is referred respectively
to sea level, intermedlate and mean levels. When the integrals are
not calculated analytically, we will approximate them by method of
trapeziums. Then system (4) with allowance for boundary conditions
(5) can be written in the form:

9 4 + -
2y — Zo'ag — 24,0, 37 '2% - _r"w" ';'Mq" @, =0,

)
Zys, - Zebe 2A2027f 2 3 e ]"w"; l'cm- , == 0,

T Wiht Lata) Lok 2 = i, =0,

__Tt'_'ll-n'\.‘n""‘au"—ocwc“o o (8)
where A "“L’I A T"(’u %J
al=l‘?'ll\ a)==r h;‘.

System of equations (8) is heterogeneous and contains a known
right side of type (7).

Let us find the generai solution of uniform equations, which
correspond to system (8). We look for this solution in the form:




=Rew8..el(-1 ‘-‘)P-(.)
--Re"A; UL ) Pt (9)

(/=1, m, c).

To reduce the writing let us drop subsequently the indices
n and m., We introduce the designations:

v= Zmoy+ilot+im),
. ‘ L= — ip(o 4 2ym) + 2m — yiy,

Substitute (9) in the system of uniform equations. After
simple transformations we go to the following equations:
B.[z. ~a,Ami+ % r,ky] B.(Z +a2, mi) — & FrA=0;
Bi(Z,— a:Aumi) — AL T, = A.——- - bc(z,+a.7i.ml)
BlL —shy|+ Bi2 L — g he =0

B % Tut ouh— peAT e O, (10)

Equate to zero the determinant of system (10)

| Z|"‘1C‘+C|n -Z.-—l'C. “'C‘r. 04 .

; 0 Z,—iC, €, -Gyl

: _ . _ (4 ] ] -=0 (11)
; C2L|+C|t Can Cy i 0

l o . . C7Z;| "C:« ,Cl
Here:

Ci= Pei C,= “Lq“- Ci= —pp Ci= al“‘_il”l G~ ‘l:'l ;

a.

?o C.‘——f- C,-
. _C,,—%Flky; Cu"".‘?l*)’-

‘Cc = a,ﬁgm; C;= “'rc
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Condition (11) gives us the characteristic equation for
determination of o, which can be written in the form

s (0 +kc)o+d+if =0, (12)

where

a= — 301yt 1370+ 301)y — Be;
b= —ymiia + i+ ym{(fa + dln 4 5) 4 Hat+ Bt
+ 4301] — m[2(Bra + Boa) + Bz + B2 o+ Jea(a +2)):
€= 25,7 — ¥+ 7) 3 = Bnd — yl32 — 2eae) + Bt
d =3yt~ 33t ) 33"+ Vilae? ~ Bumi,g, — fuse) + ,
~ p (3, G e 280103 704 BT )] o Bl "]
o omel = 20 B B2) — 30 — (2% + g fta) —
“;akr~mi?qfih0h
. Dz -- CGCKL, - C,C.LC+ CCCLCy;
) R Caczcucu- -+ C,C;C,C“ ‘?‘.C'.'C:;Cﬁclo + C,C,C.Cw;
Ha2e= —~C,CCC, CCCLC,— CICIC(CI;
pra = C.C,G,C,; la=—C,C\Cy;
51 = C,C,G,, + C,CC,,+ C,C,C, + C,C.Cy;
359 = —C, Cacs: &a=~C |C;C .37.:.= C;rC;Cg + C,C;C, + clctcl:
3. = C,C.C, - C,C,C, + C,C)C,; EY =,-—C.C,_QC.;
b2 = —C,GCC 1 C(GCC, — CCC+ CCG,)
S  Bay=mbh,

Characteristic equation (12) has’ two roots 0y and Oye

Accordingly, the general solution of the uniform system of equations
we wrlte in the form:

jam=Re 3 I B,e"™' =" Py(s).

3 . . .
st=Re T T K.B,e"™ *"PLo). - ;

telm

L] L 2
%

? --?-‘_z.'.'_..______._;‘”r"—"‘
r mZ—pJ.«}-p; "~

m= —ICC,C,. 9.=CiCsy 1= C,CiC,y.
33=wm; 4 C,C;C,, 4 C,C,C,, . (13)




Expressions of gnalogous type are written for w,. The
particular solution of heterogeneous system of equations (8) we look
for in the form: ‘

:J”l- Re E.B;G‘(‘ﬂ *+ o pp (%), T
o = Re S Aleh+40 pa(y) ' (1)
(J=1, nj.

Having substituted (14) and (7) in (8), we obtain a system of
heterogeneous algebraic equations from which can be found expressions
for coefficients A* and B* through coefficients B,. As a result
we obtain the following formulas:

We=Re X LB+ PX®).
4= Re _.‘.‘ R A.B."™+*" px(e).
- -
L% =l +(b+clio +d i,
2= Lt Zivet 2+ 220, + T o).,

#y=C,C,C,Cy, By = IC!C,C.. ,
Be= CICICJCG +iC,CHC;Cy0 + CiChy). (15)

The expression for Ec is obtained from the ebove formula for E} with
the substitution ¢ = O

Thus, the general solution for stream function Y 1s written in

the form:
fomRe S[Be0 L pmieon s g g perenn s

h=Re 3 [RiB!S! -2 1 R By mt +o0 L R g, B e 6

Analogously 1t is possible to give the solution for w. Arbitrary
constants Bl’ 32 are determined according to initial conditions.




The process of their determination coincides completely with that
glven in works [2] and [3] and we will not repeat here the corre-
sponding conclusion.

The forecasting scheme described above was computerized.
During calculations values of coefficients were taken as
ko = 5'105 m2/s, k = 140 m, and the remaining parameters were the
same as in [2]. Forecasts by this scheme were compared with fore-
casts according to the scheme given in [2]. As a quantitative
estimate of the quality of the forecasts we used the relative
torecast error (ratio of mean absolute error of forecast to mean
absolute variability). Forecasts of pressure at sea level for the
North Atlantic were analyzed (zone between 80° west longitude and
10° east longitude and between 20° and 80° north latitude).

Table 1.
Original - E
date 1 ! 2 ' | 2
. ! [
3111 1968 0| 77 L2 0%
7m 94 78 128 I 108
. 2m I 82 132 |
27 m ! 9.2 78 123 . 092
151V 102 78 144 I 1.0
i8IV P N8 n2 - [N T T YL
21V 133 o | 16l N &
7w : 106 74, 1,40° ! 098
21V ; 79 54 . 0% 067
6V | &3 . 13 . 0%
13V ' 83 .12 .08 | om
18V 83 't 68 132 0 10
0V % | 18 T T ¥
BV 82 5 N T S N L]
-3 R A T B AL
vV | T I % 27 : 108 -
1VI ! 88 69 12 oM
Average.... 98 9 s 10

Table 1 gives estimates of the quality of forecasts for four

days ahead: § - mean absolute error of forecast (decameter) in the
conslidered area, F - relative error. The magnitudes of the estimate
are given according to the system in [2] (column 1) as well as




according to the given system (column 2). During analysis of the
data of Table 1 one ought to consider that the estimate was made
for regions badly 1llustrated by the data of observations.

The data of Table 1, and also immedlate comparison of forecast
maps composed by both systems testify to a systemaitic increase in
the quality of forecast using the new system. From July 1966,
ground pressure has been forecasted using the eysten described
above.
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FINITE-DIFFERENCE ALGORITHM OF A SOLUTION OF THE VORTICITY
EQUATION FOR THE MIDDLE TROPOSPHERE OVER THE
NORTHERN HEMISPHERE

N. V. Isayev and M. S. Fuks-Rabirovich

A system for forecasting the geopotential at
the middle troposphere using a space (in coordi-
nates z, y) firlte-difference approximation,
which provided conservation of the quadratic
integral features is considered (i.e., vorticity,
its square and kinetic energy); integration in
time follows the method of Adams. Charts of the
change in average kinetic energy of forecast
fields 3500 in time are constructed. Results

are glven for the calculation of long-range
forecasting of a brief length of time before
forecast phenomenon occurrence according to the
gliven system.

Introduchion

With the numerical solution of forecast equations one of the
greatest difficulties is selecting an algorithm which would provide
stabillity of multistage calculaticn. In view of the complexity of
forecast equations and the large volumes of criginal and inter-
mediate information, it was impossible to show earlier a method of
solving the forecast problem which was optimum in the sense of
resistance and economy. The selection of such a solution can be
made only on the basis of numerical experiments with the forecast
model being investigated.
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In writing a finite-difference model of linear terms one must

take into account that a source of instability can be inaccuracy
in the approximations of both the space and time derivatives. 1In
a number of works [8, 13]) 1t was shown that a certain improvement
of the quality of the solutioi: can be obtained by using a higher
approximation (third order) of the first and second space derivatives.
In this case, however, the source of the instability, connected with
nonlinear terms, is nct removed. This type of instabllity, called
nonlinear instability, is shown in the work of Phillips [12]. The
system, having linear stability (i.e., stability investigated on
. the basls of linearized equations), was far from always suitable

for solving nonlinear tasks, for which nonlinear instability can

prevail.

Approximation of Nonlinear Terms of the
Barotroplc Vorticlty Fquation

- An attempt to remove instability connected with nonlirnear
terms was undertaken in [5]. It was proposed to use a finite- .
difference system of calculating the Jacoblan, which provided the
conservation of the firat integrals of the barotropic vorticity
equation. 1]

Let us remember that for the barotropic atmosphere the absolute
vorticity of velocity Q is the retained quantity and the vorticity
equation can be written in the form

._‘F"-..o, (1)
3V M
. where (I = T 5; + 1, u and v - horizental components of velocities,

1 - Coriolis parameter,
[ L
%-%-f'x-?-';.
On the other hand, the general kinetic field energy

5-5'5“1“","," (2)




does not change with time under the condition of invariability of
values of the stream function on the boundary of the range of
integration 6. In integral form conditions of conservation can be
written in the form:

E-):)'E(x, Y. 1)d o = const, (3)

8= [f2(x. y. Ms = const, )

moreover, the constants in the right side of these relationships
are a function of time.

It 1s obvious that during the transition to a finite-difference
type of forecast equations it is advisable that relationshins (3)
and (4) be executed with the highest possible degree of accuracy.
However, the majority of existing difference schemes provides
retention of only part of the integral features of the original
equations (for example, only vorticity velocity {1 1s retained).
Therefore there 1s great interest in the work of Arakawa [5], which
proposes a finite-difference model of nonlinear terms of the vor-
ticity equation, which provided an integral retention of the vorticity
velocity f, square of the vorticity velocity 5‘-{3‘0’(:. y. 1) da and

kinetic energy F, i1.e., all integral features simultaneously.

J
In the work of Lilly [8] on simplified test models it 1s shown
that using the Arakawa system various sources cof nonlinear instability
are mutually compensated and nonlinear instabllity 1s exhausted.

A number of authors [3, 9, 14] expresses the opinion that for
purposes of short-range forecasting it 1s compulsory not to use
finite-difference systems in which the integral features of the
original equations are accurately retained, but 1t is possible to
use a system where retention of integral features 1s provided
only approximately. But for long-range forecasting even of a brief
length of time before forecast phenomencn occurrence, already it 1is
extremely advisable to use systems which provide accurate retention
(at least within the framework of the test model) of integral

12




features of type (3), (4) and free from nonlinear instability,
because during multistage calculation in long-range forecasting
nonlinear instability is considerably stronger than in short-range
forecasting.

In the present work nonlinear members of the vorticity equation
were represented in finite-difference form according to the Arakawa
system. Following [8], let us describe briefly this algorithm.

Let us examine the vorticity equation in the solenoid approach
for the barotropic atmosphers (at I = const)

9. -, i 9 9. 9%
2t e Sl -2 (5)

where [ = Ay, ¥ - stream function, J(I, ¥) - Jacobian, A - two-
dimensional Laplacean operator.

We introduce the designations:

iRy = T';[le-r '—‘2—{,— Flx — —\;)]
;G?=%1Hx+w¥,+Fn»-¥ﬂ.

SRR A= 3y [Re 4350 — Re - ax)f, 6)

where FP(z) 1s any of the considered functions.

In (6) let us write down three such difference expressions

for Jacoblan J:

L 35T - TS
Jy= 3y a"(?r'. - 4l¢8, 3‘-‘." -
7V 3,033 (73

Ji= ~3,{38,% ;

According to (8], each of these relationships provides vorticity
retention, the vorticity square and kinetic energy respectively.

13




If, however, we put together

‘ Jam g U+ I+ D). (8)

then this finite-~difference model will guarantee retention of all
three shown features simultaneously.

Being limited in the approximation of nonlinear terms to the
second order of accuracy, we have the following working formulas
for determination of Y4 (see Fig. 1):

] - - .
Jam g G = Gy — 20—

“te - '-.X'?. - "3)|+ l:u",‘l —9)—
—dlh =) = AL~ s+ Wl — R 4+
[l — %) - W= 2+ da — ) —
— e~ I, (9)

where h - grid interval.

] : 3
T 1
! |
| Fig. 1. Grid-
i template for
3 l. calculating non-
linear terms (h -
grid interval).
7 v é

Approximation of Derivative in Time

In forecasting systems and in models of the overall circuialion
are applied various methods of approximating the derivative in time.
Along with the method of central differences, variocus authors use
the systems of Lax-Wendroff [7], Miyakoda [11], Matsuno [1G], Hoyne
{61, and others. According to test calculations in a work of Lilly
[8] a good index of stabllity goes with the method of Adams [1].

Fer Integration in time this work tested the systexm of Adanms,




S v

I T i R T T T IR

Miyakoda, Hoyne, Matsuno and the method of central differences.
The results which were best and very close in quality were obtained
with the system of Adams and Miyakoda.

In Table 1 are estimates of various methods of integration in
time. Along with the change in kinetic energy for the various
systems the mean relative forecast errors by these systems are given.
Averaging took in 75 points. Furthermore, the amounts of divergence
between the different systems are given. The best results were with
the systems of Adams and Miyakoda (however, the divergences between
them are small). Both these systems are more accurate than the
method of central differences (and the methods of Matsuno and Hoyne).

Table 1. Comparison of certain methods of
integration in time.

A)

T=1 i T=2 . T=3

Method Formula

0] e b 1] s Ty 1] b

I

-3 e =dent | ¢ |
17 090

| :
Miyakoda T‘_;_‘.,:,’,.-._ LIIRTI 73 25 081 98 129

oracttipnan g0 |

ce e

|
§
1
I

)
: 3 [
Adams J'"“ﬂ“[ r- L ?
Voo L4 107y 72 26 0880 100 | a9 092 iae
_:’.f—l kY3 | ) ' ‘ -
2 ,‘ | | |
| . v b
ey | E ;! |
Hoyne et .es:'?(/".- 1 a3 u[ 5.I:>Q% 12210 in.us' 19
1 i f )
e ]
Central Poobo b
differ- et oy 120 09 0 w4 ek :.(r.’l 14220 ll.ml 16,4
ence i b Q-

Note. =x" - value of geopotential on the n-th
time interval /‘-(}:} - value of deriva-

tive in time from geopotential on the
n-th interval; |¥! - absolute deviation
irn the kinetic energy in percent, ccp -

mean relative forecast error; lalCp -
mean absolute error of forecast in deca-
meters; At - time interval;, T - rumter
of days; B8 - parameter in systerm of
Mivakoda.
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In using the ‘methuds of Adams and Miyakoda kinetic energy is
retained to a greater extent in the course of calculation than
otherwlise. The method of Adams.is distingulshed also by its sim-
plicity, it 1c handy for using on a conputer and requires keeping
only one additional field (as the method of central differencer). In
view of the greatest effectiveness and economy we staved with the
method of Adams and used it in thils work for espproximation of the
derivative 1n time.

