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ABSTRACT

In previous reports, CDLI,-- a computer description language -- has
been defined and discussed. Th-s report discusses the iplemientation of a
system of programs, on the RCA Spectra 70 computers, to generate appropriate
file structures from computer descriptions written in CDLI. This trans-
lation to a DDS -- descriptive data base -- involves syntactic analysis
and a certain amount of checking for internal consistency, as well as the
creation of directory entries, etc. Once the type of DDB's described
in this report can be generated, a variety of design-aid systems can be
based upon them, saving a duplication of effort, guaranteeing an integrated
overall system, and avoiding built-in obsolescence.

The final state of the work done under this contract is given, with
details of the file and directory structures which have been implemented.
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FOREWORD

This Scientific Report No. 4 was prepared at RCA Laboratories, Princeton,
New Jersey, under Contract No. F19628-68-C-0070. The report was written by
Dr. C. V. Srinivasan who is now on the Faculty of Rutgers, the State University,
at its Livingston, N.J., campus. The report completes the work done at RCA
on CDLI.
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1. INTRODUCTION

. would like to outline in this report the implementation task ahead
of us in the development of a Descriptive Data Base (DDB) for computing
system descriptions, based on the language CDLI* [1,2]. Let me first explain
what DDB is, what purpose it is to serve in & computer system design environ-
ment, and to begin with, how it may be used.

1.1 DDB. What It Is and How It Is to Be Used

The Computer Description Language, CDLl, provides basically the follow-
ing two facilities:

(A) It provides a systematic way of describing situations that arise
in a computer system design activity, at the level of System Architecture and
Logic Design. This involves facilities to describe system and logical structures
and tasks performed by them. The tasks themselves could be described either
functionally (independent of their implementation), or in terms of data-fl
secuences initiated by them within an abstract system (this would be specific
to a given system architecture), or in terms of control/command sequences
appearing within a system (specific to a given control structure). These
different descriptions of a task would reflect in a natural way the different
stages of design of a system, stages of partial definition of the logical
structure of the system. As design progresses the total system description
would get built up in terms of descriptions of the various sub-systems and their
interfaces. In fact, the design process itself would be viewed as one of
generating the successive levels of descriptions, in increasing levels of
logical detail. In a design environment, this generative process would be a
collective activity involving the participation of several designers.

(B) The language also provides a scheme for filing the descriptions so
produced. Each body of description would contain implicit information on how
it should be filed, and how it should be embedded within the body of description
already in file. Thus, the way the descriptive file might grow would depend on
the descriptions themselves.

The features of the language which provide for these facilities were
discussed in earlier reports [1]. An overall introduction to the language
appears in AFCRL-67-0565 [2) and the formal definition of CDLl in
"APCRL-67-0588 (3].

The essential task in the development of the DDB is one of producing
the software for CDLI File Establishment (CDLFE). The CDLFE process involves
the following:

*CDLl is a Computer Description Language.



i) Syntactic analysis of input descriptions in CDLl to validate them.

ii) Limited interpretation of the syntax for checking consistency of
descriptions and their completeness (in some sense), for determining
the directory entries to be made for a given body of description,
and for encoding of a description into its internal format.

The data files so created, together with their directories would con-
stitute the DDE (Descriptive Data Base). This DDE is, in fact, simply an
elaborate symbol table. The symbols used in the DDB would denote very complex
objects. Hence, to store and access the definitions pertaining to the symbols
it would be necessary to have a data structure more complex than that of a
simple table. The details of this data structure are inferred from the de-
scriptions themselves. Figure 1 shows the block diagram of the CDLFE process.
The figure is self-explanatory.

The DDE would establish a common context within which a variety of auto-
matic design aids could be developed. Each such design aid system would
communicate with the MDE via a Data Retrieval and Abstractina Facility. The
development of the description language has led us not only to identify the
kinds of system design aids that one could develop, but also has pointed the
way to some novel techniques of realizing them.

