
Q.
O
O

LÜ

i:SI)-TR-70-151

ESD ACCESSION LIST
Call No._____7 "

Copy No. / of

ESD RECORD CO..
RETURN TO

SCIENTIFIC & TECHNICAL INFORMATION DIVISION
(fSTI), niMLDING 1

JL cys.

Semiannual Technical Summary

Graphics 31 May 1970

Prepared for the Advanced Research Projects Agency

under Electronic Systems Division Contract AF 19 (628)—5167 by

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Lexington, Massachusetts

A^10°HV

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

GRAPHICS

SEMIANNUAL TECHNICAL SUMMARY

TO THE

REPORT

ADVANCED RESEARCH PROJECTS AGENCY

1 DECEMBER 1969 - 31 MAY 1970

ISSUED 26 JUNE 1970

This document has been approved for public release and sale;
its distribution is unlimited.

LEXINGTON

AIR FORCE CD 17 JULY 1970 - 250

MASSACHUSETTS

The work reported in this document was performed at Lincoln Laboratory,
a center for research operated by Massachusetts Institute of Technology.
This work was sponsored by the Advanced Research Projects Agency of the
Department of Defense under Air Force Contract AF 19(628>5167 (ARPA
Order 691).

This report may be reproduced to satisfy needs of U.S. Government agencies.

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

11

SUMMARY

Software design for the Terminal Support Processor (TSP) system has concentrated on the

specification of a language called LIL (for Local Interaction Language). Designed for interpre-

tation by a microprocessor in the TSP system, LIL is a general-purpose language with primi-

tives for manipulating display structures and handling message-oriented input-output. The
user specifications for LIL are now available and are presented here in considerable detail.

A new mechanism for triggering a user program at interrupt level has been implemented

on TX-2. The mechanism uses signals derived from hardware devices which can monitor the

state of TX-2 control registers. An experimental interactive program has been written to illus-

trate one application area for the new facility: software measurement. A new character gener-
ator has been installed on TX-2. The storage scope editor on TX-2 has been refined and ex-

tended on the basis of user experience. Cursor visibility has been improved by flashing the
cursor at a rate of six per second. The Basic Combined Programming Language (BCPL) com-
piler on TX-2 has been optimized. An overall compilation speed improvement of 374 percent

has been achieved in part by making use of the new performance measurement tools now avail-
able. An on-line documentation system has been developed for preparing, editing, and present-
ing system documentation on a variety of output devices. On-line documentation is now availa-
ble for many parts of the TX-2 system.

Accepted for the Air Force
Franklin C. Hudson
Chief, Lincoln Laboratory Office

111

CONTENTS

Summary iii
Glossary vii

I. Terminal Support Processor (TSP) System 1
A. LIL — Display Structure 1

B. LIL - The I/O System 3
C. LIL — General-Purpose Language 5

II. TX-2 System 8
A. Performance Measurement 8

B. Sample Measurements 8

C. Character Generator 9

D. Storage Scope Editor 9
E. BCPL Compiler 11
F. On-Line Documentation 11

GLOSSARY

ALGOL

APEX

BCPL

LEAP

LIL

TAP

TSP

A high-level algebraic problem-solving language

The TX-2 time-sharing system

Basic Combined Programming Language —
an intermediate-level language for computer
programming

Language for Expressing .Associative Procedures —
an ALGOL-like TX-2 programming language

Local Interaction Language — a language for use
in the TSP system

TX-2 Assembly Program — an assembler producing
relative binary files

Terminal Support Processor

VI1

GRAPHICS

I. TERMINAL SUPPORT PROCESSOR (TSP) SYSTEM

The TSP system is intended to provide local support services to interactive graphics users
of the AR PA Computer Network. The design involves an independent processor configuration
connected to the network via an IMP (Interface Message Processor) and serving the order of
20 consoles, each consisting of a keyboard, a tablet, and a pair of storage scopes- In addition
to basic console support and network control program services, the system allows user program
control of all interactions between console input and output, and between TSP and other hosts in
the network.

Hardware for the TSP processor has been selected, and delivery is expected in the fourth

quarter of 1970. A description of the hardware will be deferred until the procurement procedure
is complete.

Software design for the TSP has concentrated on the specification of a language called LIL
(for Local Interaction Language), which has been designed for the purpose of specifying the out-

put displays as well as controlling interactions. LIL is a general-purpose language with primi-
tives for manipulating display structures and handling message-oriented input-output; it has
been designed for interpretation by a microprocessor in the TSP system. User specifications
for LIL are now available and are presented in Sees. A through C below.

A. LIL - Display Structure

1. Introduction

The design of the display structure has been motivated by the following considerations:

(a) An interactive graphics user wants fast response to simple requests.
(b) A minimum of ARPA network communication should be required for

graphics.

