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ABSTRACT

This report describes technical findings in four main subject
areas: semiconductors and semiconductor devices, insulating and semi-
conducting glasses, measurement techniques, and magnetic materials.

For silicon doped with gold and phosphorus, a :itudy of the photo-
magnetoelectric effect yields a basic theoretical relationship between
the excess hole and excess electron concentrations and an experimental
determination of the effective lifetime for temperatures between 21
and 84°K. A pragmatic approach is proposed and empirically tested con-
cerning the dependence that the density of quantum states in a semicon-
ductor shows on the impurity concentration. For a variety of ceramic
materials, the electric-field breakdown shown is related to the various
environmental and material variables. Based on available data con-
cerning material structure, a study is made to characterize the relation-
ship borne in semiconducting glasses between heterogeneity in structure
and resultant electrical properties. Errors in x-ray spectrochemical
analysis of powdered materials due to pressing variations are quanti-
tatively examined. The several means for analysis of the defect struc-
ture of solid surfaces are discussed together with the relation that
this defect structure bears to the surface electronic and chemical
properties. Small-angle x-ray data on the low-temperature aging of
aluminum-zinc alloys is shown to provide a method for determining the
particle size distribution as a function of aging time. A new approach
is proposed and evaluated for characterizing the trapped-flux inter-
action between magnetic films and nearby electrical conductors.



SUMMARY

This report for the fifth semiannual period of contract support
describes technical findings in four main subject areas: semiconductors
and semiconductor devices, insulating and semiconducting glasses, measure-
ment techniques, and magnetic materials.

SEMICONDUCTORS AND SEMICONDUCTOR DEVICES:

For silicon doped with gold and phosphorus the photomagnetoelectric
(PME) effect was studied theoretically and observed experimentally for
temperatures between 21 and 84°K. A generalized diffusion equation is
formulated and solved with the impurity centers included in the charge
balance equation and for arbitrary intensity and steady illumination.

When the density of gold greatly exceeds the density of the free carriers,
the charged impurities maintain charge neutrality; this yields a range of
injection where the excess hole concentration can be expressed as the sum
of two terms: the first proportional to the excess electron concentration
and the second to the square of that concentration. If the quadratic term
dominates, the PME current is proportional to the 4/3 power of the photo-
conductance. Measurements show this prwer~law dependence, from which one
can deduce that the effective lifetime ranges between 36 nsec to 63 usec.

The density of quantum states in a semiconductor depends on the impurity
concentration; a study is reported concerning a pragmatic approach to the
problem of describing this dependence. The approach combines heretofore
separate theories concerning the various contributors to this dependence,
utilizing an approximation that enables application of the superposed theories
over the range of impurity concentration of technological interest. To

demonstrate the practical utility of the approach, the prediction yielded
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by its application to p-type gallium arsenide as compared to an experi-
mentally determined density of states. The agreement is satisfactory.

INSULATING AND SEMICONDUCTING GLASSES:

The eiectric field a ceramic material can withstand may determine its
applicability in various uses in the electronic technology: as an insulator,
as a protective surface in various devices, as an isolator in integrated cir-
cuits, and as a material for encapsulation. The several theories of break-
down mechanisms in ceramics are reviewed and the influence of environmental
and materials variables on the breakdown strength is discussed. The discussion
includes consideration of the following variables: thickness, temperature,
ambient atmosphere, electrode shape and composition, surface finish, field
frequency and waveform, porosity, crystalline anisotropy, amorphous structure,
and composition. The relative importance of these factors receives attention
for a variety of ceramic materials.

Heterogeneities present in semiconducting glasses play a key role in
determining the electrical properties of the glass. Based on available data
concerning material structure, yielded by small-angle scattering x-ray studies,
and concerning the dc and ac conductivity of VZOS-KP04 semiconducting glass,

a theoretical study is made to characterize the relationship borne between
structure and electrical properties. Various alternative models of the con-
duction mechanisms are proposed and evaluated.

Errors in x-ray spectrochemical analysis of powdered materials due to
sample pressing variations are quantitatively examined. It is shown
that the x-ray intensity of a pressed sample is a function of the sample density.
Mg0, Tioz, Crzo3 and 'l'ho2 samples all exhibited three major regions of x~-ray
response in the intensity vs density studies. Analytical errors of as much

as 502 can result if measurements are made without regard to pressed density
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variation. The behavior is explained in terms of density gradients pro-
duced during pression. Appreciable thickness dependence of x-ray results in
MgCO3 samples is also discussed.

MEASUREMENT TECHNIQUES:

The development of ultra-high vacuum capabilities and sophisticated
observational methods has enabled the analysis of the defect structure of
solid surfaces and the relation of this defect structure to many physical
properties. In this study various means for characterizing the defect struc-
ture, such as optical, x-ray topographs, and transmigsion electron-microscopy
are described with major emphasis being placed on the observation and inter-
pretation of surface defects by the field-ion microscopic technique. The
influence of these defects on the surface electronic and chemical properties
receives attention.

Small-angle x-ray data on the low-temperature aging of three aluminum-~
zinc alloys affords a method for determining the particle size distribution
as a function of aging time. The study yields a series of particle size
distribution curves and particle diameter growth paths, and the evolution of
the particle size distribution can be followed. The observed growth can be
described as a typical particle coarsening process with competitive growth.
The zonal state immediately after quench is characterized by a more mono-
disperse zone size distribution than at later aging times.

MAGNETIC MATERIALS:

The trapped-flux interaction between magnetic films and nearby elec-
trical conductors is a well-known phenomenon experimentally and has consti-
tuted the basic mechanism of NDRO memories. Previous theoretical analyses
of this process, however, have proved so formidable computationally and con-

ceptually as to limit their usefulness. A new approach is suggested that,
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despite its simplicity, leads to results that agree well with those that are
predicted by the more complicated methods. The approach consists basically
in appealing to the analogy of an RC transmission line. Subsequent use of
this analog permits geometrical factors to be represented as electric cir-
cuit components yielding thereby conceptual and computational advantages.
Taking into account the geometry of the film insulators and conductors, the
approach provides a basis for estimating the magnitude and time duration of
switching transients., The model developed explains the experimental obser-
vation that eddy-current torques play an insignificant role in film flux

reversal for devices with large stripline separation.
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I. Introduction

The original general objective of this research program was to estab-
lish at the University of Florida a "Center of Competence in Solid-State
Materials and Devices." From the efforts expended in developing this
center of competence have evolved technical findings: technical findings
concerning such materials as glass ceramics, semiconducting glasses, mag-
netic films, degenerate materials, and degenerate semiconductors, concerning
devices made from these materials; concerning measurement techniques; and
concerning methods of fabrication. The first of the findings in these various
areas are described in four previous scientific reports}-a To Scientific
Report No. 1 the reader is referred for a more detailed statement of the
research objectives than given here and for a discussion of the means to
be used in achieving these objectives. The present report sets forth major
findings of the fifth semiannual period of contract support. In the pre-
sentation to follow, Section II describes the results of research concerning
semiconductors and semiconductor devices, Section III reports findings con-
cerned with insulating and semiconducting glasses, Section IV describes
advances made in measurement techniques, and Section V deals with research

concerning magnétic materials.
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Il. Semiconductors and Semiconductor Devices (A. J. Brodersen, E. R. Chenette,
R. W. Gould, L. L. HenCh. J. J. llren. S. S. Li. F. A. Lindml‘. c. T. s‘h.
A. van der Ziel)

A. LOW TEMPERATURE PHOTOMAGNETOELECTRIC PROPERTIES OF GOLD-DOPED n-type
SILICON (J. Agraz-G. and S. S, Li)

1. Introduction

The purposc of this study was to investigate the effects of heavy gold
doping upon the transport of excess carriers in n-type silicon by means of
the photomagnetoelectric (PME) effect. This effect was observed between 21°
and 84°K in gold- and phosphorus-doped silicon and the small Hall angle theory1
has been exicnded to account for the effects of the impurities.