1.2 How I Propose to Use DDB Now

The DDB together with the Data Retrieval (DR) facility would constitute
the Design Documentation System (DDS). Figure 2 shows a block diagram of the
DR facility. This figure is self-explanatory too. The DDS as presently
conceived would not only establish a foundation for developing a variety of
design aid systems of the future but, more importantly, would be of immediate
use and benefit to all current system design efforts, purely as a powerful
(flexible), mechanized, central documentation facility for all designs. The
value of having such a central documentation facility cannot be overemphasized.

Once the DDB is created, work on the development of DR could proceed
simultaneously with several other design automation efforts. For example,
one could easily undertake the development of data-flow simulators (EO-
simulators) in the context of the DDB, as also functional simulators at a
level higher than the data flow. The availability of DDB would make it pos-
sible to think in concrete terms about the various design aid systems. Also,
it would provide the guarantee that the systems so developed could all be
integrated into a central design aid facility.
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Fiure 1. Block Diagram of CDLI File Establishment Process
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Figure 2. Block Diagram of the Data Retrieval Facility

The development effort necessary to create such a DDB would be far less than
what would be necessary if one chose, for example, to develop a data-flow
simulator starting from scratch. I think one should be very careful about
choosing design automation projects conceived in isolation outside the
context of a general design aid system, for such projects have the disadvantage
of built-in obsolescence. Beginning the design automation effort with the
construction of DDE appears to me as a very sensible approach from the view-
point of technical feasibility, practical needs, and future promise.

Let me now explain some of the details involved in the CDLFE procedure.



2. THE CDLl FILE ESTABLISMENT (CDLFE) PROCESS

2.1 The Present State of Our Work

The tasks to be performed in the CDLFE process are shown in Figure 1.
Those appearing above the dashed line AA' in Figure 1 are directly associated
with CDLl and depend totally on CDLl characteristics. The file management
task, appearing below the line AA', could be part of the operating system in
which CDIFE would function. I shall, therefore, confine my discussion here
only to the tasks appearing above AA'.

The software for the lexical and syntactic analysis of CDLl strings is
now almost ready. The syntactic analysis is specified only for a subset of
CDL1. (It excludes all expressions in the language and only the general forms
of CDLI statements and declarations are included.) The detail of the analysis
would be just sufficient for the purposes (ii), (iii) and (iv) indicated in
Figure 1 within the 'SYNTAX INTERPRETATION' block. The lexical and syntactic
analyzers have been individually debugged, and have had a single successful
run together. Further debugging should be done. Also, the syntax table needs
a few additions and modifications. The block diagram of the routines is shown
in Figure 3. The syntax table for the CDLI subset was produced by the LRI
processor written by A. J. Korenjak [4,53. This technique of syntax table
generation has incidentally established CDL1 to be a deterministic language
(parsable without backup). All software packages shown in Figure 3 were
written in the SPECTRA assembly language. The box with dashed lines in the
figure is yet to be described.

The lexical analyzer, together with the hash and associated tables and
hash routines, occupies about 11 000 bytes. This area includes the buffer
blocks for future directory building. The syntax tables occupy about 28 000
bytes, and the stack manipulator occupies about 580 bytes.

The major unfinished task ahead of us is syntax interpretation. It
should be noticed that the interpretation is not for producing an output code
in an object language as is done in a compiler, but it is for finding out how
a given body of description should be filed. The consistency and completeness
checks sould be incidental to file establishment. For the present we have
planned to implement only the completeness checks for the definitions in the
language. To check consistency it would be necessary to have a greater degree
of syntax analysis than what has been presencly implemented. The information
for building the directory is obtained almost entirely from the declarations
in the language. The part of the directory not determined by the declarations
is dependent upon the module structure* of the descriptions, and the statements
appear.ag within them. The design specification for the DDB is now complete.
This involves mainly the design of the directory for accessing the DDB.