These considerations lead to the conclusion that the structure describing the display should be
kept at the TSP and that the only graphical communication over the network should be requests
to change this structure. Since certain interactive requests require no main machine commu-
nication, e. g., change the window on the display, they suffer no network delays. Furthermore,
an interactive request to delete a part of the structure could be reflected quickly on the scope

for the user, even though the message sent to the main machine to update the data structure
there may not have been processed, or indeed have arrived.

2. General Description

The display structure consists of subroutines. A subroutine consists of a list of items.
Both subroutines and items have user-allocated numeric identifiers. An item contains execut-

able code, whose format will be described later. At the simplest level, an item consists of a
call, with parameters of another subroutine. Items are ordered for execution by their item
identifiers.

System calls are available to add or delete both subroutines and items from the program

structure. These are described later.
Thus, typically, a user would write a set of subroutines which he intends to use as primi-

tive building blocks for his display structure. Calls to such a subroutine might cause different
lines to be displayed on the scope, depending on the parameters. For example, in integrated

circuit mask layout, such a routine might display a transistor and take as parameters two (x, y)

pairs which describe the position and size of the transistor. In a typical application, calls on
these subroutines would be added or deleted dynamically under program control.

The display structure subroutines differ only conceptually from those written to handle I/O

from, say, the tablet or the network. All subroutines are called in the same manner. Thus,
to repaint a picture, the user calls a particular subroutine which (perhaps via subroutine calls)
causes execution of all the items necessary to generate the complete picture. Therefore, note
that there is only one locus of control for each user. It is his program structure which deter-

mines his display hierarchy. This design is possible since we are dealing with storage scopes,

which do not have to be refreshed continually.

Subroutines are grouped together into program segments. In general, a user will group

together logically related subroutines, or perhaps subroutines which display on only a portion

of his display area. Program segments have segment ids which are allocated by the system at

segment load time, i. e., when the segment is added to the TSP file system. Program segments
are read only. Associated with every program segment is a data segment where the local vari-
ables for the program segment are allocated. There is a unique transformation from a program
segment id to the id of its associated data segment.

Primitives exist to create and manipulate data segments which are not associated with a
particular program segment.

3. System Commands for Display Structuring

The following system calls exist for manipulating data and program segments:

(a) CREATEDATASEGMENT (<segment name> , < size> , < type>)
This call dynamically creates a data segment of length <size> and
of type <type>, e. g., READ ONLY. It returns a segment id.

This call also enters the id and the textual name in the segment
name table.

(b) CHANGEDATASEGLENGTH (<segment id>,<size»
This call changes the length of < segment id>, to <size>.

(c) CREATEPROGRAMSEGMENT (< segment name»

This call creates a program segment. It returns a segment id.
The call also creates a data segment whose id is related to the
program segment id by a unique one-to-one transformation as
mentioned above. The call enters the program segment id and
name in the segment name table.

(d) DELETESEGMENT (< segment id»

This call deletes the segment, as well as the associated data
segment, in the case of program segments.

(e) LOADSUBR (< segment id> , < subrid> , < n»
This call creates, in < segment id>, a subroutine called <subrid>,
containing no items and having <n> words of local variable storage
allocated to it.

(f) DELETESUBR (< segment id> , < subrid>)
This call deletes <subrid> in < segment id>.

(g) CLEARITEMBUFFER

This call initializes the item buffer, which is where items get
built up.

(h) LOADCALL (< segment id> , < subrid> , < pl> , < p2> , . . .)

This call adds a subroutine call to the item buffer, with the given
parameters. The parameters either may be constants, addresses,
or values. These are described in Sec. C. Note that the values of
the parameters are those at the time the LOADCALL is executed,
not at the time <subrid> is executed. In order to get the values of
parameters at the time <subrid> is executed, the parameters must
be addresses.

(i) LOADBUFFER (< addr> ,< length>)
This call adds the block of <length> words, starting at <addr>, to
the item buffer.

(j) PUTITEM (< segment id> , < subrid> , < item id>)

This call puts the contents of the item buffer in <subrid> as < item id>,
but does not clear the item buffer.

(k) DELETEITEM (< segment id>, < subrid> , < item id>)
This call deletes < item id> from the subroutine.

(1) REPORTITEM (< segment id> , < subrid> , < item id> , < addr> , < n>)
This call reports the contents of an item into a buffer of <n> words
starting at <addr>.

(m) SEGID (< segment name>)

Returns the segment id.

(n) SEGNAME (< segment id> , < addr > , < n>)
Returns the segment name into a buffer of <n> words starting at
<addr>.

B. LIL - The I/O System

1. Introduction

The TSP user's I/O capability includes two storage scopes, a keyboard, a tablet, and the
ARPA network.

