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THE LEVI-CIVITA PROBLEM AND THE
KUSTAANHEIMO-STIEFEL TRANSFORMAT1ON

G. E. 0. Giacaglia*
The University of Texas at
Austin
Abstract
-> By imposing regularity of the new accelerations and

velocities we introducesa time and a coordinate transforma-

tion which generate as particular cases the Levi-Civita and

the KS-transfermations.

Introduction

Consider the differential equation

- AW, T
x= (g-x-)

(1)

wvhere x is an n-column in Rn, W = W(x) is a scalar fuvnction
and 3W/3x its row gradient with respect to x. The superscript

T indicates the transpose of a vector or matrix. Let x be

n
the absolute value of x, x = (z xg)k. We consider the case
i=1
W=1/x + R(x) + E (2)

ard assume that R(x) is C2 in an open region §Q of R® containing
the origin x = 0. It follows that for every x in Q except

x = 0 and for every finite i there exists and is unique a

*0n leave from the Univereity of Sao Paulo and the University
of Campinas, Sao Paulo, Brasil.
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solution of Equaticen (1) which can be continued in 2 except
through the origin. We wish to study the solutions which
approach the singularity x = 0. Assuming E to be an arbi-

trary constant, the energy integral can be written
xTx = 2W(x) (3)
Let us consider the tangential transformation
dx = 2M(u) du (4)

where u is an n-column in R® and M an n x a matrix. Necessary
properties are that in an open region au containing the origin

u =0 and, except at a finite number of points, M-l exists

aMkz aMks

Ju = Ju

(5)

for k,2 = 1,2,...,n and 8 > ¢, which are the integrability

conditions of Equation (4).

We also introduce a new independent variable 1 by
dr = o(u) dt (6)

where v(u) is a scalar function, at least 02 in Q, except at
a finite number of points. With the use of Equations (4) and
(5) into Equations (1) and (3), we obtain (Giacaglia, 1968)

the following relations
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w = o heet - (ot /odet + (1/ked) WYy

T T
) (9W/3a) €7)
and

g’THTHg' = W20 (8)

where primes indicate derivatives with respect to T.

Regularization

We require that at x = 0, Iuil < A, A finite. We zlso
restrict ourselves to orthogoaal transformations, that is,

such that
g(wol(wnTy = 1 (9)

2
where I is the identity n x n matrix and z{u) is a scalar C~

function in ﬂu except at a finite number of points. Equation (8)

becomes

while (7) can be written as

u" = Flu,u') + % (2-(z)]* (11)

where
2.T

(12)
It follows from (1C) that if |ui| <A as x + 0, then g must be

infinitesimal of order x, that is, in the neighborhood of

x = 0 we may write g = xf(x) where £{(0) is finite and not zero.

F(u,u') = -go"M ' M'u' -(¢'/o)u' - (1/28)(38/32)T2'T2'
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For the transtormationm to be camnonicsal it is now sufficient

to have ¥ = O vhateve: u'. The p-th comporent of F 1is

2 1
F_=-go- ] M (3K  f3u )u's’ - = )(3e¢/5c Yu'u’
P jxhqu Js' <" g s ° 2 T 9P
-(1/2g) (ag/3u) ;;.;2

g

For ?? to be identically zero, the coefficients of

(u;né) must vanish whatever {(a,E) are, so thazt wz abtain

202 I -—,:-1-8-4-%-(-3—‘3—6 35 5+

—as—-' = 3
du_"Bp = dug ap zu O 9 (13;

1

o 2

g 3u_ a3
P

for all values of r,x,8. If one multiplies Egquation {i3)

by (H-l)pi and makee use of Equation (9) the result iz

oM
ig 3 o0 29
rrali i T ol ST I
gu 23 aun ig 3u8 ia
!‘.— 3 é&.., s
+ 2g 638 %Hip aup 0 {14)

fer all (i,a,B), the equation being symmetric with respect
to the pair {(a,R). This is a system, therefore, of nz(a+1)/2
partial differential equations which define K, g,oc such that
the vector F is identically zero.