*Modules are basic units of descriptions in the language.
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The organization of the software packages necessary to produce the DDB, start-
ing from the parse tree of descriptions in CDL1, has not yet been decided
upon. The entire DDB establishment software is going to be written in terms
of macros. A suitable collection of macros for the purpose is now being
defined in SNOBOL. These macros, in fact, would constitute a special-purpose
implementation language for the CDLFE processor. The software written in
the macros would be, in a sense, machine-independent. To transfer the system
software to another machine it would be only necessary to redefine the macros.
We believe that as an implementation tool these macros would be very useful
in a variety of system software implementation tasks.

Let me now briefly describe the DDB directory structure.

2.2 DDB Directory Structure

(A) File Structure

The DDB file is a page-organized file. Each page is 2048 bytes long and
has seven attributes associated with it. These attributes are shown in
Table I. The attribute value of a page is indicated by the page flag which is
eight bits long. The bits of the page flag are set to 0 or 1 depending upon
the values of its attributes, in the order shown in Table I. This flag is
part of the page header, shown in Figure 4.

TABLE I
PAGE ATTRIBUTES

Bit No. Attribute Values
in the Attribute
Page Flag Name 0 1

0 TYPE data directory
1 Version old new
2 Changes no yes
3 State clean dirty
4 Record Length variable fixed
5 Size single double
6 Vacancy yes no

The various fields in the page header are intended for the following purposes:

(i) V1. This is the Virtual Page Number of the page. VP# identifies
a page uniquely. This header entry may be used to verify a page identity
when it is brought into core.

(ii) Page Flag. This denotes the page classification according to its
attributes, shown in Table I. The attributes have the following significance:

a) Type: Directory pages are handled differently from the data pages for
storage and updating.
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Pointer to Pointer to

# of first free editing
records * word Page comandsPage flag [onpage on page /priority /for page

S2 ! 1 1 1 l l Ij 1 1 1 11 2 r 2

VP# Pointer to # of times # of free Page group defini-
last written times byte tion field. 30 bytes

e record into page edited for data pages and
records processed 62 for directory

and type # of tiaes type of pages
of processing read directory
done page

Figure 4. Page Header Format. The numbers within the boxes indicate
the size of the box in bytes (8 bits/byte)

b) Version: If the version of a page is OLD then it needs updating.

The editing commands for updating the page may be stored separately in a
different page. The pointer to the editing commands would appear in the
last 2-byte field of the header, just before the group definition field (see
Figure 4). If the editing commands are used on the page then the version
of the page would change to NEW.

c) Changes: This indicates whether a page in core had been written
into or not. If the value of this attribute is YES, then the page should be
stored back on the disc before it is dropped from the core; otherwise, it
may be dropped without disc transfer.

d) State: A dirty page requires garbage collection and a clean
page does not.

e) Record Length: The significance is obvious.

f) Size: In certain cases, two pages may be treated together as
though they were one large page. This attribute indicates the appropriate
size of the page.

g) Vacancy: The significance is obvious.

(iii) Lenxth Field: For pages with fixed-length records the record
length is stored in this field. The maximum permissible fixed-length
record length is 256 bytes.
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(iv) Record Count: The number of records on a page is stored here.

(v) Last Record Pointer: Records within a page should always start
at a 1/2-word boundary. The last ten bits of this pointer point to the
record last processed in the page. The first two bits of the pointer
specify the type of processing done, which could be one of the following
three: Read, Write, or Edit.

(vi) Free Word Pointer: This points to the first free 1/2 word in
the page, beginning at a 1/2-word boundary. The a*ailable space on a page
is documented within the page as a list. The first free 1/2 word pointed
to by this pointer would specify the count of available free bytes beginning
at the 1/2-word boundary, and in addition would contain a pointer to the
next free 1/2 word in the page starting at another 1/2-word boundary. This
process is iterated until all the available space in the page is exhausted.

(vii), (viii), (ix) and (x) Counts of Page Usage: The various counts
of the way the page was used would determine its priority number. The
priority number so produced may be used for page allocation in a memory
hierarchy.

(xi) Directory Type: In the case of a directory page the type of
directory is identified by this field. The directory format depends on
its type.

