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Abstract

The steady matian of a planing surface of moderate aspect ratio at smail angles
af attack is cansidered, Linearized theory is used with a square-root type of pressure
singularity representing the flow near the leading edge. An asymptotic solution for
the pressure distributian on the planing surface ot large Froude rumber (or small ﬁ ,
the inverse af the Froude number) is sought, The lowest order term of the pressure
distribution, abtained by setting /Q equal to zera, is found to be the same as the
pressure distributian on the lawer side of the carresponding thin wing. Higher arder
terms in /B are obtained by an iteratian process. Explicit solutions are obtcined ta
order /62 for rectongular planforms. Numerical results are calculated for rectangular
flat piate planing surfaces of aspect ratias from 0.5 to 2.0, It is fov-.d that for large
aspect ratios the lift coefficient is reduced by the gravity effeci and for small aspect
rotias it is increased, the dividing aspect ratio being about 1.5, The results compare

reasonably well with experimental data,
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I. ‘Introduction

When a surface craft moves at low speed through water, the lift, which supports
the craft on the weter surface, is supplied meinly by buoyuncy, If the speed of the
craft is increased so that the water surface separates smoethly from the trailing edge of
the creft, the craft is said to be planing, or gliding, on the water surface, During
planing motion, the lift is mainly supplied by hydrodynamic forces,

Ar importont feature of a planing motion is the splash phenomenon, which is
a spray sheet throwr out ahead and sideways of the planing craft, If the angle of
attack, which may he defined as a characteristic angle between the wetted surface of
the planing craft and the undisturbed water surface, issmall, the thickness of the
splash is expectedto be thin. Green (1935,1936) made non ~ linear studies of two-
dimencionai flat plate planing at an angle of attack  of  with an infinite Froude number,
The Froude number Fr is defined as the ratio of the inertia effect to the gravity effect,
or Fr = U2/gﬂ , where U is the speed of the planing craft, g the gravitational accelera-
tionand £ c characteristic length. In his results, the thickness of the splash was found
to be proportional to o(z for o small. Wagner (1932) studied both *wo~dimensional
and three-dimensional planing problems at infinite Fr, In his tinearized formulation,
the governing equatiions were shown to be the same as those found in flows past thin
wings, except that in planing problems the fluid under consideration is in contact
with the wing on the lower side only. It is well known that in thin airfoil theory the
pressure has a square-root singularity at the leading edge of the foil. Baced on a local
flow study, Wagner showed that to represent the splash in planing problems, the same

type of pressure singularity should be used,




When the effect of gravity i1s considered, two-dimensional planing surfaces of
various shapes have been studied by many authors (cf. Wehausen & Laitone (1960)).
Recenily, Mcruo (1967) considered three -dimensiorial planing surfeces of large and small
aspect ratios; however, for small aspect ratio, his method requires Fr to be very large
and is not applicable to a rectanguiar planing surface, In the above solutions it was
assumed that, as in the case of infinite Fr, the splash was a second order quantity in
angle of attack and might therefore be neglected in the formulation of the iinearized
theory and that the pressure has a squore-root singularity at the lending edge.

In this paper, we consider a steady, three—dimensional potential flow past a
planing curface of moderate aspect ratio at a large Froude number, We assume that
the angle of attack is smal' so that the problem may be linearized, In formularing the
problem, we represent the planing surface by an unknown pressure distribution over
the part of the water surface directly underneath it, The geometric configuration of the
splash will be neglected and the pressure is assumed to have a squore-root type of
singularity ot the leading edge of the plaring surface. The perturbation potential due
to this pressure distribution is expressed in the form given by Peters (194%;, It involves
a quadruple integral with the integrand linearly proportional to the urknown pressure,
The kinematic boundary condition on the planing surface will lead to a linear integral
equation for the unknown pressure distribution. To facilitate the solution of the integral
equation, we expand its kernel for points nearby the planing surface, asymptotically
for Fr —> oo . In this expansion the unknown pressure distribution is regarded
as if it were independ<nt of Fr, Then in a similar fashion an iteration process will
yield successive tarms in the pressure expansion. When Fr is set to infinity, only the

lowest order term in the expansion remains, This term corresponds to the downwash