Getting a new system independent of the velocity u'
and performing an orthogonal transformation will reduce the

equations tc the canonical form
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[ 1 é_, -4 !
gt = 7 g ()] (15)

anéd this can be Termed to be Levi-Civita's problem. Im pria-
ciple, the probiem~ {s ncw cveduced to the choice of the scalar
foocting g(u).

Connection between time and cooxdinates transformations

A sieole relation Yetween z and o can be obtained froms
Equarion {(13?. In fact, considering the case 8 -~ p # a, one

finds

or

Q
Q>
(W

o jo»
e
]
q)
[
”~
]
Q
N
~

- 3

so that

3
™ {(2n go) 0
a
for all values of «. Thus, by proper rnormalization

go = 1 (16)

independently of the form of matrix ¥ but its orthogonality.
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i This result indicatesg the fact that if g is infinitesimal

vwith x as resulted from Equation (10), then 1/o defining the

time transformation wust have exactly the same character zs

x » G. It also follows from Eguation (9) that jdet M| = Iglniz,
so that if and only if n = 2 the [éet M| is infinitesimal

of the same order of g as x + 0.

The choice of g(u{x)) and the cornection between u and x

Use of (1€) inte (14) gives

3K
18 1 S8 38, _ g . _
S, ~ 25 Pissu] * Meadey "~ fas L Mipau) 7 O (173

The sinplest choice of g, satisfying the above derived

regularization condition is

g = Kx

where X is a coastant, not zexo.

it follows that

3x
22 gy dx __t_ i)ty
3up 3 axz aup < x L

er

Multiplyingthis last by (H’l)pm and taking Equation {(9) into

account, summation of p gives
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? P

Piffereariaring asgaio with respect to u, and multizplying by

%'1 we obraia, a2fter summation over m., and together with the

integratilicy condition,

2
2 1 7,32 2 _ o2
352 + 35 gqaup) " =g (19)

This last set of a partial differential equations
defirces the functioz g(u) = Kx, explicitely in teras of
Ups UyseenrB . Evidently this is not enough to define the
transformatice from x to u., ¢r, better say, the matrix M.

Up to this moment one can conclude that for am ortho-
gonal and irtegrable matrix #{u), such that HTM = gl, if
g =~ Kx and the new squations are independent of the velocity
u', then tke possible transformations M should be such that
g(u) satisfies Equation (19). Some of the results of these
sections were presenred in a previous work (Giacaglia, 1968j

related to the n-body problem.

Two-dimensional case. Levi-Civita's Transformation.

The orthogonality condition
MM =gl

can be written, in general, as

R T AT L
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Hil = /g cos §
-MN.., = /E sin ¢
12 (20)
M, = /g sie ¢
u,z = f; sin ¢

vhere ¢ = 4$(u) Las to be determined.
By considering the integrability conditions

axll/auz = 3!12/3u1 R alelauz = 3H22/301 , we obtain

or, since one must have 32¢/au13u2 = 32¢iau23u1, the result is

2
3 5 _ g 2 g 2! .
25 au1 [(aul) + (auz) 0 (21)

But, for n = 2, Equation (19) gives

2
35 [ag 2 g 2 2
2g aul + [(aul) + (gu,) ] = 8K'g

so tnat, necessarily,
2
—%gu = 2x?
1
and similarly
2

2 _ 2
5;5‘—21( .

2

By making use of Equation (19) we finally obtain
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g K (ul + uz) + au, + Buz + -_ZEYE-

with a,8 arbitrary constants. 3ir is worth anoting that the

following solutions of Equation (21%)

k2 (u, ¢ uz)2 + 2‘;3\/%— (u, +u,) + 2

00
N
win

do net lead to orthogonality and integrability of M so they
rust be discarded. There is no other possible solution.

