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Abstract: A computzr proof 1s described for a previously

unsolved problem concerning the inequality
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The function

n X,

Sn()_c) = ﬁ »  (subscripts mod n) (1)
321 1%l 1+2

where X, >0, X, +X >0, 1i=12,... (mod n), has been studied by

i+l
Shapiro, Mordell, and others (see [1-2, 6-11]). Let

A(n) = inf Sn()_c) = (2)
x
Then
Mn) <nf2 . (3)

H. S. Shapiro [10] suggested the verification of
Mn) =nf2 . (%)

For n < © , several authors (see [6]) proved the validity of (L).

Mordell [©] conjectured that (4) is false for all n >7 , but later [7]
stated that (4) is true for n =7 . M. J. Lighthill (see [9]) and

A. Zulauf [11] proved that (L) is false for n=2k , k>7 .

D. Z. Djokovic [2] proved that (L) is true for n =8 . P. H. Diananda [1]

proved that (L) is false for n = 2k+1 , k >13 . In the same paper he
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proved (i) that if (L) is false for some n = m , where m is odd,
then (4) is false for all n >m , and (ii) that if (4) is true for
sore n =m , where m is even, then (kL) is true for all n <m .
Recently, P. Nowosad [#] proved (4) is true for n - 10 , and thus (L)
is true for all n < 10

Therefore, the question remainc open for n - 12 and for odd n
ranging from 11 to 25 . 1In this note [ will describe a computer
proof that (4) is false for n = 25 .

The problem can be viewed as a multivariate constraineu minimizatior
of Sn . The constraints xi >0, i=1,2,...,n, can be removed by the

simple change of variables
X =@. s i=l,2,...,n

If the second constraint is violated, i.e., xi—rxi+l =0 for some i,

the function (1) is undefined. Thus, the function

n G?
(@) = iol 8% . +4° ]
- i+l Ti+2

where the indices are taken mod n , can be minimized using a standard
method. For the case n = 25, this was done using a subroutine written
by J. Alan George [3] on an IBM 3(0/f7. The resulting values for 3

were:



T e e

LIESURNEEY x*l(-3=2.h(Oll
x% = 0 x¥, = 3.153(5
X% = Lo xpg = 1.66622
Xfo= L.1oo x¥e = 3.058
:~:; = 0. 0241 xi‘,( = 0.980738
xE = 2.9030) x¥g = 3.12582
:{?:: = 9.91561 Xf9 = 0.400648
X8 = 3.33613 x%o = 3.44328
x% = h.60951 x4, =0
Sipralsa o X%, = 4.07589
x¥, = 3.43693 x53 =0
x¥, = 3.33360 x%), = 4.8248

x35 =0

To prove that §, (x*) 1is less than 12.5 , the calculation (1) was

J)
programmed in a language [4] in which the calculations are carried out in
interval arithmetic (see Moore [5 ]). The inaccuracies due to number
conversion and roundoff are sutomatically accounted for by the language
translator. Thus, assuming the translator is properly programmed, the

resulting interval is guaranteed to contain the true result. The program

was run on the IBM 3¢0/67 at Stanford University, giving

12.40847 < 825()_(*) < 12.49851 . !

Computer time, including program compilations, amounted to 12 sec., costing
exactly $1. Programming time, including typing at a terminal, amounted

to about four hours.




This method has bee applied to the cases n =27 and n = 21 .

In each case, an x could not be found such that Sn(x) < nf2 .
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