integral equation in wing theory, except that the pressure is equal to one-half of the
loading on the corres_wiic- © iner. The downwash integral equation is solved using a
method similar to that of Watkins, Woolston and Cunningham (1959). From the solution
of the downwash integral equetion, the lowest order term of the pressure expansion in Fr
is obtained in terms of the given "downwash", At ec<h stage of the iteration process the
same downwuash integral equation has to be soived, The solution of the downwash inte-
gral equation provides each new term in the expansicn of the pressure in terms of the pre-
viously obtained terms, Our solution is carried out up to terms of order Fr=2, The
above iteration scheme has been advanced by Cumberbat=h (1958) in solving twa-dimen=
sional planing problems at high Froude number,

In this paper numerical resulis are given for rectangular flat plate planing sur-

faces having aspect ratios from 0.5 to 2.0,

2. Derivation of the integral Equation

Consider a planing surface of moderate aspect ratio travelling at a constant
velocity U over a water surface of infinite extent, The angle of attack is assumed to
be small, so that linearized theory may be adopted. The water is considered to be in-
viscid, incompressible and of infinite depth.

We choose a set of Cartesian coordinate axes x-y-z fixed to the planing surface,
The x=y plone is assumed to ccincide with the undisturbed water surface, the x-axis
pointing in the direction opposite to the velocity U and the z—axis in the direction op-
posite to the gravitational acceleration g. In this frame of reference, the fluid at in-
finity appears to have a uniform velocity U in the x-direction and the motion becomes

steady, We choose U as our characteristic velocity. For planing problems the proper




characteristic leng h should be measured in the flow direction. For a three-dimensional
problem anothe - characteristic length is the spen “vidth. Therefore two Froude numbers
can be def:ned, For convenience in numericol evaluation we choose the semi-span

width as the characteristic length. Since we are dealing with moderote aspect ratios
only, the choice is not important, Based on these characteristics quontities, the velocity

potential & (x,y,z) can be written as

2,421 = x+4>(v.,g,1), (n

where « denotes the velocity potentiol corresponding to the uniform velocity when viewed
from the x-y=-z system and ch (x,y,z) is the perturbation potential due to the presence

of the planing surface, It is obvious that ¢ satisfies the Laplace equation

A9 =0. (2)

Let us denote the area projected by the planing surface en the x-y plone by A, !f we
represent the planing surface by an unknown pressure distribution on A, the linearized

boundory condition of ¢ may be expressed as (see Wehousen & Laitone {1960)),

> 3% .
=§+z?xz+zfs , on =0 (3)

where the non-dimensiona! smali parameter 18 is defined by

= 90/ = |/re (4

and where  p =p(x,Y) is the non-dimensional pressure, We take the ambient pres-
N *
sure to be zero ond define P as the ratio of the pressure to the dynomic head T PV,

where {0 is the density of the water,




From the definitior of p it is clear that on the free surface, or on the part of the x~y
plane outside A,
'P =0 R (5)

and on A, as stated before, p is unknown, The other boundary conditions on ¢

may be stated as

jx=-<>o (6)
v$=o at l‘j:iw (7)
= -o00. (8)

Condition (6) assures us that no gravity wave will propagate upstream,
The potential which safisfies the boundary conditions (3), (5), (6), (7) and (8)

is (see Peters (1949))
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where sgn (x- § ) is the sign function of x- ¥ , H(x- § ) is the Heaviside step function

and

Ty A
po = A 1




If the profile of the planing surface is expressed by

2 = 9§y, ()
and if we denote
W(x,‘j) = :‘ii_ ,
X (12)

Wix, 4) =lim 37 SOP (%, 4y, on A. (13)

Equations (9) and (13) will give us an integral equation for the unknown pressure distri-
buticn on A. When we differentiate (9) with respect to z o term containing sin Tz in

the 7 integration is produced, !t can be shown that this term gives no contribution as z
tends to zero. Therefore, the integral equation for the unknown pressure distribution on

A becomes

(|
wix,4) ="z::: Z—W"SASK(x-S, y-1, z;le) f’l§,z)d§d[, e

where
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2

2@, Y r
J/52+4.\/-7‘ C“))J <05(J/F/67, X)e"f’(/(.}) cl\(_ (15)




In obtaining (15), (10) has been used.

