ESD-TR-70-256

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

THE LEAP USER'S MANUAL

LINCOLN MANUAL 93

ESD ACCESSION LISL
e No. /1 235

Copy No. 1/ of / cys.

P.D. ROVNER
Group 23

11 September 1970

The work reported in this document was performed at Lincoln Laboratory,
a center for research operated by Massachusetts Institute of Technology.
This work was sponsored by the Advanced Research Projects Agency of the

Department of Defense under Air Force Contract AF 19(628)-5167 (ARPA
Order 691).

This report may be reproduced to satisfy needs of U.S. Government agencies.

This document has been approved for public release and sale;
its distribution is unlimited.

LEXINGTON MASSACHUSETTS

Ao 3 123

ABSTRACT

This document is a user's manual for the LEAP language. LEAP
is an extended algebraic programming language which is similar in form
to ALGOL.8 Extensions include language forms for display output and
interactive input and facilities for building and manipulating associative
information structures. The basic algebraic language is described in

Sections I through IX; the extensions to LEAP are presented in the Appendices.

Accepted for the Air Force
Joseph R. Waterman, Lt. Col., USAF
Chief, Lincoln Laboratory Project Office

ii

II.
III.

IV.

VI.
VII.
VIII.
IX.

CONTENTS

VARIABLES

A. Declarations
CONSTANTS

DYNAMIC VARIABLES

A. Arrays

B. Textarrays

C. Matrices
EXPRESSIONS

Arithmetic Operators
Boolean Operators
Matrix Operators
Miscellaneous Matrix Expressions

Array and Textarray Expressions

2 e @i e

Textarray Operators

G. Conditional Expression
STATEMENTS

A. Assignment Statement
B. Transfer-of-Control Statements
1. Unconditional Go
2. Conditional Go

3. Switch

If Statements

Iteration Statements
Compound Statement
Blocks

COMMENTS

PROCEDURES

RETURN STATEMENTS
PROGRAM LAYOUT

AR 00

iid

(2304 B~ O N W

[T S T e T e T S L S e e O I T J oy W T i W)
N = O W W W 0 N N OO O O bbb ww N = O N

Appendices

II.
I,
Iv.

AL
VII.

VIII.

IX.

Primitives for Display Output
Assembly Code Option
Primitives for Interactive Input
Teéxt and Numerical 1I/O
Sub-Program Linkage Facility
Error Detection in LEAP
Miscellany

Synonyms

NOKBBF

External Procedures

GETFROMKB

Compilation Mode Options

Miscellaneous Reserved Functions
and Procedures

Primitives for Data-Structuring: the Associative
Sublanguage

Primitives for Text and File Manipulation

iv

23
29
31
39
52
56
64

74

90

I. VARIABLES
One may declare and use VARIABLES in LEAP. A variable is an
entity which has a NAME, a DATA TYPE, and a VALUE. The NAME of a

variable must consist only of alphanumeric characters and must start
with a letter. The number of characters allowed in a name is unlimited.
The DATA TYPE of a variable must be one of the following data types:

REAL

INTEGER

BOOLEAN

FIXED (i.e. fixed point fraction)

MATRIX

TEXTARRAY

REAL

INTEGER

BOOLEAN

FIXED

ARRAY

The VALUE of a variable is an algebraic quantity having the specified data
type. For example, if X were an INTEGER variable, it might have 46 as its
value. If Y were a BOOLEAN ARRAY, it would have an array of BOOLEAN
numbers as its value.

A. DECLARATIONS

All variables must be declared. The declaration of a variable may
occur either at the beginning of the LEAP program or at the beginning of
the outermost COMPOUND STATEMENT within which the variable is used
(see the discussion of COMPOUND STATEMENTS in Section V.E). A

typical declaration has a data type specification , a list of names, and
a semicolon. Examples:

REALX, Y, Z;

INTEGER ARRAY A, B;
A dynamic variable (a MATRIX, ARRAY or TEXTARRAY) may be declared with
information about its dimensions; for a complete discussion of dynamic

variables, see Section III.

1§68 CONSTANTS

Integer constants are converted to either radix 8 or 10, depending
on their form. Including sign, integer constants consist of 36 bits, float-
ing point constants of 27 bits of mantissa and 9 bits of characteristic, and

fractions of 36 bits, Omission of a preceding sign indicates a positive

number.
1. Decimal INTEGER constants are expressed by 1 to 11 digits
written without a decimal point.
Examples:
3
5:.27
=321
923
254 Octal INTEGER constants are expressed by 1 to 12 octal

digits and are written with a terminal decimal point.

