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ABSTRACT

There are two methods which have been developed inde-
pendently for computing network sensitivities. Both computa-
tions may be carried out in the frequency or in the time
domains. One method involves the analyses of two networks -
the original and its mutually reciprocal adjoint. The second
method uses a sensitivity model for the circuit. It is shown
that the sensitivity model and the mutually reciprocal adjoint
circuit are essentially the same; the sensitivity model being
useful for calculating single parameter sensitivity in the
time domain, the adjoint circuit being useful for calculating

-

sensitivity for several parametersgin the frequency domain.
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I. INTRODUCTION

The subject of sensitivity is one of the oldest areas
where electrical engineers have made extensive studies. A
great amount of research work has been done and in almost
every technical journal articles have been published cencerning
different approaches to network sensitivities. This subject
received new impetus when the digital computer was made
available to almost every  electrical engineer. With the aid
of the computer, different approaches to computer aided
circuit design have been outlined using.sensitivity models or
the mutually reciprocal adjoint network.

Starting with the definition of "Interreciprocity," S. W.
Director and R. A. Rohrer [Ref. 1-4] developed the idea of
automated network design and sensitivity calculations for
linear, time invariant, and later for nonlinear, time variant
circuits, using the reciprocal adjoint network. The calcu-
lations can be carried out in the frequency or in the time
domains, although time domain calculations are involved.
Computations of the sensitivity due to changes in all network
parameters require the simultaneous analysis of two networks,
which is easily accomplished with the aid of a digital computer.

The other approach to network sensitivity makes use of
sensitivity models as developed and published by J. V. Leeds
and G, I. Urgon [Ref. 5)}. These results were extended later
by S. R. Parker [Ref. 6] to nonlinear time-variant circuits.

Using sensitivity models the changes of an output quantity

PP, e




due to variations of one circuit parameter are easily achieved,
For complicated networks the computaticons of the sensitivity
due to changes in all anetwork parameters are more involved.

The computations are carried out in the frequency and the time
domains equally well.

It is the subject of this thesis to show that both
approaches to network sensitivity are not independent. First
a éareful review of the mutually reciprocal adjoint network
is given. As a new result a topological relationship between
the original network and its adjoint, including dependent
sources and independent sources, is presented as noted. After
that the relations and transitions between the adjoint network
approach to sensitivities and the sensitivity model are shown.
Finally the advantages and disadvantages of both methods are

discussed.
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II. THE MUTUAL INTERRECIPROCAL
ADJOINT NETWORK

The interreciprocity property of an coriginal network N
and its mutual adjoint network ﬁ is an important extension
of the reciprocity theorem used for computation of multi-
parameter sensitivities and automated network design. As

defined by Director and Rohrer [Ref. 1] the properties are

summerized in the following paragraph.

A, THE ADJOINT NETWORK

For any general network N containing arbitrary multi-
terminal or two-port elements with parametric representation
(lumped parameters), there exists an adjoint network ﬁ which
has the same topology, but not necessarily the same element

types, in corresponding branches.

1. The Linear Time Invariant Case

Director and Rohrer [Ref. 2 and 3] developed the
adjoint network & as being identical to the original network
with the following exceptions:

a) All gyrators in N with gyration ration, a, become gyrators
in ﬁ with gyration ration, -a, (polarity reversed).

b) All voltage controlled voltage sources in N become current
controlled current sources in & and voltage amplification factor,
u, becoming current amplification factor, -u.

c) All current controlled current sources in N become voltage
controlled voltage sources in g with controlling and controlled
branches reversed in ﬁ and current amplification factor, h,

becoming voltage amplification factoxr, -h.

11



4a) All voltage contraolled current scurces and current
controlled voltage sources have their controlling and controlled
branches reversed in é.

e} 21l independent sources are set to zere. For computations
of sensitivities of network functions, excitations with unity
sources at specified terminals are explained in a laterx
paragraph.

£) In the fregquency domain no chkanges occur in the excitation
of the two networks. In the time domain, time in the adjoint
network runs backwards.

If the two-port coupling elements such as transformers,
gyrators, and dependent sources are defined by algebraic
relations among their.port voltages and currents, then these
relations can be summerized as shown in Fig. 1. The ideal
transformer, the voltage controlled voltage source, and the
current contrclled current source are described by the hybrid
matrix. The gyrator is expressed either by the impedance or the
admittance matrix. The current controlled voltage source is
defined by the impedance matrix, and the voltage controlled
current source by the admittance matrix. 1In Fig. 1 the first
subscript is defined as follows:

i - input branch

o - output branch
The second subscript denotes the kind of two-port element and
is defined as follows:

U - voltage dependent voltage source

h - current dependent current source



voltage dependent current souxce

0
'

La
}

current dependent voltage source

L

n - ideal transformex

s} gyrator

The second subscript is omitted in the matrix representation
but will be used later,
Let the voltages and currents belonging to branches

in the mutual reciprocal adjoint network be defined by

"

v and I
xY Ty

respectively. The subscripts, xy, are explained as used later
on,

«

The transformation of all passive circuit elements
from the original network N into its corresponding adjoint ﬁ
can then be summerized as shown in Fig. 2a and b. These
transformations are valid for any linear time invariant network.
As stated before, for sensitivity calculations all independ..:.
sources in the origisral and its adjoint network are set to
zero.

