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Abstract

- By imposing regularity of the new accelerations and
- a

velocities we introduce~a time and a coordinate transforma-

tion which generate as particular cases the Levi-Civita and

the KS-transformations.

Introduction

Consider the differential equation

_ (1)

:1 _ nwhere x is an n-column in R , W = W(x) is a scalar function

and 3W/ax its row gradient with respect to x. The supertcript

T indicates the transpose of a vector or matrix. Let x be
n

the absolute value of x, x = ( x We consider thec

W l/x + R(x) + E (2)

and assume that R(x) is C2 in an open region fl of Rn containing

the origin x = 0. It follows that for every x in a except

x= Q and for every finite , there exists and is unique a

*On leave from the University of Sao Paulo and the University
of Campinas, Sio Paulo, Brasil.
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solution of Equation (1) which can be continued in Q except

through the origin. We wish to study the solutions which

approach the singularity x - 0. Assuming E to be an arbi-

trary constant, the energy integral can be written

oT*x x 2W(x) (3)

Let us consider the tangential transformation

dx - 2M() du (4)

where u is an n-column in Rn and M an n x n matrix. Necessary

properties are that in an open region au containing the origin

u - 0 and, except at a finite number of points, M exists

and also

m ki mksau (5)

for k,k = 1,2,...,n and s > J, which are the integrability

conditions of Equation (4).

We also introduce a new independent variable T by

Sd=r o(u) dt (6)

2where u(u) is a scalar function, at least C in a except at

a finite number of points. With the use of Equations (4) and

(5) into Equations (1) and (3), we obtain (Giacaglia, 1968)

the following relations



[ ' 3
2 -1 -1 MT T

u" -H Mu' - (o'/o)u' + (1/402) (WPU) (7)

and
,TMTMu, /2,TT W 2o 2  (8)

where primes indicate derivatives with respect to 1.

Regularization

We require that at x 0 0, Iu'! < A, A finite. We also

restrict ourselvee to orthogonal transformations, that is,

such that

g ()2 ( MTM

jwhere I is the identity n x n matrix and g(!) is a scalar C"

function in Q except at a finite number of points. Equation (8)
U

becomes

2 1

while (7) can be written as

U11= F(,)+ (&W))T (14 Da

where

F(u'u') = -go -('/a)u' - (lI2g)(3g/D)TuTu'

(12)

It follows from (10) that if iul <A as x 0 0, then g must be

infinitesimal of order x, that is, in the neighborhood of

x = 0 we may write g = xf(x) where f(0) is finite and not zero.
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For the transformation to be canonical it is nov sufficient

to ave = 0 v1atever u'. The p-th component of F is

F -_90 ON _ )U'u' u )u'u'
jsq 3P js r q s q

-(112g) (/sau F) iu 2
Pq q

For P to be identically zero, the coefficients of

"(u'u) must vanish whatever (a,S) are, so that we obtain

+-(-IN + -6 )+ 0(13)
2a ap auu a

for all values of r,aj. If one multiplies Equation (13)

by ( )p and makes use of Equation (9) the result isbyi

+ +g a 9
au2Y 3u io au ic

2g 6 a$ 0Nia (14)
P p

for all (i,c,), the equation being symmetric wi.h respect

to the pair (a,a). This is a system, therefore, of n2 (n+l)/2

I partial differential equations which define M, g,o such that

I the vector F is identically zero.

Getting a new system independent of the velocity u'

and performing an orthogonal transformation will reduce the

equations to the canonical form
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L 1A (15)

and this can be ':erued to be Levi-Civita's problem. In pria-

cIple, the proble-n is nov -eeduced to the choice of the scalar

fonctirna 8(u).

Connection between tlve and coordinates transformations

A single relation !etween S and o can be obtained from

Equation (13). I fact, considering the case B p # a, one

finds

2go 2  H am. + - 0

j jp a. _ au

- aor

I ao a M
go aU = U 3

or, considering Equation (9),

go U a au ago

so that

au Un go) 0
a

for all values of a. Thus, by proper normalization

go 1 (16)

independently of the form of matrix N4 but its orthogonality.

4
i

'It
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This result indicates the fact that if g is infinitesimal

with x as resulted from Equation (10), then 1/a defining the

time transformation must have exactly the same character as

x - 0. It also follows from Equation (9) that idet I _ ig n J2 ,

so that if and only if n - 2 the Ieet M1 is infinitesimal

of the same order of g as x - 6.

The choice of s( (x)) and the connection between u and x

Use of (16) into (14) gives

au 2g Mca4au MO p ipau (17
-ii

The sinplest choice of g, satisfying the above derived

regularization condition is

g = Kx

where K is a constant, not zero.