3. Large Froude Numker Expansion

In this section we shall exoand asymptotically the kernel function K(x- g, y- 1

z; ,6 ) for large Fr, or small {3 , when (x,y) ison A and z is small. The method of
expcnsion depends on the aspect ratio being of order 1 or smaller,
Let us denote the double irtegral occuring in K, shown in (15) by

00 N 2 r3 b3
THT+Y ) cos T2 R
I, =S wstJJg ('6(7'4 ;z)?_:;;z e"Pl‘f’C1+ J:IXE]JT. (16)

A change of variables
, J = 'g sing

T = ‘e.cose

transforms (16) into

'?t/z ] 3
I, =5 cosngej :‘,ﬂ—;L(;zco_s% COS(—Qjsine)cos{'hwse)e*l’(-@“I)J‘g
‘ "T-(Z 2
= ?RQS (,059(]9 Z{ }ﬁe"P _z#‘)é‘g ﬂwsej ‘_‘ée)‘(gej‘£ ;) }
) 3= s
where

\'“, = | x| +£(jsine+2cose) ,
(18)

-\.plzlxl +L(js:ne—2wse),
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The integrations with respect io k in {17) can aii be corried out and we have

i :
= 4 f :
I, = Epeﬁx c_cslesiez Si':&;} -ﬁcosélrwstf??;wSO)ci(F‘{;mg)
2 ;'):’ j q a
(19
-s{r‘(ﬁi‘rjwse)si('ﬁl[j wse)” , (19)

where ci(x) and si{x) ore the cosine and sine integrals respectively ond ore defined as

& o +1 n

. cost 3> X

= = - = + -4 — {

Cix) S =hdt = - Y —lnx ,.E:‘.( ) Shaw (20)
X

3

2n-t

21

2
X : n=|

o)
. N A N+t
g_(x):...g é_L_Ei:.A{ =_${.T (-1)

(zr-D(zn-Dt

r

in (20}, Y is Evler's constant, Under the assumption that the aspect ratio is not large
l{-\ , 11’)2 = (1) and therefore J; mcy be exponded osymptoticelly for /8 smali,

2
The expansion valid up to the order of 4
4

(2 Z¢ | 2
I = %Qe) oasszéz -{p —,3 wse —‘n(f!#‘wsﬁ}?c'(ﬁ }
° 3t J
/.
LG —(*«:fsnei—icose) X - (4sine -3ese)
2) w5646 [x*+(ysing +2c058)* 2 [12+('~js‘-n6 -2eos?)t |?
[

2
+!Bwsze[z‘d”+2lnco:se + Z(H{B + %!”(Xz*"[ﬂs;ne

+ 2cos8]) (X + [4sine ~2ce36T")] 4 O(P3)} : (22)

In the last expression of (22}, the first two terms inside the curly brackets are independent

le , and hance, gravity free; the remaining terms are dependent on /9 . Since
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we expect to obtcin the downwash integral equation in wing theory, except for a factor

of 1/2, from the integiol equation {14), and since when x < & the kernei of the intzgral
equation {i4) is proporticnal to Iy, we expect to recover the kerrei of the downwash

integral equation for x « &  from the gravity free terms in {22). This means tho! if we

set z =0 in (22) we should expect a singularity in y of the form ]/y2 to appear after the

6@ integraticn. The meaning of this type of singularity is well known (Thwaites (1960)).

Since the remaining ﬂ-» dependent terms in (22) wiil not produce a singularity stronger
than thet of the gravity free terms we mcy, therefore, set z = C first and then integrate

with respect to 8, This yields
T = %o Bt 3 e s
H 1 2}( J 33)5 F [IY‘ 7 T'

2
+L 4 In{ixt + [x5 4t ) - %(,‘,(T,,i—‘ !x%gz){

] Y 2.9 3
?(IKHWJH"‘O({S)}' (23)

Now, let us denote the single integrai term occurring in (15) by

00

IZ = Zgr——_&‘__—v—_- cos*/jcos( /l( x)&‘KP/l/ 2)6’7f (24)