2. The Lineax Time Variant Case

~

The adjoint network, N, of the original network N

for the linear time variant case is defined by Director and

Rohrer [Ref. 1] as follows:

~

a) All time invariant elements of N become elements in N
as described in the previous paragraph.
b) All time varying resistors, gyrators, transformers, and

~

controlled sources of N are time varying in N. The

13




transformations are according to the rules governing the
corresponding time invariant elements.

c) Time varying capacitors, C(t), of N become tihe varying
capacitors, C(t}, of ﬁ shunted by a time varying conductance,
G(1), in mhos equal to the value of the time derivative of

the capacitor.

4) Time varying inductors, L(t), of N become time varying

inductors, L{t), of N in series with a time varying resistance,
R{t), in ohms equal to the derivative of L(t) with respect to
time.

e) Time varying coupled inductors and their adjoint
equivalent are shown in Fig. 3c.

£) In the time domain calculations, time in ﬁ runs backwards

relative to time in N. If the initial time is defined by to’

the firnal time by tes and the running time in N by t, then the

~

time in N is given by

T=to+tf-t ; to<t<‘tf (1.1)

g) The adjoint network for frequency calculations is identical
to the adjoint network in the time domain, except there is no
backward running time. For the sensitivity calculations the
network analyses of both networks has to be carried out at

each frequency point simulataneously.

h) All independent sources are set to zero. The network
excitations, for specific sensitivities of a network function,

are discussed later.

14




Figure

Two~Port Elements and their Matrix
Characterization

Voltage Dependent Current'Source'
Current Dependent Voltage Source
Voltage Dependent Voltage Source
Current Dependent Current Source
Ideal Transformer

Gyrator
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Figure 2: Matrix Representation of One-Port and Two-

Port Passive Elements and their Adjoint
Transformation

a) Original Network

b) Mutual Reciprocal Adjoint Network
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Original Network,N

Adjoint Network,N

;

c(t) == Git)=C(t)

L(t)

b

Ry (1) =L, () ]

~=C(1)=C(t} ]
t=7

R(T)=L(t)

L(t)=L{t) |
t=1

R, (1)=L2 (t)

t=1
m(t) m(71)
~ ANV <+ o)
"1(”=’“(t’|t_ I, (1) V() =m(t) |, "1
=1
Ly (€) Ly (£) L, (1) L, (1)
- -} >
c
Figure 3: Adjoint Transofrmation of Time Varying Elements

a) Capacitor
b} Inductor
c) Coupled Inductors
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B. THE INTERRECIPROCAL THEOREM

The interreciprocal propefty of an original network N
and its adjoint ﬁ as defined by Director and Rohrer [Ref. 1]
is a generalization of the reciprocity theorem. This extension
applies to a network and its adjoint consisting of resistors,
capacitors, inductors, coupled inductors; transformers, gryators
and controlled sources. The reciprocity theorem defines a
network to be reciprocal if it has the following property:

If an excitation Eg is applied at one pair of terminals
in N and a response I, is measured at some second pair of
terminals of the same network, interchanging the points of
excitation and response, keeping Eg the same, does not change
the response I, at thé original port (Fig. 4).

An original n-port network N and its n-port adjoint ﬁ
are said to be interreciprocal if the following conditions are
satisfied:

Considering first the frequency domain case. For any
excitation Ek(s) at some terminal pair k of the original
netwerk N the response at another terminal pair n is In(s).
The excitation at all other ports is zero. Exciting the adjoint

network at terminal pair n with the sour Vn(s) such that
vn(s) = Ek(s) (1.2)
yields the response
Ik(s) = In(s) (1.3)

at terminal pair k of N.

18
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Excitation
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Figure 5: Original Network N and its Adjoint N

excited in Reciprocal Manner. Time
Domain Case
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For time domain considerations let the excitation voltage
at port k of N be ek(t) which forces a current response in(t)
at the terminal pair n. Exciting the adjoint at its port n
with a voltage souxce

vn(t)!t=T = e, (t) ; T= okttt (1.4)

-~

yig}ds the current response ik(r) at terminal pair k of N
such that
1k(t)it=T =i (t) (1.5)
{ The voltage and current excitations at all other terminal pairs are
zero (Fig. 5). If these conditions (1.2 through 1.5} apply
to all possible pairs-of terminals of both networks then they
are said to be interreciprocal.
: . One sufficient condition for an original network and its
adjoint to be interreciprocal is that the circuit consist of
linear time invariant parameters only.
cC. DEFINITION OF THE ADJOINT NETWORK IN TERMS OF TOPOLOGICAL
RELATIONSHIPS
The interreciprocity theorem applied to a network and its
adjoint, implies certain restrictions on the transformation of
elements from one circuit to the other. It results in very
strict relationships between the original network and its
adjoint. As discussed by Parker and Barmes [Ref. 7] the branch
relations of the original network can be expressed by the

following matrix equation

20




. = . 1 (2.1)

where vy and il are defined as link voltages and currents, 1
. respectively. Vs and i2 are branch voltages and currents; )

respectively. They are defined by the following vectors

. .VS- _isq ‘
vy = vy and i, = iR (2.2)
1
..VL - ..iL o
PVC~ niC- 4
vy = Vg and i2 = iG (2.3)
|
_VP- _ir. ‘

where the subscripts denote the following:
C - tree branch capacitances

G -~ tree branch conductances

o |
!