Examples:
S
s
770770770777.
3 REAL (i.e., floating point) constants are expressed in two

ways, either by digits both before and after the decimal point (for example,

2.5 or -0.3), or by the exponential designation with an optional decimal

point:
Examples;
-2E-3 equals -0.002
«2E7 equals 2000000.0
2.E10 equals 20000000000.0
4, FIXED (i.e., decimal fraction) constants are expressed by a

decimal point followed by 1 to 10 digits:
Examples:
2 &
a 37
.002

S

6.
“FALSE" (Note:
THUS:

There is no facility for octal fraction constants in LEAP.

BOOLEAN constants are expressed as either "TRUE" or

this is not valid for typed input to a READ statement).

35,0 is
35 is
35. is

<35 is
TRUE is

REAL

decimal INTEGER
octal INTEGER
FIXED

BOOLEAN

QUL DYNAMIC VARIABLES

A. ARRAYS
An ARRAY is an ordered collection of ELEMENTS. A particular array
element is indicated by specifying a unique subscript for the element, as

illustrated below:

(1) AR, E2,E3, ..., En

In (1), the "Ei" are any INTEGER expressions, "n" is the number of dimen-
sions of the array, and A is the name of the array.

Each array element has a value. The data type of the elements of
an array is specified when the array is declared (e.g., REAL ARRAY A;).

An array may be declared with size and dimension information;
if this information is specified, then storage will be allocated at
program execution time for the array elements. If this information is not
specified, then no storage will be allocated until a statement is executed
which explicitly assigns storage to the array for its elements (see the
discussion of the assignment statement in section V-A.). The following
is the form for an array declaration with size and dimension information:

(2) (type) ARRAY (name) {al to a, b1 to bz, Ceen 2y
In (2), (type) is either REAL, INTEGER, BOOLEAN, or FIXED. The (name)

to zz};

is the name of the array. The other parameters are explained below:
a1 is the lower bound on the first dimension (if there is to be only
one dimension, then a, must equal 1)

1

a2 is the upper bound on the first dimension

bl is the lower bound on the second dimension
b2 is the upper bound on the second dimension, etc.
There is no limit on the number of dimensions, and the bounds may be any
INTEGER expressions.
B. TEXTARRAYS
A TEXTARRAY is a single dimensional array of characters, each repre-
sented by its integer character code. Like the ARRAY, a TEXTARRAY may be

declared with information about its size (the maximum number of characters

in the TEXTARRAY, including the 777. character);

(3) TEXTARRAY (name) AE ;

If no size information is given, then no storage will be allocated for the
TEXTARRAY elements by the declaration. This storage will be allocated

only by a subsequent assignment statement. In (3), (name) is the name
of the TEXTARRAY, and AE is an INTEGER expression specifying the size

of the TEXTARRAY.
A TEXTARRAY element is indicated by specifying its subscript:

Examples:

IF TAI= 777. THEN ...

777. —~TAI;

Gs MATRICES

The MATRIX in LEAP 1is a highly specialized entity. It always has
two dimensions, and its elements are always REAL numbers. Only one ex-
ponent is kept for all the elements; the elements are scaled appropriately.
Thus, information is lost if the values of elements differ by too many orders
of magnitude.

Matrices may be declared with no information about the number of
rows and columns (e.g., MATRIX (name);), or with such information given:

(4) MATRIX (name) aj BY bl:
If no dimension information is specified, then no storage will be allocated
for the matrix elements by the matrix declaration. As in the case of the

array, this storage will be allocated only when an assignment statement

explicitly assigns storage to the matrix.

If, as in (4), dimension information is specified, then appropriate
storage is allocated for the matrix, and all elements are initialized to zero.
In (4), ay .and b1 are INTEGER expressions. The declared matrix will have
aj] rows and by columns.

A matrix element is indicated by specifying the name of the matrix,
the row index, and the column index. These indexes may be any INTEGER
expressions between 1 and 256. Examples follow:

M (1, 2) row 1, column 2 element of M

M (K, T+ 1) row K, column J + 1 element of M

Matrices were introduced into LEAP to implement the parametric
homogeneous matrix representation for points, lines, and conics which is
described in Reference 9. LEAP has facilities for multiplying, inverting,
and adjoining matrices. A complete presentation of the operations which
apply to matrices is given in Section IV. C.

LEAP also has a facility for generating the appropriate display
instructions from a parametric homogeneous matrix description of a point,
line, or conic (see Appendix I).

Note: The word USELEAP must follow START in every LEAP program
in which MATRICES are used.