(xii) Edit Pointer: This was referred to earlier in item (ii)b. If
a user wants to edit a page without destroying its existing contents
the page may be tagged as OLD and the editing comands for the page may
be stored in one of its slave pages. The edit pointer field would then
have a pointer to the edit commands so specified. Every time the page
is called one may then call for either its OLD or its NEW version.

(xiii) Page Group Definition: Each page may have a group of slave
pages associated with it. A data page may have up to 15 slave pages, and
a directory page, up tn 31 slave pages. The data within a master page
miv contain pointers to the records in any one of its slave pages. The
pointer format is:

5 11i~ BITS
Slave page # Displacement in

slave page

For 1 9 1 r- 31 (or 15) the Virtual Page # of the ith slave page would be

at the ith half-word boundary of the Page Group Definition field of the
header. This group structure of pages enables one to economize on memory
at the expense of a slight increase in computation, in a situation where
cross-referencing among pages is confined to page group'. It should be
noted that every page in the file would be the master page of its associated
group of up to 15 (,,r 31) slave pages. Thus, the master page of one group
would itself be a slave page of another group and vice-versa.

9
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Each variable length record in a page would have a 4-byte record
header, with the following format:

15 I16 J li

Record flag Pointer to length-1 of
record con- record
tinuation
if any

A record may be either complete or incomplete, and it may or may not have a
continuation elsewhere within its page group. The first two bits of the
record flag indicate these attributes. A record is considered to be complete
if it is a well-defined statement in CDLl. Records may be left incomplete
at one time and be completed at a later date. Complete records within a page
need not appear in one continuous set of successive bytes. Whether a record
is complete or not, it may appear in several segments within a page group.
These record segments would be linked together as a list via the record con-
tinuation pointer in the record header. Thus, each segment of such a record
would have its own header, and would itself have the status of a record with-
in the page. The last segment in such a list of segments would point to the
first segment of the record. The length field of the record header would
always contain only the length of the segment associated with the header.

When a page is full, it is said to be dirty if one or more of the records
in the page remain segmented. In such a case the page is due for aarbage col-
lection (or clean up). A clean page would not thus contain segmented records.

(B) Directory Structure

The directory for searching the DDB is organized around a central hashing
scheme. This hashing scheme and its associated tables are used to translate
a given MI (which could be a nm label, or some values of qualitative
attributes associated with the objects in DDB) to its corresponding address.
This address would be a pointer to the relevant items within the DDB denoted
by the key. The items denoted by a key either could be some descriptive
passages within the DDB or could themselves be some entries in another
directory of DDB leading to further search within the DDB. All searches
within the DDB would necessarily begin with the hashing scheme. Let me,
therefore, first describe this scheme.

B-1. The Hashins Scheme

A schematic diagram of the address translation process through hashing
is shown in Figure 5, which may be interpreted as follows:

Explanation of Fixure 5

The hash search scheme makes use of three components:

i) Hash Reference Table (BET)
ii) Variable Length Item Bin (VLIB)

iii) The Hashing and Comparison Routines

10
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The search scheme is the following: a given key (the input key) is
hashed both by HASHER 1 and MASHER 2 shown in Figure 5. The first hasher
comes up with a 1 byte number < 225, and the second one, with a number
< 503, which is a prime number. The output of th, first hasher points to
one of the 256 HlT pages (as indicated by arrowI in Figure 5), which is
then brought into core (as shown by arrows aj in Figure 5). Each entry in
a HRT page is a 4-byte item, with the following format:

HRT Entry Format: (4 bytes)

(Length-l) Relative address pointing to the
of the KEY 1 11 2 corresponding , IB entry

1stVcharacter of
the key

Each VLIB entry would have the format shown below:

VLIB Entry Format:
(Length-1) of key

Free bytes for \Pointer to the directory entry
flags and future use for the item denoted by the key