For the angle ¢ we obtain

% _ _ i 2

3% -4 L o2
ﬁuz + 28 (2K u; + a)

or, integrating,

2K2u2 + B
¢ = arctan EEIEI";_; -y (22)

where y is an arbitrary constant. We now obtain
Vg cos ¢ = [(2K2u1 + a) cos y + (2K2u2 + g) siny]/2K
/g sin ¢ = [-(2K2u1 + a) sin y + (2K2u2 + B) cosy] /2K

so that the transformation matrix M can be written

ul --uz o -8
M = R(Y) K u, ul + |B o (23)

where

e, e
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- cosy siny
R(Y) [-siny cos?J

In cowplex form, the transformation car be written

dx* = 2e17(Ku* + at)duk (24)
where

<k = i 3% = 3 X =

x x1 + 1x2 s U vy + i, , a o + i .
Equation (24) gives the most general form of Levi-Civita's

transformation which corresponds to the particular case

Yy =0, K=1, a =8 =0. In the same notation of Equation

{24) the function g is

(Ku. + )2 + (Ru, + 8)2 (25)

[~ !Da
- {rr
"
o
"

1

with the ceiresponding Levi-Civita case

We also remember that the transformation is

dx = 2Mdu

so that one finds

2 2
uy - u, a - B
x = R(y) [K 2“1“2 + 2 8 ol + b (26)

or, in complex notation

2

x* = eiY(Ku* + aku*) + b* ,

where b is an arbitrary vector. It can also be written as
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U, - u, fa - g 1
x = R(y) |k u, u + 2[8 Jy_ +b (27)

The n-dimensional case

Consider Equation (19) for m > 2. Let (uk, uz),
k # 2, be a pair chosen however and consider the necessary

conditions

g . 2 (28)
auk auz
that results from Equation (19). The general solution is
g = f(uk + U ua) + h(uk - U ua) =
= f(x,ua) + h(y,ua) (29)

where u, is the set of all u, {a=1l,...,n; a # k,2) except

the elements vy and u,. By substitution into Equation (19)

)
we find
2(f —zazh+h—232f)+zz——f h 2f——2-azf +
Yy X o aua 3 o 3

2 ho\2 - 2 2
+235H% 47 (22, . 8K2fJ - 2h[§-}-{-§ 2387 4
a

X aua y
3h 2 2.1
+ g (aua) 8K ﬁJ = F(x,ua) + H(y,ua)

Differentiating with respect to x and y successively we

obtain

ey hon

A e e
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Q

3
of h 3°f 3h .
ax dy3 oA 9y + Z axaua ayaua o .

Admitting that (3£/3x%)+(3f/3y) # 0, division by this

quanti+y leads to

3 3 3 3
3 f/3x 3 h/ay” _ -
3e/3x T anfay = K(x:u ¥ L(y,u)

22s  _3%n 3f 3h
axaua ayauu 3Ix 3y

Again, successive differentiation with respect to x

i

x and y, gives

2
;e 3h _ _ _a’n_ a7n) (af _23f  _3%f 3%t
3y 3y%3u dyou  3y4| fax axZsu 3X3u_ 3x%
o a a a o

and this relation has to be valid for all pairs (k,g¢), that
is, whatever u, is.

The only way to satisfy both the last egquation and
Equation (19) is then given by the 2n equations

3 2 2

3h 3h _ _8°h 3%h _
3y ayzau dyau 3y2
i a a
%
? af _22c % 2%
i 3X 3x%3u ax3u_ 3x2
; o a
' and, more specifically,
2
%;% = 2A = const.
2
é“% = 2P = const.

ay
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for every pair (k,2). It follows from

£ = ax” + B(ug,y)x + C(u ,y)

h = Py2 + Q(u“,x)y + R(ua,x)

that the most general allowed form for g, under the above

specified conditions, is given by

2 2
g = 21 (RKug + 2,) (30)
jz

where K and the aj are constants, and there remains to be
verified whether this form leads to integrable relations of
the matrix M. More details on these results were given by

Giacaglia (1966).

The definition of the transformation M

Consider again Equation (18) and differentiate it with

respect to u,

2 3Ry - 412
au2 ( z Mmp du ) 4K Mml
P P
and making use of (30),
aumz
Y (Ru + a)) 35 = KM, . (31)

P

Let us define
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w, = Kup + ap (p =1,2,...,n) (32)

so that Equation (31) becomes

and therefore Mm is an howogeneous function of the first

L
degree of the wp, that is, a linear function of the up.
Let

M = z 0w (33)

where the matrix M must be orthogonal and lead to integrable

relations.