It follows that

ax ~ 2K X
u t xax t au

or

2K7 au 1 MIp

Multiplyingthis last by (M-1 )pm and taking Equation (9) into

account, summation of p gives
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p

Differentlating again with respect to u and multiplying by

?#-=I we obtain, after summation over u. and together with the

integrability condition,

1 -_L2
2-grSk....5 - K2 = - (19)

This last set of n partial differential equations

defines the function g(!) Kx, explicitely in terms of

U1 , u,...,u n . Evidently this is not enough to define the

transformation from x to. or, better say, the matrix H.

Up to this moment one can conclude that for an ortho-

gonal and integrable matrix H(M), such that MTH = gI, if

g = Kx and the new equations are independent of the velocity

u , then the possible transformations H should be such that

* A g(u) satisfies Equation (19). Some of the results of these

sections were presented in a previous work (Giacaglia, 1968)

related to the n-body problem.

Two-dimensional case. Levi-Civita's Transformation.

The orthogonality condition

MTM = gI

can be written, in general, as

te

4
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I'H 1 1 l "ij cos4

-HI 2 - / sin
12 (20)

-21 /g sin

m 2 2 jr sin*

vhere f - 4(u) has to be determined.

By considering the integrability conditions

am / u - /3u , am /a 2ua , we obtain

11 2 121u M21/3 2  22

_ ._!_ __ _

au1  2g 3u2  2u 2g Bu1

or, since one nuot have a2/3uIau2 = 32 Oau2 ul , the result is

2 2
+ ) = (21)

But, for n = 2, Equation (19) gives

a 2 21 2
2g - + u) +( OR =8Kg9

a 4Uu. 3u 2)I1
so that, necessarily,

2 2K2

and similarly

a2 2
BgE ey2K

32

I By making use of Equation (19) we finally obtain
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2 2 2 ++g K (u I+ U2 + au I + u2 + 4K

with a,B arbitrary constants. it is worth noting that the

following solutions of Equation (21)

2K2 (utu)2+2a~i (u t u2) + 2

g (u1 ±u 2)
2  2

do not lead to orthogonality and integrability of M so they

must be discarded. There is no other possible solution.

For the angle 0 we obtain

U = 1 2u

F(2K2 +au 2g +2 B

+ 1 (2K2ui+au 2  2g 1

or, integrating,

2K2  + 8
arctan (22)

2Ku+

where y is an arbitrary constant. We now obtain

2 2V/ cos * = [(2K U1 + a) cos y + (2K u2 + 8) siny]/2K

/g sin 0 = [-(2K 2U1 + a) sin y + (2K2u2 + 8) cosy] /2K

so that the transformation matrix M can be written

F a (23)
M = R(y) 1u U +8(

where
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( -siny CosCi

In complex form, the transformation can be written

dx* - 2et (Ku* + a*)du* (24)

where

X = x I + ix 2 , U* = u1 + iu 2 , a* - a + iB

Equation (24) gives the most general form of Levi-Civita's

transformation which corresponds to the particular case

I = 0, K - 1, a = B = 0. In the same notation of Equation

(24) the function g is

dt_22
dt g = (Ku + a) + (Ku 2 + B) (25)

with the cozresponding Levi-Civita case

2 2

We also remember that the transformation is

dx = 2Mdu

so that one finds

S= R(y) [K u2 + 2 - + b (26)2uUU 2  B a -

or, in complex notation

x* = eiY(Ku* 2 + a*u*) + b*

where b is an arbitrary vector. It can also be written as



u 
I i

R (y) [ u 2 +,. 'I - l]u+b (27)

[K 2 l

The n-dimensional case

Conelder Equation (19) for n > 2. Let (uk, u),

k J t, be a pair chosen however and consider the necessary

conditions

2 2
(28)

that results from Equation (19). The general solution is

g f(u k + u£, u a ) + h(uk u a

= f(x,u ) + h(y,u ) (29)

where u is the set of all u (ctl,...,n; a # k,;) except

the elements uk -nd u . By substitution into Equation (19)

we find

82h  2f 
u h [2f x2f+

a 2 2l a h ah 2 ah
2(f-) + h- ) - - +[2() +

=axa Du =ax

a a a

' "af 2 +h 2L 2 2 ' 2h (h 2

+ 2(3--) 3a[ ( "uc ) - 8 K 2  2h a' + 2( ay +

au
+ X . ) h ) 2 2 -1

'u)  8K2h F(x,u a  + H(y,ua

4a a

Differentiating with respect to x and y successively we

obtain



12

af a3h + 3f 3h + a 2 f a2h
W -a +7 =a -ay a ax a u a yau a

Admitting that (af/ax).(af/ay) # 0, division by this

quantiti leads to

3f/ax3 + h a K(x,u )+ L(yu )Wfax + a/y =a

ra2f a~) 2 [h ah
La a a x

Again, successive differentiation with respect to x

and y, gives

u7 a x2a axu

ah a3h -ab 2a h j3f 32f 2 af]-3Y 7 u a 3yau al'ax a~F axau c

and this relation has to be valid for all pairs (k,k), that

is, whatever u is.