Assuming an average length of 24 bytes per VLIB entry, one would, on the
average, need about (503 x 24)/2048'Z6 VLIB pages for each UT page. The 503
entries in a HIT page would occupy 503 x 4 = 2012 bytes, leaving a remainder
of 36 free bytes per HRT page. These 36 free bytes are used to store the
VP#'s of up to 15 slave pages associated with the HlT page, and part of
other page header entries. The slave pages of a URT page would be either
the VLIB pages or continuation pages for the HiT page. These continuation
pages are used to take care of URT page overflow.*

The output of the second hasher would point to a full-word boundary
within the lIT page Just brought into core, as shown by the arrow 0 in
Figure 5. The UT entry at this full-word boundary is the item of interest
to us. Let us call it U7. The length and first character of key in the
HIRT are compared with the length and first character of the input key. If
they do not match, then the input key is rehashed by the $1SHER 2 and the
new hash address so obtained is again used similarly. This kind of probing
of the UT page is iterated until a successful match is obtained. This
secondary probing is indicated in Figure 5 by the broken arrow coming out of
arrow . Let us call this process the initial matching process. If after
251 such probings no successful initial match is obtained, then the input
key is interpreted as a new key not yet entered in the hash tables.

When a successful initial match does occur, the two-byte pointer in
the HRTE with the successful match is used to bring out of YLIB the
appropriate VLIB page, as indicated by the arrows 0 and 9 in Figure 5.

*The overflow handling technique is not discussed in this report.
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The full key ir the appropriate VLIB entry, in the VLIB page just brought
into core. is now compared with the input key. Notice that by this time
we are sure that the length of the input key and its first character
agree with the length and first character of the key in the VLIB entry.
Therefore, the chances of now obtaining a full match are quite good. Let
us call this the secondary matching process. If the secondary match is
not successful then the input key is also rehashed by HASHER 2 and the
entire process is repeated. The secondary matching process is iterated
until a successful initial and secondary match is obtained. Here also, if
after 251 such probings no match occurs then the input key is interpreted
as being new.

Because of the way the HRT and VLIB tables are built up one can be
reasonably sure that all secondary match attempts would be confined to
the same VLIB page initially brought into core.

Once a successful secondary match is obtained, the 4-byte pointer in
the VLIB entry with the successful match is chosen as the DDS address for
further search and retrieval of the objects denoted by the key.

The HRT as presently configured can accommodate address translation
for up to 503 x 256 - 128768 keys. For each one of these keys the address
of its VLIB entry is called the Hash Reference Code (HRC) for the key.
This HRC is a 3-byte item with the following format:

HRC YORMAT:

2 11 11

Free bits. Relative Page 1 Displacement within
May be used \of VLIB within the the page to the VLIB
for flags collection of all entry.

VLIB pages

This HRC will be used throughout the DDB for the identification of the
key. Thus, the HRC of a key may never be changed.

A given key in CDL1 may denote more than one item in the DDB. To
identify an item uniquely in the DDB it is generally necessary to have
at most two keys: one of these two keys would be the noa., label, or
attribute of an object, and the other key would be the name or label of
the scope of the object. Thus, a key in CDL1 would be unique only within
a scope. The DDB would have thousands of such scopes. Hence, the number
of objects denoted by these keys could be many times greater than the
total number of keys.

CDL1 has two kinds of scopes: The first kind of scope is the scope
of modules*, which are identified by module titles (names). The second

•"See Ref. 1 for a discussion of modules and module types.
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kind of scope is that of descriptive and interpretive blocks. These are
similar to the BEGIN-END blocks in ALGOL, and are identified by labels*,
or names of Items interpreted. Both these scopes may have a hierarchical
structure of subscopes. Thus, the name or label used to identify a scope
would be its tree name within this hierarchy. in the case of scopes the
VLIB entry for the key identifying the scope would have a pointer to its
correspouding scope directory. The scope direct=ory would be used to locote
all the objects In DDE associated with the scopes. In the case of module
scopes, the module type* would detev.mine the submodules it might have and
the directory for the subaodules.