For constant recombination lifetime, no trapping and constant ambipolar
diffusivity, the PME short circuit current is proportional to the photocon-
ductivityl. The PME effect has been studied in silicon under these conditions
for small2 and large signa13". The trapping by the gold centers has signifi-
cant effects on the diffusion of excess carriers when the equilibrium carrier
density is smaller than the gold density. This case occurs in silicon over-
compensated by gold at room temperature and in undercompensated silicon at
very low tempcratures. Our experiments at low temperatura show a PME short
circuit current proportional to the 4/3 power of the photoconductance. This power
law is also obtained from our theorctical analysis.

2. _Theory

The experimental situation is schematically shown in Fig. 1. The theory
for the PME effectl involves the solution of the continuity equation for the
carriers injected at the illuminated surface. We have obtained this solution
under the following assumptions:

a. The magnetic flux density is very small.

b. The carriers diffuse in onc direction only.

c. Photoinjection and surface recombination can be represented as
surface boundary conditions.

d. Charge neutrality is preserved and results in a relationship between
the excess densitics of electrons and holes.

2
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e. The recombination rate is a function of injection only.

f. The injected carriers do not reach the dark surface.

2.1 Charge Neutrality

For charge neutrality, the injection dependent densities must satisfy

the equation: + =
p+N +Ny=n+N +n

Au D A D )

A detailed solution of this equation is reported elsewheres. Here we
only consider the results of direct interest to our experimental work on the
PME current and photoconductivity measurements.

Shockley-Read's6 (S-R model) and Sah-ﬁhockley's7(s-s model) statistics
are used to relate the densities of the electrons trapped in the impurity
centers to the densities of free carriers. A relationship between the excess
carrier densities gp and An can be deduced from Eq. (1) by making use of
S-R and §-8 statistics, which takes the simple form of power laws within
certain ranges of injections. Of particular interest here, are the low
temperature results. The low and moderate injection solution of Eq. (1)

takes the form

2
Ap = Fl An + Fz An (2)
where
ry= vy - NAul/(NDYllz) (3)
and
r, = Pllno for Ny > N, (4)
Pz = NAu/NDnIDYIIZ for ND < NAu (5)

This solution is valid for
v -1
0 < An << (l2 ,71/27_1/2) (6)

and can be separated into = small injecticn linear range (i.e.: Ap & Plbn)

4



and an intermediate quadratic range (i.e.: Ap = szn”).

This analysis also shows that the electron recombination lifetime

changes slowly with injection?

2,2 Diffusion Equation

The PME current is related to the diffusion current, and the photocon-

ductivity is proportional to the average injected carrier density. The con-

tinuity equation for electrons is given by

dJ

—ny -
dy +qr=0 €]
where
dn
Jny qnunEy + an dy (8)
J =qpuE =-qD dp (9)
Py PY p dy

The Dember field (Ey) in Eqs. (8) and (9) is independent of y1 and the total

current in the y-direction i3 zero.

can be reduced to: J e
ny

where p+n dp

D=0D dn

n p+ bn °* aud

With these considerations, Eqns. (8) and (9)

qD %;l (10)

P po + Ap, n no + An

is a generalized diffusivity function. The continuity equation in Eq.(7)

then takes the form:

d dn 3
dy {p dy} + R 0 (12;

The solution of Eq.(12) gives an implicit expression for the carrier

profile: An
y = v-s [~Ddn 7 (13)
any  (2/DRdsn + C))

5



The constants of intcgration are¢ determined by the boundary conditions at
the illuminated and dark surfaces. If the injected carriers do not reach the
back surface, the constant of integration C1 is zero. This can be shown from

the boundary condition at this surface:

< doyly *+ 5, b =0 a4
Usually the computation of Eq. (13) is only an intermediate step in

the calculation of a measurable quantity. Therefore, a complete evaluation

of this solution is not nccessary.

2.3 _The PME Lifect and Photoconductance

The PME short circuit current, in the limit of small magnetic flux

density 13:1 Y
) ¢ = -9 fJ_ dy (15)

where 6 = |6 | + |ep| s 0, ~HoyBs Op = u B

For the thick sample, using Eq.(10) we can write
Ano

 — é q D dan (}6)

Similarly the photoconductance can be written as:

Y
AG = qu_ J (An + AE) dy (17)
n 0 b
or
Ano Ap. D dAn
4G = qu  J (an + b ). (18)
0 An

(2 7 DR dan)}/2
0

Eqs.(16) and (18) reclatec 1 d G parametrically through Ano. In the low

pME "
injection linear range Ap = ryAn. Solving Eqs.(10), (11), (16) and (17) one

finds



1 ,:_(___.._7_.).. g 2 DIQO - (12)
PME w (*r, /b
n 1 Si + DI/Tn
where (n +An) I‘l
D1 " Dn bn + rl An (20)

Eq.(19) is consistent with the result obtained by Amithe.

Eq.(19) predicts a linear relationship between IPME and AG. In this
range, the photoconductance, PME current and the photon flux density are pro-
portional to the first power of the surface injection (and therefore to each
other). The effective diffusivity (Dl) and the lifetime were found to be con-
stant in thie range. The linear rclationship between IPME and AC has been
observed recently by Lia in n-type silicon at low temperatures.

In the intermediate injection range, where the steady state trapping of
photo-injected carriers by gold centers becomes significant, the relation
between Ap and An is quadratic, i.e.,

2

Ap = F2 an (21)

By substituting Eq.(21) into (11) and realizing the fact that in this
region Ap >> Py» 4n >> n, and Ap < An, the diffusivity function D in Eq.(11)

reduced to the form:

An (22)

Substituting Eq.(22) into Eq.(16) yields the PME short circuit current:

3D r.q
n 2 2
And by substituting Eq.(22) and R = %ﬂ into Eq.(18) one finds
n
- 3/2
AG K ZPZDntn/b (Ano) (24)

From Eqs.(23) and (24), thc relationship between I and AG is given

PME
7



in the followine [otw:

r,p  1/3 4/3
3 2 n AG
1, = = 0q (35) ) (25)
PME 2 ne 2 qu_
n
which predicts a 4/3 power lav between IPME and AG. This power law relation-

ship was observed in gold-doped n-type silicon at low temperatures as will be
reported in the next section.

3. Experimental Results and Discussion

We report here the experimental results on three gold-doped silicon
samples. The samples were prepared by diffusion of gold into phosphorus-doped
sjlicon bars. The impurity concentrations, listed in Table 1, were estimated
from Hal) data obtained between 20°K and 300°K.

By comparing the Nall data of the different samples and the gold diffusion
data, we have arrived at values for the phosphorus and gold densities as
listed in Table I. The activation energy listed is deviated from the accepted
valuc of 0.044 eV for phosphorus at low donor concentrations. However, it is
consistent with mcasurcments by Long and Myer59 of 0.043 eV for a donor con-
centration of 4.5 x l()]"r’cm'-3 and by Swartzlowho obtained 0.032 eV for
1.8 x 10]7cm_3 of donor concentration. The activation energy of the phosphorus

is estimated for samples 1,2 and 3 from the slope of the low temperature plot

of RHT3/2 versus 1/T, which yields a value of 0.033 eV.