IV e EXPRESSIONS

Variables, constants, elements of dynamic variables, and/or

EXPRESSIONS may be combined by OPERATORS (e.g. + and -) to form

EXPRESSIONS. An expression has a data-type, and a value. The value is

computed by performing the indicated operation. For example, if X is a
REAL variable having 3.6 as its value, and Y is a REAL variable having 1.0
as its value, then

X+4.2xY

is a REAL expression with 7.8 as its value.

Note that we would expect the multiplication to be done before the

addition when the above expression is evaluated. In LEAP, the multiplication
operator (x) is said to have "higher precedence" than the addition operator (+).
We can classify the operators in LEAP by specifying their relative precedence,
or "binding power." The remainder of this section is a tabulation of the
operators in LEAP, organized in groups by operand type, and arranged within
groups in order of decreasing precedence. Note that the expression scan is
done from left to right. When operators of equal precedence are adjacent,
e.g., A+ B+ C, then the evaluation is performed from left to right, e.qg.,

(A+ B)+ C. When operators of different precedence are adjacent, the
operator of higher precedence is treated first. When in doubt about precedence,

parenthesize.

In what follows,

A, Al, A2, etc. will represent ARRAY's

TA, TAl, TAZ2," " * TEXTARRAY's
M, M1, M2, " " MATRIX EXPRESSION's
AE, AEl, AE2, " " = ARITHMETIC EXPRESSION's
B, Bl BZ, AU " BOOLEAN EXPRESSION's
A. ARITHMETIC OPERATORS

The operands for arithmetic operators are of REAL, INTEGER, or
FIXED types, and may be mixed indiscriminately in expressions. The result

of mixed arithmetic is always REAL.

av
a4

dv
(@3axid) av
(43D3LNI) IV

(M3DJLNI) v

(Tvay) av
av 10 g
av

g

(43D3LNI) I¥
(Tv3y) av

(¥IDILNI) IV
dv 10 g
(Tv3y) av
IInS3y

&~ s W

L
8

dONIAID3ud

qv- snujw Areun

v + snid Areun

v || anfea ajnjosqe
aw j1ed [euorioely ayy axey

v 4§ (y3oarINI
ue 03 I8AU0D) JLVONNYUL

v A (4ADILNI
ue 0] 113aU0D) ANNOY

av YV (Tv3y e 01 112au0d) I¥OT1d
(IIA NOILDOJS 33s)

(3V) I91TWI[9p uolssaidxas
(z3qv) 13v 1 ° J7 dNYL ‘1893 119
(3ub11 23

1e bunels ‘9¢ 03 1 woyy

(SYIDHILNI a1e ¢qY parsqunu ale s}Iq sIlaym

:310N) ‘¢d¥ nay3 zIv siq)
(€qV =« z3v) 13V ajyomdns
(zav’' 1dv) W luswa[a XNILVIN
E.<.<.H. juswala AVIUYV.LXIL

'3V 13V

v JUDSWOTo AVHYY
Nm<ﬂm< uonierjusuodxa
INYOJ DONINVIN

A
: 4

[Ted NOILONNJ
sasayjuaied

dYy Aq popsoaid sasayjuared

«dNVH. Yilm sasoyjuared

PWWOD YiIm sasayjuaed

idriosqns
1driosiodns

HOIVYIdO

*(sauo [[e " *° s3IsIXd Q- *9°1) auryoew juswardwod s,9uo e ST Z-XL +ILON

v I deq@ﬁ.z I10-aATSN[OX9 [e2160] @
suopessdo) oy 1 Zav A 13V (4O) uotun [eotb0] A
19 49 119

dv r4 23¥ V 13V (ANV) 309s193UT [e0160] v

<

>

d £ 2d¥ = 13v SuoTIR[a1 OTI_dWYITIe <

>

o + 1o #
av v 2dav - 13v uonyoenqgns -

av v Zav + 13¥ uonirppe +
(43DILINI) IV S zav# 1av WIYs 191 3+

(*z3y ‘uorsseaidxas

YIODOILNI 8yl Jo snyea

9yl ST N @219ym ‘soaoerd

Areurq N b1 ay3 03

poyTYs sT 13V Jo anfea

aql ST yorym Ajrauenb
(dd93LNI) v S zav 4 13v 119 9¢ 9YlL) 1J1ys 1yb1I 4
av S 2av / 13v UOTSTAIP /