In our design, we felt it was important that the type of data transmitted or received should

depend as little as possible on the particular physical device employed. Instead, we felt that a
canonical representation of the data from a device should be developed. Messages to or from

a device would thus be of a particular type.
The I/O system calls in LIL are based on the concept of streams of messages. A stream

is a source or sink of messages. A message is one or more 8-bit bytes. What constitutes a

message depends upon its type.
Certain devices may be capable of outputting or inputting several types of messages, e. g.,

a tablet device might produce messages consisting of characters recognized by a character

recognizer, or messages of single coordinates or lists of coordinates ("ink points"). Thus,
when attaching a device to a stream, the type of message desired must be specified.

Note that several input devices may be attached to the same stream and several output

streams to an output device. Thus, messages of different types may be on the same stream.

It is only by placing messages on the same stream that a user preserves the time ordering of

message transmission.

The defined input devices on the TSP are: (a) Keyboard, (b) Tablet, (c) Network, and

(d) Data File.

The defined output devices are: (a) Scopes, (b) Network, and (c) Data File.

2. Message Types

(a) Ascii: Two subtypes are defined.

(1) String: A message of type Ascii string consists of a sequence
of characters. The number of characters is given in the first
byte of the message.

(2) Char: A message of type Ascii char consists of a single
character.

(b) Data: A message of type data consists of an arbitrary number of
bytes, whether for input or output. The maximum length of a mes-
sage is 2000 16-bit words. The first two free bytes, after the data
type number, of a data message contain the length of the message,
in 8-bit bytes.

(c) Tablet: Several subtypes are defined.

(1) Coord: A message of type tablet coord consists of 4 bytes —
the first two are an X coordinate, and the second two a Y
coordinate.

(2) Inkbuff: A message of type tablet inkbuff consists of two bytes
giving the length of the message, followed by tablet coordinates
describing the ink points.

(3) Comparator hit: A message of type tablet comparator hit con-
sists of two bytes giving the subroutine id, two bytes giving the
item id, and 4 bytes giving the XY position.

There may be more. . .

3. System Commands for I/O

The system calls which are available are:

(a) CREATEINPUT (< stream id>)

This creates an input stream with the given id, i. e., it allocates
a buffer area.

(b) CREATEOUTPUT «stream id>)

This creates an output stream.

(c) ATTACH (< stream id > , < device id > , < type >)

This attaches < device id > to < stream id >.

The <type> is an extension of the < device id> for devices capable
of producing several kinds of messages, e. g., the tablet.

(d) DETACH (< stream id>,< device id>,<type>)

This detaches the device from the stream.

(e) CLOSE (< stream id>)

This detaches all devices from the stream. Buffered messages
will be lost and further messages not accepted.

(f) READ (< stream id >, < buffer addr >)

Read the next message from < stream id > into < buffer addr>. If
< stream id > is empty, a special message to that effect will always
be in the stream.

(g) WRITE (< stream id >, < buffer addr >)

Write the next message into < stream id > from < buffer addr >.

(h) WAIT

Wait for a message in any stream, then proceed.

There may be more. . .

C. LIL - General-Purpose Language

This section contains a description of the general-purpose portion of LIL in which the user

codes his display subroutines and his I/O handlers.

The syntactic notation used in this description is basically BNF (Backus Normal Form) with

the following extensions: The metalinguistic brackets '<' and '>' may be nested and thus used

to group together more than one constituent sequence (which may contain alternatives). An in-

teger subscript may be attached to the metalinguistic bracket '>' and used to specify repetition:

if it is the integer n, then the sequence within the brackets must be repeated at least n times,

if the integer is followed by a minus sign, then the sequence may be repeated at most n times

or it may be absent.

1. TSP Virtual Machine

The virtual machine the TSP user perceives, and in which LIL runs, consists of:

(a) A segmented address space. Each segment may be up to 2000 words
long. The user may define up to 2*6 segments; in practice, however,
he will have a small fraction of this total defined.

(b) 64 general registers. These registers transcend the segment struc-
ture, i. e., they are common to all segments. Arithmetic may be
performed on all the registers.

(c) 8 base registers. These registers also transcend the segment struc-
ture. They contain bit patterns which will always be interpreted as
segment identifiers.

2. Addresses and Data

Data in LIL consist of 16-bit words. There is no byte addressing. Two types of addresses

are defined: register addresses for the 64 general registers, and segment addresses which con-

sist of a base register address and an offset. Unless otherwise specified, either type of address

may be used in any operation.

3. Pseudo-Ops

(a) Syntax: SEGMENT < name >

Semantics: This should be the first statement. It defines the name
of the segment. A <name> is any sequence of letters
and numbers, starting with a letter.