To check the adequacy of our model, we investigate the temperature
dependence of the PHE short circuit current, IPME' and compare with the theo-
retical expression. From Eq.(25) we find that

1/3
IPME Pz (26)
This is the faector that contributes most to the dependence of IPME on tem=-
peraturc becausc
NAu
Py = o0 (27)
p'1/2"1D
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where

n, = NC exp[—(EC-ED)/kT] (28)

Since b decreases exponentially with temperature with the activation
energy of the phosphorus level, it is found from Eq.(26) and (27) that IPME
should incrcase with decreasing temperature with one third of the activation
encrgy of phosphorus. The obscrved IPME for AG = 0,1 mho/cm in sample 3 is
plotted in Fig. 5. 7The slope indicated is 0.001 eV which is about one-third
of the activation encrgy we observed for phosphorus. This is in good agree-
ment with the results obtained from the Hall measurements. The experimental
procedures for the Pilll and photoconductance measurements were described in
detail previously3’4.

In Sample 1, gold was diffused at 1200°C and annealed at 800°C. This
resulted in a light compensation by gold, This sample shows normal band con-
ductivity in the liquid hydrogen temperatures. The mobility increases mono-
tonically with decrcasing temperature in consistency with the theory for
small compensation. The PME short circuit current at 24.7°K is proportional
to the 4/3 power of the photoconductance which is consistent with our theory
for the range of injoction where Ap « Anz. This result is shown in Fig. 2.

Sample 2 was prepared by diffusing éold at 1200°C and then quenching to
room temperature. The compensation of phosphorus by gold for this case was
about 50 percent. 1lmpurity conduction by hopping was observed below 22°K,
mixed impurity and band conduction between 22° and 32°K and normal band con-
duction above 32°K. The PME current follows the 4/3 power law at 32°K, but
shows anomalous bchavior below 29.3°K where the impurity conduction becomes

important. This anowilous behavior is attributed to the intcraction of in-

jected carriers with impurity conduction.

10
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In sample 3, gold was diffused 2t 1200°C and quenched to room tempera-
ture. The gold ovcrcompensation obsc.ved in this sample establishes the gold

16 -3

concentration by this diffusion method at about 5 x 10 em ~. The 4/3 pover

law was observed between 20.8° and 84°K in good agreement with our model. (See
Eq.(23).)

A nonlinear PME effect in gold-doped silicon has been observed in the
injection range characterized by a 4/3 power law for the PME current depen-
dence on the photoconductance. This power law dependence is related to the
steady state trapping of the photo-injected carriers by the gold centers. From
Eq.(23) and the results shown in Figs. 2, 3, and 4, one can deduce the electron

effcctive lifetime Y172 T The corresponding values are listed in Table 2.

Since no data are available in literature for the ratio of electron and
hole capture rate r1/2 at the gold acceptor centers at low temperatures, it is
impossible to calculate the electron lifetime Lf from the PME and PC mecasure-
ments for the present case. However, it is possible to determine L from
photoconductivity decay experiment at low temperature and then calculate the
71/2 from the PME and PC measurements. The increase in temperature of j?;;& A
for sample 3 is consistent with the fact that 71/2 increases with temperature
because C: increases faster with temperature than C:.

The PME open circuit voltage observed in the gold-doped silicon is found
several orders of magnitude greater than that observed in samples without
gold2’3’4. The formulation for the steady state diffusion equation shown here

is general with respect to trapping and recombination processes.

15



Table 2. The IYllé T product.

e e

e b ——— e o B e -

R

- -

(3% -
T(°K) |71/2 T_ (usec)

Sample 1 24,7 63
Sample 2 30.1 0.71
Sample 3 84.0 0.036

30.4 0.075

26.0 0.098

21.6 0.362

20.8 0.448

—
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LIST OF SYMEOLS

Py N = Total density of holes and electrens, respectively

Ap, An = FExcess density of holes and electrons, respectively

n, = Equilibrium clectron density

", = Density of celectrons in the shallow donor level

NA;’ :AB = Density of positively and negatively charged gold centers,
respectively

N N. = Total density of gold and shallow donor impurities, respectively

AU’ D

Y1/2* Y-1/2 = Ratio of the hole and electron capture rate for the pold
acceptor and donor levels, respectively

R = Recombination rate

Sd = Dark surface recombination velocity

Y = Thickness of the sample

Ano, AnY = Fxcess eclectron density at the illuminated and dark surface,
respectively.

" = Electron recombination lifetime

b = Electron-hole mobility ratio

IPME =  PME current per unit sample width

AC = Photoconductance of unit width - unit length sample

M = No expl-(B-E ) /KT]

Si = Illuminated surface recombination velocity

Qo =  Photon flux
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B. IMPURITY CONCENTRATION DEPENDENCE OF THE DENSITY OF STATES IN SEMICONDUCTORS
(D. Dale Kleppinger and F. A. Lindholm)

I. Introduction

,2,3) has re-

The conventional engineering theory of semiconductors
ceived wide use ir describing the behavior of semiconductor devices. This
theory is based on various approximations that make design and analysis
manageable; among these approximations is the neglect of the dependence of
the density of quantum states on impurity concentration. In predicting the
behavior of many semiconductor devices, this neglect introduces no serious
error; but for others, in which highly-doped regions play a key role, it may
cause the theory to fail utterly in portraying certain aspects of device
performance.

That the density of quantum states does indeed depend on impurity con-
centration is implied by the following experimental evidence. In their study
of silicon, Pearson and Bardeen(a) found that the impurity ionization energy

1(5) found

decreased with increasing impurity concentration. Debye and Conwel
the same behavior in germanium. Conwel](6) described measurements of car-
rier concentration and mobility versus temperature and impurity concentration
in silicon and germanium. To explain the data, she used a theory that sup-
posed the existence of two species of mobile carriers: the conventional free
carriers and carriers in states associated with the impurities. Swartz(7)
studied resistivity in silicon as a function of temperature and impurity con-
centration. He found that, depending on temperature and impurity concentra-
tion, three modes of conduction can exist: normal band conduction in the
states of the host lattice band; non-band conduction (hopping) in states

associated with the impurities; and impurity band conduction, again in states

associated with the impurities. Finally, measurement of the optical absorp-
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tion coefficient for various impurity concentrations gives direct evidence
that the band gap, and hence the density of quantum states, depends on im-
purity concentration(s).

This dependence also manifests itself in device characteristics. By
regarding the density of quantum states to depend on impurity concentration,
Kane(g) has accounted for the non-zero valley current shown by tunnel diodes.

(10) (11)

Kauffman and Bergh and Buhanan have explained the observed anomalous

temperature sensitivity of transistor gain, h__, as being due to a smaller

FE
band gap in the heavily doped emitter than exists in the more lightly doped
base.

The present paper develops an approach that enables quantitative account
to be taken of the relationship between the impurity concentration and the
density of quantum states. The approach involves superposing heretofore
separate theories concerning the various contributors to this dependence.
Combined with a key approximation, which is justified, about the extent of
their validity, the superposed theories afford a description for the whole
range of impurity concentration that is of technological interest.