av S 2av x 13V uonedrdpnu X

LINsay dON3a3ddaud WIOJ SNINVIN JO.LVYadO

10

B. BOOLEAN OPERATORS

PRECEDENCE

OPERATOR MEANING FORM
. "NOT" ~B
A "AND" Bl A B2
\V "OR" Bl v B2

@ ' "exclusive OR" Bl@BZ

RESULT

B
B
B
B

! I IN# TN 1sa3 Lyrrenbaur XTYIVIN $ 10 #

q { IN =1 1sa31 A31renbe XTYIVIN =

W 4 N - TN uonoenqgns XIHILVIN =2

W C TN+ TN uonirppe XMIVIN +

W £ n - 1- Aq Ardnpnw Jejeos -

(Tv3y) IV v W | jueUTWIS}OP l
(M39DJLNI) IV b N Du SUWN[oo jO Jaquinu Du
(43DILNI) v v N yu SMOI JO Jaquinu yu
W S N | TN 1yb1 ay3 03 ujofpe |

W S TN/ TN mof[aq utofpe /

N S N X TN uopjeoTfdiynu Xrnew x

N 9 W x J¥ uonjeordri[nu Iefeas b

W L HE mmoamﬂmh 1

W L 22 asl1aauf 1

SITnsS3d dONIq3IDIud NYOJ ONINVIN SHOIVY3AdO

SHOLVY3IdO XIHMLVIN e

12

D. MISCELLANEOUS MATRIX EXPRESSIONS

FORM
AEL¥)po By AE3

AE18)r2 BY AE3

M (AEL. AE2):p3 By aE4

MEANING

A MATRIX having AE2 rows and AE3 columns,
where all elements have value AE].

A MATRIX having AE2 rows and AE3 columns,
where all off-diagonal elements have value
0.0, and all diagonal elements have value AEl.

Submatrix of M, starting at row AEl and column
AE2, for AE3 rows and AE4 columns.,

13

"8, 4L °q PINOYS AVHNVIXIL © ur Isjoereyo isef ayl :IION

(4IDIINI) v YL ||
d VL # 1YL
d VLl = 1Vl

SITNSTd W30d

*uotrssaldxa AVYYYIXIL © ST STyl

*uorssaidxa YIHIINI ue aq prnoys

W 1AV, °019Z 03 pazienIur ST yoIlym JO yoea ’sjuawalad

19V YItm AVYYYIXIL © anfea siT se sey uoyssaidxa syyL,

"1 01 Tenba 13V 2ARY I1SnW SAVHUY
[euotsuawip afhuls jeyj 9j0N °s[Ieiap I10] Y III uorioas
998G 019z 0] pazZI[RIIIUl 2Ie SJUBWS[D [[L 219Ym ’SUOISUDWIP

PO1ROTPUT 9] JO AVYYY Ue anfea s3T se sey uorssaidxo sTyJ

DONINVIN

(1030RIRYD */// Burpnioul JON)
Ss19)doeiey)d Jo Jaquni JO junod :

1sa] A3rjenbaug 7
159 Ajjrenb3g =
DNINVIN SY0IvYIdo

SY40IvVd3ddO AVRUVIXAL °d

,J10NO HDONIGATOXT ‘DONIYLS YILOVEYHD AYVULIGHY .

{13V} AVHEYIXAL

{* " 'p3V 03 ¢4V 'ZIV 01 1aV} AVYYV

AR (OF |

SNOISSHUIXd AVUYUVIXIL ANV AVHYY ‘

14

G, CONDITIONAL EXPRESSION

Genecral form; (B> El., E2).
This expression has either E1 or E2 as its value, depending on whether the
BOOLEAN expression B has value TRUE or FALSE, respectively. El and E2
are expressions which must have the same data type. This may be any

allowed data type, including MATRIX and ARRAY, for example.

V. STATEMENTS
There are a number of imperatives (called STATEMENTS) in the.
LEAP language. These are used to modify the values of the program
variables and the flow of control through the program. All statements in
LEAP must be terminated by one of the following, depending on context:
END
ELSE
A. ASSIGNMENT STATEMENT

General Form: <expression> - <variable or element of
a dynamic variable>;

This statement causes the value of the indicated variable to be reset to the
value of the expression.
Examples: REAL X, Y;
MATRIX M;
4.0~ X;
Xx2.0=-Y;
0,0 #3 Bt M;
1.0-M (3, 3);
Data type conversions take place where required and allowed. The following
table shows the allowed and resulting conversions. Blanks indicate that the

conversion is not allowed.

15

VARIABLE
‘ TYPE
EXPRESSION
TYPE REAL FIXED INTEGER BOOL.
* Integer*

REAL Real Fixed (rounded) -
FIXED Real Fixed == ==
INTEGER Real - Integer -
BOOL. - - -- Bool.