Consider first the orthogonality

g ity = 8 8y

where, according to (30) and (32)

g =) w? i (34)
P

or

r 4

_—
ki T %1%y T 2844%:s (35)

]
akia

Consider the n matrices ayp ={c§j}’

o .—n,-r‘,«.-e-f::.”':if‘i

A - S ——y g
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so that Equation (35) can be written

uTu + aTa = 21 & {36)
s r r s rs

with the integrability conditions giving
P .
g a (37)

The solution for u = 2 is given by

o = 1¢ o, = 0 -1
1 01 2 1 0
giving back the general Levi-Civita transformation
w ~-Ww
2 1

For n = 3, there is no solution, while the problem can partially
be solved for n = 4 or n = 8 (Hurwitz, 1933).

In order to study the problem for n = 4 we here make
use of quaternions as cpposed to the above spinor solutjon

of the case n = 2.

The four-dimensional case

We follow the results in Hurwitz (1919) and define the

imaginary units i,j,k, satisfying the multiplication rules:

12 = 52 = k2 = -1, 14§ = -j+1 = k, etc.

The rotation matrix M is then generated by

dx, + idx2 + jdx3 + kdx4 = 2(f1 + if2 + jf3 + kf, )

1 4

. (du1 + idu2 + jdu3 + kdu4)

S VRN
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which we write dx* = Zf* - du*. We easily find that N is

répresented by

(38)

where, as was seean, the £, must be linear functions of the

3

v, or homogeneous of first degree of the w The above matrix

|

is orthogonal whatever the f

5
are {(not all zeron). The matrices

3

a, (j=1,2,3,4) are obtained immediately by setting one of the £

3

equal to unity and the others equal to zero, in succession.

3

By imposing integrability conditions on the first three
rows of M we obtain the conditions
fl = ¢(u19u2)u3)
£a = Balupaugsuy)
f3 = f3(u1,u3,u4)

£, = £,(uysug,u,)

where ¢ is linear while fZ’ f3, fA must satisfy the relations
( 3€,/3u; = -3¢/3u, , 3f,/du, = 3¢/du; , 3f,/du, = ~34/du,
(3g) Ao 3f3/8u1 = -3¢/au3 . af3/au3 = 3¢/au1 . 3f3/3u4 = a¢/au2
‘ 8f4/8u2 = -3¢/8u3 , 8f4/au3 = a¢/3u2 , 3f4/8u4 = —3¢/3u1

If integrability of the fourth row is imposed, there
results ¢ = 0, so that complete integrability is impossible.

In other words, whatever ¢ is (#0), the differential form
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fédul - f3dnz ¥ Ezdu3 + fléu‘ is not integrabie. Tbis prob-
iem, of ccocurse, does not represeat an obstacle but oaly means
that zo the hclioromic constraint x, = 8 f£pn the pysical space
there corresponds the non hclonomic cons -raint (f* - du*)k = 0
in the u-space. 7This problem has been discussed in several
works for the particular transformaticn (KS-Tramsformsatice)}
introcduced ly Kustaanheimo and Sciefel (19€3).

Re row obtain the general solution of che prodlem by

setting

fl = 31“1 + Bzuz + 6393 (403

so that, applying Equation (39), we easily find

fz = -Bzw

- B

+ Biwy ~ Byo,

1

f3 = -B3ul + Slu3 + 8235 (413

£, = -8 + 8,8

3%2 3~ B1%
where

w, = Ku, + a.

] B 3

The transformation M depends thera2fore cn seven para-

neters, while K is just a scaiing factor whick we cam set
2qual to unity vithout loosing anything. FNot all 8's can be
zero.