We will giv> the derivation of the Adams extrapolation formula,
limiting ourselves to an approximation of the second order of accuracy.

Decompose functlons wn+1 and wn (values of stream function on
the » + 1 and n time interval respectively) iu a Taylor seriles
in At and 2At '

Yo =g+ 20 1, B 4 oga gy,

fmoves e 4200+ 4, B L gape

bo=ta vy, Aty B 4 gan), (10)

We multiply the first and second relationships from (10) by
certain real numbers o and B respectively and combine the results

-r-

(2-F Dpast =29, + Spa 11 (29, + 284, )82+

+ab 44y, ) G5 +oan). (11)

Considering the third relationship from (10), let us rewrite
formula (11) in the form:

2+ o1 =(2+ Na+ (’ bt ??;-.)“4'
+iay+ 389 ,) S +oam. (11')
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In order to obtalrn an approximation of the second order of accuracy,
the term of relaticnship (11') containing At2 must be equivalent to
zero. For this condition it is necessary that

2w —38,
whence
143 —28,

Substituting these values into expression (11'), we obtain the
Adams formula

?.-.-1'.4-(—:—1.;-—;'-1,;_,)4:4-0(“'). (12)

Parameters of the Forecast System

On the basis of the algorithm given in previous sections a
system was constructed to forecast the geopotential for H500 over
almost all the northern hemisphere (Fig. 2). As in [4] the
barotropic vorticity equation in the quasi-geostrophic approach is
written in the following form:

A % sH 41, H) (13)
where H - géopotential, 1 = 1(¢) ~ Coriolis parameter; m = m(¢) -

parameter of the increase in stereographic projection; ¢ - geographi-
cal latitude,

g O os O
(a. b)x—ax--‘;’—-—w—;‘-. (1“)

The original geopotential field ¥ is given in 2181 mesh points
(Fig. 2), having the form of an octagon (51 points in the longest
columns and iines of the octagon and 23 points in the shortest)
with the center of symmetry at the north pole. Nonlinear terms
were approximated according to the Arakawa system, and the derivative
in time by the method of Adams. Equatiorn (13) relative to 9H/9t
was solved by the extrapolation method of Liebmann. In this case
at the edge of the octagonal area a condition of invariability of

17




Fig. 2. ATSOO forecast map for 0300,

24 December 1963 according to data for 0300,
22 December 1963. The solid line outlines the
octagon along which the forecast was resolved.

geopotential wlth time was assumed. During the caleculation no
smoothing operators were applied. The 1nterval in coordinates
was 390 km at a latitude ¢ = 60°, the time interval At = 3 hours.
Thls system resolved forecasts of the HSOO fields for periods of
24, 48 and 72 hours. Analysis of the forecast fields will be
conducted below. '

Calculation and AdjJustment of the Energy
of FPorecast Flelds

Retentlon of the integral features provided by the Arakawa
system nevertheless 1s distorted during the calculation of a fore-
cast for a long period. The reason for this is not only the errors
of extrapolation in time, but a whole series of circumstances.

It is widely known that basiec factors limlting the earliness of

18




the forecast model are first of all the simplifications aécepted

in the derivation of forecast equations (such as, for example,
adiabaticity, quasi-geostrophicity, and others), and also inaccuracies
1n the initial information and boundary conditions. (In forecasting J
for the hemisphere or sphere specific difficultlies appear during the
examination of phenomena in the 2quatorial range. Furthermore,
limited computer cepabilitles force us to resort to economical
storage of intermediate information during the calculation, which
leads to a rounding of the intermediate values and limits the
accuracy of calculations because of the accretion of rounding
errors.) : “

Here we will describe a numerical experiment conducted to
determine the interval of earliness of forecast of the given system.
Basic criteria for determination of forecast successes were of course
synoptic analysis and quantitative estimation; however, in addition
the following was done. ..

On every interval in time during the calculation of the fore-
cast the quantity

I3

W:(—.—-—IA)IOO%. (15)

.

™

Iy

was figured, where Eﬁ, Eb are values of the kinetic energy fields
calculated by formula (4) on the n-th and zero time intervals. The
quantity ¥ shows how much (in percent) the kinetic energy of the
field on the n-th time interval changed in comparison with the
initial.

In vorticity equation (13) a term considering horizontal
turbulent exchange was introduced, whereupon this equation took
the form

oH _m ’
ASE= (T3t 1 H)+ o, (16)

'

e =
where v=15-+/-
vectors.

1s a plane of Hamiltonian operator; 7, 7 - unique
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With the ald of parameter v the kinetic energy of the. forecast
filelds was adjusted, namely, in the process of calculating the
forecast the quantity v was selected such that the devlatlons in
energy ¥ would be located within certain limits

W, (17)

where § was assigned as 0.5%.

Until inequality (17) was disturbed, during the calculation of
the forecast the value v = 0 was used. When inequality (17) was
disturbed, v was determined from the relationship

V.-v._|+ﬁw'.: ‘..;-D. (18)

where k - an empirically selected coefficient, k - number of interval
on which occurred the disturbance of (17). If on subsequent intervals
(17) held, then v did not change. Such intermittent inclusion into
calculation of control parameter v a119ws regulating the kinetic
energy of the obtalned flelds and achieve 1ts change within the

limits of 2% (for a lower value of 6 in (18) it is possible to lower
this 1imit somewhat) with a practically unlimited number of time
intervals. The change calculated by actual data for three days
likewise is located within the 1limits of several percent.

The authors calculated the geopotential fileld 5500 for 20 days;
the chart of the change W(¢t) in time, obtained as a result of numerical
experiments using control parameter v, which was determined by formula
(18) upon disturbance of condition (17), is given in Fig. 3b.

Changes 1in values of v during the numerical experiment are shown
in Fig. 3a. We see that up to five days the forecast 1s resolved
at very small values 0 < ¥ g 2-10“ m2/s, and in the subsequent
perlod the utilized values of v fluctuate from zero anc approximately
to 5'105 m2/s, which agrees well with the values of v used usually
in calculations (see for example, [2]).

The most interesting feature of the chart of W(t) (Fig. 3b)
is the fact that after five days the quantity |¥| somewhat increases
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Fig. 3. Charts of the change in parameter
1g (v + 10) in time (a) and the quantity E _/E,

in time (b). E - field energy on the n-th time
interval. Eo - energy of initial field.

and the change of W(t) become; periodic. This periodicity indicates
that at approximately the fifth day a large role begins to be played
by the balance of purely stray perturbations and damping factors,
realizagble with the help of control parameter v. Visual and quanti-
tative estimation of forecast filelds likewlise shows that four to
five days is the 1imit period for good Justification of a forecast
based on this system.

Such a mechanism of estimating the earliness of forecast
apparently may be applied to other forecasting systems.

Analysis and Estimation of Prediction Fields

As alread; was indicated above, the calcuiation of forecasts
was conducted for v = 0 (in contrast with numerical experiments on
determining the interval of earliness of forecast, examined in tr-
previous section).
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During the calculatlion of forecasts simultaneously by formula
(14) the quantity wW(t) was calculated in order to be able to observe
the degree of retention of kinetic energy in the fields being
forecasted. For a period of two to three days the quantity wW(t)
was within 1limits of 2-3.5%, which indicates good retention of the
integral features for such a period of calculation. As a comparison
let us say that when using the algorithm of forecast calculation
given in [4], the quantity W(t) changed after three days by 15-20%,
which indicates nonretention of the integral features as well as
a large degree of smoothing of the forecast flelds.

As an example let us give the results of forecasting 3500 for
48 hours, calculated according to original data for 0300, 22 December
1963 (Fig. 4). The actual and forecast maps for 0300, 24 December 1963
are given in Figs. 2 and 5. (Let us note that we selected the most

difficult example during the perliod of the two-year test in a system
based on limited territory.)

Fig. 4. ATSOO original field at 0300
22 December 1963.
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Pig. 5. ATSOO actual map for 0300, 24 December
19630

We see that values of the geopotentiai in centers were predicted
rather well, although a certain lag from their actual movement 1is
observed. Cyclogenesis over the Pyrenees and the formation of a
ridge over western Germany (where there is a trough on the original
map) were reflected in the forecast. The absence of smoothing and
retention of integral features guarantees that the forecast maps
will have pressure gradlents close to the actual ones.

Quantitative estimates of the example are given in Table 2.
Over the illustrated regions relative error € = 0.83 (over Europe
€ = 0.72), whereas forecast estimates calculated by the simpler
system described in [4] are noticzably worse: € = 1.2-1.4. (In
Table 2 estimates were resolved over al) points of the fleld.)

An estimate of calculation results for a series of forecasting
examples from this system are given in Table 3. The estimate was
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Table 2.

Estimate of forecast success for 48 hours -

according to original data for 0300, 22 December 1963
(I - finite-difference model in work [4]; II - in this

work).
|wf
O-bé ioley s
N
Regions 0% |—~ SN My
Za |1 ;N - oo
Whole range used when ! Lo P '
evaluating............ 1377 132! 98 1308 195 1% 100
Europe.......c.ovvvuvee 187 188} 98 1679 |u.s L4 an
North America.......... 18 :.al|10s: 20 (12, 148 08
ASL18. . .euiuunenennnnn.] W NS| 4 123 LIS O3
Dailtclre%ions (Pacific, | t i [ '
! ) .
retlc g_cgggs}forth M 80 | 4™ LUBHR N RN

e s 2 0 00 !

T Ns

|

Note. Ialcp, IGIcp - mean absolute values of error

and variability (for 48 hours) respectively;
61: - variability (for 48 hours) at point of

regular mesh; ¥ - number of points of

regular mesh in a given region;
relative error.

ey
L™

Table 3. Estimates or forecasts for 24, 48 and 72 hours.
=] ’ =2 =3
Raw data ,——-
fp | %o | b5 | fop | em| "5 | ‘p | ‘e | o
1500 16 X1 1968 -] = = |eslary] -- 086 05| O
1500 17 xu 1988 -4y - == =—=1="102|0%]qm
1500 18 X1l 1948 - | - - = -, Lnjase’ 1,04
1500 19 x11 1988 -, = == - lar] aw o.so'm
0300 14 VI 1988 -] — —~ionloassionw e} — { —
0300 13 Vil 19ss 068 | 063 ; 851, am; 071} aTe’ ats | am | am
0300 16 VI 1906 Ngsi Qfi0: Q8 075 Q77| 0M ! QT | Q70! 76
0300 151X 1ee8 =t -"aw' an|an| am|an! om
0300 s x 198 ~l= -l -] -0-
0300 7 Vil 1983 -l -f-jom! - |- -} -
0300 ‘;xutie8 - = -ilmiam| — ! -] -] <
0300 = xu 190 - |-} —-iamjoem| — | — | - | <
Mean............ Of7 | Q63| 0S7T| Q3| Q7S | Q6T O . oMy amr
Note €cp = the estimate took in 75 points, €.,

voints in dark regions, €g - 12 points in

the North Atlantic and Europe { «=

relative error).
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over 75 points (ecp), as far as possible evenly distributed through
the forecast range, and also through 12 points (55), located in

the North Atlantic and on the European territory of the USSR.

One ought to note that the examples of forecasis using raw
data for 0300 15-19 December 1965 were specially selected for the
purpose of testing the system on complex synoptic situations.

Analysis of a series of examples of forecasting (12 cases),
calculated by this system, allows us to make the following quali-
tative conclusions. PFirst of all one ought to note that such
important phenomena in reconstruction of fields as cyclo- and anti-
cyclogenesis frequently are provided in forecasts (cases of cyclo-
and anticyclogenesis, conditioned basically by dynamic factors).
Purthermore, the change in pressure in the centers of the baric
formations, and also values of gradients in the pressure fleld are
correctly predicted. At the same iime, a certain (of the order of
20%) error in predicting movements of the centers of the baric
formations is observed. (The last drawback can be in some measure
removed by increasing the order of approximation of the nonlinear
terms.)

In conclusion let us note that this finite-difference algorithm
can be applied even to baroclinic forecast systems.
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NUMERICAL SOLUTION OF THE BALANCE EQUATION
IN THE FRAMEWORK OF A QUASI-SOLENOIDAL
FORECAST DIAGRAM OF THE GEOPOTENTIAL
POR THE NORTHERN HEMISPHERE

I. G. Sitnikov and S. 0. Krichak

A finite-difference system of solving the
balance equation for the northern hemisphere is
gilven. A aerles of characteristic features
found with the solution of this equation for
a belt of low latitudes 1is shown. The obtained
values of the stream fuaction are used to fore-
cast the geopotential field at the middle level
of the troposphere frr 72 hours. An example
of the forecast is presented.

Various questions connected with the technology of numerical
solution of the talance equations have bteen illustrated in a number
of works (for example, (1, 3, 5, 6, 7, 8, 9]). Most frequently in
this case the prcblem is solved for a comparatively small area. Of
the mentioned work: orly in [8] is a method stated for solving this
equation relative to the northern hemisphere. This work establishes
a number of characteristic features found with the solution of the
balance equation within the framework of a quasi-soleuoldal system
of forecasting the geopotential on the nortlern hemisphere.

1. The balance equation recordecd in a lccal isobaric systenm

of coordinates (x, y, p) for a polar sterecgraphic projectisn has
the form [9]
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Here ¥ - stream function, # - height of isobaric surface, m -
"parameter of distortion" of stereographic projection, 7 - Corlolis
parameter, g - acceleration of gravity,

It is known that equation (1), considered as the equation for
determination of values of Yy, will belong to the family of Monge-
Ampere equatlions referring either to elliptical or hyperbolic type
depending on the relationship of coefficients [#]. A number of

authors [8, 9], making use of the so-called Petersen conversion,
reduce equation (1) to the form

mlAq.,=1+]/l-'+2gAH+""( or dy’)+

‘*’4""('3‘5,7)7 m{ 53 9o +‘ai (2)

To solve equation (2) usually the method of series approxlma-
tions is used. 1In this case equation (2) is considered as a Poisson
equation relative to ¢, consldering that values of ¥ in the right

side are known and are determined, for‘example, fror the previous
approximation, , h

We willl use as the initial approximation for the solution of
equation (2) the relationship

%-%M (3)

where 7 - the value of I on any fixed latitude 0o (we took ¢, = 45°).

Then, substituting (3) in equation (2), we can after solving (2)

determine according to wo a new approximation wl; substituting it
in the right side of (2), we obtain w2, ete.

As a boundary condition, following Miyakoda [8], we take
relationship 1Pi,,=':-f~Hl,p. where agaln Tm!(go), Go==45".
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The obtained field y was used as the initial field for the
quasi-sclenoldal forecast in terms of a barotropie model on the
northern hemisphere (system proposed in [2]).

The forecasts of ¢ were for 24, 48 and 72 hours. At the end
of each perlod the HSOO field was lccated by means of so-called
"{nversion" of the balance equation, 1.e., of the solution relative
to ¥ for known distribution of ¥.

2. PFor a solution of equation (1) we must require that this
equation be elliptical in all points of the grid. As experiment
shows, the criterion of ellipticity of equation (1) having the form

- [0y & 0% al\.
Fe=2gm®sH+ R —2{5E 2+ 5% T-)>0, ()

is observed for synoptic obJects, at least for moderate latitude,
and with a grid interval of no less than 250 km [4].

Usually the last term of (4) in absolute value is considerably
less than the first two terms, therefore frequently (see, for
i example, [8, 9]) a2 simpler criterion of ellipticity is used.