The only way to satisfy both the last equation and

Equation (19) is then given by the 2n equations

h a3h a2h a 2h
;y ay/-'u ayau 3-57

3 2 2a f a3f a2f a2f 0ax aX au - xau x = 0

and, more specifically,
2f
a = 2A = const.

2h'1I! = 2P = const.
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for every pair (k,l). It follows from

2
f - Ax + B(uaY)X + C(u a,y)

h P py2 + Q(UaX)y + R(uaX)

that the most general allowed form for g, under the above

specified conditions, is given by

n
I (Ku 2 (30)

where K and the aj are constants, and there remains to be

verified whether this form leads to integrable relations of

the matrix M. More details on these results were given by

Giacaglia (1966).

The definition of the transformation M

Consider again Equation (18) and differentiate it with

respect to u

)= 4K2M
a Mmp au mi

and making use of (30),

am
, (Ku + a KMm* (31)SP p p au "t

p p

Let us define
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w Ku + a (p = 1,2,...,n) (32)

so that Equation (31) becomes

.1I (A ) H
p p

and therefore MM£ is an homogeneous function of the first

degree of the wp, that is, a linear function of the up

Let

M (33)

~S

where the matrix M must be orthogonal and lead to integrable

relations.

Consider first the orthogonality

M Mkimkj = gk

where, according to (30) and (32)

2

p = W (34)
p

We obtain

~s r )kis r  6

or

asa r + Xs 6(5
Cki kj + i kik =2ij rs (5

a Ik
Consider the n matrices k =C i
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so that Equation (35) can be written

aT +aT i 21 6 (36)
s r r s rs

with the integrability conditions giving

a ap (37)

The solution for u = 2 is given by

giving back the general Levi-Civita transformation

M = 2 1

For n = 3, there is no solution, while the problem can partially

be solved for n = 4 or n = 8 (Hurwitz, 1933).

In order to study the problem for n = 4 we here make

use of quaternions as opposed to the above spinor solution

of the case n = 2.

The four-dimensional case

We follow the results in Hurwitz (1919) and define the

imaginary units i,j,k, satisfying the multiplication rules:

2 .2 2
i = =1 =-, j = -ji = k, etc.

The rotation matrix M is then generated by

dxl + idx 2 + jdx 3 + kdx =2(f + if + f+ kf

* (duI + idu 2 + jdu 3 + kdu 4 )
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which we write dx* Zf* - du*. We easily find that N is

represented by

f, -f-f -f4

f2 -f4 f3

f f f -41 (38)

f4 -f3 f2 fI

where, as was seea, the f must be linear functions of the

u or homogeneous of first degree of the w The above matrix

is orthogonal whatever the f are (not all zero). The matrices

aj (J=1,2,3,4) are obtained immediately by setting one of the f

equal to unity and the others equal to zero, in succession.

By imposing integrability conditions on the first three

rows of H we obtain the conditions

1f = (Ul'U2

f f (
2 f2 (u1 'u2,u 4)

f f (

where 4is liea whie f f4 must satisfy the relations
f4 = f4 (u2,u 3,u 4 )

af2 /au 1 = -3/u 2 , 2/u2 = D3/au 1 , af2 / u4 = - /u 3

(3g) 3f3/au 1  = -=/u 3  , 3!/u3 = ./au 1  , 3f3 /au 4  = W 3/ 2

af4 /u 2 = -3/au3 , f 4 //au 3 = /du2 , af4/ iu4 = - /uI

If integrability of the fourth row is imposed, there

results = 0, so that complete integrability is impossible.

In other words, whatever 4 is (#0), the differential form
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417 i

f4du I -f 3 du2 + f du3 + fldu is not integfable. This prob-

lem, of course, does noz represent an obstacle but only means

that to the holonoxic constraint x. - 0 in the pbysical space

there corresponds the non holonomic cons-taint (f* du*)k 0

in the u-space. This problem has been discussed in several

§ works for the particular transformation (KS-Transfornaticn)

introduced ty Kustaanheina and Stiefel (1965).