tree branch (excess) inverse inductors

/2]
!

link (excess) susceptances

R - link resistors
L

- link inductors

Independent sources consist of voltage and current sources as

] defined by the following vectors:

; . .

| s Ic

l e = lep and j = jG (2.4)
\ e
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where €qs Cpy and e, are independent voltage sources contained
in fundamental loops defined by susceptances, resistors, or
inductors, respectively. jC’ jG’ and jF are independent current
sources associated with fundamental cutsets defined by capacitors,
conductors or inverse inductors, respectively. The latter
can be neglected in the adjoint network because all independent
sources are set to zero. Only indpendent sources relevant to
thé computation of the sensitivity are inserted. These appear
as unity sources in a reciprocal manner in the original network
and its adjoint as discussed later.

The two partitioned square matrices (2.1) contain various

elements as follows:

My o= (4 + D)) 2y = [r;] |
(2.5a,b,c,d) ‘
anad
2 = |[r] M = [(p+ F)]
L = [(h-F9] Y = [g] (2.6a,b,c,d)
where

Ml consists of voltage dependent voltage sources plus
the identity matrix

Zl contains current dependent voltage sources
Yl is composed of voltage controlled current sources
Ll consists of current dependent current sources plus

the identity matrix

2 contains the remaining current dependent voltage sources

22




M contains the other part of voltage dependent voltage
sources plus partitioned topological F matrix elements

L consists of further current dependent current sources
plus the negative transposed elements of F

Y is composed of all remaining voltage controlled
current sources. Using (2.2) (2.3} (2.5), and (2.6)

in (2.1) with e = j = 0 yields

"ss ¥sr Ysi | Tsc Tsg Tsr Vs

Hrs YRR MRL | Trc FRG TRr VR

Ls MLr HMon | Tre Tne Tir Ilo YL

————————————— b e | 4 ——+-- v brewnd =

9cs 9cr Yo | Bee Pee Per 01 e

9¢s 9er Jar | Bec Pec Ber ig

9rs 91 915 | Pre Pre Prr) ip
- i o - R
*ss Tsr Tsnl Msc Msg Msr o 0 0 i Fge 0 O s
*rs TRR rRLi Mpe Hrg Mref |0 0 O E Fre Frg O 'R
Irs TLR rLLi Mo Mo e |0 0 O i Fre Fre Ir L
----------- f—-------—--— + ---—--—;—~~-;—T-——---~-—~- R
Bes Ber hCLi Icc 9cs Jer| |Fsc Fre Frep 0 00 Ve
as Mor Mow! 9ec o6 or| | 0 Fre -FEgl 0 0 0 Ve
Prs "rr hPLE Irc e Irrf | O O g i 0 00 vr
- - 4 L

(2.7)
where the double subscripts indicate the kind ¢f elements between
which the dependency exists.

The basic transformation from the original to the adjoint

contains no changes for all passive circuit parameters. Voltage

23




controlled voltage sources become current controlled current
sources with current amplification factor, -u, with the roles
of controlling and dependent branches reversed. This operation

corresponds to the following matrix manipulation

| |
| |
e --—-—c*—---—— (2.8)
I |
| !

| i

| |

e e B e s (2.9)
|

! -u !

A similar transformation holds for current dependent current

sources so that
| {
i |
i
mmmpmenn| - ___T---- (2.10)
|
|
|
and

1 ]
[ |
| l

___.!_....- — “"!"“ (2.11)
i |

Voltage dependent current sources and current dependent voltage
sources with amplification factor, g, and amplification fuctor,
xr, respectively remain, but in both cases the roles of depending
and contreolling branches are reversed. This operation
corresponds to the transposition of the corresponding submatrices

so that

24



I i
! |
!
i I
! I

and

]
|
|
P L . (2.13)
|

Equation (2.1) in partitioned form and omitted independent

sources gives
+ Eﬂ . = + . (2.14)

Using the matrix transformation as shown in (2.8) through (2.13)
in (2.14) yields the branch relations of the mutual reciprocal

adjoint network

”' 01 - -y ol oy - -
--ht rt v rt -ht ¢ F i
1 1l 1 1
+ 1l = + . (2.15)
g§ "u§ i2 —ut gt -Ft 0 v,

Rearranging and using (2.5) and (2.6) in (2.15) gives the final
result
-L

. = . (2.16)
-M

et oot
ot et
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Compared with (2.1) shows an easy and compact relationship

between the original network and its adjoint.

D. USE OF THE ADJOINT NETWORK FOR SENSITIVITY CALCULATIONS

R. A. Rohrer and S. W. Director {[Ref. 1, 2, and 4] have

shown that the sensitivity of any network function with respect

to changes of one or all network parameters requires the

analysis of the original circuit and its mutual reciprocal

adjoint.

If any network function is denoted by H(jw), then inserting

current or voltage sources of one ampere or one volt, respec-

-~

tively, at particular ports of N and N, excited in a reciprocal

manner, H(jw) becomes a network function as shown in Table 1.

TABLE 1.

Definition of the Network Emmittance Function.