Section II below sketches some aspects of the conventional theory. In
this section and subsequently, we treat as an example n-type material, unless
otherwise indicated; the same treatment holds also, however, for p-type mate-
rial. Section I1I focuses on the density of quantum states arising from the
impurity atoms; and Section IV focuses on the density of states in
the host lattice band. Section V sets forth and justifies the approach by
which we combine these contributors to the density of states to yield a com-
prehensive description of the dependence on impurity concentration. To

demonstrate the practical utility of the approach, a prediction based on its

use for p-type gallium arsenide is compared in Section VI to an experimental
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o
observation. The approach holds also for material other than gallium arsenide,

and Section VII indicates some results to be included in future papers.

II. Conventiunal Theory

The conventional engineering theory of semiconductors makes three assump-
tions about the density of quantum states: The density of states due to the
host lattice conduction band is proportional to the square root of energy;
the density of states due to the impurity atoms is a delta function positioned
in the energy gap and separated from the edge of the conduction band by the
ionization energy of the impurity; and, there is no impurity concentration
dependence for either of these densities of states. Let us briefly examine
these assumptions.

The assumption that the conduction band density of states is proportional
to the square root of energy is valid only near the bottom of the conduction
band and only for intrinsic material or for material with small or moderate
impurity concentration. (The appendix contains a discussion of such relative
terms as ''small" and "moderate.") At large impurity concentrations the elec-
trons donated to the crystal become so numerous that their interaction with
the atomic cores alters the conduction band. The alteration takes the form
of a deviation from the square root dependence. This concentration Jependent
effect is sometimes called the formation of "band tails."

For the contribution to the density of states due to the impurity atoms,
the interactions between the individual impurity atoms increase as the con-
centration increases, i.e., as the average inter-impurity distance decreases.
The result of these interactions is like that occurring when many atoms are
brought closer together in a conceptual development of crystal propertiesglz). The

energy levels of the individual atoms split and form a quasi-continuous band of
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energies, the "impurity band."
The approach to be described provides a means for simultaneous inclusion

of the concentration dependence of the band tails and the impurity band.

I1I. Impurity States

For small impurity concentrations, implying negligible interaction
between impurity atoms, the energy dependence of the impurity states is ade~-
quately described by a delta function. As the impurity concentration in-
creases, interaction begins to become important and the (spatially averaged)
density of impurity states begins to spread. Most of the states still reside
at the non-degenerate level, and the spread occurs around this energy. This
approach is based on the calculations of James and Ginzber3(13) which dealt
with a one~dimensional, random lattice. They found that the density of states
is nearly Gaussian in form.*

For a three-dimensional crystal, the logical extension is to assume that
the density of impurity states is still described by a Gaussian whose mean
is given by the non-degenerate ionization energy and whose standard deviation
dcpends on impurity concentration. This function will be essentially a delta
function at small concentrations and will spread around the non-degenerate

(14) has

ionization energy as the impurity concentration increases. Morgan
developed a Gaussian function for describing the impurity states that we will
use together with our assumption which places the mean of the distribution

at the ionization energy.

Morgan's equation for the density of impurity states is

* Since the impurity atoms are assumed to be randomly distributed, the
impurity band resulting from their interactions will vary in width in energy
throughout the material. Spatial averaging of this varying width, necessary
for comparison to experiments, results in an impurity band that does not have
sharp edges but '"tails off."
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-3 2
o(B) = (M (2m) o expl-EBL %

20
where 42 1 1 s
o = &N 2 exp(- 19 6200910 (@)

€
and A is the screening length. Equation (1) has been normalized so that

the doubly infinite energy integral of p(E) gives the total number of impurity
-states, 2N (including spin degeneracy). The equations have been converted
from the cgs-esu system of units used by Morgan to a modified cgs-esu

system of units in which energy is measured in electronvolts.

Using the screened Coulomb potential screening length for degenerate

material, d sl &
v o= 2 &S, 3)
we obtain for Eq.(1) 3,1
3 .1 - (E- )2( 2m 2
8, 4m 4 ..5833 W (e) )
p(E) = 3.651x10 (e) (=) N ex — @)
G 9.551x10" L8y 8334

The units of p(E) are reciprocal electronvolts per cubic centimeter; t 1s

in erg-sec. Equation (4) has been derived assuming that r, << A or, essen-
tially, r, = 0. The quantity r, is a radius which Morgan uses to define a
sphere near r = 0 where no impurity sites are located. Its value is usually
approximately one-half of the lattice constant. Although Morgan points out
that r, can be used to include skewness in the distribution function, we will
consider only a pure Gaussian, leaving for future study the question of the

effects of skewness.

IV. Conduction Band States

As we noted previously, near the bottom of the conduction band the den-
sity of quantum states in the conduction band is proportional to the square

root of energy -- but only if the material is, at most, lightly doped. At large impu-
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rity concentration, conduction electrons beccme so numerous that they alter
the density of states through their interactions. The main effect resulting
from the interactions is the screening of the field contributed by the atomic
cores, thereby altering the periodic potential distribution of the system

and hence the allowed energies., Bonch-Bruyevich(ls)

has developed a theory
which considers this screening and describes the associated density of states
in heavily doped semiconductors.

Bonch-Bruyevich deals with semiconductors with very large impurity con-

centration, i.e.,, semiconductors in which the impurity band and the conduction

band have overlapped. The equation for the density of states in such a mate-

3
rial is * 5
o(E) = SEL Xy 410 + L) +I,x)] (5
167372, 43 1 A 3 3
T4 4 4 4 4
where EZ
X = _2. ’ (6)
8a
7315
a = ‘l‘l‘lz o2 $2 le , 7
11 31
52 12 4 4

and the I's are Bessel functions with imaginary argument. By making appro-
priate mathematical approximations, Bonch-Bruyevich reduces this equation
to two simpler equations which apply for particular ranges of energy. These
equations are as follows.
For energies near the Fermi level the equation becomes
a2
p(E) = p (1 = ==3) (8)
4E

where s is the usual parabolic density of states function,
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1
o (B = [("? E)[2n

N

2 ﬁ3]-1, 9)
Equation (8) shows that near the Fermi level the density of states differs
only slightly from that in lightly doped material. It should be recalled
that in heavily doped semiconductor material the Fermi level is expected to
be in the allowed band. Note that at higher energies the density of states
approaches the lightly doped form.

The second simpler equation applies for energies near the conduction

*
band edge. The density of states in this energy range will be altered to

a greater degree as shown by Eq. (10)(16).
31 3 A
o) = (a2 &’ [20? 82 11 L+ A By (10)
4r ()

This equation 1s valid for energies greater than -El, where

1
E, = [me?][2e2 h2)71 (Naz)lo (11)
and 2
a° = £§_E (12)
me

is the first Bohr radius in the crystal. Equation (10) gives a linear
dependence on energy for the density of states near the band edge, rather
than the conventional square-root dependence.

As has been pointed out above, Bonch-Bruyevich's equations apply to

* Since we will be discussing heavily doped material which has its host lat-
tice band distorted from the intrinsic or lightly doped case, it is necessary
to establish a convention. The term '"band edge" will refer to the ene.gy at
which the density of states becomes zero in non-degenerate or lightly doped
material. When it becomes necessary to discuss a band edge in connection with
the heavily doped material, the modifier "effective'" will be used to avoid
confusion. Similarly, the energy reference in this discussion will be the
band edge, i.e., energies in the (lightly doped) allowed band will be posi-
tive and energies in the (lightly doped) forbidden band will be negative.
Both of these conventions will be followed for the conduction band and the
valence band.
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heavily doped semiconductors. However, an inspection of Eqs. (8), (7), and (11)

shows that, as the impurity concentration decreases, the density of states func-

tion approaches the intrinsic or lightly doped expression. In view of this beha-
vior, we assume that Bonch-Bruyevich's equations are valid at impurity concen-

trations below those at which the impurity band has overlapped the conduction band.