I f

where p, is given by (10). We ncte that in (24) we have to consider only x > 0 as can

be seen clearly from (15). Since I; is a1 even function of y wve need consider only y » 0.
The integral I, may be regard:d as representing poit of the downwash due to a

concentrated pressure point moving on the surface, it ‘nerefore contains a singularity

of high order aleng the track line y = 7 for z =0, However, as pointed out by iLamb

(1934), the singularity is due 'o the artificiai naiure of @ concentrated pressut= point

and disappears for a diffuseci pressure, Therefore, when nacessary, the )Z - integra-
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tion wili aiwoys be carried out first to remove the singularity in (y - 1 ) thot would
otherwise appear as z goes to zero. In the following exponsion procedure for]:2 we shall
assume 2z to be different from zero, when necessary, in erder to avoid the oppeoronce

of the singularity in v,

By using

\7=(3¢k/¢4 s!L/u (25)

equation (24) may be written os
o0

I, =F23wch;u ros(‘og ciysl\/«)cos((gxok/) exp({szc&;u)aja. (26)

Let us odd

[
(SLSWC:‘!;“ Sin( 35‘745!%)52“ (Fxoh/u)exf)(fica/l“)al/(= 0 (27)

to (26) to obtoin

I, = ’Re(s chk;u exF[cmL/‘u +a’g (3J|/¢5~L/u -Xot\/u)]fl/’(. (28)

The path of integration in (28) may be chunged to C which runs from ~o60+ % ¢ to

s + —’%( . poratle| to the Re p-axis. Along C

f-L‘/M = fi—‘(cL-l: +isht)
} ; (29)

sh/« = %(sl\{ +ocht)
where t is purely real, The expansion of exp(-i/B xchu) into power series of (-i/é xchu)

and the substitution of (29) into (28) give
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™ mr

nr4

_p exp( zfi )'Reg 71_- )"E’((“)ﬂ(sm - icht )M

P

.’.[\"%

[4

e‘f['é(jd\z{ -iZSL'L{)]Jt . (30,

By the hinomiai expansion of {sht - icht)n+4 and by separation into real and imaginary

parts we can write

00 nr4 .
_ | ' ’ -3 n {N+4 _7_’1
Iz-Fe"P(Z 2)), , (z) (‘BX)S{ Z ot
ns= -~ 00 ™=0,2,4,---
n4-4 -Mm <n+4 1“.;!-
C:‘,\M sh™ 7t ch™t cos !gzdnz{) + Z -1 6:4'
mzl,3,- -

n+4 m

sh  Lch't sm(—stkz{)je*P("Fﬂd"“& (31)

it can be seen that when n is odd the integrand in (31) is an odd function of t. Tnerefore

the only contribution is from even valces of n, in which case we can wrife

n4-m 5 s T
2 .
sh™ tch™ =(3)  (chat -1) (chat+1)5  m even
N4 n+3-m "ol (32)

(%) l(cl\z{—%) : (ckz{H)—is—kz{ wm odd

Ifwesetn=215 with m = 2u for m even and m = 2u + 1 for m odd we get
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Vea ] I J
2 2 fZ—
Fe;P(*zP )F (—-—,,-,( ) (fm S Z (-‘sz/‘ (chat-1)
iy /“30
L Jvi-p
(ckl{»«:)’ucas({-FZstt)J, ¥ ) Cv’” (chet-1) (d\z{;-u)
pre
shat sin(3 (stkzk) exp ——{gjd«.z{)d{ {33}
In (33), we write
(chz{tl)=-{‘%(% FE) 34
and noting that the integral is uniformly convergent for y # 0 we get
. o el oo
L - feedmy gt B ¥ /e zﬂ “Geb
* pe

00

)
S T SR E Y

~ 00

Cos(%ﬁishz{)eip(- E'Fj chat)dt , (35)

where % accounts for the factor sh2t, The integral occuring in (35) can be

transformed into

50
T = Z_Reg exP[_ %Pl%l*zl Ch(z{: +LS)]A‘L‘, (36)
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where § = tan-](z/y). Forz € Owehave -1/2 € 9 = O0since we need con-

sider only y > 0. By the change of variable

U=2t+;.s (37)