}_% (Fw)

Terminal Conditions

Original Network

Terminal Conditions
Adjoint Network

-~

N N
port k port 1 port k port 1
Driving Point Impedance| Current Open or | Current Open or
at port k source Short source Short
(1 amp) (Lamp)
Driving Point Admit- Voltage Open or | Voltage Open or
tance at port k source Short source Short
(1volt) (Lvolt)
Transfer Impedance Open Current Current Open
between port k and 1 source source
(1 amp) (1 amp)
Transfer Admittance Short Voltage | Voltage Short
between port k and 1 source source
(Qvolt) (1volt)
Current Transfer Ratio Current Short Short Voltage
source source
(1 amp) (1 volt)
Voltage Transfer Ratio | Voltage Open Cpen Current
between port k and 1 source Source
(1 volt) (1 amp)

26




The normalized ser.sitivity (due to the insertion of unity
current or voltage sources) of any network function (as defined
in TABLE 1) with respect to all element types, is obtained in
terms of voltage and/or current responses in the corresponding
branches of N and &. The sensitivities are defined in TABLE 2.

TABLE 2. Sensitivities of a Network Function

Variable Network Sensitivity of
Parameter Network Function
. OH _ . vt et (e
e ] 5 S S,
Conductances %% = VG(jw)'VG(jw)
Inductances %% = -ijL(jw)-IL(jw)
Reciprocal Inductancés %% = l/[jwvr(jw)°vr(jw)]
Capacitances %% = jwvc(jw)-vc(jw) :
—————————————————————————————— o S Lt S Aun GES FET S AT Gy S GAR SR UV MR WA e WY SIS YU G N T YR N, S GG WS SVS g Gmp Gns ey g 2
Elastances %% = ~l/[ijS(jw)‘Is(jw)]
Trag?formers (turns ratio %% = (Ion(jw)‘Vin(jw)+vin(jw)-
n: ~
I, t3w))
Gygators (gyration ratio: %% = 4+ (Iia(jw)°Ioa(jw)-Ioa(jw)°
o3 ~ i
Iiu(JW)) l
Voltage controlled voltage %% = -Viu(jw)°Iou(jw) i
sources (voltage ampli-
fication ratio: u)
Voltage controlled current %ﬁ =V, (jw)'VO (3w)
sources (transconductance: 9 e 9
g)
Current controlled current %% = Iih(jw)~voh(jw)
sources (current ampli-
fication ratio: h)
Current controlled voltage %% = -Iir(jw)'Ior(jw)
source (transresistance: r)
' 27
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ITI. SENSITIVITY MODELS

The sensitivity model approach to network sensitivities
for linear circuits was developed by J. V., Leeds and G. I.
Urgon [Ref. 5] based upon an idea first presented by R.
Tomovic [Ref. B]. These results were extended to nonlinear
circuits by S. R. Parker [Ref., 6]. In general, the sensitivity
model is topologically identical to the original circuit. All
independent sources are reduced to zero. An excitation voltage
or current source, depending on the variable parameter, x, has
to be placed in series or in parallel with X, in such a direction
as to oppose the normal current flow in that branch. The value
of that source depends upon the current or voltage response
of the branch of x in the original network. The responses of
the sensitivity model are in turn the required sensitivity

function.

A. DEFINITION FOR THE LINEAR CASE
For the different element types the sensitivity model
equivalent element and its corresponding excitation is

summerized in Table 3 as taken from S. R. Parker [Ref. 6].

28



TABLE 3. Sensitivity Models and their Excitations for the

Linear Network

a) RESISTIVE ELEMENT

3V,
- Sa
- NMNA— F
_ \_/
aa'R Req
3a eq
Ryg = By
eq = R
Vg = Ryip = ip

¢) CAPACITIVE ELEMENT

b} CONDUCTI;@ ELEMENT

G
@ aa
A= AN~
9i
G G
" =
-t
\—;
eq
Geq = G2
Jeq e

o8- BVC EXE
aa - 3a
.
BiC Ceq — I X .
C C e
TN da ed =d
-
\/
jeq
Ceq = 2
ov d l ov
1 =._-g [ ppe— :..._..__C.
Jeq = 3% =g %!  eq ™ 3¢
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a)

INDUCTIVE ELEMENT (WITH MUTUAL COUPLING)

30

v
L
= L 9
lleq
— e TTFUNL +7 ¥ )= ,
3i M \)‘J y
aaL CMueq) 2leq "lleq l2eq
R Y WY ,
o v\_/ v
Ta 22eq 2leq 22eq
- Vp
o
di
- L
Llleq = Iy Vileq at
di
Migeq = 12 V12eq P
dip
M21eq = LZl v21eq - &t
dip
Lyzeq = D22 Va2eq _—
at
_ 4 . .
v = g (Pnip * opoip)
_ 4 . .
v = g (Topdy ¥ Lppip)



e)

RESISTIVE HYBRID ELEMENT

iy e
‘é‘a—' 1leq S
—a— A\ NN <
4
H12eq <>
- + 22eq
v v
R e :) :) G
3 lleq CD G) Q $ T
Holeq | J22eq|I21eq
+
e12eq <>
Hl1eq = Hi1 Hrzeq = Haz
H)2eq B2 Hjleq = Ha
©1leq - IR I22¢q = Vg
®12eq e J2leq = IR
VR = Hypplp + Hypvg
ig = Hyylg + Hyyvg
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B. DEFINITICN FOR THE NONLINEAR CASE
For the nonlinear circuit the sensitivity model equivalents
and their excitations are summerized in TABLE 4 as taken from

S, R. Parker [Ref. 6].