The assignment statement may in fact be an expression if it is nested. This
facilitates multiple or intermediate stores. For example,
1-A-B;
assigns the value 1 to both A and B.
The subword form may be used as a variable in an assignment state-
ment. Example:

INTEGER X;
3 - X (1 = 4);

A special case of the assignment statement is the sub-matrix store
command. Example:
MxN-M (3, 5);
The matrix expression on the left will replace the sub-matrix of M whose
upper left-hand element is in row 3, column 5. If the new sub-matrix will

not fit into the indicated space, an error will be indicated at run-time.

‘ * No check is made for overflow: strange things may occur if a REAL number
larger than or equal to 1.0 is converted to a FIXED.

16

B. TRANSFER-OF-CONTROL STATEMENTS
BL. Unconditional Go
General Form: GO
GOTO <statement label>;
GO TO

The GO statement causes a transfer of control to the statement indicated by
the "STATEMENT LABEL." A STATEMENT LABEL is a sequence of alphanumeric
characters, starting with a letter, which is assigned to a statement by
prefacing the statement with <statement label> = .
Example: 1.0-X;
Ll » X+1.0-X;

GO TO L1;
B2. Conditional GO Statement
General Form; GO
GOTO D <label 1>, <label 2>;
GO TO

This statement causes control to go to either statement label 1 or statement

label 2, depending on whether the BOOLEAN expression is true or false.

17

B3. Switch Statement

General Form: SWITCH VIA <INTEGER expression” TO <list of
statement labels>;

This statement causes a transfer of control to the statement label indicated
by the value of the INTEGER expression. If this value is out of bounds, an
error message will be given.

Example: INTEGER I;

SWI&‘CH VIAITO L1, L2, L3;
If I =1, then control will go to L1.
If I = 2, then control will go to L2.
If I = 3, then control will go to L3.
Cie IF STATEMENTS
General Forms: (1) IF THEN <statement 1> ELSE <statement 2-;

If the BOOLEAN expression is true, <statement 1> is executed; if it is false,

<statement 2> is executed. If there is a "dangling ELSE" clause, it is

associated with the innermost IF clause. Example (la and 1lb are equivalent):
la. IF <B1>THEN

IF <B2> THEN
< statement 1-

ELSE
<statement 2>;

1b. IF <B1> THEN
BEGIN
IF <B2>THEN
<statement 1>
ELSgstatement 2>
END;
(2) IF THEN <statement>;
the <statement™ is executed only if the BOOLEAN expression is true.
The word IFNOT may be used instead of IF in the above forms; in

this case, the BOOLEAN expression is complemented, and then examined.

18

D. ITERATION STATEMENTS
General Forms: (1) FOR Ej = P STEP Ej 3

TO
THRU

where E), Ey, Ej are arithmetic expressions, P is a non-dynamic variable

2 E3 DO S;

or an array element, and S is a statement.
This statement causes statement S to be executed once for each new
value of P, the iteration variable. The statement is executed as if it were

written as:
El - P;

L1 1F |l P> E; THEN GOTO L2; (see note 1 below)
S;
P+ Ez - P;
GOTO L1

L2r

(2) FORE, - P STEP E, Vglg%ﬂms;

where E), E5 , E3, P and S are as above, and B is any Boolean expression.
Execution of this statement is analogous to the previous statement. Ex-
ecutions of statement S continue as long as:

(a) B is true (WHILE)
(b) B is false (UNTIL)
WHILE

= P B DO S;
(3) FORE, g i DOS

where El , P, B, and S are as above. This statement behaves as indicated

in (2) above, except that the iteration variable is not incremented.

WHILE :
(4) UNTIL B DO S;

where B and S are as above. This statement behaves as type (3), but has
no iteration variable.

CONTINUE STATEMENT

This is a statement which causes a jump to either the incrementing or
testing part of the FOR statement when execution of the remaining body is
not desired.

Example: FOR1l - PSTEP 1 TO 10 DO

BEGIN IF P.= 7 THEN CONTINUE:
END;

would cause execution for values of P = 1 through 6, 8 and 9.

Note 1: For TO, this operator is >; for THRU, the operator is >. If the
iteration variable changes sign or ever equals zero, then another
form of the FOR statement should be used.

19

E. COMPOUND STATEMENT

It is often desirable to have a number of statements act as a single
statement, A group of statements which is preceded by the word BEGIN
and followed by the word END is called a COMFOUND STATEMENT. Note
that compound statements may be nested.