J becomes

o w0 +15
T=Re[§ +| ] epl- ey, o

% o
Since the first integral in (38) is purely imaginary and since - Tt/ € §< O ,

we have
“’ |,
J- =g Q%P(—Elg,]ﬂz-rZzCL\U)CIU. (39)
The above integial can be integrated (Watson (1944)) to give
l
T =Ko (3[5577), (40)

where K is the Bessel functicn of the second kind with imaginary argument, which, for

(3 small and ,/ y2 +22= 0(1), can be expanded as

& (Lalgme)
(m!)?

z/Sf‘j_T?:) —ln —/@I

‘TV!D

h(m+1)

§ YT,

W=zo
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where

, |
\P(m‘fl):—w—{i‘l‘J(MJ
(42)
'4, (” = -X
and ¥ isEuler's constant. With the aid of (40), I given in (35) can now be written

as

Jo /4 s 2 ﬁ’}”‘/“
Z -1 2/“ (9J z)
/A:O

T+ u
ﬂ {ifﬁ, (I)'“CD)4 % {i) a« zj«%}'

z, ot (39

T, = yepid P“; v - F”?

Ko (3p ")

(4)
Using (41) and (42), we may expand (43) for/g small as
-521-17' 121 Z
I = explap)| Ghgs p 1+ PR Tow
S | R R
-8 {In & AR Ao + 2l y+2)
91 o4 ol }
X 2
55+ g X sl (64 ) LO(F (44

The substitution of (44) and (23) into (14) gives




W(1,y) = Jn&g[' flv——?—)—;jﬁT{T—]‘j ,Ustdz f-LmS(H(x-S)[

2

kS 31 F
L+ ~'{(X-5) 531‘] - P&'UJQ'Z + %{{(In{& +Y + ll
- | 4) _ X - el
" SAS Pis. 5y SAS N3 B3, 51000, 7 )dsdy

-I—SAS H(x-?,)[ln(g-q)z- %]p(!,rplsﬁ +'1m SSH(x 3)[z(x ;\ >

24T
A Ef
+ 3y ]ln[lj (52796, )dsdq} +o({8 ), (45)
where
(x,9) = ln (X1 +/F93) - 2 (de=
Gix,y n(Ix]+[x3+42) (“HW)[ le+ﬁfg{1)]
Now, we interchange the order of integration and . differentiation with respect to

y in (45) and then let z tend to zero. In doing so we must evaluate

\\ 47)
J‘S"“ (TS 'p T Ed “

where the integration is carried out over the entire span, and it is understood that z

tends to zero through negative values. The result is

- PE,Y) . (48)

This procedure is carried out to allow the distributed nature of the pressure 1o overcome
the high order singularities in y that were mentioned previously in connection with I.

This gives
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X

P R IN
Wy = 2y 3( lx 3)*‘3 1) : ) Y- dsd Z [ S PG,j)J};
L.E.
| .91 ) 2 3 c ~
5 esTripds ]+ 3 [(np o + - 1oy

L.E.

s
SAg P(g,.[)é;cbl = g} Sqn0-3) G(x-3,4-7) p(zty)Jng
) 7

r k} 2
-%SS PG, Z>434" +3) g, Dlniy- er;J»U- 3—38 (x-3)-
Ay A, A,
PG, 7)n(y-nydzd i—i -x) ¥ y
D939 + 7755 |) &-3) pcs,z)(mg—z)dgclz]+o((3)
Ay ’
(49)

where G(x- % ,y- Z ) is given in (46), the lower limit L.E, indicates thot the
integration storts from the leading edge of the planing surfoce, ond A, is the part of A

bounded between the leoding edge and thie I'ne ¥ =x.

4, Application to a Planing Surface of Rectangular Plonform

In this section, we sholl consider a rectongular planing surface having the
ieading edge at x = -b and the trailing edge at x = b. The integral equation shown in
(49) will be solved by an interation process, The unknown pressure distribution on A is

expanded into

p(srp—z Z: am'z/ﬁ_'(f (%), (50)

™m0 W3
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where 2,\(‘5) is the Birnbaum expansion (1923) derived from thin airfoil theory.

it is defined as

Ls)=che &

whenn=0

(1)

= $inné when n = 1

where
6 =cos™ (-3/b) . (52)