V. The Approach

We seek a description of the density of quantum states applicable for all
impurity concentrations. A full and rigorous quantum mechanical treatment of this
problem having yet to be done, we make an approximation that employs knowledge
available to date. We assume the dependence of the density of states to be given
by the superposition of the theories due to Morgan and to Bonch=Bruyevich. Notice
that this superposition purports to hold for all impurity concentrations. Upon
this point rests the limit of validity of the approximation, for the individual
theories themselves hold, strictly speaking, only for restricted ranges of concen-
tration.

To explore the limits of validity, consider the asymptctic behavior. For
small impurity concentrations, which were of no interest to Bonch-Bruyevich, ob-
serve nonetheless that his equations reduce to the conventional density of states
appropriate to a lightly doped semiconductor. So also does Morgan's equation,
his Gaussian function becoming narrow and approximating a delta function. For

very large concentrations, Bonch-Bruyevich's theory is valid(ls).

The superposi-
tion of Morgan's and Bonch-Bruyevich's equations, however, fails to strictly
account for the states in the impurity band having been removed from the host lat-
tice band. This deficiency will introduce negligible error in the calculation of
the total density of states provided the impurity concentration remains small com-
pared to the density of host lattice atoms. The same restriction on the impurity

concentration is also required by Morgan's theory. For many impurities and semi-

conductors, the solubility limit of impurities will ensure that this restriction
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is not violated. Thus the superposition at large densities introduces practically
no error in the total density of states calculated. Nonetheless it could con-
ceivably introduce sizeable error for states near the band edge because it is here
that the superposition is influenced comparably by its two components. As will be
shown in the following section, however, the superposition predicts a density of
states in good accord with an empirically determined density of states for an
impurity concentration exceeding the effective density of states (Nv in the
example). For silicon, for example, this is nearly the maximum impurity density
seen in the portions of a device that dominate its performance.

From a pragmatic viewpoint, then, the superposition is an approximation that
one may expect to serve adequately over the entire range of impurity concentra-

tion that is of technological interest.

VI. The Density of States in p-type Gallium Arsenide

Empirical justification for superposing the theories of Morgan and Bonch-

Bruyevich follows from examination of the recent experimental data of Mahan and

Conley(17). Using a tunneling theory, Mahan and Conley inferred the density of

states in p-type gallium arsenide from measurements of the current-voltage charac-
teristics in gallium arsenide-gold Schottky junctions. They report measurements

3 18 -3

made with samples containing zinc impurity densities of 5.4x1018cm- and 9.9x10" cm .

A. Qualitative Discussion

The density of states that Mahan and Conley infer for the more impure sample
is given in Fig. 1, which also shows our resolution of their data into probable com-
ponents based on the discussion in foregoing sections. The left-hand portion of
the Gaussian-like curve was obtained by simply reflecting the right-hand portion
about the peak. The next step is to subtract the Gaussian-like curve from the
total curve to obtain the third or remainder curve. Notice that this resolution of

the experimental data is the reverse of our proposed approach of superposing the

the results of Morgan and Bonch-Bruyevich. We can identify the Gaussian-like curve
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with the density of impurity states and the remainder curve as the density of
states due to the host lattice band (valence band in this experimental case).
Notice that the host lattice states appear as though they can be described by a
linear energy dependence near the zero of energy (the band edge) and by a para-
bolic function beyond the band edge. This observation lends support to our pro-
posed use of Bonch-Bruyevich's resylts.

Mahan and Conley's data supports our hypothesis that the non-degenerate ion-
ization energy remains the mid-point about which the impurity band develops as
the impurity concentration increases. The peak of the Gaussian-like curve
occurs at -0.04584 ev for both of their impurity concentrations. The Gaussian-
like curve of Mahari and Conley also has a wider spread in energy at the higher
impurity concentration than at the lower.

The resolution of Mahan and Conley's data as we have performed it is further

supported by an observation of Casey and Panish(la). They state that zinc in

gallium arsenide is fully ionized for concentrations greater than 5x1018cm-3.
Thus we can conclude that the ionization energy has decreased to zero as a result
of the overlapping of the impurity and host lattice bands. Both of Mahan and
Conley's samples are more heavily doped than 5x1018cm-3; therefore, it is con-
sistent that their density of states data should show an overlapping of the two
bands.

The assumption that the mid-point of the Gaussian-like curve, -0.04584 ev,
is the lightly doped impurity ionization energy is lent further validity by

Huang(lg)

» who places the ionization energy at -0.0363 ev. Since his material
was doped at 5x1016cm-3, we expect, in view of Casey and Panish's comment, that
the ionization energy would have decreased from its lightly doped value, More-
over, Huang states that hydrogenic acceptor impurities are expected to have

ionization energies in the range of 0.030 ev to 0.050 ev in gallium arsenide,.

Thus the support for our assumption concerning the mid-point.
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B. Quantitative Discussion

We now compare the quantitative predictions of the approach to Mahan
and Conley's experimental data. Before proceeding, however, let us rewrite
into convenient forms the equations that we will be using. In the following
equations, energies are in electronvolts, concentrations are in reciprocal
cubic centimeters, and the density of states is in reciprocal electronvclts
per cubic centimeter.

The density of impurity states is given by rewriting Eq. (4) as
3 1
2 2, %, 2
.5833 ~(E-E))" e (m /m)
€ -18 .833% | °

3 L1
o(E) = 3.651x10% &% (ﬁ—)" N

(13)
9.551x10

In Eq. (13) we have replaced u with ED by using our assumption that the im-
purity band will develop with the conventional ionization energy as its mid-

point. The density of states near E = 0 ev is given by Eq. (10) which becomes

o(E) = 1.309x10)7 (m"/m)1l/ “ /8 3/2 |

25 e3/8 13/8 N-5/24 E,

6.267x10 (m"/m) (14)

when the various universal constants are used to evaluate some of the factors.

Similarly, Eq. (8) for the density of states near the Fermi level becomes

o(E) = 6.8125x102 (m"/m)3/2 g1/2

-3/2 N5/6 E—3/2

4.065x10° (m" /m) e . (15)

The first term of Eq. (15) is the parabolic density of states function used
in the conventional theory.
There are scme comments that need to be made about the ranges of validity

of Eqs. (14) and (15). For the impurity concentrations that we will consider,
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Eq. (14)is valid, according to Bonch-Bruyevich's lower limit -El. for all
energies at which p(E) is positive and therefore meaningful. Bonch-Bruyevich,
however, does not give an upper limit of validity for Eq. (14), nor does he
give a lower limit for Eq. (15). Because of this we have adopted the fol-
lowing scheme. Eqs. (14) and (15) have two intersections at energies above
the band edge.* In the range of energy between these intersections, we
apply linear weighting functions to the two equations and use the sum of the
weighted equations to calculate the density of states. The weighting func-
tions were chosen to force Eq. (14) to be the only contributor to the sum at
the lower energy intersection and Eq. (15) to be the only contributor at

the higher energy intersection.