TABLE 4. Sensitivity Model and Their Excitation for the
Nonlinear Case

a) RESISTIVE ELEMENT b) CONDUCTIVE ELEMENT
; BVG
v —
do

<
-t 2

é”nﬁf
e

i
R eq eq
8a U-
v, (i, ,a) 31 ( 388)
. ) vpligea) - s } iglves
eq alR eq BVG
. va(lk,a) . BlG(VG,a)
eq a0 Jeq Ja
Vg = VR(lR,a) i, = 1G(VG,a)

c) CAPACITIVE ELEMENT

rAY AY
C C
D o
~»>- =
] (-
e o1 eq e
a0 /’\\ C eq
@ e
Jeq e - Q(Vra)
eq BVC
‘ 9 BQ(VC,d) -1 BQ(VC,a)
Jeg T 3T ) Ceq * Ceq (=)
i o= 2 ow.,a)
C at c’

-




d) INDUCTIVE ELEMENT (WITH MUTUAL COUPLING)

8V,
< e
“lleq vlleq Vl2eq i
TNy )
2ip / A/ i
9 MlZqu MZleq ‘
TN MO\ 3
LAY ‘
) 3y L \/v/ v :
EE- 22eq BVI‘ 2leq 22eq :
aa ‘
i
y S S R . _ 2 Mty
lleq oip 1leg at 30 |
i
) g
" _ 991, ip,0) v - ?_ (dcblz(ir,a))
12eq i 12eq ot 30
|
!
_ 0¢,5q (1y,0) _ 3 3,y (iy,a)
M =t v = — (==
21eq 2y 2leq 3t 3a
L = M v = i_ (M)
22eq i 22eq 3t 3a

Vo= S (4, (Esa) + 6, (i) ,
vp = g L9y (ip,0) + by, (in,0))
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e) . RESISTIVE HYBRID ELEMENT

di di 1
R B G ‘
5a lleq e b
S
j
. BVG
R a0
T CD G) Q’) H22eq
N Holeq|322eq I 21eg
elZeq<::> 4
- ]
o _ ahll(iR,a) ahzz(vG,a)
lleq v H22eq - 5
G Vg
|
h . .
le ) 9 12(VG'“)(3VG) . ) ahzl(lR,u)(alR)
€q Vg da 2leq aiR " da
_ ahll(iR,a) . ahzz(VG,a)
€lieq © 3 322eq © e
oh, ,(v.,a) dh., (i,,qa)
. _ M2 ; _ a1y
l2eq S 2leq 30
Vg = PyyUgsa) +hy,(veg,a)
i, = th(lR,a) + h22(vG,a)
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IV. RELATIONSHIP BETWEEN THE SENSITIVITY MODEL
AND THE MUTUAL ADJOINT NETWORK APPROACH TO SENSITIVITY

To compare the two methods it is first shown how network
sensitivities are obtained using Tellegen's theorem in conjunc-
tion with an original network, the mutual reciprocal adjoint,
and the augmented original network. Following this derivation,
sensitivity models are shown to be a special case of the
mutual adjoint network.

A, PRCOF OF NETWORK SENSITIVITIES USING THE ADJOINT NETWORK

AND TELLEGEN'S THEOREM

In chapter II it was stated that the sensitivity of a
network function is ABtained using the response of an original
network and its adjoint. A proof is presented now.

Consider the network of Fig. 6a, excited with a voltage
source Eg at port 1. At port 2 the voltage response is V2°
Fig. 6b represents the same circuit with all of the elements
augmented. It is excited with an identical voltage source E
at port 1. The voltage response at port 2 is V2 + sz. Fig.
6c represents the adjoint of the original circuit excited in
reciprocal manner. In Fig. 6, Xa' represents any kind of one-
port passive network parameter. To apply Tellegen's theorem,
the port voltages and currents of the augmented original circuit

and the adjoint network are tabulated as follows:
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port 1 port 2
-
+ 4
E, ] 5 v,
[£)
I"l
- v |
4 -
a
port 1 port 2
Il+&1 1,=0
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g s R v, + &y,
- MRy p——" A l
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b
port 1 port 2
1
-
V,=0 -
1 17k,
¢
Figure 6: Reciprocal Two Port Networks

a) Original Network,l
b) Augmented Original lietwork -
c) Mutual Reciprocal Aadjoint letwork,N
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Aug. Cria. Network Rec. Adjoint Network

Voltage Current Voltage Current
Port 1: Eg I, ¢ ALy 0 I, = -V,
Port 2: v, + AV, 0 vy I, = Eg
in%. netw.: V_+ &V I+ ax, Ve I,

Multiplying and adding the corresponding terms as shown above

yields

~EgV2 + (V‘1 + Aya)Ia + Egvz + szEg = { (4.1)

(Ia + AIQ)Vu = 0 (4.2)

Equating (4.1) and (4.2) and rearranging, results in the basic
expression from where the proof starts for different kinds of

network parameter.

(I‘2 + AIa)Va - (Va + Avu)Ia - EgVZ = 0 (4.3)

1. Passive Network Parameters

The proof is presented for impedance, inductive, and
capacitive parametiers only.