However, in actual calculation, the series given in (5C) will be trunca*ed,

The iteration process starts by assuming IB =0, Equation (49) reduces to

C L, X3 g Pam
W(x,4) SS{ +W'_()—“J - ,,)iasaz

(53

Except for a factor of 1/2, this equation is the downwash integral equation for a thin
wing, Expanding p( % Z in the form of (50), (53) can be solved numerically, The
methcd used is similar to that of Watkins, Woolston and Cunningham (1959). The
solution to (53) gives the first term, p&( z . Z ), in the expansion of the pressure

as

M
Po(3,17) = Z L a,,m T, (54)

where M and N are constants, Using the solution for p, ( 5 Z ), eauction (49),

when approximated to order /5 may be written as
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% 3 X
wtng‘zF[g P.(§,3)35 +-|i'5'518 (x-%) P.(S,j)“lB]
-b ~b
- _|_ .0y ,
Sg[ W] - ,z)l 'Z (55)

To solve (55), we write

P =P.(3.7)+FP,(§,7). (56)

The substitution of (56) into (55) and the use of (£3) and (54) give

o X

.3
'{'Sbﬂ('s,j)dg + 2,2_18 (x-;)zP,(s,j)Jg
- Zp

Sg[*n‘w TS (57)

where the integrations on the left-hand side can all be carried out analytically, This
integral equation for P, (3,7 ) is of the same form as (53). However, the second
term on the left-hand side of (57) contains singularities of the form (1 - y2)_3’/2 as

y —  + 1, ot the tips of the planing surface, This singular behaviour of the in-
duced downwasn mo: be due to the linearization of the problem, We assume that away
from the tips the error due to linearization is smaller, Also, the numerical methods

used to solve downwash integral equations of the form (53) do not use the values of

the downwash W (x,y) at the tips, Furthermore since the pressure vanishes at the tips
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we expand P, n)J in the same form as Fol¥, :Z) givenin (54). We

therefore write

P3) = Z Z am, f"— 2.3, (58)

W=0 nzv

We may expect this theory to become inaccurate for coses where the influence of the
tips is large, for example a rectongular piate of smail aspect ratio. But, on the other
hand, sma!l aspect ratio planforms of other shapes such as delta wings will not be in-
fluenced as much by this tip effect, and we therefore expect the approach to hold
even for small aspect ratios.

Using the solutions for p( § , lZ' Jand py( § , Z ), equction (49), when
approximated to order /32 , becomes

X 2

X
wis 4> +~§z—f3[g b5, 995 + %g (=357, (3,4)d5 | + ;n [

e Wt )
3, P (3, ypds + 3 ajng(x-i)fn(;,yrlg - “n(B +¥ 43

- lna) SAS (3, 9)d3dq +SAS SIRUI G 03,5 R, dsdy

% SA\“ P.(3 1)AiJZ %S*? . (3 Z),“(3 »Z)J;ér(_ -2 — ‘1 &é (x.-g)l.

noqenidgdy - L2
Po(i,'?')l 'y 'Z)ASA'(' q 39 gg (x~ §>) P (5, '7)In(u iz)clgdvz]

(x-%) +(3"Z)

= \ SS X"S P(%‘,z)
= — | + 7_CI 6!
4TtA[ J 2 7.] (j-yz) 3 z ) (59)
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where G(x-§ , y- 7 ) is given in {46). In (59), the known functions have heen col-
lected on the left-hond side end ali the intsgrals there can be integrated onalytically,

except the one containing sgn{x - § ), which must be integrated numerically, The

integration of the integre!

M

r‘ . N
Y Raplng-gldg an 7 T 0l £ats) |
-\ MDD ATO

L(“—) Ywe2-3
r’- =
Ll St e ) 0
where i(m/2) indicates the integral part of m/2,
£ = -5+l -
w==3{ztn2) form=0,
=0 for m = odd integers,
(61)
-1yt { o .
= r m = even infegers,
2 G el (B! 9
and the \%’ - function is given in (46) with
$(L)=+7 -2lnz, 62)

makes the analytical differentiation with recpect te v possible, The integral equation

(59) is agoin the same integral equation as given in {53). To scive (59), we write

YE) = G +PP,(’5,'Z) +F2[F1(§"Z)‘n/8 +PS{3,'Z)] . (63)
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The substitution of (63} into (59 and the use of (35) and (56) give