We now compare the predictions of these equations to the experimental
data. First, consider the Gaussian-like curve of Fig. 1. The experimental
data can be analyzed to find the parameters of a Gaussian function that will
then be an approximate mathematical description of the data. The mean of
the Gaussian is 0.04584 ev as discussed in Section V. The standard deviation,
0, can be calculated from the data by taking the ratio of two equations of
the form of Eq. (1), one evaluated at the mean and one evaluated at the energy
that gives the function the value of one-half its peak. This yields

o = 0.02799 ev (16)

for Mahan and Conley's data as resolved in Fig. 1. Morgan's theoretical
equation, Eq. (13) yields

o = 0.03035 ev, (17)

*
when the material parameters of GaAs are used (m = 0.7132 n(ZO).

€= 12(21)), The agreement is satisfactory. By using the normalization

* The other intersections do not occur at meaningful energies.



property, we remove the arbitrariness of Mahan and Conley's scale of ordi-

nates. The peak of the Gaussian-like curve is then

p(u) = 1.376x1020 ev-l cln-3 (18)
Morgan's equation predicts a peak value of
p(u) = 1.&01x1020 ev-1 ca-3. (19)

which agrees satisfactorily with Eq. (18).

Figure 2 shows that Morgan's equation satisfactorily matches our reso-
lution of Mahan and Conley's data. The dashed Gaussian curve is the theoret-
ical prediction of Morgan's equation, while the solid Gaussian-like curve is
the resolved data.

Figure 2 also shows a (solid) straight line which has been visually
fitted to the resolved curve in the energy range near E = 0 ev. The equation

for this straight line is

o(E) = 3.633x1020 + 9.911x102! E, (20)

after converting, as described above, from Mahan and Conley's arbitrary

scale. Bonch-Bruyevich's equation, Eq. (14) yields

o(E) = 2.936x1020 + 1.013x1022 E. (21)

The agreement is again satisfactory and within the errors of experiment
and graphical analysis. The dashed straight line in Fig. 2 is described by
Eq. (21). The downward shift of the theoretical line with respect to the

fitted line is approximately 19X at E = 0 ev.

VII. Discussion
Superposition of the expressions of Morgan and Bonch-Bruyevich yields

a description of the density of states in a semiconductor as a function of
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the impurity concentration. The description is an approximation that one
may expect to show the widest discrepancy with reality at asymptotic values
of concentration. But for small impurity concentration, the superposition
reduces appropriately; and, for large concentrations, the limit of impurity
solubility will tend to protect the validity of the approximation. The approach
yielded predictions in good agreement with Mahan and Conley's data for p-type
gallium arsenide.

From the resultant density of states one can calculate the dependence
on impurity concentration of various parameters that interest both the phys-
icist and the device engineer: the Fermi level, transition energies, etc.
Though in this paper we have explicitly applied the approach only to p-type
gallium arsenide, it applies also to other semiconductors. Subsequent papers
will deal with the application to silicon and with the problem of including
the complex dependence on impurity concentration in a tractable theory of pn

junctions.
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Appendix

The purpose of this appendix is to give some meaning to the relative

terms "small," "large,"

etc., in reference to impurity concentration,

A small impurity concentration is one for which the impurity atoms have
a negligible interaction with each other. Then the impurity states may be
treated as spatially localized states in which an electron will have a negli-
gible probability of tunneling to another impurity state. At small concen-
trations the energy sﬁectrum of the impurity states is adequately described
by a delta function. Electrical conduction takes place in the host lattice
bands.

A moderate impurity concentration is one for which the impurity atoms
have a sufficient degree of interaction among themselves that there is a
small but finite probability of transfer between impurity states. At temper-
atures near 0°K, electrical conduction by "hopping" between im-
purity states will be detectable in this concentration range. The conductivity
at these low temperatures will be enhanced by compensating impurities which
would have the effect of creating empty states to which hopping can occur.

At the upper end of this moderate concentration range there is a further
possible result of the interactions arising because of a difference between
the usual tight-binding treatment and the actual circumstances that the im-
purities experience. (This difference is in addition to the difference in
the dielectric medium in the two cases.) The usual assumption in the tight-
binding treatment is that the atoms are brought together and formed into a
perfect, periodic lattice. This is not the case, however, for impurities in
a semiconductor. The impurities assume random, substitutional positions in

the host lattice, and, therefore, any given atom interacts to different degrees
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with each of its neighbor impurity atoms.* Hence, along spatial paths of
locally large impurity concentration, there will be splitting of the impurity
energy levels and the formation of threadlike energy bands through the crystal.

When the impurity atoms interact sufficlently with each other that the
impurity states are no longer localized and an impurity band exists quite
generally throughout the crystal, the impurity concentration is described as
large. In this concentration range the conduction band 1s noticeably dis-
torted by the formation of band tails. Electrical conduction at low tempera-
tures occurs in the impurity band and is degraded by compensating impurities
which act, in this case, to remove mobile carriers from the impurity band
instead of providing more available states as compensation does in moderately
doped material.

A very large impurity concentration is characterized by the merging of
the conduction band states and the impurity band states. The impurity ion-
ization energy has become zero. Electrical conduction in this case has prop-
erties which are nearly temperature insensitive and similar to the type of

behavior found in metals.

* If the impurities did in fact occur in a perfectly periodic pattern in
the lattice, they would not be able to cause the scattering events which
manifest themselves as the impurity-determined components of mobility: the
ionized impurity and neutral impurity mobilities(15),
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Symbol List

The number in parentheses following the definition indicates the equa-
tion in which the symbol is first found. Symbols bearing the subscript "o"
designate quantities evaluated in thermal equilibrium unless otherwise speci-

fied in the following list. The cgs-esu system is used with the exception

that energy is expressed in electronvolts.

a defined in Eq. (7)

a the Bohr radius in a crystal (12)

E general energy (1)

E1 defined in Eq. (11)

ED the energy of the donor level in the forbidden gap (13)
e the magnitude of the electronic charge (2)

h Planck's constant

k h/(2m)  (3)

1 Bessel function with imaginary argument (5)

m free electron rest mass (4)

m¥* the density of states effective mass (3)

N impurity concentration (1)

r a parameter in Morgan's theory (See text below Eq. (4))
X a normalized energy defined in Eq. (6)

€ the relative dielectric constant (2)

p the mean of the Gaussian function (1)

0 the density of quantum states (1)

Po the parabolic density of quantum states used in conventional theory (8)
o the standard deviation of the Gaussian function (1)

A screening length (2)
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III. Insulating and Semiconducting Glasses (E. R. Chenette, R. W. Gould,
L. L. Hench, J. J. Hren)

A. DIELECTRIC BREAKDOWN OF CFRAMICS (G. C. Walther and L. L. Hench)

Introduction

Ceramics are widely used in the electrical industry for insulation,
capacitors, and encapsulation. In each of these applications the ceramic
material is exposed to a voltage gradient and it must withstand the gradient
for the operating life of the system. Failure occurs when an electrical
short develops across the material and such a failure is called dielectric
breakdown. The voltage gradient, expresses as volts/cm, sufficient to pro-
duce the short is termed the breakdown strength of the material.

Breakdown strengths of ceramics vary widely due to many facotrs. Some
of the most important include: thickness, temperature, ambient atmosphere,
electrode shape and composition, surface finish, field frequency and wave
form, porosity, crystalline anisotropy, amorphous structure, and composition.
A detailed characterization of the importance of these factors on breakdown
strengths of a variety of ceramics has not been accomplished. A general
comparison of several variables can be made from the data accumulated in
Table I.

Strengths as large as several million volts/cm are reported for micron
thick thin films. Because they are so thin the voltage insulation of such
films is small, however. Thus, bulk ceramics of many centimeters in thickness
are required to insulate large electrical power voltages. Table I shows that
the breakdown strength unfortunately decreases drastically to levels of only
several thousand volts/cm for bulk ceramics.