F=2smAH+ >0 (5)

This work assumed criterion (5). On Fig. 1 is shown the
distribution over the northern hemisphere of points with I' < 0 for

one of the analyzed examples. The same figure represents the H
fleld. During the calculatlon of T' values of Laplacian AR were taken
with 8¢ = 390 km at a latitude of 60° (at a latitude of 10°, to which
the extreme grid points reached, the grid interval was about 200 km).
The number of grid points in which equation (1) is hyperbolic attains
here 400, i.e., 18% of all grid points. In this case the over-
whelming majority of these points falls in low latitudes, ¢ < 30°.
For the belt of latitudes ¢ > 45° the number of points of the
hyperbolicity of equation (1) is 25.
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Fig. 1. Distribution of points of hyperboliclty
of equation (1) for the northern hemisphere for

a square grid with an interval 68 = 390 km at
latitude ¢ = 60° and 3500 field at 0300 17 Septem-

ber 1965. J

As one would expect, a considerable number of polnts for which
' < 0 1s connected with the central ranges of deep anticyclones

(mainly, subtropical), where A# Laplaclans take large negatilve
values.,

It is possible to fulfill the criterion of ellipticity of (5)
for all grid points by correcting the values of AF in those areas
where I' < 0. This was done 1n the following manner. Assume that

at peint 0 (Fig. 2) T = Ty < 0. Write criterion of ellipticity (5)
in finite-difference form

LA
P2y + 850 (6)
(here 64, for example, at point 0 1s expressed as (6H)0 = H1 + Hy +
*Hy + Hy - 4H0).
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Flg. 2. Finite-
difference approxima-
tion of first and second
derivatives in neighbor-
hood of point 0,

. o

Divide both sides of (6) by m2/(63)2. We obtain

y= I mogi 4 B wgga L0 (6a)
. )

Let now 70 = 0 be the new value of y at point 0. Add to each
of the values of Y; (i = 1; 2; 3, b) the quantity yo/h and determine
new values of Y; at points 1-4 bs Y; =Yt (YO/U) This means
that the mean value of y in nearest neighborhood of point 0 becomes
constant.

We consider now that the values of fleld ¥ at points 0, 1, 2,
3, 4 are unknown (designate them ﬁo, ete.), and determine them from
the following system (see Fig. 2):

F’v +;’:+ﬁa +Ho 4”0"—(70 L') ."‘°;
l:’o+H-+Ho+”s-,4”n-‘f;(‘h—l-a):
o+ Hot Hit Ho— $im (3~ Lk (7)

ifo +He+ Hy+H, "'"';a - 'f,‘l‘—'{';a - La):
;';o +H+H,+H, - 4ﬁc - ‘5';‘(;4—1-6)7

Solving system (7), we find new values of EO’ 51, ceay ﬁu
such that the value of y at the investigated point (point 0) is
equal to zero. The described method 1s close to the method used
by Shuman [9].
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We agree to call numerical values of vy, in (6a) the
, "hyperbolicity" at an arbitrary field point <. Experiment showed
i that by the examined means it 1s possible to blur the hyperbolicity
: at the given point over the nearest neighborhoods of this point.
Having applied the described procedure to all points of the grid
where Y; < 0 (except the boundary), we decrease the absolute value
of both maximum hyperbolieity vy

MaKc and average hyperbolicity ch

- Yy v

over the whole field ( 7y= -g~, Where the summing 1s over all &

insicde field points in which y < 0) because of the more precise
determination of values of # at points where earlier it was y 2 0.
For a further decrease in the values of Ymak
to make several circults of the entlre map.

c and ch it 1s necessary

We considered the task completed if IYnaucl < 0.25. Note that
after the first circuit of the map tue quantity 'Ymancl was usually
10.0-30.0. For field H shown in Fig. 1 after the first circult
Y = -20.3, ch = <2,75; after the tenth circult ¥y = =-0.23;

MaMc MaKe

ycp = -0.02. In this case the maximum difference between the values

of original and corrected fileld A did not exceed 3 decameters 1in
even one point. The greatest corrections were necessary on low

latitudes, and regions with weak ﬁeteorological treatment.

The modified field ¥ was used as the initial fleld for solving
the balance equation relative to w.\

3. Let us write equation (2) in finite differences for point O

(Fig. 2), having multiplied the left and right sides by (63)2/mg

(m0 - value of "distortion parameter" m at point 0). We have

I

bttt bt = EF t.+|/ [EFap+

CHEEHA U B B A 0 b= - WP

-,

-

et b= =00 - SR w0 (8)




(here As - value of step of grid in decameters: Ag = (63)3102, where
§s = 390 km; Zo - value of Coriolis parameter at point 0). During
the calculation of finite-difference models of the second derivatives

-;%-.—;%n-£3§ first differences were used with an interval /26e

over the grid (zl, yl), rotated 45° in comparison with the original.
Thus, at point 0 we have (Fig. 2):

| _“3,...;;,. -4 .t»__h__’h..
‘l ‘;n hﬁh
B .b;ﬁ__ﬁ_'h_ (9)

‘J\ ". ‘.' » ' [ ¥

Such a recording of the second derivatives is close to "method C"
analyzed in [8]. It is the finite-difference expressions of first

derivatives of type {}.{} (g = =z, y) taken with an interval of 24s,

Laplécian AR with an interval of v/26e, Laplacian Ay in the left
side of (8) with an interval 4f éa.

For calculations from formula (8), furthermore, it was con-
venient to multiply both sides of the equation by 10‘", considering
new function y* = w¥1o'“. The value of function yp#* in dam/sz, as

is simple to see, for example, from expression ¢*=~ 'lo

=~———H (g = 0.98
dam/sz), has the same order of magnitude as the values of # in

decameters.

To solve system of equations (8) in all inside points of the
grid the extrapolated Liebmann method was applied, modified in
the following manner. Namely, the series approximations wl, wz,
w3, etc., developing in the solution prncess, were substituted in
the right sides of equations (8), not every time, but only after
the fulfillment of some fixed number of iterations N¥. We took
¥ = 10. Thus new flelds F were formed after the 10, 20, 30th, etc.
iteration, and the entire process of calculation consisted of two

»
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cycles "imbedded" in one another. Calculations were conducted
up to the achievement of the final accuracy of 6§, in other words,

-~

it was necessary that ;-‘:(\'r""’"—?"“’) <3,

This technology of solving system of equations (8) 1s close to
the "accelerated" method (fast method), glven in work [8, 9]. For
an accuracy of § = ¢ dam 1t was necessary, as a rule, to have 80-100
iterations (the field of right sides was calculated only 8-10 times).
This calculation occupled about 30 minutes of machine time.

In the course of a solutinn in all grid points where the sub-
radical expression in formulas (8) is less than zero (observance
of criterion (5) leaves this possitility), it 1s equated to zero.
It was clarified that the number of points in which it is necessary
to produce this correction 1s, as a rule, 150-200 (7-9% of all grid
points), moreover these points are distributed mainly on belt of
low latitudes. This effect can be connected with the fact that in

low latitudes the term 25’(%%—.—%3’%) in the subradical expression
- . A

in the right side of equation (2) sometimes acquires large positive
values. It 1s possible that a correction of field H in accordance
with criterion of ellipticity (4), instead of (5), would bring down
the number of points in which an artificial change in the size of
the subradical expression is required.

We must note one circumstance leacding to a reduction of the
rate of convergence during calculation for low latitudes. As
experiment showed, the calcul.ted values of ¢*, numerically equal
in the geostrophic approach to values # dam, in the quasi-solenoidal
approach seem, 8s a rule, more than ¥, This one can be seen well
in Fig. 3. 1In moderate and high latitudes y* gradients are less
than # gradients, but in low latitudes, under condition (3), fixing
values cf y* on the boundary, ¥* gradients grow in comparison with
H gradlents. Such a configuration of field y* in low latitudes
leads to a drop 1n the rates of convergence of the iteration process
(in comparison with the initial, geostrophic, approach).
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Fig. 3. Cut along 45° west longitude and 135°

east longitude~for the H500 field at 0300

17 September 1965 and the y* field, obtained
by solving the balance equation.

"4, Let us stop at the question about the inversion of the
balance equation. Inasmuch as equation (1) relative to function
B 1s Polsson equation, its numerical solution does not represent
difficulty. Multiply equation (1) by Z/ng, exchange the left and
right sides and write it in finite-difference form (see Fig. 2)

H,+ Hy+ Hy+ H.-4H.--f'§(§;+t:+ﬁ+ﬁ-—4ﬁ)—
(ARG P - (H -2 (NN — W)+
utaey
+‘-;—.l(+:-s)(i.—£)+(¢:~y:)(z-?.)]. (10)
= |

Here 1 = Z'lOu; é = 0,98 dam/sz; ye = v'lo““; expressions :En ;;. ig%

are solved according to formulas (9). A system of equations of form
(10) we solve by the extrapolated Liebmann method. To achieve

an accuracy of 60 = 0.5 dam, as a rule about 10 iterations are
necessary. Inversion of the balance equation after a forecast for

24, 48 and 72 hours occupies in overall complexity about 10 minutes
of machine time.
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Inversion of the balance equation was used also in the next
experiment. A system of equations of form (8) was solved relative
to y*, and in terms of the found values the inversion immediately
was executed according to formulas (10). The inverted field must,
generally speaking, completely repeat the original field A (except
those points in which either the criterion of ellipticity (5) was
not executed, or subradical expressions in (8) were equated to zero).
The absence of iteration indicates either deficiencies of the .
finite-difference recording of (8) or (10), or inaccuracy in the ?
direct or inverse solution of the balance equation. |

Comparison of the profliles of original and inverted 7 fields
shows that the agreement 18 entirely satisfactory.

5. A finite-difference system of barotropic prediction of

the geopotential on the northern hemisphere in the quasi-geostrophic

\ approach is described in (2]. This system was used by the authors
to forecast the values of stream function ¢%, obtained as a result
of solving the balance equation. The balance equation was inverted
following formula (10). In Fig. 4 are given the contours of the
area for which the forecasts were madé Py the system (grid interval
8 = 390 km at latitude 60°), and the ESOO forecast field ror 1500
hours, 10 October 1961, calculated 48 hours in advance by original
data from 1500 hours, 8 October 1961. For comparison Fig. 5 shows
the HSOO field forecast on a quasi--geostrophic model, and in Fig. 6
the actual ESOO field in the same period.

The amount of mean relative error was calculated for 19 points
evenly distributed over Eurcpean territory of the USSR: for the
quasi-geostrophic forecast for the given period € = 0.75, and for
the quasi-solenoidal - ¢ = 0.68.

Comparison of quasi-geostrophlc and quasi-solenoldal forecasts
calculated on a barotropic model for the northern hemisphere allows
roping that during tests of quasi-solenoldal forecasts under

operative conditions satisfactory results will be achieved.
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Pig. 4. ”500 fores=

cast map for 1500
hours, 10 October
1961 based on
original data for
1500 hours,

8 October 1961,
calculated accord-
ing to a quasi-
solenoidal model.
A continuous line
shows the contours
of the area for
which the fore-
cast was made.

Fig. 5. ESOO

forecast map for
1500 hours,

10 October 1961
according to
original data from
1500 hours,

8 Qctober 1761,
calculated accord-
ing to a quasi-
geostrophic model.



Fig. 6. Actual Hgoo map for 1500 hours,
10 October 196i1.
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THE INVESTIGATION OF HEATING IN THE STRATOSPHERE
USING NUMERICAL EXPERIMENTS®

B. Barg and 3. A. Ifashkovich

The evolutlon of tempmerature perturbation
in the stratosphere 1s studied. The initial
equations were proposed by A. S. Dubov [1] for
forecazting in the stratosphere. The geustlon
abou* the original temperature perturbation is
considered. A flnite-difference approximztion
of equations 1is :itated, a numerical method of
solving the problem 1s formulated, and its
calculating stabllity is investigated. Results
of calculatlons for different wvariants of the
initial temperature perturbation are presented.

From liter: e 1t 1s known that at the end of winter as well
a5 1n the beginning of sprire in the stratosphere there can be sudden
warining trends. This phenomeuon, discovered by Sgherhag [10] and
known by the name "Berlin phenomenon," was then confirmed by further

observations and became the cbject of numercus investigations (see,
for example, [6, 9]).

The majJority of lnvestigatlons were 1n first place tc establish
possible reasons for these warming trends. This work does not

consider these questions and primary attention 1s given an aitenpt

!The presenrt article is the result of the joint work of the
Institute for the Study of Large-Scale Weather of the GDR Weather

Service and Hydrometeorologic Center of the USSR.
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to study the evolution of the warming trend and its values. 1In
other words, it assumes that temperature perturbation in the
stratosphere 1s suitably described by a priore methods, and its
further development requires the use of hydrodynamic equations.
‘ Outwardly such an investigation 1s similar with the work of

: Khinkel'man [4], Berkovskiy and Shapiro [7].

However, in contrast with the investigations in [7] we 1limit
ourselves to an examination of processes in the stratosphere.
Therefore we can use the work of Dubov [1], in which approximate
E . forecast equations for layers of the atmosphere with a high
statistical stabiiity are obtalned, 1.e., equations which are

LRV

sultable for dynamic examlnation of stratospheric processes. One
ought likewise to show that results obtained in [1] allow suffi-
clently accurate passing from equations in a three-dimensional space
to equations for a two-dimensidnal case. This clrcumstance from a
mathematical point of view is essential, since 1t noticeably facili-
tates calculiations.

i o pisomit

According to Dubov [1], we will begin from the following
equations:

st b o o]

‘e.g:_——{—(z, Az)—?-‘{;‘—'j—.ﬁ",—.(n 2) (1)

T N 1 o7
e s2)+(z 8 n+-.f}.-,,,—]. . (2)

Here and subsequently we accept the designations: z - height of
considered isobaric surface, T - température on this surface, g -
acceleraticn of gravity, ? - Coriolis parameter, 8 - Rossby
parameter, A - Laplace operator, (e, d) - Jacoby operator, v, - dry
adlabatic gradient, a4 - radius of earth.

Initial Conditions

If equations (1), (2) are used to solve the model problem, then
it 1s hardly expedilent to use as Initial conditions the data of
observations for practliecal synoptic situations. It is more useful
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to use a problem which gives the initial fields of meteorological
elements in the simplest form. How must the basic fields, and
consequently, the initial conditions look?

2 good correspondence to actual c¢nnditions would hardly be
achieved 1f mean maps, for example mean monthly maps, would be used
as these fields. It 1s known that in averaging important parts of a
fleld are lost, such aé the intensity of stratospheric polar eddy.

It 1s possible to approximate more the practical relationships in the

atmosphere if we sultably stylize the determined observable typical
states.

To do this the chart shows profiles of the geopotential and
temperatures for 50 mbar along a definite meridian at 0000 hours
Greenwich time for 5, 16 and 17 January 1958 (Fig. 1).

2040}
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1920

T

1800

1
0 14 i
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0V
Fig. 1. Approximation of H50 meridian profile with the

ald of formula (6). 1 - meridian distribution by data of
observations; 2 - distribution calculated by formula (6).
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Let us present now the observed profiles using an analytic
expression. If we do not require that the approximation be the
best, then there are definite degrees of freedom which one could
use.

From observatlions which must generally desecrlibe the polar
vortex, it is possible to borrow the followling facts:

a. At the pole wind velocity is zero.

b. Wind veloclty turns into zero between the equator and 30°
' N\
north latitude.

¢. Maximum wind velocity is between 60 and 75° north latitude
(in our formulas it will be accepted that the maximum lies at 60°
north latitude).

4

"d. Undisturbed wind veloclty has only zonal component u.

These assumptions, and also the assumption that the initlal
undisturbed fleld depends on longlitude A, allow selecting for wind
veloecity a parabolic profile

‘-u;c(by—&,)(&-—%), . (3)

where u is the zonal wind veloclty, ® - polar angle, # =0%
82 =60 = 20-.::; onasc= 30°.