- ?2:?’7_!:83 ?’(E'T)JSJ'Z = Z%’?gg{! +j(x ;;4»(3 'Z)"1 (‘;“{{”J AZ 9

and

X

-ln4) SAS P.(S,Q)Jge]n‘_ —Sg Ignix=3) G(x-%, 3-1)?.,(3,'&)4337
)\ .

e{g A d ( n '97' { 2
g{\g“? e3ey - )‘P(E v)- 4- rz)égaz ;5183‘*‘51-

X

lney- 73 12 \
Pe(’é,p “‘3"2)‘41‘5’[ - ?_j.“"&g (x-3) ?°(3"Z)I"‘J"Z;J§AZ

1 S

S

: --ng B
] = 33,7)
47cA [”hx o 7)] e didy

(65)

where G(x-% , vy~ 7 ) is given in (46). These two integral equations will be

sclved in the same way as that used to solve the integral equation (53). The solutions

may be written os

MON
RGO =2 L awlz [v-p £.5) (46)

™m0 N0
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The substitution cof (54), (58), (66) and (67} into (63) gives us the first four terms of the

M
Pz(S."l) = Z

o 0

q 2
expansion of the pressurz p( 3 z ) up to order /@ ¢

5. Results for ¢ Fiat Rectanguiar Planing Surtace

We have carried out numericai calculations for the case of a flot rectangular
plate for aspect ratios, AR, varying from 0.5 to 2.0*, For large aspect ratios the ex-
pansions used in this theory are not valid, while for small aspect ratios we have ricted
that the theory becomes inaccurate for planforms where the tip effect predominates,

In our presentation of the results we use the parameter

-

where 2b is the wetted chord-length. This parameter is choter 5o that the
resulting Froude number, ]/Fo , is based on the characteristic length in the flow
direction,

We use the experimental data of Sottort (1934) which have sufficient variaticn
in {Sc to make comparison with a theory containing the gravity effect possible,

[

In figure 1 we show the lift slope as a function =¢ Lspect ratio for various values

of Fc . The curve {SC = 0 represents half of the lifr slope for the corresponding

* The aspect ratio is defined as the ratio of the span to the wetted chord length of the
planing surface,
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wing weited on both sides, Curves for ﬂ‘ = 0,1 and 0,2 are chosen to show the effect
of gravity and te ccrrespond to Sottorf's valves of /Bc . It can be seen that the theory
predicts that the effect of gravity increases the lift for aspect ratios less than abcut 1.5
and decreases the lift for larger aspect raties. This terdency agrees with the
theoretical results found by Maruo (1967) for the limiting cases of large and smell as~
pect ratios arnd with the results of Sambraus (1938). As the aspect ratio increases in
Sottorf's data the angle of attack increases and PG decrecses, The first grouping

is for (Sc around 0,19 with angle of attack around 4.6°. The agreemsnt between
theory and experiment is quite good. The second grouping is for 18‘ around G, 16 with
angle of attack about 5. 1° and the agreement is still good. As the angle of attack
increases (groups 3, 4 and 5) the difference between the theoretica! and exgerimental
results increases but the agreement is fairly good overall, This indicates that the
non-linear effect of larger angles of attack may play an important role, Generally
speaking the observed values are higher thar the calcuiuted values,

In figure 2 we show the position of the center of pressure as a function of
aspect ratio for various values of th . The data are much more scattered compared
with those for the lift slope. However, agreement is reasonable, Figure 3 illustrates
the chordwise pressure distribution at mid-spon and at 90 percent of the span, for
aspect ratios 0.5 ond 1.0, The effect of gravity is to increase the pressure towards
the trailing edge and towards the tips. For larger aspect ratios the increose in pres-
sure is not as prorounced,

In conclusion, this analysis of planing surfaces of muderate aspect ratio has
proved to be reasonably accurate, For smaller aspect ratios we can still obtain re-

sults from this theory bur the validity of the model used is then doubtful. This




limitation s due to the singular behavior ef the induced downwash near the tips, which

becomes increasingly important as the aspect ratio is reduced, Further work should be

directed towards the correct modelling of this tip effect,
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