The marked changes in strength occurring with changing thickness are due

to changes in breakdown mechanisms. The temperature effects on breakdown
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shown in Table I are due to the strong influence of thermal energy on break-
down mechanisms, It is the objective of this paper to review the various
theories of breakdown mechanisms and discuss the influence of experimental
and materials variables on the magnitude of breakdown strengths obtained for

ceramics.
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Definitions

When the temperature (i.e., thermal energy) of the
lattice or its electrons reaches a value during the appli-
cation of an electric field such that the conductivity
increases rapidly and results in permanent damage to the
material dielectric breakdown occurs. There are three basic
types of breakdown called intrinsic, thermal and avalanche

1

breakdown.~ Historically, there has also been three pseudo-

types of breakdown described. The psuedo-types are termed
discharge, electrochemical and mechanical breakdown.2
Psuedo-types can be considered to be produced by one or
more of the three basic mechanisms. Each of the types of
failure will be briefly defined and then the fundamental
breakdown mechanisms will be discussed in detail.

Dielectric discharge is associated with a gaseous break-
down in the pores or at the surface of a solid material.
Electrochemical breakdown is a result of a gradual deteri-
oration of insulating properties through chemical reactions
until breakdown occurs by one of the basic mechanisms.
Mechanical breakdown is due to cracks, defects and other
stress raisers distorting the applied field and thus pre-
cipitating failure.

Experimentally, intrinsic breakdown is found to be
primarily field dependent in that the applied field deter-
mines when the electron temperature reaches the ;yitical
level for breakdown. Observations that intrinsic breakdown

occurs at or below room temperature and occurs in very short
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time intervals, approximately a microsecond or less, is
stronz evidence that it is electronic in nature. The name
"intrinsic" is used because breakdown by this mechanism is
independent of the sample or electrode geometry used (pro-
vided no field distortion occurs) or of the wave form
applied. Hence the value of applied field required to cause
intrinsic breakdown at a given temperature is a property
solely dependent on the material.

Breakdown observed between room temperature and approxi-
mately 300°C is described as thermal breakdown, because
reaching the critical thermal energy for breakdown is pri-
marily influenced by the ambient temperature, and not the
electric field. Also, thermal breakdown is dependent on
the rate of application of the field. Slow increases in
field cause breakdown in milliseconds to minutes, with the
value of breakdown being influenced by sample geometry.

For faster field pulses, breakdown is independent of geometry
and breakdown strength increases with shorter pulse times.

Avalanche breakdown is related to intrinsic breakdown
in that it occurs at relatively low temperatures and short
times. However, thermal properties of the material are
used to describe the breakdown behavior, so it is properly
a combination of thermal and intrinsic mechanisms. Thin
samples, such as dielectric films, undergo avalanche
destruction. There is a statistical variation in breakdown

strength with short pulses for this mechanism of breakdown.
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Pre-breakdown noise is found with slower pulses which indi-

cates a sequential type of lattice destruction is occurring.

Breakdown Mechanisms

The basic theoretical approach used to describe dielectric
breakdown in solids is to develop an energy balance equation

of the form

A(T,,F,a) = B(T,q) (1)

where A(TO,F,a) energy gained by the material from the

applied field

B(To,a) energy dissipated by the material

To = lattice temperature

F

applied field
a = energy distribution parameter, which
depends on the model proposed

Thus A = B is the limiting condition for breakdown.

Intrinsic Breakdown

Theories of intrinsic breakdown can be classified as
those dealing primarily with the electron-lattice energy
transfer and those considering changes in the electron energy
distribution in the material.

In electron-lattice interaction models the behavior
of the material is approximated by considering a single

electron of average E (i.e., a = E). Consequently, there
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is a low electron density, a small probability of electron-
electron interaction, and only electron-lattice energy
transfer is allowed. The mechanisms contributing to this
transfer are:

(1) Lattice vibrations in a dipolar field

(2) Electron shell distortion accompanying the dipolar

field-lattice vibrations
(3) Short range electron shell distortion in a non-
polar field

The mechanism chosen to describe the electron-lattice energy
transfer depends on the model of the material used. The
problem is to determine the value of E required for the
energy balance and then to calculate Fc, the critical field
strength, that causes the critical temperature for break-
down, Tc’ to be reached.
One model, called the Frohlich high energy criteria,3
assumes that multiplying the number of conduction electrons
to a very large value will destroy the lattice. Thus,
E = I, the ionization energy or gap between the valence
and conduction band. Breakdown occurs when the ionization
rate exceeds the recombination rate causing the conduction
electron density to increase irreversibly. Figure 1 shows
the energy balance equation schematically. The value of E
at the intersection of the A and B curves indicates the
energy an electron must have to be accelerated by the
appropriate field, F. The high energy electron resulting

from a recombination collision will have E < I so that only
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those fields F > F. can cause the electron to be accelerated,
resulting in another ionization and thus increasing the
density of conduction electrons.

The above model has been questioned1 on the following
grounds: (1) An ionization-recombination steady state may
not be realizable in the short time before breakdown, and
(2) a steady state might not occur physically: the energy
balance might be maintained by some non-steady state process
such as radiative recombination (i.e., light emitted upon
recombination, as observed, but not published, by Kelly).1

Another model is the low energy criteria due to von

4 and Callen.s They assumed the limiting condition

Hippel
for breakdown to occur when B(B',To) is a maximum, with E'
being the maximum average electron energy required for steady
state conditions. This means that Fé is the field needed to
accelerate all the conduction electrons against the lattice
influence and is also shown on Figure 1. This model faces
criticism similar to the above in addition to the improb-
ability of achieving the extremely high field, Fé, necessary
to accelerate all the conduction electrons simultaneously.
Stratton6 attempted to extend the above ideas to non-
polar materials but agreement between theory and experiment
is poor.1 It should be mentioned that in general the actual
breakdown field, FB, must be greater than Fc, the latter

being only the value necessary to cause an irreversible

imbalance in the energy transfer equation.
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FIGURE 1

Schematic representation of the energy balance relation
for the Frohlich High Energy Criteris, A(F_,T E) = B(E,T ),
and the Von Hippel-Callen Low Energy Criteria?

A(F T ,E) = B(E' T)
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Intrinsic theories based on changes in the electron
energy distribution of the solid have also been advanced.
These theories are based on five contributing factors:

(1) Acceleration of electrons due to the applied field

(2) Collisions between conduction electrons

(3) Collisions between conduction electrons and the

lattice

(4) Ionization or recombination of electrons to anrd

from the valence band or traps

(5) Diffusion due to a field gradient
This large number of theoretical variables can be reduced
by ignoring ionization-recombination processes. This is
possible because it can be assumed that most electrons in
dielectrics occupy energy states intermediate between those
low enough to allow recombination or high enough to permit
ionization. The diffusion mechanism can also be dismissed
by not considering the influence of the field source.

The energy distribution in the solid can be classified
under assumptions of either a low or high density of con-
duction electrons. Assuming a low electron density permits
ignoring electrun-electron collisions. For low energy
electrons a Boltzmann distribution is obtained. However,
for high energy electrons, Frohlich showed that a valid dis-
tribution function could not be described.7 The distribu-
tion approaches infinity with increasing energy unless
ionization-recombination properly makes the theory an

avalanche type.
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For high electron density theories it is assumed that
electron-electron collisions are so important that they
determine the electron energy distribution. Electron-
lattice interactiéns determine the critical value of electron
temperature Tc, usually greater than the lattice temperature

-~

To. Critical conduction electron densities of n, = 107 cm'3

and n. s 1014 c

m"> have been calculated for polar and non-
polar materials, respectively. Thus for these models,

a =T, and the breakdown strength is calculated by deter-
mining the field, Fi’ necessary to make T increase to
infinity.