From expression (3) follows

==, 40,8 =~ _;_';."_“'_: Cymm 2“-.-:' (h)
NaKe oxe

Applylng the formula for geostrophic wind
| oz
““'%'T‘?ﬂ" (5)

we obtaln from (4) the expression for the height of the 50 mbar
isobaric surface
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T= %2m;c.l(0'-'-< 2)sin ¥ <4 20 cos B! + c,[) sin & — cos 8]} + 2, . (6)
(2 is expressed in decameters, 3, = 820 dam).

In Fig. 1 it is evident that the selected parabolical meridian
wind profile will give a distribution of HSO which agrees well wilth
the data of observations. Such means can also obtain the expression
for approxim;tion_of temperature. From examination of the field it
1s evident that the investigatlion must embrace the range from the
pole to #=60°. Accordingly the temperature fleld we wlll approximate
also in the zone between &#=0° and 0=60°; in thls case the formula
for temperature distribution has the form

T'= to+Aeos3,58+273°. (7)

where t, = -70°, 4 = 12°., As can be seen from Fig. 2, this approxi-
mation is sufficlently accurate.

These expresslons approximatz undisturbted basle fields. In
accordance with our origlnal thesils we assume that local temperature
perturbation can be arbitrary. From systematical considerations before
we descrlbe how thls perturbatlon is assigped, we will give certailn
information from the technology of a numerlcal solutioen. On a map
of the northern hemisphere in stereographic projection (with the
section covering 60° north latitude) is imposed a regular grid with
42 x 42 points (Fig. 3). The pole dces not coincide with the grid
point, but 1s in the central point of the grid. Grid interval s
is 330 km at 60° north latitude. Thils regular grid is used as the
system of coordinates. In this instance temperature perturbatlon
T* can be ziven by the formula

‘ T’éA‘cos(B‘%rf)+':(‘. r‘-=;/(x——x,)’+_(y—y,)’. ) (8)

Here Tos Yg = coordinates of the center of the temperature
perturbation, expressed in units of length equal to the grid interval;
A*, B*, Kk¥® — arbitrary constants, r»* - radius of temperature 1
perturbation, likewise expressed in grid intervals.
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. Fig. 2. Approximation of meridian of temperature

profile on 50 mbar isobaric surface. 1 - temperature
profile from the data of observations; 2 - profile
calculated by formula (7).
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Fig. 3. Regular grid used for calculatlons.

From formula (8) 1t 1s evident that perturbation has a circular
formula relative to a regular grid (on the spherical earth it
acquired a pear shape). The perturbation lies so that it would be
as far as possible from the edges of the considered area on which

artificial boundary conditions are assigned (3z2/3t or 3T/3t equal
to zero).

Approxiration of Derivatives in Time.
Stabllity Analysis of Solution

When selecting a numerical method for solving the problem at

hand, an important question 1ls the finite-difference approximation

of derivatives in time. Therefore 1t 1s useful to estimate the

accuracy of the solution with different means of approximation of

these derivatlves. Such estimates can be obtalned by comparing
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an accurate solution with the numerical. For the above problem it

is possible to find an accurate solution in the case of initial
conditions of a special form. Below 1s stated the means of obtaining
the accurate solution and thls accurate solutlon 1s compared wilth

the numerical with different varliants of approximation of the
derivative in time.

We will consider quasi-solenoidal motion and assume that stream
funetion ¢ 18 connected to geopotential s by the following approxi-
mate relationship:

é::ifz. (9)

Then the system of equations of our problem in spherical
coordinates is written in the form

T o e [T 890+, 879 — 2%

Sttt st gslme ™ a0

where T = ITH,

‘We assume that the stream function and temperature function
can be presented as the sum of two components: zonal (not depending
upon geographical longitude and time) and nonzonal. Then we write
that

‘M.o YR t)-;(o, :)+”(.v LA t);

P=Te®, O+ (01, 3, o). (11)

Zonal component ¥ we represent by the formula
% = () — a(0)a? con d, (12)

where a - index of circulation. Then from the equatlion of statics

and of relationships (9) we obtaln the following expression for the
zZzonal component of temperature:

r_——-‘%(%—a?cml;f-). (13)
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Writing T'* for the level (g = ;) of interest, we obtaln
Polae, ==c, - ¢y co8d, ‘ (1%

where

' "w(‘ﬂ LS Lo
Let us substitute now relationships (11), (12), (14) .n equations
(10):

R ki

~ (7, 8¢) F (v, a7%);

E S g e, s

arY g
=t e e T (15)

where

b= 2at+e)+ (220N
leyge

Y .
= Yo — TIK1H

We accept subsequently that kl and k2 can be approximately
considered constants. \

We assume that in initlal moment ¢ = 0 the nonzonal parts of

stream function y' and temperature T*' are represented ty the
formulas:

' kv = Re A PE(V),
T* |y = Re B, P2¥), (16)

where P: 1s an adj)oint Legendre polynomlal.

Accordingly look for the solution of system (15) in the form:

e N R




$ =Re At} P2(®),
T = Re B(tW*'PL(9). (17)

Having substituted (17) and (15), we obtain the usual linear
differential equations in time:

y%‘-+(¢r-k.¥-4—hu-0.

: Yo =22~ yumA 4 [Aetw)—eyiB,
yunin4 1) (18)

It 1s easy to see that the solution of system (18) can be obtained

in analytical form. Namely, let:
A= Aginet BenBieine, (19)
Substitution of (19) into (18) gives:
S@— M= lye— Ne kot ariB, |
(k,;l-cy—yc).A.-k,B‘,’ (20)

Equating to zero the determinant of system (20), we obtain the

characteristic equation for determination of o

P —pet gm0, _ (21)
where P-—;-('+2-+'Y+‘n).

4-_'(-55;-(3—-’)+L’-—-'5-§——!——-ﬂ' Ny —Xev el

Consequently, the solution of equations (15) 1s written in the

form:
n ' m T
2 = RelAeimo - 1 Aetmi +Th) pray
. MYy m mm
7> o Rel & Agtmts 0 4§ Resmi o Th) pia), (22)
gy oy hmy m Lty
where k—-‘-.— t,—y(-—a)]; o« and e - roots of the characteristlc

/)] w
equation; omg, + g,
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Let us go now to the solution of system (18) by the numerical
method. Namely, let us examine two variants of approximation:

1) explicit scheme with replacement of derivatives in time by

"forward" differences, 2) implicit scheme.
In the first variant derlivatives in time are represented in
the torm:
A AV N s BV -
7 TR A s YR (23) |
and all remaining terms in equations (18) are written for preceding -
instant t. We set
A=Al BumBoel™. (24)

Then considering expressions (23) and (24) equations (18) will
take the form:

et — 1A, = —im 3t|R,B, — (2, — ay)A,);
et =18, = —imbt| — 22— YA+ 1y — 2+ w)|By). (25)

From (25) can be obtzined the following equation for
determination of 82/A2:

(%)’_ﬁ:%’__.*-)iw%a;})-o. (26)

The quantity 82/A2 can be both real and complex. Let us write
down the expression for 82/,42 in the form

(‘%)-7::/4; l;ao. 2n .

while

7.’-/. when f;+0.

Substituting (27) in (25) and separating real and imaginary

parts, we obtain after simple transformations:
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2 - Y -— ] 3 '
,-P.:.._(.;I‘_-:gg,.).,.g:ﬁ.(ﬁ?_at_i; (28)
12';23!-- -u(’»*,_'z.—dl-t-z) . (29)

vemy iy, . . (30)

It 1s obvious that when

eSm (14 CUL ) ("""ﬂﬁ.‘z;-:_ﬁi_"z):. .

m
we have %<0 and, consequently, in accordanne with (29), (30) ampli-
tude grows in time.

Let us examine now the solution in the case of the implieit
scheme. In this variant derivatives in time also are approximated
by the formula (23), however all remaining terms of (18) are written
for the subsequent moment of time ¢ + §¢t. Using (23) and (24), we
can write system (18) in the form:

ly— l.’"“l —2y)8¢]A; 4 imk, 3B, -‘yA,c-"";
{y +.,”..'a"' y—224-w)]}B; — ':'}(2 — YNMBLAy = yB,g-tvie (31)

From (31) we obtain the equation for the determination of
B,/A,, completely coinciding with (26). Making use of expression
(27), after simple transformations

N . L
(3. wiirfy mVey(hy—ay— /1P
(12 2R 4 = : (32)

Obtained formulas allow evaluating the accuracy of the numerical
solution., For this let us compare results of calculation for
accurate solution of (17) and (19) with calculations from formulas
(28) and (32).

Calculations were produced for the following values of
parameters: §¢ = 1 hour, Tgp = 200°, Tl = 250°, y= 0, m=1, n = 2,
5, 10. Very important is the selection of the values of circulation
index and 1ts derivative in the vertical coordinate. The last



quantity is substantially different in different seasons. Inasmuch

as sudden warming trends in the stratosphere are observed predomi-
nantly at the end of winter and beginning of spring, the value
da/dg referred to thils time of year was taken, namely

da
I it

Results of calculations are presented in Table 1. The table
shows quantitles characterizing the change in wave amp.itude in the
time interval 6t = 1 hour. 1In the case of an accurate solution there
exist only real roots of characteristic equation (21), i.e., :£=0.
therefore wave ampiitude does not change in time. With the numerical
solution method there appear changes of ampllitude in time. These
changes seem greatest for small values of n, so for n = 2 in the
hourly interval amplitude changes by 0.3% of the initial amount.
Using "forward" difference- there 1s a growth of amplitude; this
variant of solution seems unstahble 1n calculations. In the case of
the implicit scheme, stable in calculations, a decrease of amplitude
in time 1is noted.

Table 1.

Acourate solution "Forward" differenge Implicit seheme

S m L) W ! @ m o)
exp (—34) | exp (—3.4¢) |exp (—vbf) i exp (=20) | exp (~¢) | exp (rutf) ]

2 1,0 T 10080 | 10014 09970 | 09986 "

3 Ho- 1.0 1,0008 1.0000 09992 | 1,0000

w0 - 10 10 - 10000 1000 |- 09999 I 1,0000

Calculation System

Passage to a Carteslan system of coordinates 1s carried out.
A scale factor 1s introduced by the formula

me ) (33)
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where c-a(l+sinw):p--:-‘;9 - geographical latitude on which the plane
of projection lies; r - distance of considered point from the pole in
the plane of projection.

The Laplace operator in the right sides of (1) and (2) is
approximated by the expression

Az'\-—‘[zl+23+za+35+“—(zs+zo+z-+zo) szo] (34)

The arrangement of points 1is shown in Fig. 4. Terms in the
Jacobian are represented in the form

r e o .,+z(.,_.,)+,,_.,] [h—-8t..] (35)

We introduce the designations:

EYTE Y P AU ) (36)

The expression of the Laplace operator in the left sides of (1)
and (2) we approximate by the formulas:

F
.s-gi.; Rva (Bz,+8z,+bz,+8'z. 482.,‘--7‘—‘-”8_

A%l ~ - 5%, | (37)
while
oz __ -
or <R Tﬁ“'TT“.
We will use the MTS system for all quantities except geopotential z;

we wlll express 1t in decameters. Designate I = 1
(1) and (2) can be represented in the form:

OA’ then equations

ATZ e —3ts? '(3!:?""%“';?( . TAz-}--—-—- 23'1)4-

+Tgﬁﬁ;‘.u(r,’z)];m . (38)
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+13‘il‘)" % ‘#’('Tﬂ)- (39)

where 8t

a " - number of time 1ntervals in a twenty-four hour
period.

ot s, .
IR TR B R |
VRS SR TN 2 Jasevy operators.. C
Yo Y % Y%

v % 4

The solution of equatlions proceeds as follows:
a. The right sides of equation (38) are resolved.

b. Determine 6z 1n decameters by solving the Polsson equations
and calculate z fortb + 8t. As boundary conditions with the solution

of the Poisson equation we take 2|, =0 (first boundary problem or
. \
Dirichlet problem).

c. Calculate the right side of equation (39) using zle-s-

d. By means of the colutions of the Poisson equatlion with
boundary condition oT|,=0 determine 67 and find T|n+« (then
everything 1s repeated). )

Solution of Polsson Equations

It is known that in solving forecasting problems which are close
to ours the use of the Polsson equation glves results which are
physically insufficlently satisfactory. In order to understand the
difficulties 1t 1s necessary to take into account that 1in the
considered case 1t 1s necessary to solve an elliptical equation
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with a known right side. In this instance the effect of perturbation
is extended with an infinitely high rate and each point of the field
instantly feels the effect. From the viewpoint of meteorclogy this
leads to unreallistie results. In order to avold these effects, the
Polsson equation is replaced by the Helmholtz equation. The basis

of such a replacement is different arguments, which bear partlally a
physical character, partially a mathematical. A survey of these
questions can be found in [5].

In a more of less arbitrary passage to the Helmhoitz equation,
written in the form

(8 —(skP] g == F (40)

(A in dimensionless variables), the question arises about determina-
tion of (ak)z. There are no definite rules on this and the question
can be solved only experimentally. However, 1t is not clear what the
results obtained using the solution of the Helmholtz equation (40)
with an assigned value of (sk)2 should be compared with.

To solve equation (40) we use a method proposed by S. V.
Nemchinov [3] for the case of a right-angled grid. The advantages
of thilis method are obvious: on one hand, because of the use of
recurrent formulas a minimum number of memory cells is necessary,
on the other a relatlvely small number requires arithmetical
operations. To thls one ought to add that the solution has a high
degree of accuracy, which when using iteration methods can be
achleved only wilth great difficulty, and that the calculating process
1s stable wlth respect to rounding error. The solutlion with a change
in k does not require a change in the program (in the case of k = 0
the solution of the Poisson equation is automatically obtained).

In the practice numerlcal forecasts are satisfied by attempts
to obtain an optimum forecast and in this manner determine (ak)2.
In order to use this experiment in this case a special investigation
would be necessary. Therefore we used another way.
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Several years ago S. L. Belousov [2] proposed a means of
solving the Polsson equation, which since then has been successfully

used. The formulas are best of all called a local solutlon; we will
use this term subsequently.

The solution of the Polsson equatlon

sp=3 +'6yT ~ (41)

at known boundary values can be presented in the form
'?..==—-—f\Fln——rdrd9+R—k-@gds (42)

where wo -~ desired magnitude of the function in the center of a
clrcle of radius R.

For calculations according to formula (42) Belousov used the
method of series approximations. As a flrst approximatlion he assumes
that the contour integral in (42) 1s absent, and to calculate the
first integral in (42) he used the formulal

,;"’::-—s{~Fo+—‘(F|+Fz+Fa+F4,+ ‘F+ +F“)} (43)

Since the quantity w% 1s found in all paints, the approximate value
of the contour integral in (42) is calculated. In the contour
integral the value of wé 1s substituted; the second approximation
1s calculated by the formula

4=y - ()

'If we consider a relatively small neighborhood of point 0, then
the approximate value of the integral can be obtained by approxi-
mating the Laplace operator by the formula

L P RS T TN

In this case the Laplace operator was written for 9 points (from
zero to 8th), and the values of ¥ at points from the 9th to the 20th
are taken as zero. The solution of the obtained system of algebraic
equations leads to formula (43).




We used this means of solving the Poisson equation. Not stopping

here on questions connected with the use of this, we refer the
reader to [5, 8].

It 1s possible to compare results for two variants of the
solution of system (38), (39): 1) using the Helmholtz equation for
various values of (sk)z; 2) using the local solution considering
two approximations. It 1s established that results will well agree
if in the first case we take (ak)2 = 0.4. This value already has
been widely used in actual numerical forecasts. Thus the local
solution can be successfully used.