We nov obtain the genera. solution of the problem by

setting

f a (a + 02 + aU (40)
I1 1 22

so that, applying Equation (39), we easily find

= -2o+ C42 -3

}~ =-3 2 1 23 3 i4f + fS W+ + 0 W (41),

4 3 2 3 1-

where

Co. Ku. + a.SJ l 3

The transformation H depends therafore on seven para-

m eters, while K is just a scaling factor which we can set

equal to unity without loosing anything,, Not all B's can be

zero.

In components form, the transforuation can now be

written



Iix B3d(uiw2 - 2 3 -j +

+ 1 d( U3 + "4)

Kdx 2 = S 1 (l 1 2 + u 3 4 ) +

21 2 2
S1 + d(-u I+ ~2 - 3 "4

+ E3 d(-al 0 + W2U

Kdx 3 = 8id(ua 3 - o 2 4 ) -

+ B2 d(WeU 4 + a 2 ea3 ) +

+ 6 d(-u 2 2

3 1 +2 3  L

Kdx4 B 1 (-S4du I - 3do, + + Ido4 +

+ B 2 (W3d 1 - 4 d 2  W Idc3 + a2do4) +

+ 83 (-W 2 do1 + WId i2 - 4da3 + w 3 da 4) (42)

and it is clear that dx 4 is not ar8 exzct differential. Setting

K = 1, a. - 0 (j=1,2,3,4), 82 = a = 0, we obtain essontially
J

che KS-Transforeation.

Other than transformation (42) one could consider rcta -

tions,translations and inversions which are analytic and can

be used to make the transformatio- satisfy other conditions

thaa the ones required in this work. For example, they were

used by Waldvogel (1967) to generalize Birkhoff'. transforma-

tion for the 3-dimensional restricted problem of three bodies.
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In that work, the author gives an excellent discussion of

the general problem.

Generalixed forms of generators for regularization

were given by Szebebely (1967a), Giacaglia (1967a), Ciacaglia

(1966), Giacaglia (!967b), and they are totally discussed by

Szebehely (196?b).

The tesulzs given by (42) shov that It is not possible

to fully generalize Equation (24) into a four-dinensional

complex analogy (quaternjon formalism) vhich would look like

dx* = 2Q*(.$) - (Ku* + a*) - du*

with Q*(S) a rotation quaternion. It is easy to verify

that the quaternion product u* - du* is not integrable. The

KS-Transformation corresponds to

dx' = 2(u + iu2 4 Ju3 - ku )(dul + idu 2 + jdu3 + kd=4 )

=2uZ. du* (43)

where u* = u + iu+ ju3 -ku

while (42) can ;e vritten as

Kdx* = 2(8 u* - du* - B u* du*~ - u * du*) (44)
1 4 1 3 3 2

with the sane notation of Equation (43), that is,

u* = U + iu 2 -ju 3 + ku4

u*=u - it j u + ku
2 1 3 4
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All coabinatimrs u* du* , u* - du* u* - du* cor:2spond4 3 2

to integrabic relations ieading to orthogonal transfornations.

In auy event the tine transformation is given by Equation (34),

that is,

dt 2
dr~ g m

where U Ku. + aj , an exact generalization of Levi-

Civtta's general correspondent Equation (25).

It is iaportant to novir.t that, Ln quaternion notation,

the integrated (3 - 4) KS-Transformation can be easily written

as

+ 2 + jx3 +kO (uI + iu2 + Ju 3 + ku4 ) -

(u I + CU 2 + iu 3 - ku4 )

or

1* = 21* .5

I4

j In the same canner one can write the integrated form

of (44) as

Km* =BU* " - B"* " .

43 3 2

the k-th coaponent of this being identically zero.

Quaternion notation has been neglEcted for a long

tine but just recently, Arenstorf (1969) has shovn its use-

Sfulness in relation to the transformation intraduced by

Waldvogel (1967).
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Conclusions

The primary reason for this paper was to obtain KS-

Transformation via the direct solution of the original

problem. As a result we obtained a system of Partial

Differential Equations from which arose the equation con-

necting the time and coordinates transformations. We then

obtained a general form for the time transformation and with

this we concluded that the coordinates transformation matrix

had to be linear in the new variables, or holnogeneous of

* first degree in a well defined linear combination of these.

- These combined conditions led to a transformation which

contains the KS as a special case. It is important to note

that orthogonality of the Jacobian matrix for the transforma-

tion and absence of velocity dependent terms was imposed as

a starting point.

*

!

g
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