An electron density distribution model for a pure crys-
talline solid has been proposed by Frohlich and Paranjape.8
With few or no defects there would be few *raps. Conse-
quently, in the energy dissipation function, B, ionizing
collisions were also assumed to be of minor significance
and therefore is one point of criticism. Another less than
satisfactory aspect of the model is that for n. & 1017 cm'3
and F < Fc, the energy gain function A is a very large value
of 600u electron volts per ion volume, where u is the
mobility. For normal values of u this magnitude of energy
absorption would destroy the crystal at less than critical
fields.

Frohlich has also proposed a model for amorphous

u in which he assumes a trap distribution as shown

materials
in Figure 2. These are shallow S traps just below the

conduction band and deep D traps within the gap. The
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FIGURE 2

Trap level representation for the Frohlich amorphous
material model.
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density of electrons in the traps is n. < ng <<y and n.
1017 cm's. n. plus ng thus determines the conduction
electron energy distribution and the electron temperature T.
The main mechanism of energy transfer in this model is
emission of phonons associated with the change of clectrons
betwecen S levels and the conduction band. O'Dywer has ex-
tended this theory to include isolated defect levels in
crystals.9

Criticism of the amorphous modzl is centered on the
strong possibility of emission from traps, which would change
the clectron distribution. Figure 2 is also a very ideal-
ized distribution of energy levels for an amorphous solid.

The current state of intrinsic breakdown theory thus
appears to be that the actual intrinsic breakdown mechanism
or mechanisms may be more complex than those proposed by
present breakdown models. Further experimental investiga-
tion to reduce experimental difficulties may resolve some

of the complexity or provide insight into modifications of

present theory.

Thermal Breakdown

Thermal breakdown theory also is based on an energy
balance relation, but it is the balance between heat dis-
sipated by the sample and the heat generated due to Joule
heating, dielectric losses, and discharges in the ambient.

tlence, it is the lattice temperature and not an electron
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temperature that must reach a critical level for breakdown

to occur. The influence of the applied field is only in-
directly felt as it influences the heat generating mechanisms
and does not play the determining role evident in the in-
trinsic theories based on the electron temperature in the
solid. Because of the relatively weak dependence between
field and temperature, the value Tc is not too important and
the actual lattice temperature at breakdown, Té, is usually
somewhat greater.

The basic relation for thermal breakdown is

dT c N 2
CV It - div(K grad T) = o(F,To)F (2)

where CV = heat capacity of the material
div(K grad T) = heat conduction of a volume element
o(F,To)F2 = heat generation term
There is no charge accumulation so the current is contin-
uous.

For slow field applications a steady state is assumed
and the C/ dT/dt term can be ignored. Calculations’ employ-
ing this model show that breakdown strength is inversely
proportional to the square root of the thickness. This
square root dependence agrees well for thin samples where
a uniform temperature can be realized but for thicker
samples the breakdown strength is experimentally observed
to be inversely proportional to the thickness itself. The
criteria for determining if a sample is thick or thin

depends on several materials constants, namely the thermal
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conductivity as well as the pre-exponential, Oys and the
activation energy, Q, for the conductivity-temperature
dependence of the solid, i.e., o = o  exp(¢/kT).

When the field pulse is fast enough, negligible heat
transfer can take place. Consequently, the heat conduction
term can be ignored and the electrodes only influence the
field distribution and not the heat flow, as in the previous
case. By integration it is possible to calculate tes the

time for breakdown to occur after reaching Tc:

T! CdT
t =/ ©° A

c 2
Tc o(Fc,To)Fc

(3)

The strong dependence of tc on Fc is easily seen in the
above expression. Similarly, it can be shown that Fc =
;§§?7 exp(¢/2kT), thus, the critical breakdown field is
essentially independent of Tc'

Numerical solutions to thermal breakdown models must be
used when the field frequency is intermediate and either
of the above simplifications can not be made. Each case
becomes a different problem with different boundary con-
ditions. Numerical techniques can also be extended to
cover multi-dimensional samples or different waveforms with
some success. There are no serious criticisms of thermal

breakdown theory.1
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Avalanche Breakdown

While thermal breakdown theory may be more practical
for the application temperatures of many ceramic materials,
if the material geometry approaches that of a thin film,
avalanche theory may prove more useful. Avalanche break-
down theory is an attempt to combine features of intrinsic
and thermal theories since an electron distribution insta-
bility will have thermal consequences. The electron be-
havior is described with an intrinsic theory and the break-
down criteria is based on thermal properties. Avalanche
theory considers the gradual or sequential buildup of
charge rather than the sudden change in conductivity, even
though the charge buildup may occur in a very short time.

Avalanche theories can be easily classed as to their
initiation mechanisms which are either field emission or
ionization collision. Field emission assumes that the

conduction electron density increases by tunneling from the
10

valence band to traps or to the conduction band. Consid-
ering that the probability for emission is
P = aF exp(-bI%/F) (4)

shows that P is small until F is quite high (a and b are
constants). Using this development gives an order of mag-

v volts/cm, with the impulse

nitude calculation of F = 10
thermal criteria T = Tc being the critical parameter.

Criticism of initiation by field emission may be made on
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at least threo points: (1) there should be field emission
only for nsaps of ! ev or less, i.e., for semiconductors,
or there (2) may be emission from traps, and (3) thermal
or phonon assisted emission is not included.

The simpler single electron approach to an ionization
cullision theory seems to be preferred to the more complex
many electron or avalanche multiplication view. The single

12 conduction elec-

11

clectron model assumes that at least 10
trons per cm> are needed to disrupt the lattice. When
one starting electron-ionizing collision liberates two
electrons, which in turn liberate four and so on, it will
take about 40 such collisions to achieve breakdown. This
simple approach gives a critical field Fc that is dependent
on thickness: the sample must be thi k enough to have at
least 40 mean {ree path lengths. However, the sample can
not be so thick that the conduction electron density
becomes so large that electron-electron collisions occur,
thus limiting the electron energy to that below the ioni-
zation level.

The many electron avalanche theory gives a relation
hetween the electron ene}gy distribution function and the
ionization-recombination rates. There are two views of
this approach to dielectric breakdown. One, due to Heller,12
assumes that the ionization rate is so large that recom-
bination can not keep up. It is assumed in the other

14

model by Franz13 and Veelke, that recombination can be

dismissed since ionization increases the number of conduction
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elect:on.. 30 rapidly that no recombination mechanism can
quench the process. The actual case is likely to be a com-
bination of the two. The electron source is ignored because
the density of the source electrons has no relation to FC.

Criticism on several points makes the simpler single
electron theory anpear more recalistic than the ones in-
volving multiple processes. Thec multiple electron theory
is limited to short path lengths because breakdown should
occur before electron interactions become important. The
imbalance between ionization and recombination is due to
rapid saturation of traps, which is always unstable, or to
some emptying mechanism, which is unstable only if traps
empty faster than they fill. Traps might fill with pre-
breakdown avalanches having slow decay times but phospho-
rescence studies show the high instability of traps, which
is important for this theory. Alsc, the electron energy
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