In components form, the transforuwaticn can now be

written

Famr e v ¥

\
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warhy Nt haye
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2 2 Z 2
ldxi = Sld(ul - W, = Iy * ub) +
¥ Bzé(ulaz - u3u&3 +
+ Szd(ulu3 + azué)
ldxz = zld(uluz + u3u‘) 5
z 2 z
+ 525('w1 + w5 aq + ”4) +
+ &36{—alu€ + M2u3)
XKdx, = Bld(u153 ”2”6) +
+ Bzd(”l”& + ”2“3) +
2 2 2 2
+ 63d(—ul ~ @, + u3 + ”4)
deé = 31(_34dul - 33632 + wzdu3 + u!dﬂ4) +
+ Bz(usdﬁl - 94492 - wlde3 + azdué) +
+ 83(—azdal + wlduz - w4de3 + w3dw6) (42)

apd it is clear that &xa is not an exact differentiszl. Setting

K=1, a,_ = 0 (3=1,2,3,4), 62 = 8, = 8, w2 obtain ess=2ntially
3

3
cthe K53-Transformation.

Other than transforxation (42) one could consider rota-
tions, translations and inversions wkich are analytic and can
be used to make the traansformatior satisfy other conditions
thza the ones required in this work. For example, they were

used by Waldvogel (19€7) to generalize Birkhoff's transforma-

tion for the 3-dimensional restricted problem of three bodies.

v e e R Es e s

PR P ALY S
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k9
Ia that work, rhe author gives an excellest discussion of
the g=neral problem.

Generalized fcerms of generators for regularization
vere given by Szebehely (19672), Ciacaglia (:967a), Giacaglia
(1956), Giacaglia (!%567b), and cthey are ctotally discussed by
Szebehely (1957b).

The results giver by {&2) show that it is not pcssible
to fully genevalize Equation (24} into a four-dimensional

complex analogy {cuaternion formalism) which wounld lock like
dx%t = 2Q%(8) - (Ku* + a%) . du*

with Q*(3) a rotation gquaternion. It is easy to verify
that the guateraion produet uv¥ - du* is not integrable, The

KS-Transfor=zation corresponds to

x = 2 3 — s 2 = e 2
dx Z(t.1 + fu, + jug kué)(dnl + 1du2 + jdu, + k&bb,
= 2“2 - du* . (£3)
X = 3 -
vhere uz 8y + iu2 + juy kuﬁ ’
while (42) can ve written as
rdxk = 24 * & - * o dek - x . %
Kéx Zgalué du 52u3 de Bsnz éax) (&4)

with the same pnotation of Equation (43), that is,

[+
»
Y

U, + iuz - ju3 + ku4

x = - 1 - P
uj ul 112 v 333 + xu, .

e -
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411 ceabinatiazs nz o Jduk ug < du* ug e de* cor:zspond
to integradic relations ieading to orthkogomal rransformations.

Ia auy event the time traasformation is given by Equation (34),

that is,

e

# (v dn

)

s

x g(&) =

wkere s, = Kuj + aj s an exact generalizatiun of Levi-

3

Civita's gereral correspondent Equation (25).
It is importznt to nmotire that, in quatarnion notatian,

the integrated (3 + 4) ES-Traemsformation can be easily written

as
xy + ixz + jx3 +x0 = (ul + iu2 + ju3 + kuk) .
. (ul + i, + ju, - kuq)
or
x* = g% - uz .
In tke same manner one can write the integrated form
of (a4) as

*8 *. *- *. *_ *.a*
Kx Blu v Bzu u3 B3u a3

4

the k-th coaponent of this being identically zero.
OQuzternion notation has been neglected fur a long
time bet just receatly, Arenstorf (1969 has shown its use-

fcrlaess io relation to the transformation intraduced by

Wzldvogel (1967).
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Conclusions

The priwmary reascn for this paper was to obtaim KS-
Transformation via the direct solution of the original
problem. As a result we obtained s system of Partial
Differential Equations from which arose the equation con-

necting the time and coordinates transformations. We then

obtained a general form for the time transformation and with

this we concluded that the coordinates transformation matrix

had to be linear in the new variables, or homogeneous of
first degree in a well defined linear combination of these.
These combined conditions led to a transformation which

contains the KS as a special case. It {3 impor%ant to note

that orthogonality of the Jacobian matrix for the transforma-

tion and absence of velocity dependent terms was imposed as

a starting point.
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