Compound statements may have "local" declarations of non-dynamic
variables (of types REAL, INTEGER, BOOLEAN, and FIXED) immediately fol-
lowing the word BEGIN. These variables are "local" in the sense that they
may not be referenced from outside of the compound statement, but they may
be referenced anywhere between the current BEGIN-END parentheses. The
NAMEs of these variables may have been used in an outer compound state-
ment or in the main program declarations. In this case, a NAME always
refers to the variable declared in the current innermost compound state-
ment. Note that one may GO into the middle of a compound statement.

B BLOCKS

A compound statement in which dynamic variables are declared is
called a BLOCK. Iteration statements, . = B statements (see
appendix 2), and PROCEDURES (see section VII) are also BLOCKS. One
may not GO into the middle of a BLOCK.

V. COMMENTS

Comments may occur anywhere in a program where a statement or
declaration may occur, Comments begin with the word COMMENT, and
end with a semi-colon. Any string of characters (excluding semi-colon)

may appear in between.

VII. PROCEDURES

A PROCEDURE is a subroutine which may or may not expect input
parameters and may or may not return a result. A PROCEDURE must be
declared before it is called. A PROCEDURE declaration must occur in a

declaration portion of the LEAP program (see section IX) in one of the

20

following forms:

(1) <REAL, INTEGER,BOOLEAN, or FIXED> PROCEDURE
<name of procedure> <plist>; <statement>;

(2) PROCEDURE <name of procedure> <plist>; <state-
ment>
In the above, the <cname>is any string of alphanumeric characters,
starting with a letter. The «plist>is a list of "parameter declarations,"
separated by semi-colons, preceded by {, and followed by }. If the pro-
cedure takes no parameters, the <plist> is absent. A "parameter declara-
tion" consists of a data type specification, followed by a list of names which
are separated by commas.
For example, the declaration of a PROCEDURE to find the largest
number in an array and store it in a specified cell would look like this:
PROCEDURE BIG {INTEGER ARRAY A; INTEGER AM, AB};
BEGIN INTEGER I;
Al - AB;
FOR 2 -1 STEP 1 UNTIL I>AM DO
LE AI>AB THEN AI - AB;
END:;
In this procedure, A, AM, and AB are procedure parameters. They represent
the true arguments given the procedure when the procedure is "called." Two
additional declarations are allowed in a procedure declaration to describe
arguments. They are;
LABEL Ll' LZ’ e » & Ln;
(type) PROCEDURE P1 ;
Examples: REAL PROCEDURE PYTHAG {REAL A, B}:
INTEGER PROCEDURE AVG {INTEGER I,]}
PROCEDURE TEST {REAL PROCEDURE P; LABEL TAGY:

A procedure "call" may occur as a statement or an expression depend-

s P2, P3; (Again, type is optional)

ing on whether a data type precedes the word PROCEDURE in the procedure

21

declaration. A procedure which is to be used as an expression is called
a FUNCTION. The procedure call has the following general form:
<procedure name> <a list>

The <a list>is a list of expressions, variables and elements of
dynamic variables, separated by commas, preceded by {, and followed
by }. If the procedure takes no parameters, the <a list>is absent.

The data type of each element in the <a list>is compared with
the declared data type of the corresponding element in the <p list>, and
an error is given if these do not match. For example, the following is a
statement calling the procedure declared above:

BIG {1LIST, 100, LARGLST};

where LIST is the name of the array, 100 is the maximum size, and LARGLST
will contain the largest element after the procedure is called. Note that
there are two kinds of parameters in the above example:

(1) parameters which are not changed by the action of the
procedure, but whose values are used (VALUE parameters:
LIST and 100, for example)

(2) parameters whose values are changed by the action of
the procedure (REFERENCE parameters: LARGLST, in
this case).

In LEAP all variables and dynamic variables may be passed to pro-
cedures as REFERENCE parameters; also, elements of ARRAYS may be

passed as REFERENCE parameters. However, TEXTARRAY elements, subword
expressions, and MATRIX elements may NOT be passed as REFERENCE para-

meters to. procedures.

VIII. RETURN STATEMENTS
Normally, procedures and functions return to the calling statement
at completion. However, an additional statement is provided to cause the
procedure or function to return from anywhere within the procedure body.
General Form: RETURN E;

where E is required for functions and not allowed for other procedures.