In the case of labels the scope of a label is restricted to its block
or module. In the case of name of declared items the scopes of such
item would permeate all submodules or sub-blocks of the block or module
in which the item is declared. Also, in certain cases the scopes of names
would be Alobal i.e., throughout the entire descriptive file the nae would
uniquely denote the same item. The scope directory, declaratiots directory,
and label directory are organized to indicate these various scope inclusion
properties.

The descriptive items associated with a name depend upon the definition
format* of the kind of object denoted by the name. It should be possible to
locate for each name all its associated definitions, attributes, values,
functions, interpretations, alternate definitions, alternate names, restric-
tions, etc. The declarations directory would contain the relevant pointers
to accomplish such identifications.

Let we now briefly describe how these three directories are organized.
Together with the hash search scheme these constitute the core of the entire
DDB structure. In addition to these directories, there are several others
In the DDB, such as user directory, name usaee directory, item relationship
directory, retrieval functions directory, definition format directory, and
declaration format directory, etc. I shall not describe these in detail in
this report.

B-2. The Scope Directory (SD)

Each scope in DDB has a unique name, and is identified within the DDB
by a unique 2-byte scope number having the following format:

Scope Number Format:

BITS9

Page # within Dtsp t to a 4-word
the scope directory boundary within the directory
pages. page, to the scope directory

entry.

*Please see Ref. 1.
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This scope number is used in all cross references within the DDB. Each
scope directory entry is a 48-byte Item with the format shown in Figure 6.
The various fields in this directory entry have the following significance:

i) HRC: This is the Hash Reference Code for the scope name or label.

ii) Alternate Identifier: Each scope in DDB could have alternates
described for them. These alternates might contain either several versions
of design for a given item or alternate descriptions of a like design.
Each scope may have up to 15 alternates, which are identified by numbers
I through 15, and up to 16 which are identified by alternate names. Such
alternate scopes would be denoted by the naming scheme:

"Label or Name of Scope /IALT(# or name)".

iII) Scope Type: If the scope is a module then the scope type would
be the same as the module type. Otherwise, the scope type would be one of
the following:

Operation Interpretation Block,
Macro Definition Block
Function Interpretation Block,
Formal Definition Block,
Declaration Block, or
Begin-End Block.

iv) Scope Flag: The flag would indicate the information shown in
Table II by virtue of its bit values. Several bits in the flag have been
left undefined for future use.

The remaining fields point to the various directory entries associated
with the scope. The pointers to parent/sibling and descendent scopes, in
effect. specify the hierarchical structure of the scopes.

TABLE 11
SCOPE FLAG

Bit Bit Values
*0 1

0 No Alternates Has Alternates
1 No Restrictions Has Restrictions
2 No User Restrictions Has User Restrictions
3 Has No Errors Errors Exist
4 Needs Editing No Editing
5 No Functions on Scope Functions on Scope

6-2-15 NOT USZD

A module scope could have two kinds of descendent scopes, a descendent
sub-module or a descendent block. A block scope cannot have as its descendent

15



t4 "0 41. ,4

44 0 0 k

~.afa

0~ .-4 0 9

Si144 0 4/ o"

C44
.- 04 44.

lot4J 
00a

Cu. -. I &J

C66
4J 0444

uC4 
44440
40a

U 0. 4. jiE4 0 f

.co u0.4 C14 8
owg

Ua *04 64 so -A6

00

44*

C-4
N 1

0 6 6 NN >

Ea m 0

N

0 
104*4

-4

ri 0

16



a module; it could, however, have other blocks as its descendents. The
descendent blocks of a module are separately identified, with special
pointers, in the scope directory.

B-3. Label Directory (LD)

Labels are used in DDB to identify records (CDLl statements), and
blocks within a file. A record or a block in DDB is uniquely identified
by its label and the name of the scope in which it occurs. Labels in DDB
could themselves have a tree structure, as is evidenced by its directory
entry, shown in Figure 8. To get at a record or a block in DDB it is
necessary to use two Kes: its scope name and its label. The schematic
search path for this is shown in Figure 7.