Preliminary Results

Solving the problem by computer; initially a finite-difference
approximation of derivatives in time with the aid of "forward"
differences was used. However) the calculations showed that despite
a decrease in the time interval t9 30 minutes, the system 1s unstable.
At t =ty + 48 hours stray waves show up and intensify, thus hampering
the interpretation of results. This agrees with theoretical estimates
obtalned above. Therefore 1n basic varlants of the calculatlions an
implicit scheme was used. The time interval in this case could be
taken as 3 hours.

Calculations were carried cut for the following values of H
parameters, determining temperature perturbation: 4% = k* = 6°;
B'= 3.6; r* < 5. In this case cases were considered when

T, =Yg = -7 and =z, = Yg = -11.9. The basic fleld of flows was

glven by the values of parameters:

1) C,-—-‘g;; cl-i:'; Uyage™= 30 M/S;

Dem—2; (=) dpe=10m/s.

On the basls of results of calculation the following preliminary

conclusions can be made.




1. A temperature perturbation of a shown intensity can
substantially influence circulation in the stratosphere. It does not
lead therefore to a breakdown of the polar vortex.

2. As a result of temperature perturbation a perturbatlion in
the geopotential fleld is developed, the amplitude of which grows
during the considered time interval, while the amplitude of the
temperature perturbation diminishes.

3. The maximum of the geopotentlal perturbation remains during
the first U8 hours at the same latitude on which was the temperature
perturbation. Then in all cases the geopotential perturbation shifts
to the north, which agrees with the data of observations. However,
the temperature perturbation remains at the original latitude. The
last result strongly differs from processes observed in nature. Thils
difference is partially conditioned by simplifications of the model,
and partially by neglecting effects connected with the ozone.

4. The shift of the geopotential perturbation to the north is
expressed stronger the better the polar vortex ls developed, i.e.,
the greater the meridional wind shift.
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ON THE APPLICATION OF THE FILTRATION THEORY OF RANDOM
PROCESSES TO SOME PROBLEMS OF OBJECTIVE ANALYSIS

B. V. Ovchinskiy

Formulas for calculating welghting functions
of optimum interpolation and smoothing meteorolog-
1cal elements 1f correlation functions of the
"true" quantity (signal) and errors of observa-
tions (noise) are known.

I. Formulating the Problem. Derivation
of Baslc Equations

As 1s known the data of observations contain random errors.
During optimum interpolation it 1s necessary to conslder this and

treat the meteorological element at an interpolated point free from
these random errors. \

Even when the fleld of meteorological elements 1s presented
rather fully, for further analysis it 1s useful to remove from the
field unsystematlc errors, i.e., smooth the fleld.

As has been accepted in objective analysis, a fleld of meteoro-

logical elements is given at discrete points }1, }2, ceey f”. Each

of the quantities }i’ except the true value g., still has errors €.,
50 that

il-‘l"“l' (1)
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Concerning errors €5 they can in the simplest case be either
purely random, or contain small-scale fluctuations, of the "noise"”
type, as happens in radiophysics.

In objective analysis errors were taken as purely random and
satisfied the following conditions [2]:

1) mathematical expectation (mean) error e; 1s equal to zero,
i.e., E(ei) = 0,

2) errors ei-are not correlated with true value of the meteoro-
logical element E(eigi) = 0;

3) errors €; do not correlate with each other, 1l.e., E(Eiej) =
= (0 when 1 # J.

~If we treat imore broadly the quantities €; and include here
small-scale fluctuations, then we must reject the assumption about
the noncorrelatabllity of the €;- In meteorology this circumstance
was studied by Thompson [8], using the apparatus of the theory of
filtration of random processes for optimum smoothing of meteoro-
logical filelds.

Thus we assume that g; and €; are stationary random quantities,
which obey conditions 1) and 2). The correlation functions cf g
and €; will be:

E(“;) - R‘(‘u) .

' E(sp)=Rdvy.

where Tij — distance between t-th and j-th stations.

In relationship to correlation f{functions Rg(fij) and Re(rij)
let us note that radius correlation €; 1s considerably lesc than the
radius of correlation of the g;- Tnis merns that the connection
between the €. weakens much faster with distance (or with time),
than the connection tetween the g
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In accordance with the theory of optimum interpolation we put
together the expression

N ~ »
80§‘§X1Pl-‘§(&+'4)”: (2)

and select welghts Pi such that dispersion

ﬁEE[go"g(Et'l“th]’ (3)

is minimum. After this the interpolated value of the metecrological
element will not contain "noise," and thus is a smoothed quantity.

Let us suppose, as usual, that }i are standard deviations and,
according to the first condition relative to errors £;5 W€ have

E(X) = E(e) = E(g) =0

After this formula (3) can be brought to the form:

N NN N N
Jiw E(g) —2 4.2; Ry(vo)Ps +‘§ E'R,(t, )+ ‘_gl E.R'(“’)p"” ) (4)
' /7

We divide both sldes of equality (4) by cé and turn to standard-
1zed correlation functions Mz for the signal ("true quantity") and
Vi fcr errors €; ("noise”), then formula (4) can be rewritten

[

N M.
2,2.:'«;&”:- (4r)

el

L e Pl =29 P LS Y PP
7‘-" |""'-"‘§Poll E%:‘uur"

-

The quantity og/oé in radiophysics is called the signal-to-

noise ratio. Subsequently we will designate it by A. For minimum

Jf it 1s necessary that an/aPi = 6. Hence we obtaln a system of

linear equations for determination of welights

N
EutinPimpo, b=l 2 L N, (5)
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Assuming that errors €; do not correlate among themselves, 1.e.,
they are purely random, then function ”ij can be renresented as:

wel b if =y,
T Y (6)

This case corresponds to the fact that in radiophysies 1t 1is
accepted to say "white noise" [6]. For white noise equation (5)
can be rewritten in the form:

N
E;’?Hrf@’ﬂf'ﬂu- (51)

Formula (5') coincides with the usual equation used in objective
analysis [2], because n = A = oz/og. # work of Thompson [9]
expresses certaln considerations about A. The signal-to-noise ratilo
fluctuates from X = 0.1 toy = 0.33.

If weights P, are determined according to formula (5), then
interpolation error, azeccrding to (4'), can be found by the formula

. N .
ol — P Pipy- (7)
§=1
Let us note that formula (7) contains the correlation function
of noise “ij' In order to explain in general terms the effect of
the noise part of the field on interpolation error, we set X =1
and s = Vige Then from equation (5) we obtain
S Py
L
l.e., welghts Pj will be half as large as in the same "noiseless"
field, and from formula (7) it follows that interpolation error

‘\' .
increases and will be .’=-%.}; Pu,. This increase in interpolation
™

error for such a nolse field can be explalned by the fact that there
are two ldentlical superimposed fields here.
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Let us turn again to system of equations (5) for determination
of welghts of optimum interpolation. Let us write this system for
the case wnen the data of observations have been taken through equal
intervals in space.' This simplifled scheme will help us to investi-
gate in more detail the structure and features of the welghting
function, which 1s the basic task of this work. Below we will
examine the case when observations of the quantities in metecrolog-
ical elements are continuous. Thus let us assume that the quantities
in meteorological elements }1, ?3, }N are given through identical
distances from one another, and for simplicity let us take these
distances as one. Then the correlation function can be written:

E(gg) =Rl — ),
E(s8) == R,(i—J]..

For standardized correlatiocn functions let us lntroduce new
designations:

Py - ’f‘y '—jiio
, vy - f,.(y.-.-: jD .~

After this system (5) for determihation of weights oy optimum
interpolation can bg replaced by other system of equations

N : .
Fl',("’—l)'}-""c(k—I')]P:-r,(k), k=122 ..., N. (8)
-t

Equation (8) in statistical dynamics of pulse systems [5] 1is
called a discrete analog the Wiener-Hepf equation.

- Let us assume that assa resnlt of observatloi.s &1l pcssible
values of }i have been obtained including }0. Our problem as before
is the determination of gy on the basls of the observations. In

lof course, we need not hold strictly the seleztion of observa-
tion points through equal intervals. Deviations are possible in
such quantities which will not substantially affect the value o*
the correlation function.
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this instance we say that we smooth ?0. Formula (2) will have the
form:

ngﬁ&-énm+Q, (9)

The distinction from formula (2) is that the summing begins

from 1 = 0.

System of equations (5) for determination of weights Pi remalns
as before with the difference that the summing must begin with 7 = 0;
J = 0. M, I. Yudin proposed two formulas for smoothing meteorolog-
ical fields, which in form correspond to expression (9) and are
written thus [10]:

B

N $ 0
‘;.f:’7;'“%ﬂmfti%;§fhf‘j,

[
H = 0,36H, + 0'08‘21 Hy+0,08(H, + H,,).

”~
7’

\
The stations with the numbers 1-6 lay along the circumference with
center Ho; and stations 8, 11 were outside the circumference symmet-
rical to the origin of coordinates,

Let us examine the problem of smoothing meteorological elements
x(x), when x takes continuous values. Of course, for discrete
values of x the quantity x(x) must coincide with the observed quan-
tittes ¥,, ¥,, ..., ¥, f.e., dl0) = ¥, ..., 4[1] = ¥ ., ulWl =

=1,

N

1)

Just as earlief we assume Z(z), except the true value (signal)
g(x), still contains random error (noise) e(x). Furthermore,

4(x) = g(x)+ ().

The smoothed out value of 3(0) must not contain noise and its
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approximate magnitude by analogy with (8) will be!
gonu(x)f(x)dx. A , (10)

Let us find such weight functlion f(x) that the mean quadratic
error of approximate equality (10) is minimum [11]

(11)

B(f) - El & —-. flg(x) + c(x)]j(x)dx }

We transform preliminarily formula (1ll), maklng use of the fact
that g(x) and e(x) are statlionary random functions, not correlated
with one another, i.e., E[e(x) g(x)] = 0. As a result we obtain

) = RO~ 3[Ryt exx + ] T1Rytx — 9+
+RE— S0/ 0)dxdy. (12)

In order to find the minimum functional Jz(f), 1t 1s necessary
in formula (12) instead of f(z) to substitute f(z) + y¢(x). The
necessary condition of extreme of the functional will be [3]

[25ean) mo

\
Having completed the calculations, we pass to the integral equation
for determination of f(z)

[ [Rdx—y)+ Re(x = )} f(9)dy = R ). (13)

It 1s possible to show a sufficiency of condition (13), in
other words, if f(x) satifies integral equation (13), then Jz(f)
will be minimum [7]. Equation (13) is widely used in the solution
of problems of automatic control and 1s called the Wiener-Hopf

'The upper limit of the integral 1s equal to infinity, which is
not obligatory. However, in the beginning we take this for the
sake of simplicity of further formulas.
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integral equation. Because usually it 1is more convenient to deal
with normalized correlation tunctions, equation (13) we rewrite in
the following form:

Jlrdx =i =y f My =ri). (14)

Equation (14 is the original for determination of weight
functions of smoothing.

II. Welght FMunctions of Optimum Interpolatilon
: and Smoothing

Let us pass now to the solution of system (8)

\
ﬁ[r,(k DAk — P =r k), k=1,28, ..., N.

/

' The means of solving equation (8), which is presented later,
was used in statistical dynamics of pulse systems [5] as well as in
problems of automatic control [1, 7].

By approximating the correlation function by the sum of model
functions R(z)=‘§A,e""I'*', we can find the P, solutions by the method
' -l

of indeterminate coefficients. Subsequently we will 1limit ourselves
to approximating the correlation function with only the first term
of the sum, l.e., we set

rg(t) o= o, (15)

where a 1s determined according to empirical correlation function.

So for the two meteorological elements by which we will confuct
the calculation (wind and dew point), the distinctions of the
approximated curve from the observed correlation coefficlents
(Figs. 1 and 2) we consider as entirely permissible. Therefore we
assume that the correlation functlon for the dew polnt will be
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Flg. 1. Autocorrelation posi-

tion function of the dew point

(spring) [2]. 1 — observed,

2 - according to the formula.

X W0 o Sopi

’ 2 2 . S ‘
Fig. 2. Autocorrelation
function of wind [4]. 1 -
observed, 2 — according to
the formula.

re(p) = e, and for wind! rq(p) = e%®,  where distance p 1s expressed
in arbitrary units, shown in Figs. 1 and 2.
beginning the case when the interference 1s white ncise.
lation function for errors [see formula (6)] can be written:

'During calculations it was accepted ryp)=e",
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(), 1f k=
R e f) ’ ?
rk=1 {o, 1 k),
Systems of equations for determination of weights during optimum
interpolation and smoothing can be represented in the form:

)ﬁ:r‘(k - j)p,+>.P.'-'=r',a'). l;-i. Y (16)
f‘f‘_.or,(n—j)ﬁ,+xﬁ;-r,(k). k=012 ..., N. o (17)

Let us examine from the beginning system (16)., Its solution we look
for in the form?

PI,=A¢_"+B¢1’. " (18)

Coefficlents A, B, y will be determined., Let us substitute
expressions (15) and (18) in original system (16), then we obtailn

é [Ae‘""+,Be”] e-dl—h+ é (AG_”-}- Be'll)’-lu—ﬂ_'_
= : J=h+l -

+i{Ae 4 B m e
or . 4

: [ ‘ 8 . N
Ae 'S -9 gt (1-_+-)l Ae? e v

N . - .
+Be",§ VA tie ™! k=1, 2, N
= T3 )

Having completed the summation and equating coefficients in the
right and left sides at e'Yk(eYk), e’Yh, AL we arrive at the equa-
tions for determination of vy, 4, B:

@ — N — o) +ie =0, (19)
Al Be' AN BN
et st ae==o (20)

lgelection of the form of the solution will be clarified at the
end of the article.
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The order of solutlon of the system is: from equation (19) we
determine y, and then from system (20) we find 4 and B. For the
calculation of vy, 4 and B 1t 1s possible to make use of the following
formulas

PP UL RS D B 7 R T (21)
4
where

P "'.‘. -
(e — 1y —)

A= (Tl —e Wiy (22)
N LY, Gt ) '
B= T 5 o poeyy (23)

From formula (21) 1t follows that y depends on N (quantity of
stations). The second root of equation (19) gives a negative value
of vy, which does not have physical meaning. Figure 3 shows y as a
function of A.

L \
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12343 < [ 20 25 X % 72 X B} 8

Fig. 3. vy as a function of A.

As 1t appears in the graph, an increase of A decreases values
Y as they asymptotically approach a. However, tnls asymptotic
behavior is achieved for A of the order of 40-50, which 1s unreal-
istic. Therefore i1t 1is possible to assume that aiways y 1s more
than a. In other words, the index of weight function vy 13 much more
than the same index for the correlation function.




The turn now to determination of the weight functlons of optimum
smoothing. For this we must solve system of equations (17).

The weight functions we look for (as earlier) in the following
form:

Pl_ A'e‘lll+8."l.l/. )
The solution of system (17) follows exactly system (16).

As a result of this solution we obtain y = Yy i.e., the index
of damping of the weight function for optimum y interpolation coin-
cldes with the same 1index Yy for smoothing and 1s determined by
formula (21). Coefficients A, and B, can be found by the formula:

(17 — 1) (7 — ¢") .
A= T — 1) — Fftﬂ-‘rlk‘ﬂ_ )i —e o (24"
B, (€ —~ PRI —1) (25)

- @ RN (i Py

Finally let us examine the case when ¥ (number cof stations)
increases without limit (¥ + «), Then from formulas (23) and (25)
it 1s evident that

8-+0 and B, -+0.