22

E must be of the same data type as the function. This statement causes
the procedure to return to the calling statement. If the procedure is a
function, then the function value is E.
Example:
FUNCTION | REAL PROCEDURE LARGEST {RBAL X, Y};
DECLARATION{ IF X >Y THEN RBTI{'RN X ELSE RETURN Y;

FUNCTION '
LARGEST {4.0/1\, z.o/B} o 5O s

CALL

IX. PROGRAM LAYOUT
Each LEAP program must start with the word START and finish
with the word FINISH. The remainder of the program consists of two separate
parts: a sequence of declarations, followed by a sequence of statements.
Example:
START
REAL X, Y, Z;
ARRAY A {1 to 40};

GOTO ° L;
FINISH

23

APPENDIX I

PRIMITIVES FOR DISPLAY OUTPUT

The display output facility in LEAP consists entirely of a collection of

library procedures for constructing and modifying a "picture data structure".
*

The picture on the screen at the console is generated by a display processor

which accesses and interprets picture-drawing commands from this picture data

structure. Typical commands tothe display processor are:

* %k

1) Place a dot at a specified position on the screen.

2) Draw a line or conic segment from a specified screen position
with a specified slope and length.

3) Display specified text starting at a specified screen position.

4) Call a "display subroutine", to be centered at a specified

position relative to the current frame of reference.
The "picture data structure" is simply a collection of display subroutines (called
GROUPS), each having a unique 16-bit integer identifier (ID). Each display sub-
routine (GROUP) consists of a collection of display ITEMS, each having a 16~bit
integer identifier (ID) which is unique within that collection of items. There are
two kinds of display items:
1) A linear sequence of commands for drawing simple picture fragments

and moving the beam, and

‘ * Effectively a separate, special purpose computer (see reference 1).

** Al positions are REAL expressions, ranging from -1.0 to +1.0.

24

2) a "use" of a display subroutine, which causes the indicated
picture to be displayed as a subpicture of the group.
The library of procedures for constructing and modifying display groups and items
is tabulated below. Note the facilities for blanking items, drawing dotted
lines, moving the unintensified beam, deleting groups and items, and creating
uses. Groups are created automatically when required: e. g. when a use is
made of a non-existent group; when an item is "put" into a non-existent group.
When a group is deleted, all uses of it are automatically deleted. Display
subroutines (groups) are not re-entrant: the "structure" of the picture resembles
a tree.
One creates the first kind of display item as follows:
1) Declare the ID of the display item (a 16-bit integer) with a
"SETITEM" call,
2) Put points, lines, conics, and/or text into the display item via
PUTPNT, PUTLINE,* PUTMAT**, and PUTTEXT calls, and
3) Put the display item into a group via the PUTITEM call. (If the

display item is put into group zero, it will be displayed.)

The line will be drawn from the last position of the beam.

** The PUTMAT routine expects as input the parametric homogeneous matrix

representation of a point, a line, or a conic. Tor further information about
matrix representations of picture parts, see Reference 9.

25

As an example of a LEAP program which uses the display output
facility, we have written down a program to display the scope diagonals:
START

CLEARSCOPE;

SETITEM {1};

LOADPNT {-1.0, -1.0};

PUTLINE {2.0, 2.0};

PUTITEM {0};

SETITEM {2;

LOADPNT {1.0, -1.0};

PUTLINE {-2.0, 2.0};

PUTITEM {0};

FINISH

26

(°qn3 abeicys ayl 03
Juds sy 193Inq way Ae(dsip jusind ayy)

(1333ng walr Aerdsip jJuLLIND
9Y3 01 pepuadde sy prom pajeoipul ayl)

(Pa1ea[o jou ST J9jjng Walf
Aerdstp ay3 3dsoxs ‘NIIILIS O3 Jeruys)

(III XIANI4Y 995)

(0TUOD pallop B MmeID)

(au1l polIop B MEIP)

(Aj1sus3ur 3,u0p INg ‘wesq ayl saouw)

(Aj1suaiur 3,uop Inq ‘wesaq ayy uopysod)

(suoTssaidxe TydY)

(d1nionais Aeqdstp oy ozifentul)

dNON

{<ITDIINI HQ 9€ >}

{<dI ws3r Aerdsip>}

{<€ 10 "Z'1'0 *4AON Nid>< dl dnosb Aerdsip>}
{<uorssoaidxa XIHIVIN>}

t<Ay> <X 7>}

(<AD> '<XWP}

{ <uomitsod x> ‘<uonirsod xof

{<uonisod-x>’ < UORTIS0d- X> ‘< AVNIVIXILS)
{ <uoyssaidxs XIYIVIAP}

~A<v ‘X V>

{<uontsod x> ‘<uoprsod X>f

t <dI wely Aerdsyp>

dANON
dNON

SUALINVHVd

LNdLNO AVTISIA YOJd STUNAIDOUd dIAYISIY

WILITYOLS

asind

dIWNILILISIY
ddONWNIdLIS
IYINIOALNd
ANITIOQINd
dNITAvO1
INdavO1

IXILLNd
IVININd
dINITINd

INdINd
WALIL3S

JIONUNL
IdODSHvdTD

JNVN JYNAIO0Ud

2T

‘poyuriq uUayl ‘edouo padefdsip ST 9dueRISUT Y]