The constraints for the impedance case are

~ -~

vV =21

a a’a
vV, = 2,1, (4.4)
AV = A1 2 + 1 AZ

a o a o a
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Substituting (4.4) in (4.3) and rearranging gives

~

AV2Eg = —IaIaAZa (4.5)

Letting the excitation be a unit voltage or current source,

respectively, Eg = 1, leads to

bV, = ~I T AZ (4.6)
ox

av, -

7, T “la'a “.7

Equation (4.7) gives the sensitivity of the output voltage

with respect to changes in one impedance parameter. Multiplica-
tion of the current through the variable impedance in the
original network, Ia' and the current through the corresponding
parameter in the adjoint network, Ea’ is done conveniently in
the frequency domain.

For the capacitive parameter the constraints are

~

I = C ——= jwC V
a C3e a o
dVa
Ia = Ca~—~ = ijaVa (4.8)
at
AIa = JWAVaCa + JwvaACa

Substituting these constraints into (4.3) and solving for

AVZE results in
g

AVZEg = jwVaVaACa (4.9)
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Letting the excitation souxce Eg equal to one gives

AV2

'A—a;- = ]anva (4-10)

Equation (4.10) is the sensitivity of the output voltage of the
original network, N, with respect to perturbations in one
capacitive network parameter.

- Finally the derivations for changes in an inductive

element are shown. The auxiliary equations are

~ dIG ~
vV = L —%=3wiLI

(o] adt oo

dIG .

v = I —= jw LI (4.11)

o Cldt oo

5

AV =

JWIaALa + ijIaLa

Substituting (4.11) into (4.3) and solving for szEg gives
AV2Eg = -JwIaIaALa {4.12)

Assuming the excitation sources, Eg, equal to one gives

Nl —ijaIa (4.13)
o
Equation (4.13) gives the incremental changes in output voltage
due to variations in one inductive element in the original
network.

These results agree with the given relations in !

TABLE 2, developed by Director and Rohrer. For better comparison
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the corresponding expressions to equation (4.7), (4.10), and

{4.13) are repeated here

:); R
-é-ﬁ = IR(jW)IR(JW)
oH . c v s
3¢ = WV (GwlVo(3w)
3H _ . N
35 = "IwIp (Gw)Ip (3w)

If the sensitivity of the output voltage depends on
variations of all network parameters, the increments are added,
applving the princip{e of superposition. The summations are
taken over all corresponding network parameters. (4.7), (4.10)

and (4.13) then become |

AV2 = -ZIaIaAZa

a
sz = éjwvaVaACa (4.14a,b,c)
AV2 = -§JWIaIaALa

2. Dependent Sources

As an example for all four kinds of dependent sources,
the derivation for the voltage dependent voltage source is
presented. The proof for the three others is quite similar. 1In
Fig. 7a the original network, excited by a voltage source Eg

at port 1 and its adjoint (Fig. 7b), excited in a reciprocal
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Figure 7: Reciprocal Two Port Networks Containing
Voltage Dependent Voltage Sources
a) Original Network,N
b) Mutual Rec1procal Adjoint Network, N
c) Augmented Original Network




manner, are shown., Fig. 7¢ represents the augmented original
circuit excited by the same voltage source, Eg. In Fig. 7c

the incremental voltage change, Avou’ is defined as follows

AVou = uAViu + Viu Au {4.15)

The ports and the internal voltages and currents for the
augmented original and the adjoint network are tabulate and

then Tellegen's theorem is applied

Aug. Orig. Network Rec. Adjoint Network
Voltage Current Voltage Current
Port 1: Eg Il + AIl 0 _ Il = —V2
Port 2: V2+AV2 0 V2 I2 = Eg
Internal
Controlled ~ ~
i : 7 -
Side : (Viu+AVo ) 0 ‘iu quu
Dependent ~
] : +
Side (Vou+Avou) (IOu AIou) 0 Iou

Multiplying the inner and the outer columns as shown above

yields
Outer Product:
_Egv2 + (V2 + AV2)E + iu/ou(vi“ + Aviu)(—u;ou)
~ (4.16)
+ zi:u/ou(vOu + Avou + Avou)Iou = 0
Inner Product:
z = 0 (4.17)

ip/ou
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Where the summation is taken over all branches of dependent
sources, contrelling and dependent side. Multiplying out

equation (4.16), rearranging and cancelling yeilds

E AV, + L (-v, uI -~ AV, uI +V_ I
2 .
in/on iy"“op iu" Tou ou ok
(4.18)
+ Voquu) =0
Substituting
Vou = Wiy
and eliminating equal terms leads to
E AV, + & (=av, uI + AV _ I ) =0 (4.19)
g 2 in/on iy" “ou ol oM
Substituting (4.15) into (4.19) gives
E AV, + L (- V. I 4+ (pAv, + V. Au)I ) =0 (4.20)
2 in/ou iy Tou iy iy ou
Multiplying out and cancelling results in
E AV, + L V., I, Apu =20 (4.21)
2 .
ipfop MM

A voltage transfer function is defined as follows

then for the augmented network

(V2 + AV2) = (H + AH)Eg
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and

AV2 = AH'Eg {(4.22)