The welght functions for cptimum Pj interpolation and smoothing
have the form:

p'_(‘ﬂ-i-])ril, J=12 ...;
Py=(1—e1e-1, Jm0, 1,2, ...

The change in weight function depending on A for optimum i{nter-
polation Pj = Ae” VY
On the graphs are values of weights only for PI' ?0. By these

data it 1s possible to establish that weight 30 is more than weight

P, for all .

and smoothing ?i - Alc'YJ is shown in Pig. 4.




Fig. 4. Change in weight

function depending on ) for

smoothing wind (1) and dew

points (3) for optimum interpo-

=/ lation of wind (2) and dew

‘ points (4). .
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Let us turn now to the more general case when errors €; are
connected between one another and the correlation functicn 1s
assigned by formula

rz) m= -,

Furthermore, we assume the upper limit of summation ¥ is infi-
nite; then system (8) can be written

Slrdk—Ntordk—pIP=ryh) k=123 ... . (8")
fat .

The solution of system (8') we look for in the form:

Py=Ce®—Ds[j—1] jml 2 ... (26)

Quantities d, €, D will be determined; o[j] 1s the pulse single
function which 13 assigned

I 1f fe=0

V1=1 0 1t jeo.

Let us substitute in both sides of equation (8') instead of
rg(r), re(t) and Pj their expressions, then we arrive at




[N

. IR

N [g-ah=) 4 X g=M=D]|Ce~4 4 D (] — T

.r_..lc +1e I +D(/ 1)!+'_;"lr +
+reMN|CeYme Ranl, 2, ..,

Summing up and equating coefficients in the right and left

sides at ‘-dh’ "%, ¢ F® we arrive at equations for determination

of d, ¢ and D:

& - i P -0, (27)
@~V =) (A —P)A—e)
c_- .
-*-—-‘——"'-‘:', +D—_¢' ,
~ ¢ ’ (28)
- s—+ D=0,

If we must smooth }0, then, as already was noted above in

formula (8'), the summing must begin with j = 0. The weight function

we find accordin: to formula
\

P, = Cie-%14 D, 0l ],

]
where d1 as before is determined from equation (27); 01 and D, can
be found by solving system of equations:

C
T t D=1

C

(29)

Hence it follows that the difference in weight furctions of
interpolation and smoothing 1s only because of coefflclents ¢ and D.

The index of damping of weight function d can be fcund by
solving equation (27)

-0 P - a(pm— (11 )
¢ Hr T~ =N+

R L e VRN TRV e YL ) Rk [ TRV bl 1. 5
TFE = - i p® - Dipl :

(301




It 1s accepted that B = ma and, as noted above, B > a, so that m > 1.

Figures 5 and 6 show changes of ed depending on A at m = 2,
m = 3 for the dew polnt and wind. For large A the quantity d tends
to asymptotically to a. The difference between a and d becomes
unimportant beginning with X = 25 and more for different m. Thus
again we see that the index of damping of the welght function is
more than for the correlation function, and only at large A do these
indexes differ 1little from one another.

175

1577543 r) 5w 2 %5 B W
Fig. 5. Change of ed depending on A for
wind at different m.

From system (28) we find coefficients ¢ and D for optimum inter-
poiation, and from system (29) 01 and DJ for smoothing. Simple .
formulas are obtained:

& -yl — &) e
C=ll W =€) D = .
e'(e‘—e-’) ’ D ‘.(‘;_'.) [} (31)

I Lol Ul Y, Sl

w5 -. L=~ (32)

}
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Fig. 6. Change of ed depending on A for
dew point at different m.

III. Sclution of Integral Equatlon for Weilght Function

Let us turn again to th€ case when the amount of meteorological
element 1s given for continuous values of argument x. Flnding the
welght function of smoothing f(y) led to solving integral equation
(14). Among various means of solving thils equation, let us again
examine the means of indeterminate coefficients, which was used in
the second section,

We set agailn:

rz) == e, r(t)me-t,

and the solution we look for in the form
f()= A3 4 Ad(x),

where 6(t) — designates the Dirac delta-function.
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Let us substitute the above quantities into integrallequation
(14). After this it is possible to write:

i [e-etr=-n 4 e-ss-n| [Age-" + Ad(n dy+

o+ [le=tr- 4 he=¥7-0] [Ase-2y - ANy)] == 2-os, (33)
4 . '
Carrying out the calculations, we compare coefficients of e"sz, »

PR e'Bx. We obtain a system for determination of S, Ags Ag. :

st ) (34)

A
-,
oy A o (35)
From system of equations (34) and (35) let us find S, Ays Ag

and write the formulas for the welght function:

L] [J 3
s=y5e, |
A’— H( _’;): — F)" / .. (36)

A=z o2y |
Let us examine certain limiting cases. We set o to be small

in comparison with o _, 1.e., X turns into zero. Then the index of

damping of weight function S coincides with the index of camping of

the correlation function of errors B. If cé/o2 grows without 1limit

(A + »), then S approaches a. Obviously, with finite ) we have the .

following inequality: a < § < B.

Let us examine now the particular case of integral equation
(14), when errors of observation bear the character of white noise,

and the upper limit has a finite value, rather large and equal to N.
Then integral equation (14) will pass into a Fredholm equation of

i
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the 2nd order.!

N

Jrds—nsody H1f ) =rdn). (37)

We assume as before rg(r) = e'a|T|; then equation (37) is

rewritten in the form:

N '
jer fydy +iflx)mens

or

,5‘6""—” fiywdy +’fe'*"-""”f () dy +i.f(x)= e (38)

The solution of the equations (31) we reduce to the solution of
a differential equation with constant coefficlents. For this let us
differentiate twice both-sides of (31) with respect to variable =x.
We wiite the result of the first and second derivatives:

—afe-senifiyy+afewr-nsidy +ifis)= —ae-.
£ ferse= 1 (My — 28 )+ 1) me e, (39)

If we substitute in the last formula (39) the magnitude of the
integral for ¢ *® - Af(z) in accordance with (38), then we obtain

Lf(x)— a‘(2_+ La)f(x)=0, _

whence we find the solution of the differential equation?

'gquation (37) can be reached if in the original formula {10)
we smooth over a fintte segment of changes x, which 1s more natural.

PO
In other words, let us take ,.,z{n(xmxmx)_ On the otner hand, the

assumptions that the upper limit corresponds to the fact that weilght
function f(y) turns into zero when y 2 W.

2Such a form of the solution was accepted by us for the discrete
case [see formula (18)].
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S(x)m=Le - 55 4 Me¥m, ' (40) 1

! where §,=]/222=2  arpitrary constants L and M will be defined

| below from boundary conditions.®
Let us deslgnate

N

ferrsMy = e e My =Q. ‘

W2 gset in formula (38) 2 = 0 and x = ¥; we have correspondingly:

Jewr fomy +i7@=1, ;
e~ e My +1/(N) = e~k |
or |

G+Arf(0)=l, 3 |
Qe-*N i f(N) = ee¥, } (41) |

Accurately also, setting x = 0 and z = ¥ in formula (39), for !
the first derlivative we obtaln system of equations:

30+). (0)- - . )
fo= } (42)

—3£-NQt i/ (N)m —a e,
J

We exclude from system (41) and (42) the introduced quantities
G, @, we write the system for the boundary conditions:

2O —raf(0)=--22.
r N+ 2f(N)= 0. i (43)

We substitute in equations (U43) the values of f(0), f(N), f'(0),
and f'(N) from formula (40). Then we go to a system of equation
for determination I and M:

'In [8] 1s examined a more general case of the solution of the
Fredholm equation of the 2nd kird with a symmetric nucleus.
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ol (7 - M=~

A

e Ma - DIl + Me N5 + 1) =0, ()
0, .

Since L and ¥ have been found from system (44), it 1is simple
to write the formula for the welght function

o Dy Y - M1 —3) 4
fo PGy T R e (35)

From this formula it is evident that f(N) at large enough N apuroaches
zero. For small values of y (at large N) the second term of (45)
is smaller than the first.
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: ON THE FILTRATION OF FIELDS OBTAINED AS A RESULT
‘ OF NONLINEAR TRANSFORMATIONS CF THE INITIAL
1 VALUES OF METEOROLOGICAL FACTORS

! L. N. Strizhevskiy

On the basis of the theory of optimum linear

filtration of two-dimensional fields we calculate
7 filtration operators for fields of the nonlinear
i part of vortex advection and the nonlinear part
of the individual wind derivative. It 1s shown
that applying results of calculations to a simple
scheme of wind forecasting obtains stability
before an unstable system,

Introduction

As 138 known origlinal meteorclogical information always contains
errors connected with the measurement and treatment of weather data
and conditioned by the superposition of a whole series of errors:

errors of the measuring devices; errors of the observers; errors
which appear during encoding, decoding, transmission and analysis of
meteorological information etc.

These errors (for analyzed maps) are characterized first of all
by & radius of correlation which is considerably less than the
correlation radius of the "true" fields of meteorological elements,
which allows their partial division. The theoretical basis of such
a division is the theory of optimum linear filtration, an account
of which can be found in the survey article of A. M. Yaglom [7].

81




For the first time this theory was applied to a meteorological
problem in a work of F. Thompson [4].. In [2] the operator of
optimum smoothing of the geopotential ¢500 for the practical corre-
lation function of the observed field was calculated. This work
indicated that during linear transformations of the original field
of the optimum fllitration operator does not change.

Otherwise we deal with the acquisition of nonlinecar operators
for initial fields. Meanwhile the most important transformations of
meteorological fields used in the process of numerical forecasting
and weather diagnosis are nonlinear.

This work 1s dedicated to finding formulas for optimum smoothing
of flelds obtained as a result of certain wldespread nonlinear
transformations of original flelds.

In future calculations it 1s supposed that original fields are
isotropic, uniform, distributed normally, and the mathematical
expectations are equal to zero. We will also use a relationship
given in (6], enabling us to express the moment of the fourth order
of a normally distributed random quantity through its second moments.

/
Filtration of a Vortex Advection Fleld

As was shown in [6], the spectrzl density of the nonlinear part
of the vortex advection can be recorded as

Sufhy. By m g (1 0y — bt (A — Bk, —
— DA, PSe (i, L,)Se(k, — iy, Ay — i M, d)y. (1)
For further calculations we must give the form of spectral

density functions of the observed geopotential field Sm(l) and
noise field sn(x). In accordance with results of work [6] we take

So (i) = Be (0) —!—r- (2)
20 + Y
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where the parameters take values: am(o) = 230 dkmz; B = 1073 km~L,

Spectral density noise we give as in [2] in the form

. A
Sﬂ)——zlg—cv. (3)
Setting signal and noise as uncorrelated, we write
S,0) = Se(k} — S ). (%)

Substituting relationships (2), (4) in formula (3) and intro-
ducing (used in [6]) a change of variables:

iy g +rcoul+a). iy 24 vsin(d+a), (5)

where
7 l’—l’-*—).’

-+
and the polar coordinates in plane k:

"-‘“..‘

We obtaln the expression for spectral density of the "true" compo-
nent of fileld J(z, y):

S, (k)= %@—SI sin¢ co;* l ("

K ]
. T+v‘) -—l’v"mﬁlF

» LY .
] "F _‘
+ i gmj‘j‘un'.m‘"? e T g0

- » = -\0-'.-|
™ Wn-r:m 10 cos?® - T dedd -
et (%&lvu‘lv\ﬂ-P)'
A ’5’ . oF :_"é-_".'l [}
% ) PO~ -d
— || weveon . 6}
{T-hmo+a+_v}
i
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The first integral is equal to the right side of formula (1)
and expresses the spectral density of the field J(z, y), calculated
according to observed values of ®(x, y), and is found in (6]:

67#830) 8y = ke 1]
UL+ ‘

Finding the second integral also is not difficult:

<

- had
‘slu’bcot'hﬂ}v‘e dvm 180 = e
) _

The third and fourth inf.egrals in expression (6) were found
numerically. The formula for calculating the smoothing operator
we write in the form

S, (k)

|. s { '
K(P)--,—;g—g;:?‘T—J.(KpMI, (7)
where Jo(Kp) — Bessel function of the 1st kind of zero order.

During numerical calculation of operator X{p) the selection of
the upper boundary of integration was dictated by the following
considerations.

\

In solving forecast problems tﬁ% usual assignment of meteoro-
logical flelds wnich take part ir the process of precomputation in
the form of a discrete sequence of their values limits from above
the frequency range in spectral decompositions of these flelds. In
accordance with the theorem of Kotel'nikov [5] maximum wave numbers
for a right-angled grid in the z, y directions are determined from

b“—--{,_ and “_-"i-'

where hl‘ hz are the grid intervals in the z, y directions. PFor a
square grid it 1is apparent that
—
— N
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2, -1

For A = 300 km Amanc = 1,510

km

Results of calculations according to formula (7) at various
values of parameters a and Bn(o), characterizing the average scale
] of the noise field and the mean-square value of this field are in
; Pig. 1.

— —
°. 0’ 050 amo 2z Qs0 pioIm

Pig. 1. Welght functions for smoothing

the nonlinear part of vortex advection

B (0)/By(0) = 0.02 (a), when B_(0)/B,(0) =

n n ¢

= 0.1 (b). 1~a=310"km ", 2 ~a=
-3, -1 -3 -1

= 1,110 " km °, 3 —a = 0.7°10 km ~.

In order to use the obtained function X(p) we found integrals
of form:

: ST - L Tl
Ke-o= [ JK()Bdp A,

\ Keme= [ [ Ks)pdpdb.

Replacing values of the neutralized function f(z, y) in a circle
of radius a, and in rings a,-ag etc. by the universal means in

these ranges f _(x y), f, , (% y),..., we obtain the working formula
for smoothling of the form

FxY) = Ky Soo o & P4 Ke- e Sormad X, y)+ ...

—~
& ¢
St

gs
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The system accepted in this work for smoothing is seen in Fig.
The following worklng formulas for smoothing were used:

By(0)
B —002
" a=3,0 10- kNt <
7= 0.95To-m+ 0.05 g
o a=1L1107 ke, T
2o = 0,87 o200 4 0. 11200240 -+ (Lﬂzrao_ug,
S a=07.10" k=,
7 = 0,65J0- 200+ 0.27 o0 + 0,08Ts0-son, .

B,(0)
. ~gg =0

a=30-10"% kn-',
T=0,91Jo-200 + 0,097300e;
a=11-10-% xu-}, g
7 = 0,7970-200 + 0, 197200430 4 0,02 450305
, a=07-10-® xn~!,
T == 0,6270:200 + 0,297200_ e3¢ + 0,097 ss0—a00-

\

Fig. 2. Partlition of area

N
/‘ 8 /?S . . ,,\ : during the smoothling and
A

1

nureration of points.

Filtratlon of the Nonlinear Part of the Individual
Wind Derivative

Let us find now the operator of optimum smonthing for an
expression wildespread in meteorological applications

Fix, y)m u-g-;—-}-'w—g-';—,
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where u, v — components of wind velocity.
Let us present P, u, v in the form of stochastic integrals:

Flx, y)ym [eutesndZ(h, k),
ulx, = et a2y, W),

. o, y)= ﬁ,«ww dZ L ). (9)

Differentiating, we write

Fum — Jfff ettsiesionsin dZi0,, 10 INAZ A0 )+ AZor, w0,

Substituting the components of wave vector v with the aid of
relationships

vyem), — R, and vgemdy— k.