{<I9jued X mau> ‘«Jolu9d X Maus ‘<l dnoib Aefdsips ‘«dl wall >£Qm%vw

ﬁAumucmo A> ‘<I9juU80 ¥> ‘<dnoib 350y JO QI > ‘<ddueisur jo dI> ‘«dnoab adAjoloid 30 dh

= MAumucmo & '<«I91udd X ‘«dnoib 1soy jo JI> ‘<d@doueisur jo > ‘<dnoib adLiojoxd jo m:vw
(dnoab Aerdsip e 931919p) ﬁ <l dnoib >mam%vw

(walr Ae[dsip e 931919p) {<dI dnoib Aeidsip> ' ‘<l wall >£Qm%vw

{<dl dnoib Aerdsip> ‘ <l walr >mam%vu

{<dI dnoi1b Aerdsip> ‘ <dI wa Aerdsip >§

(poxuelq uayl ‘9ouc padeldsip ST WAl 9Y3l) {<dI dnoib Aepdsips}
{ <«dl dnoib AeldSTP>}

SH3ILINWVHVd

¥

dSNAON
IONOJ¥DIsN
ddD3IsN
d4oOT14dd
INJLITIA
INTLIANVIENN
INJLIANVIH
JONOWAILILNd
INILILNd

JNVN 3FNAIO0Ud

28

NOTES

(1) The X and Y coordinates of the display run from -1.0 to +1.0

(2) All ID's are INTEGER expressions

(3) All positions are REAL expressions

(4) The PUTITEM procedure does not re-initialize the display item
buffer. This implies that one may build a display item and copy
it into more than one group. Also, one may build a display item,
copy it into a group, then add more to the display item, copy it into a

group and so forth.

29

APPENDIX II
THE ASSEMBLY CODE OPTION

A. General Description

A brief version of TX-2 assembly code has been implemented in LEAP
allowing the assembly and execution of machine code in LEAP programs. The

current implementation has no macro facility.

B. Format
To begin assembly coding, the user types E . This character
causes the compiler to look for MARK S information. [E] marks the

end of the assembly information and the compiler returns to normal LEAP

processing. The form --- [E] : is equivalent to a statement in
LEAP.
C. Restrictions and Notes

1. Equalities are permissible, but all symexes used in forming
the equality must be defined.

2. The special symexes A, B, C, D, E are not automatically avail-
able, although they may be defined as equalities by the user.

3. Configs, hold bits, bit instructions, double indexing, and RC's
are allowed. When defining a bit, however, it is necessary to separate
the quarter-bit number by a comma (not a period).

Example: SKN4 3 YB
Configs and subscripts must also be single symexes.

4. When reference is made to a LEAP variable, the address of the
variable is used. This means that in the normal case LDA Q will put the
value of Q (a LEAP variable) in A.

5. All MARK 5 equalities and instructions must end with semicolons,
except for the last where is used.

6. Forward references are allowed in restricted cases. These are;

* MARKS is the assembler for TX-2.

30

a) No operation is performed on the symex.
b) The symex is defined later by a '=' in LEAP or a '=' or
'=' in MARK 5.
7. Tags are assigned by use of a '=' or '~' followed by a MARK §
instruction, constant, etc.
8. There is no comma convention and constants follow the rules

of LEAP. Octal integers must therefore be followed by a decimal point.

Example: JED 56- and 21 LDAX
9. One may not refer to a label or equality which has been defined
in .. statement from anywhere outside that statemant (e.g.,
equalities are "local" to the : B statement in which they are

defined.

31

APPENDIX III

PRIMITIVES FOR INTERACTIVE INPUT

The facility for non~typewritten interactive input to a LEAP program
has two parts:
(A) a set of reserved variables and functions which directly
indicate the current state of the indicated input device
(see Table IIIA), and
(B) a simple sublanguage for communicating with the part of

the time-sharing system which handles input interrupts.

The interrupt sublanguage allows LEAP programs to "activate" the

’

various input devices at a TX-2 console,2 thereby asking the time-sharing
executive to gather relevant information at the exact time that an input

event occurs, and report this information to the user when he is next

active. The user may ask for certain status information to be recorded

along with the specified input event. For example, he may ask that the

real-time clock reading <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>