Substituting (4.22) into (4.21) yields

2 ~
AH'E® = T -V, I Ay (4.23)
ipfou W OH

Since H is a function of u, an incremental change in the voltage

transfer function with respect to the voltage amplification

factor, u, is given by

AH = I (%g) Ay (4.24)
iu/oup

Comparing equation (4.24) with the rearranged equation (4.23)

yields )
v,
5= e (4.25)
E
g

Letting the excitation voltage and current source, E , equal
to one, gives the voltage transfer function sensitivity with
respect to the voltage amplification factor, u, as the product
of the controlling branch voltage in the original circuit and
the dependent branch current in the mutual reciprocal adjoint

network. This proves the stated result of TABLE 2 which is

repeated here for convenience

55 = Vi, GWI G
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B. TRANSITION BETWEEN APPROACHES

The derivation of the sensitivities of a voltage transfer

function in the previous paragraph was carried out in the
frequency domain. The sensitivity model, as stated in Chapter
III, is given in the time domain. To use the derived equations
in the time domain requires further interpretation. For the

original circuit (Fig. 6a) the voltage transfer function was

defﬁned as follows

The sensitivity of the output voltage due to changes of any
kind of passive network parameters, Uy is then given by

aH(s,ua)

sz(s,ua) = Eg(s) Auu (4.26)

aua
where the parameter, U, is itself a function of s and x

such that

u, = ua(s,x) {(4.27)

Substituting (4.27) into (4.26) and applying the chain rule
yields

3H(s,ua) du

) (—) Ax (4.28)

Bua 93X

Av,, (S.ua) = Eg(s) ¢

Using for impedance type parameters equation (4.7) in conjunction

with (4.22) and substituting into (4.28) leads to

~

II Bua
AV, (s,x) = &% (—%yax (4.29)
Eg(s) X
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Making the assumption that Eg(t) is a unit impulse, w, =z,

and x = 2, the transition into the time domain of sz(s,x)
is given by the convolution of the resistor current in the
original network and the current through the corresponding
resistor in the adjoint network. Then the sensitivity of an
incremental change of the output voltage with respect to

variations in one resistive element is

AV, (t,R) -
— = I, (t)#I_(t) (4.30)

If it is required to find the variation of V, with respect

2
to all resistive parameters the changes are added due to the
superposition principie cver all branches, o, containing
rzsistors. Therefore

AV, (t,R) .

—_— Zia(t)*ia(t) (4.31)
AR a

For inductive parameters u, = sL and x =1L sz(t,L) is
determined by the time derivative of the conveolution between

the corresponding inductor currents in the original network

and its adjoint. Therefore

. P
T = §a€(la(t)*la(t)) (4.22)

Finally for capacitive elements the sensitivity of V2
due to changes in all capacitors turns out to be the summation

over all capacitive branches of the time derivative of the



convolution between the voltages across corresponding capacitors

in the original and its adjoint network. Therefore

—t—— = iag (V TV (£)) (4.33}

Starting with equation (4.29) the computational process

can be simplified by considering the adjoint network (Fig. 8),

~

excited by a current source, Iz, as follows

-~ aua
I, = (—)I (4. 34)
2 % o

~

The current through the variable parameter, Ia' is then given

by

Ia e S — (4.35)
9X

Remembering that Eg(s) is unity in the frequency domain and a
unit impulse in the time domain, the sensitivity of the output
voltage, AV2, is given by
sz(s,x) ~
Ax
in the frequency domain, and by
AVZ(t,x) ~

=1 (t,x) (4.37)
As: o

in the time domain.
If the interreciprocity theorem is applied to the circuit

~

of Fig. 8, interchanging excitation source, I, and response,
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I,s the sensitivity model is obtained as shown in Fig. 9a.
Fig. 9a holds for the frequency domain as well (t replaced by
s). This derivation is valid for all types of passive network
parameters.

For the transition of the dependent sources the voltage

dependent voltage souxce is chosen, where

- ua(s,X) = Vou(s,u) (4.38)

such that

X =\
Equation (4.29) becomes

V. I avV_. (s,u)
. _ _ _ip oy ou
sz(s,u) = Eg(s) 5u by (4.39)

From Fig. 8 the excitation, I,, becomes a voltage source of

value

aVOU(S.u)

I.o= 20 """y (4.40)
2 S iu

Then the current in the dependent branch of the current dependent

-~

current source in the adjocint network, Iou' gives the desired

sensitivity

I (s) = — v (4.41)
ou A

in the frequency domain and

iy, () = (4.42)

Ap

in the time domain.
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port 1 port 2

S A Va-—-
— u, - ?' I,
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- Figure 8: General-Interreciprocal Network

port 1 port 2
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——
a
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4 AV, (£, 1)
avi —
au Au
et ernt ‘_______l

b

Figure 9: Sensitivity Models Derived by Application
of Tellegen's Theorem and the Mutual
Recprical Adjoint Network
a) For One-Port Passive Parameters
b) Voltage Dependent Voltage Source
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Interchanging the excitation and the response, referring
to Fig. 8 and Fig. 9a, leads to the sensitivity model of a
voltage dependent voltage source. The excitation voltage source,

"~

I,, given in (4.40) has to be transferred into the time domain

such that
~ v (t,u)
iy(t) = on #(~V. () (4.43)
3 iy
u
Knowing that
3V0 BVi
-ﬁf— = U _aTl— + Vi (4.44)
gives
~ avi
3-2 (t) = (U’a_u—' + Vi)*(-viu (t)l (4-45)

The minus sign in front of Viu means that the excitation source
in the sensitivity model has to oppose the normal current flow.
To be consistent with the structure of a dependent source and
the equation (4.45), Viu has to be as follows

avi(t)

Substituting (4.46) into (4.45) leads to the sensitivity model

(Fig. 9b) as stated in Chapter III.