The VLIB (Variable Length Items Bin) entry for the scope name would
contain a pointer to the scope directory entry for the scope. This scope
directory entry itself would contain a pointer to the Label Directory (LD)
page associated with the scope. The VLIB entry for the label would point
to the head of a list within this LD page. This list in turn would contain
the label directory entry for the label in search. By searching this list
the directory entry for the label might be identified.

Notice that a same label might appear in DDB in several different scopes,
each one of which would have its own associated label directory page.

For scope ina-e_ _ ___ •VLIB ENTRIES For label

Pointer to Pointer to a
SD entry f•-- list in the

the scope Label Directory

Label Directory

S~List of Label

-Directory
entries

Pointer to the Label
Directory for the scope

Scope d rectory (SD)

page for the scope

Figure 7. Schematic Diagram of Record or Block Search in DDB
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In all these LD pages a search for a label would begin at the head of
a list pointed to by the VLIB entry for the label. The relative address
of this head of the list within the LD page would be the same, for a given
label, in all these various LD pages. This head address is obtained by
hashing the label.

A label directory entry for a new label in a scope is made as follows:
First, the LD page for the scope is identified from the scope name; then
from the existing VLIB entry of the label (if none exists then a VLIB
entry is created), the pointer to the head of Lhe list associated with the
label is obtained. If the location of this head is empty in the particular
LD page, then the LD entry for the label is made zight at the head of the
list. Otherwise, the LD entry is suffixed to the tail of the list already
present.

The label directory entry formats are shown in Figure 8. The entries
are all 16 bytes long. There are four different kinds:

a) Record Pointer
b) Scope Begin Entry
c) Scope End Entry
d) Alternate Record Entry

The various fields in the formats have the significance shown in Vigure 8.
All cross-referencing addresses within the LD have the following format:

BITS: 5 7 Relative address to a
quadruple word boundary
in page.

Relative page
within a page group
of 32 pages.

Each LD page may contain labels for up to four different module scopes.
These modules are assigned local numbers 0,1,2, and 3 within an LD page;
the local numbers are part of the entry flag for each LD entry, as shown
in part a) of Figure 8.

B-4. Declarations Directory (DD)

This is used to refer to objects declared within descriptions in
different scopes. An object in the description is identified uniquely
by its name and the scope of the name. The directory entry for a name
in the Declarations Directory (DD) is accessed very much in the same
way as a Label Directory (LD) entry. From a given name of an object it
is necessary, in general, to access the following associated information:
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1. Name Scopes: Scopes in which the saw name has been declared.

2. Name Usage: Scopes in which each token declaration of the name
has been used.

3. Definitions: The definitions associated with the name. These
would depend on the kind of name being defined.

4. Initial Value: Sometimes namne might be assigned initial values.

5. Current Value: The current value of the name.

6. Attribute Values: Values of attributes associated with the name.

7. Aliases: Names which are aliases to the name.

8. Author of the name.

9. Functions on name.

10. Conditions on the declaration of a name.

11. Restrictions on a name.

Each item in a Declarations Directory (DD) page is a list, just like
the lists in an LD page. The pointer in the VLIB entry of a name would point
to the head of the list in DD. The search for a DD entry for a given name
would be exactly as the search for a LD entry of a label, discussed in
the previous section. An object in DDB would be uniquely identified by its
name and the scope of the name.

The VLIB entry for a name would contain an additional pointer, which
would point to a list containing all the scopes in which the name had
been declared.

The DD entries fall into two classes: One for names and another for
aliases (alternate names) given to an initially declared name. The formats
for these two entries are shown in Figures 9(a) and (b). All cross-referencing
within DD pages would have the same address format as those used in LD
pages. Also, as in the case of LD, each DD page may contain declarations for
up to four different scopes. These scopes are identified locally within a
DD page by their local scope numbers.

The Scope Directory (SD), Label Directory (LD) and the Declarations
Directory (DD) are the three principal directories used in DDB. Besides
these there are several other directories to which entries in SD, LD, and
DD point. I have not discussed the details of these other directories in
this report. The hash search scheme, and the structure of SD, LD, and
DD, provided the basic foundations on which DDB would be built.
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