\ 4

Setting u and v as independent and in accordance with the results
of [1] spectral densitles u and v identical, we obtain the following
expression for spectral density F(z, y):

| Se(hs, K= {1 = KR+ O~ P10, WISLlh = by ke~ iyt (10)

b ap

As the wind correlation function we took an expression obtained
in [1]
‘ B.ip) = BLOV/IB)e~7" (11)
where

B0) =250 M’s-2, x==0(,797,
; y = 0,684, /= |28,

v v
!For the operator F'(x, y) = ugs * U5y obviously, it is possible

to write

Spolt k)= [ 1y — Y o+ @y = ) Sy (e 1) Sy (=R Reembajdhy
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function of spectral density of noises was assignéd in the
form

(y..xll
a
L]

Shy=—pig—e’

where the parameter b characterizes the position of maximum spectral
density.

(12)

Considering relationships (4) and (10), we write the expression
for spectral density of the "true" component of the field F(z, y)

Se (ki k) == [ 1@ — kb (g — BaPIS, 0, 2)ST (y—hyy by — M)A, dhy—
= TN = kP Oy = RaP] S D9)-Silky =Dy, by D)t hd g —
12 = 1 g — RIS 0 1ISEky =, kg Ml Ny

+ T (B — £ 0a = ko] S, M3y =N, by = MM ADy, (13)

where
S, Ag) ena S\, Ay)

are determined by formulas (11) and (12).

The first integral in the right side of (13) expresses the

spectral density of field F(x, y), calculated in terms of observed
values of u, v.

Obtained as a result of numrrical integration, functions

SF(kz’ kz) and SFa(kl’ kz) were, as one would expect, even. Con-

sidering thls, and likewlse thé anisotfopism of these funetions, let
us write down the expression for optimum smoothing of fleld F

s r,(ku ky)
Sp(ky, by)

K(x, y)-%,-“‘ cos(kyx + kgy) dk,dk,, (14)
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The contour lines of functl-n X(z, y) for some values ol a and

b are given in Fig. 3 (the picture obviously is symmetric with
respect to the axes of coordinates).

yo'm
10 .
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Fig. 3. Welght functions X(x, y) for the
smoothing of field F when Bn(0)/Bu(0) =

_ = C.04 and a = 0.7+1073 km™>.
)

The most interesting resudt in this case is an anisotropism of
the smoothing operator, which is explained by the different character
of change in spectral densities of signal and noise (different degree
of anisotropism) during the transformation (12). We must note that
from the anisotropiém of conversion (10) follows immutable aniso-
tropism of X(z, y): any linear anisotropic conversion, for example,

differentiation according to one of the varliables, retains the
isotropism of the smoothing operator.

The degree of averaging in the direction of the X axis with
certaln characteristics of nolses 1s almost one and a haif times
greater than the degree of averaging along the Y axis near the point
to which the value of the neutralized field belongs., With distance

from the origin of coordinates function X(zx, y) becomes more
isotropic.

Smoothing formulas were obtained by means analogous to those
described in the previous section. Let us give the results of
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calculations for certain values of noise parameters (the arrangement
of points 1s given in Fig. 1):

B0 _
B0y 004
I bm=25.10"3 gu~!

1) @a=0,7-10"" k™, ,
Fom 0,72F, + 0.06(F, + F))+ 0,02(F, + F,+ F, + Fo+
+F+ o+ Fr + Fe);
D) u=04-10"2 kn-t,
Fom 0,77F, 4 005(F; + F) -+ 0.016(F, + Fy + F, + Fo+
Fi+Fo+FrtFe) .
I, 6=225.10-% ku-!
1) a=0,7-10" xn-!,
F o 051F, + 0.125(Fy + F) + 0.02(F, + Fy + F, + Fot F: + Fu+
+ Fy + Fe) + 00(F\- + Fa + F5: + Fe + Fr 4 Foo);
. 2) am04-10- kn-, B
Fe=0,55F,+ 0,1 W(Fy+ F)+00%F, + F+ A+ Fo+ Fi+Fo+
+ Fr + Fe)+ 00WF - + Fao + Fso+ Fo+ R+ Fe). . (15)

Smoothing formulas (15) show that the degree of smoothing
depends mainly on the magnitude of parameter b or, in other words,
on the degree of overlap of the spectras of signal and noise. With
an increase 1in the overlap naturally, it lncreases.

Using Piltration in the Systém of Wind Forecasting

Results obtalned in the previous section were used in the one-
level system of wind forecasting described in [3].

Here briefly 1s its varliant, using as raw data the fields of
actual wind.

Motion equations are written in the form:

du

L '
& -l (16)

-l

where u', v' are the components of the deviation of wind from

gecstrophic;
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The remaining designations are generally accepted. The Ageo-
strophic part of the stream function is comnnected to u'’, v’ by the
relationships:

‘ ve-Gt v (17)

Values of y' can be determined acccerding to the fleld of prac-
tical wind from the balance equatior

e ]

Purther, with the aid of relationships (17) we find u' and »'
and integrate equations (16) oyer time. The integration was in
Lagrangian coordinates, which was connected with interpolation of
the values of wind components evéry grid interval in the inside
areas of the grid squares. The latter led to noticeable leveling
of results.

Attempts to integrate these equations in Euler coordinates with
the aid of relationships:
' W (
YA e ylo .1_ sf(lo'“’-— uu)‘_;; — pim _3%_‘_’).

o) i) — 3] e B + o 50). (18)

where n 1s the number of the time 1n€erval, were unsuccessful — in
the absence of smoothing the system was unstable. Its stability was
achieved after a number of experiments by smoothling in accordance
with the above resuits. On every time step the smoothing was carried
out twice: the sums of the nonlinear terms in the right side of
equations (18) by formula (15), while the most successful results
were obtained with the following values of parameters:
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%5% -0,04, de=25-10-? xu-t,
and weak smoothing of wind components according to formula
n-&ﬂn+mmﬁ§q.

where u 1s the wind component.

Results of the estimation of forecast quality are in Table 1,
where [Cy -C,| — mean absolute error of wind prognostication, 1al,| —
mean modulus of vectorial wind variability for twenty-four hours.

Integration of forecast equations for formulas (18) using
precalculated smoothing somewhat improved results in comparison with
the earlier variant systems, which 1s connected in our opinion
basically with obtaining more practical values of the absolute
values of wind velocity. Furthermore, utilization of formulas (18)
considerably simplified the computer program and shortened calcu-
lation time in comparison with the previous variant.

Table 1.
i Biltnear interpolatier Optimur filtration
 (Langrangian coordinates) (Euler coordinates)
Date ) \
| BT | ReTl | KoTd | Ko—Td
! (mn/s .) IAZ'.I (n/s) W
) Level 700 -bnr
0300 2 Mar 1960 87 oM [ ¥ 054
0300 3 Mar 1960 (¥ o7 [ 3} o
CI00 4 Mar 1960 7.0 an 44 o
0300 5 Mar 1960 73 0.8 65 . ars
0300 28 Fed 1961 L ¥ o /2’ ass
1500 28 Fed 1961 126 073 0 (- ¥/
Level 750 mbar
0300 3 Mar 1960 a4 o 3 s
0300 4 Mar 1960 &0 L10 8 154
0336 5 Mar 1960 a7 o7 2 7
030C 20 Mar 196) & o 40 an
150C 20 Feb 1961 s on [ ) (1 )
Average............ e ¥ -] (L.} an
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OBJECTIVE ANALYSIS OF THE GEOPOTENTIAL PIELD USING
SUPPLEMENTAL INFORMATION

V. D. Sovetova

Two methods of objective analysis are
described. The first method is dedicated to the
analysis of the isobaric surfaces of the tropo-
sphere over the northern hemisphere, and the
second to analysis of stratospheric levels over
Eurasia. To improve the quality of analysis
over incompletely treated regions and at high
altitudes additional information 1s used.

Numerical analysis and rorecastiﬁ; the baric field over the
northern hemisphere 1s hampered in regions incompletely covered by
meteorological information. The quality then drops off [7] over
water surfaces of the Pacific, Atlantic, Indian Oceans, and over
Africa, where there are few points of radiosounding of the atmo-
sphere. On the other hand, for example, the territory of Eurasia
on the whole 1is well covered by the data of observations in the
troposphere and unsatisfactorily in the stratosphere. Therefore for
improvement of analysis in such cases 1t 1s expedient to use addi-
tional information. Two methods of restoration and analysis of the
geopotential field are considered: the Iirts is develor=d for the
troposphere, and the second for the strotosphere.

The first problem 1s solved for the northern hemisphere (grid
of 1545 points, intervals at 470 km) and for four levels of the




troposphere — 1000, 850, 500 and 300 mbar. At the surface of the
earth there were sufficient data for a successful analysis in almost
all regions of the northern hemisphere. The quantity of information
sharply falis upon transition to the higher-lying isobaric surfaces
(850, 500, 300 mbar), where there are data only for the points of
atmospheric sounding. To supplement information a‘ these levels one
could use the data of measurements of the surface fleld of pressure,
Por this purpose for interpclaticn onto points of a regular grid,
except radiosonde stations (n = 589), station of making only ground
observations (n = 290) have been used. Over the oceans scurces of
additional information are observations of 48 ships of the merchant
marine.

The quantity of information on 100 and 850 mbar was substantially
different, therefore berore\objective analysis were reconstructed
absent measurements of the geopotential at 850 mbar according to
avallable data of surface pressure; the absent information for
300 mbar was reconstructed according to data for 500 mbar.

Reconstruction of unavailable information was conducted by the
method of spatial optimum interpolation [3] using mutual correlaticn
functions of the geopotential [8] for 1000 and 850 mbar, 500 and
300 mbar. Reconstruction could have used simultaneously the data of
the lower and original levels. However, because information at the
original level as a rule is absent in those points around which at
a distance of the radius of correlation there are no data of obser-
vationg, for its reconstruction the Information of five stations ot
one lower level better covered by meteorological information was
used. One of these filve stations had to lie on one vertical line
with the station of the original level, and the remaining four were
selected such that each of them covered one of the four quadrants
arranged around the reference station. When in the circle with the
correlation radius it was not possible to find four symmetric
stations in which there would be data of measurements, any four
stations were selected, independently of their arrangement around a
point. But even if this condition could not be made, reconstruction
used the information of only one lower point.
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As a result of the reconstruction, subsequently in the inter-
polation onto regular grid points of the geopotential of 1000 and
850 mbar 879 stations can take part; objective analysis of the baric
field of 500 and 300 mbar is carried out from the data of 589
radiosonde stations.

To estimate the quality of the reconstruction by the above
means a numerical experiment was conducted by means of the artificial
exclusion of the entire information on 850 mbar. The mean square
error of reconstruction of the geopotential of 850 mbar from the
data of 0300 21 January 1964 was 4.6 dam over all the northern
hemisphere, 3.3. dam over North America and 4.3 dam over western
Europe. The geopotential of 500 mbar was reconstructed analogously
from data for 850 mbar with a mean square error of 5.0 dam; data for
300 mbar was reconstructed from data for 500 mbar with a mean square
error of 7.6 dam. Taking into account that under practical condi-
tions reconstruction of information is necessary only in the inade-
quately covered regions and the obtained errors are somewhat less
than the corresponding deviations from climatic standards which must
be used here, the results of the reconstruction can be considered
satisfactory.

Comparison of standardized autocorrelation functions of the
geopotential showed the proximity of functlons for 1000 and 850 mbar
and also the proximity of the functiosns of 50C and 300 mbar. The
difference of correlation functions Becween the first and second
pairs of surfaces 1s rather substantial. In connection with this
the objective analysis of the reconstructed fields was carried cut
in two stages: 1s from the beginning for isobaric surfaces of 1000
and 850 mbar, after that for another pair of surfaces — 500 and 300
mbar.

The objective analys!s was conducted by the method of optimum
interpolation [4]. Nect describing all units of the program, let us
stop only on its separate parts, determining the distinction of our
methodologies from the methodology accepted at the Hydrometeoro-
logical Center of the USSR [6].
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1. PFor the characteristic features of the average climatic
flelds of the geopotential (of standards) on 1000 and 500 mbar were
assigned fields, calculated in NIIAK [1]. Standards for two other
surfaces (850 and 300 mbar) were calculated by the formula:

'zm-znm+ 8 Zien.

where 37 — average climatic value of the thickness of the layer
between the corresponding isobaric surfaces, figured according to
the formulas:

for winter

3 e = —32.5(sin 3)* + 7.5sin 3 + 140,
3 7% = —48,0(sin ¢ + 380;

\
for summer

TZS'. - —Ssmn P4+ 27 5siny 4 140,
BZm= —34.5(sin 3P+ 7.5sin 9 + 385.

Comparison of actual standards of the geopotentia. for 850 and
300 mbar with calculated standards showed their close correspondence.

2. The stations were situated in such a way that their ordinal
numbers increased along the band and from one band to another. The
first station of every band took on the feature by which the bands
were estimated. During interpolation onto the point with coordi-
nates x, y the number of bands was calculated beginning froem the
first, and the sum was equated with y - 3. The comparison determined
in which half of the bands (right or left) the point is located.
Only those stations which were located in the same half as the point
and which were located in the band between (y - 3) and (y + 3, were
tested to see if they belonged to the neighborhood of the considered
point. As soon as they began to follow stations with cocrdinates
more than (y + J), the search ceased.




3. The interpolation onto regular grid points was conducted

in the following manner. From the beginning an attempt was made to
select the eight nearest stations, two stations in each quadrant. If
this requirement was not fulfilled, eight asymmetrical statlons were
used, If in the whole square of 6 x 6 grid intervals there were not
elght stations with data from observations, the choice went to four
stations satisfying the requirement of symmetricity. If four
asymmetrical stations were lacking, only two statlions were used. To
calculate the welght coerficients a system of equations of the eighth,

fourth or second order was made up, depending on how many statlons
wilth measurement data were found.

On the edges of the map frequently it was not possible to find
in a glven sgquare even two stations.. In this instance in points on
1000 and 850 mbar the corresponding climatic values were used.
Usually these points were in the southern latitudes, where the

dispersions were small, and that is why the absolute errors of calcu-
lation were small.

On 500 a2nd 300 mbar the interpolgtion onto points was done from
elght or four stations. With fewer stat{gns interpolation was
replaced by extrapolation from the lower surface analogously the
reconstruction of lécking information. The only difference is that
in the first case the information was reconstructed for a station,
and in the second case for a regular grid point according to data
for a point located on the underlying surface (850 mbar). After
this procedure the value of the geopotential in a point at 300 mbar
was calculated by means of extrapolation to the upper level of the
value in the same point of 500 mbar., In these cases spatlal extrapo-

lation of deviations from staudard along one lower point was con-
ducted.

Comparison of results of objective and synoptic analyses
obtained mean square errors of comparison for two types of points.
The first type includes points to which interpolation was produced
according to the data of the consldered level; the second type‘
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includes points to the values of geopotentials which showed the
effect of extrapolation from below or these values are equal to the
middle climatic value. Errors in decameters are presented in

Table 1.

Table 1.
Surface, mbar........ ceaeese, 1000 850 500 300
o dam:
first type..cevieveoncesases 1.7 2.8 2.9 6.5
second type....... - | 2.9 6.0 8.9

As can be seen from the tables, using standards on the edges
of the map Instead of 1interpolated values increases the eiror of
comparison by 0.4 dam on 1000 mbar; the increase of error (by 0.1
dam) on 850 mbar is entirely insignificant. On 500 and 300 mbar the
error of comparlison substantlially increases for cases of extrapol-
lation from below (to 3.1 and 2.4 dam, respectively). This increase
can be explained uniquely, beéause it 1s conditioned not only by the
difference of methods of calculation, but also by the considerable
drop 1n quality of synoptic analysls at these levels.