C. COMPARISON OF THE TWO APPROACHES
As a main conclusion it can be stated that the sensitivity
model is not an independent method for computation of network

sensitivity but a special case of the mutual adjoint network.
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For sensitivity calculations in the frequency domain with
respect to single element perturbations both methods are
equally well suited. 1If the total increment in sensitivity
due to variations in several parameters is required, the adjoint
network approach is advantageous because still only a single
excitation is required and the analyses of conly two networks
at each frequency point are necessary. This is in contrast
with the use of the sensitivity model where a separate source
is required for each variable element. This requires the
analysis of one network for each parameter at each fregquency
point.

In the time domain the sensitivity model is the better
approach, especially if single parameter changes are involved.
The desired sensitivity requires the analysis of one network
only and the answer comes out immediately in the time domain.

In contrast, the adjoint network approach invelves the analysis
of two networks and requires convolution of the corresponding
circuit responses. Alternately, in the time domain, the adjoint

network may be excited by a source with backward running time.

51




BIBLIOGRAPHY

Director, S. W. and Rohrer, R. A., Inter-Reciprocity
and Its Implications,

International Symposium on
Network Theory, Belgrade, Yugoslavia, 1968,
p. 11-30.

Director, S. W. and Rohrer, R. A., On the Efficient
Computation of First-Order Network Sensitivities (For
Frequency Domain Studies of Lumped, Time~Invariant

Networks), System Sensitivity and Adaptivity,
Dubrovnik, Yugoslavia, August 26 ~ 31, 1968,
p' BQS4 - Blsgl

Director, S. W. and Rohrer, R. A., Automated Network
Design - The Frequency-Domain Case, IEEE Transaction

on Circuit Theory, Vol. CT-16, No. 3, August 69,
p. 330 - 337.

Director, S. W. and Rohrer, R. A., The Generalized

Adjoint Netwcork and Network Sensitivities, IEEE
Transaction on Circuit Theory, Vol. CT-16, No. 3,
August 1969, p. 318 - 323.

Leeds, J. V. and Urgon, G. I., Simplified Multiple
Parameter Sensitivity Calculation and Continucusly
Equivalent Networks, IEEE Transaction on Circuit

Theory, Vol. <CT-14, No. 2, June 1967, p. 188
- 191.

6. Parker, S. R., Sensitivity Analysis and Models of

Nonlinear Circuits, IEEE Transaction on Circuit
Theory, Vol. CT-16, No. 4,

November 1969, p. 443
- 447,

7. Parker, S. R. and Barmes, V. T., Existence of Numerical
Solutions and the Order of Linear Circuits with
Dependent Sources, submitted IEEE Transaction on
Circuit Theory, March 70.

8. Tomovic, R.,

Sensitivity Analysis of Dynamic Systems,
New York, McGraw-Hill, 1964.

52

-

——




Secunty Classification

DGCUMENT CONTROL DATA-R&D

(Security classilication of title, body of absizsct and indexing annoration mua! be entered when tha overall repoet 13 classilicd)

1 ORIGINATING ACTIVITY (Coparate author) 28. REFPORY SECURITY CLASSIFICATION

Naval Postgraduate School Unclassified

Monterey, California 93940 26, CROUP

3 REPORT TITLE

Relationships Between the Sensitivity Model and the
Mutually Reciprocal Adjoint Network

4 DESCRIPTIVE NOTES (Type ol report and,inclusive dates)

Master's Thesis; September 1970

3. AU THORIS) (Fi1est name, middle initial, last nams)

Bernd Gunter Sanne

-

6 REPORY OATE

76. TOTAL NO. OF PAGES 7b. NQ. OF REFS

September 1970

52 8
38. CONTRACT OR GRANT NO

92, ORIGINATOR'S REPORYT NUMBER(S)

b. PROJECT NO

9b. OTHER REPORTY NOI(S) (Any other numbers (hat may be xssigned
this report)

d.

10 DISTRIBUTION STATEMENT

This document has been approved for public release and sale,
its distribution is unlimited.

$11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

Naval Postgraduate School
Monterey, California 93940

13. ARSTRACT

There are two methods which have been developed independently for

computing network sensitivities. Both computations may be carried out

in the frequency or in the time domains. One method involves the

analyses of two networks - the original and its mutually reciprocal
adjoint. The second method uses a sensitivity model for the circuit.
it is shown that the sensitivity model and the mutually reciprocal
adjoint circuit are essentially the same; the sensitivity model being
useful for calculating single parameter sensitivity in the time domain,
the adjoint circuit being useful for calculating sensitivity for

several parameters in the frequency domain.

DD [o, 1473 (PaGE 1)

S/N 0101-807-6811

55 Securnity Classification .

_paa . -




- Security Classification

‘4. KEY WORDS LINK A LIMK B LINK C
ROLE wY ROLE LRd ROLE wY
Mutual Reciprocal Adjoint Network
Interreciprocity Theorem
Sensitivity lodels
Sensitivity Calculations (Different
Approaches)
0
DD SV1473 eac)
$/N 0101-807-6821) 56 Security Classification £-31409