Comparison of the amounts of deviations (Tatle 1) with standard
deviation, which 1is given 1n a work of S. A. Mashkovich and S. I.
Gubanova [7], indicates the better quality of objective analysis of
1000 mbar geopctential surfaces for our method. Here, obviously,
we see the «ffect both the using the additional information, and
using the sutozorrelation function of the considered level in calcu-
lations 1instead of the functlon of the geopotential at 500 mbar for
all levels.

To estimate the effect on numerical analysls of the additional
information over sea water surfaces the following experiment was
conducted. The data of ships of the merchant marine were artifi-
clally excluded and the obtalned analysis was equated with the
analysis of the usual varlant. Mean square errors o, obtained during
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the comparison of these two analyses, are given 1n Table 2. Here
is shown the number of points = in which was discovered the differ-
ence 1in these analyses.

Table 2.

Surface, mbar.... 1000 850 500 300

odam...ivvennnvenns ceess 9.2 9.2 10.6 12.9
Meeensonsnnnns reierea.. 214 207 211 211

As can be seen from this table, measurements of pressures on
48 ships show the effect on values of the geopotential in large
quantities of regular grid points, and the difference 1n analyses 1s
rather considerable. For 1000 mbar, where the oceans are covered
considerably batte> by the information than at heights and, conse-
qaently, synoptlc ¢nalysis 1s more reliable, the obJective analysis
in the absence of data from additloral ships was compared with
synoptic analysis. It turned out that the absence of additlonal
ships increases the mean square error of objJectlive analysls over
oceans in comparison with synoptic analysis by 8.C dam, 1.e., it can
be considered that the effect of additional information on the
results of numerical analysis 1s rather considerable.

During the analysis of calculated fields of pressure over all
the northern hemisphere it was explalned that in the inadequately
covered water surfaces of the oceans dhring extrapolation from lower
levels to 500 and 300 mbar deeper cyclcnes than noted on the oper-
ational ccnstant-pressure charts are obtained. The authentlcity of
the calculated values 1is difficult to verify, because synoptic
analysis in these regions is accomplished according to the data of
the observations of one or two stations. However, the wind data
allow proposing the presence here of gradients greater than noted
on the map. For example, 21 January 1964 in the center of & cyclone
over the Atlantic Ocean (42° north lat. and 37° west long.) our
calculations obtain a value of the geopotential for 500 mbar of
512 dam. On a constant-pressure map prepared by the forecasters at
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GMTs SS3R [Hydrometeorological Center USSR] in the center of this
cyclone a helght of 517 dam 1s noted; on the map of another fore-
casting institution in the center of the cyclone a height of 530 dam
is noted. Thus, our data differ in the first case by 5 dam, and in
the second by 18 dam. The actual depth of the cyclone and its
accurate location are unknown inasmuch as in the range of the cyclone
there are observations of only individual stations.

The second problem was solved for levels of the stratosphere
over the territory of Europe and Asia (29 x 22 grid, interval 450 km).
The primary surface whose data (geopotential 2 and temperature t)
were used for the reconstruction of information on higher levels was
200 mbar. Selecting this surface avoids the effect of tropopause;
losses of information at this level in comparison with 300 mbar are
insignificant (2-3%).

~Analysis of our autocorrelation functions of the geopotential
for stratospheric levels showed a substantial difference between
functions for 100 mbar and for 300 and 200 mbar. Therefore analysis
at 100 mbar was conducted using the autocorrelation functions corre-
sponding to this level.

After monitoring the original Zz and ¢ data [5], the missing 2
and ¢t information was reconstructed at the primary 200 mbar level by
the method of optimum interpolation [4] according to the observations
of eight stations. Values at stations located on the edges of the
maps were reconstructed in some other way. For these stations (n =
= 60) separately from the general field the fleld of pressure and
temperature was assigned according to a previous map (radiosonde
data if available, or values taken from lsohypses). In the absence
of information after a similar perlod, the values of pressure and
temperatures at the regional stations their values in a previous
period of observations were taken. As a result of reconstruction
on 200 mbar we had data about geopotential and temperature in 439
points.
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Using further the mutual correlation functions of temperature
[2], by the method of spatial interpolation [3] the missing tempera-
ture was reconstructed on 100 mbar (note that the missing information
at this level comprises 15-20% of the relative surface at 300 mbar,
not including erroneous data). Then according to the average
temperature of the layer the height of the surface at 100 mbar was
resolved in the points where there was no or rejected information.

Before objective analysls all avallable information was again
monitored. Rejected data were reconstructed by the method of optimum
interpolation on a fixed level. Because the accepted metaodology
of reconstruction of information allows having at all levels always
the same number of data, 1t is possible to attach at every regular
grid point the very best located stations uaccording to the data of
which the interpolation will te carried out. In the first place
objective analysis was conducted for the central rectangle (24 x 16
points), then for surrounding rectangles using already calculated
values in certain points lying on the contour of the central rec-
tangle.
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Improving the Methodolo of Forecasting Baric
Fleld to Several Days

Mashkovich S. A., Transactions GMTs, 1668,
No. 19, pp. 3-9

A generalization 1s made of a prediction system proposed earlier
by S. A. Mashkovich and Ya. M. Kheyfets (Transactions TsIP, No. 93).
The generalization consists of recording the effect of horizontal
turbulent mixing in the vortex equation and the effect of surface
friction. The latter is introduced when the boundary condition at
sea level for the vertical component of velocity is r.corded. The
original equations are vortex and beat influx equations, linearized
relative to the zone of motion. A three-level model of the atmo-
sphere i1s considered. Motion is assumed to be quasi-solenoidal. The -
solution for the stream function is looked for in the form of a series
in spherical functions. The problem was solved by computer. Seven- !
teen series of forecast maps for a period up to four days were cal-
culated. The quality of the forecasts for four days 1s estimated.
Thanks to the generalization of the system it was possible to
diminish the absolute forecast error on the average by 15-20%. 1In

July 1966, the composition of forecasts of ground pressure by this
system became operational.

Table 1, I1l. 1, Bibl. 3. :

One Finite-Difference Algorithm for the Solution of
the Vortex Equation for the Middle Troposphere ;
Over the Northern Hemlsphere !

Isayev N. V. and Fuks-Rabinovich M. S., Transactions
GMTs, 1968, No. 19, pp. 10-21

A system for forecasting the geoputential at the middle tropo- !
sphere over the northern hemisphere 1is examined. To prevent non-
linear instability a finite-difference approximation of nonlinear
terms was used, proposed by A. Arakava. With such an approximation ‘
there 1s conservation of the quadratic integral features, i.e.,
conservation on the forecast range of the integrals of the vorticity
rate, its square and kinetic energy. Integraticn in time was con-

ducted using several methods, among which most suitable was the '
Adams method.

The system was used to execute calculations over a long period
in order to steady the character of change in kinetic energy of
forecast fields Hsoo in time. It turned out that the finite-

difference algorithm allows calculation of a forecast over long
periods, moreover the kinetic energy of forecast fields during cal-
culation remalins practically constant. Results of testing the

system over a period of up to three days are presented, and a
quantitative and qualitative analysis of the obtained forecast flelds
are given.

Table 3, I11. 5, Bibl. 14,
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Experiment in th2 Numerical Solution of Balance Equations
Within the Framework of a Quasi-dolenoidal System of
~Forecasting the GUeopotentlal on the
orthern Hemlsphere

Sitnikov I. G. and Krichak S. 0., Transactions
GMTs, 1968, No. 19, pp. 22-30

A finite-difference system for solving the balance equation on
the northern hemisphere is given, and a number of characteristic
features found with the solution of this equation within the frame-
work of the quasi-solennidal system of forecasting the geopotential
at the middle troposphere.

For solving the balance equation the method of successive
approximations is used, and the balance equation is reduced to a
Poisson equation relative to the stream functionr. and values of the
right side are determined from the previous approximation. One
feature of the solution of the balance equation 1s the reduction of
the rate of convergence of the iteration process in the low latlitudes.

Obtained as a result of solving the balance equatlion, the field
of the stream function 1s used as the original for the quasi-
solenoidal forecact based on a baratropic model. At the end of each
forecast period, 1.e., after 24, 48 and 72 hours, the geopotential
fleld is located by inversion of the balance equation, i.e., solving
it relative to the geopstential according to the known distribution
of the stream functilon. ’

An example of calculating a forecast from the quasi-solenoidal
model is presented, and it 1s compared with a quasi-geostrophic
forecast.

I11. 6, Bibl. 9.

About Research on Warming Trends in the Stratosphere
Using Numerical Experiments

Barg B., Mashkovich S. A., Transactions GMTs,
1968, No. 19, pp. 31-43

The evolution of a narrow band of temperature perturbation in
the stratosphere is studied. The starting equations are those
proposed by A. S. Dubov (Transactions GGO, No. 124). The investi-
gation 18 conducted according to stylized initisl conditions: it
assumes that the original temperature perturbation has a circular
form and occuples a limited range. An initial disturbance of the
baric fleld 1s absent. PFinite-difference approximation of equations
is described, a numerical method of solution is formulated, the
calculating stability of the solution is investigated.
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Preliminary results are given on the basis of which the following
baslc conclusions are made:

1) the range of temperature perturbation .sed in the calcula-
tions does not substantially affect circulation in the stratosphere,
specifically, the polar vortex does not break down;

2) perturbation in the temperature field also causes a pertur-
bation of the baric field, the range of which grows in the consid-
ered period of time (4-6 days), while the range of the temperature
perturbation diminishes;

3) maximum pressure perturbation remains during the first 48
hours at the same latitude on which the temperature perturbation lay,
then the geopotential perturbation shifts to the north, while the
temperature perturbation remains at the original latitude.

Table 1, I11. 4, Bibl. 10.

Application of the Theory of Filtration of Random
“Processes to Certaln Problems 1n
Objective Analysis

Ovchinskiy B. V., Transactions GMTs, 1968,
No. 19, pp. 44-57

Formulas are set for calculating weight functions of optimum
interpolation and smoothing meteorological elements when correlation
function of the true magnitude (signal) and observation errors
(noise) are known.

During optimum interpolation one must take into account that
the data of observations contain rand errors, and aun attempt 1s
made to achieve a magnitude of the meteorological element in a
regular grid point free from these rezndom errors. If the examination
includes small-scale fluctuations, then it 1s necessary to reject
the assumption of noncorrelatability of the random errors. This
circumstance was pointed out by Thompson, who used the theory of
filtration of random processes for optimum smcothing of meteoro-
loglical fields.

The structure and features of welght functions were studied
both for discrete and continuous data of ohservatlons. The problem
of determining welght functions reduces tc solving the integral
Wiener-Hopf equation (or a discrete model of the Wiener-Hopf equation
tion). Cf the various ways of Lolving thls equation the method of
indeterminate coefficients was used; in thls case the correlation
function is approximated by the sum of the model functions.

Cases of a soluticn when errors Jf cobservation are "white noise"
or when the number of stations increases without limit are examined
also.
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Filtration of Fields Obtained as a Result of Nonlinear
“Transformations of the Original Values o
Meteorological ements

Strizhevskiy L. N., Transactions GMTs, 1968,
NO. 19, ppn 58-66

It is assaumed that observable values of meteorological elements
are the sum of their actual values and measurement errors. The
statistical characteristics of such summary fields are known from
the results of treatment of the data of observations, and statistical

' characteristics of the error fields were assigned on the strength of
certain general considerations about the relationships of scales and
intensities of fields of true values and noises.

On the basis of the theory of optimum linear filtratinn of two-
dimensional fields filtration operators are calculated for two
nonlinear transformations of original fields widespread in meteo-
rology: the nonlinear part of vortex advection and the nonlinesr
part of the individual wind derivative. In obtaining the corre-
sponding formulas the assumption of statistical isotropism and homo-~
geneity of the original fields 1s used. PFurthermore, it 13 assumed
that the investigated meteorological elements are distributed
normally.. Calculations are conducted for various values of scales
and intensities of the error field corresponding to the various
degrees of complete treatment and the accuracy of measurements over
the different regions. The theoretically obtained filtration oper-
ator for the nonlinear part of the individual wind derivative is
used in a one-level diagr of wind forecasting, which achieved
definite improvements in comparison with the variant of the system
which did not use smoothing.

Table 1, Bibl. 7.

Objective Analysis of the Geopotential Pleld Using
Supplemental Information

Sovetova V. D., Transactions GMTs, 1968,
No. 19, pp. 72-77

' Two methods of objective analysis of a baric fleld are described,
and results of calculations based on one of them are glven.

The first method 1s developed for the geopotential field of
' isobaric surfaces of the troposphere (1000, 850, 500 and 300 mbar}
over the northern hemisphere. In poorly treated information of
regions of the northern hemisphere apart from data of radlosonde
stations additional information in the form of results of the mea-
surement of pressure over the surface of the earth was used: over
the oceans cbservations of ships of the merchant marine were used.
Using mutual correlation functions of the Qeopotential (7], the
method of spatial optimum !nterpolation [2] reconstructed =-!ssing




J information on 850 mbar from the data of measurements of the pressure
! field over the surface of the earth; at 300 mbar data from 500 mbar

i was used. Objective analysis of the geopotential by the method of
optimum interpolation [3] was conducted at first for one after that
for another pair of surfaces with corresponding levels by the mean
autocorrelation functions. Results of calculations showed a sub-

stantial improvement of the quality of objective analysis, especially
over oceans,

The second method was developed for levels of the stratosphere
over Europe and Asia. The problem of reconstruction of missing
! information at high altitudes and subsequent objective analysis of
; the baric field according to more complete raw data of observations
was solved. As the basic 1sobaric surface according to the data of
which the information was reconstructed 200 mbar was used. The
% additional information in this instance air temperature was used.
; During the first stage of solving the probi=m by the method of
spatial optimum interpolation the missing temperature measurements
were reconstructed on 100 mbar. Then based on the average tempera-
ture of the layer and the height of the underlying surface the helght
of the 100 mbar surface was figured. Objective analysis was carr~ted
] cut always for the same number of stations, which made it possible
to attach preliminarily to each point the eilght best located stations
and to interpolate to grid point according to their information.

Table 2, Bibl. 7. /
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13. ARSTRACT

A finite-difference model for the solution of the balance equation
for the nortnern hemisphere is described, The balance equation,
rendered initially in a local isobaric system of coordinates (x, y,
p) for polar stereographic projection, belongs to the family of Monge-~
Ampere equations, One of the requirements to 1t is that it must be

i A elliptic at all points of the projection grid. 7T'he balance equation
was reduced to a Poisson equation with respect to the function of
flux and solved by the method of successive approximations, An
interesting characteristic of the solution is the decrease of the
convergence rate of the iteration processes ot low latitudes, The

. field of the flux function, obtained from the solution of the

balance equation was used as the imitlial field for 2 quasisolencidal
forecest, 1,e., for a barotropic model. At the end of eauh forecast,
i.e,, every 24,48 and 72 hours, the field of the geopotential is found
by inversion of the balance equation,i.e., by solving it for the
geopotential, using the known distribution of the flux function. The
suggested method 1s close to fast method described by K. Mikoyada
(Numerical Solutlon of the Balance Equation, Collected Meteorological
Papers, Vol, X, No, 1-2, Tokyo, 1960) and by F. Schuman (Numerical
Methods in Weather Predictlion; The Balance Equation, Monthly
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The first method is applicalbe to the field of the geopotential of
isobaric surfaces, i.e., for four levels of the troposphere over the
northers hemisphere, In additia: to the data collected by radiosonce
statiuns in areas of the northern hemisphere, that have a low expcsure,
additional information was used: Pressure measurements at the surface
of the earth and data collected by merchant marine vessels. Using the
crass-correlation functions of the geopotential, the Ln;ormat‘cn
lacking at the 850mb isobaric level wsz reconstructed from dat

obtained from the measurement of the nressure field at the earﬁn*:
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