(b) Syntax: REGISTER {< name> =< constants <;< name> =
< constant >>0)

Semantics: Use <name> as the name of general register < constant >.
This is a data type declaration.

(c) Syntax: SUBR < id> < n> < par > < , < par »Q

Semantics: Subroutine called < id > starts here and uses the given
parameters as dummy arguments. An <id> is any 16-
bit quantity. <n> is the length of the data area associ-
ated with this subroutine.

(d) Syntax: ITEM < id >
Semantics: The item called < id> starts here. It is terminated by

the next occurrence of the ITEM statement.

(e) Syntax: VEC (<name> = < value>}
Semantics: <name> is a vector of length < value> in this segment,

i. e., <name> is a pointer of the Oth word of the vector.

4. Operations

The LIL instruction set is divided into three classes of operations:

(a) Arithmetic and logical operations
(b) Control operations
(c) Miscellaneous operations

a. Arithmetic Operations

NZ and N3 will always be considered addresses whose contents are required, unless square
brackets [] are used which indicate an immediate operand.

(1) Syntax: Nl^N2<op>N3
where <op> may be

+ add
— subtract
* multiply upper
* multiply lower
/ integer quotient
REM integer remainder
A logical AND
vlogical OR
0 logical EXCLUSIVE OR

Semantics: (a) In each of the above, N2 may be shifted left or right
by a constant, or by the contents of a general register.
For example,

A — B i 3 4 C
means shift B left by 3 bits.

For example,
REGISTER { R = 3} ; A — B } R + C

means shift B right by the contents of general register 3.

(b) A * (star) next to a name implies indirect. Nl, N2 and
N3 may all be indirect.

For example,
A* — B* i 3 + C

means take the contents of the address given by B,
shift it left by 3, add C, and store at the address
given by the contents of A. Note that the indirect
occurs before the shift.

(c) Every arithmetic statement may have ', S' ', Z' or
both appended, implying that the sign or zero condi-
tion (or both) of the result is saved in the sign status
or zero status bits, respectively.
For example,

A —B + C,Z

means add the contents of A to the contents of B,
and store in A. If the result is zero, store 1 in
the zero status bit, otherwise, store 0.

(2) Syntax: Nl — N2

Semantics: Assign N2 to Nl. Shifting N2, indirection and saving the
condition bits is permitted.

b. Control Operations

(1) Syntax: JUMP < s > , < z > < itemid>

JUMPREL <s>,<z><n instr > where
<n_instr > is a self-relative address, < s > may be
S, S or blank, and <z > may be Z, Z or blank.

Semantics: Jump if the S and Z bits match the given bits; e. g.,
a. JUMP, Z L means jump to item L if the Z bit

is 0, and the S bit is anything.
b. JUMPREL, —3 means jump unconditional up 3

operations.

(2) Syntax:
Semantics:

(3) Syntax:
Semantics:

(4) Syntax:

Semantics:

SWITCHVIA <addr> < LI > , < L2 >, . . .
Jump to the itn label in the list, where i is the value
of <addr>. A label is always a self-relative address.

DO < loopvar > , < incr > , < endvalue > , < label >
Compute < loopvar > + <incr>, store in < loopvar >,
compare to < endvalue >, and jump to < label > if
< loopvar > < < endvalue >.

CALL < subrid > < segid > < pi >. . .

Call subroutine < id > with parameters < pi > , < p2 >. . .
The return address is stored in locations 0 and 1 of
the data area of the called subroutine.

Location 0 contains the calling segment id, location 1
contains the offset.
The values of the parameters are then placed from
location 2 on.

(5) Syntax: RETURN
Semantics: Return from subroutine call using the return address

found in locations 0 and 1 of the data area of the
subroutine.

(6) Syntax: FINISH
Semantics: Return to "system."

c. Miscellaneous Operations

This is whatever is left.

(1) Syntax: LOADBR < n> , < addr >

Semantics: Load base register <n> (<n> = 4, . . ., 7) with the
contents of < addr >.

(2) Syntax: STOREBR < n> , < addr >
Semantics: Store the contents of base register <n> in <addr>.

(3) Syntax: COMMAND < name >< pi X p2 >. . .

Semantics: What follows is a system command, e. g., I/O or
structuring. The name of the system command is
< name >, and its parameters are < pi > < p2 >. . .

Error handling is not yet specified.

II. TX-2 SYSTEM

A. Performance Measurement

A new mechanism for triggering a user program at interrupt level has been implemented in
the APEX time-sharing system on TX-2: the outputs of the two "sync sources," and the over-
flow bits on the two event counters. The sync sources are hardware devices for monitoring the
state of the TX-2's control registers. Each sync source outputs a pulse each time the specified
control register(s) reach(es) the indicated state(s). For example, a sync source may be set up

to output a pulse each time the program counter equals 60135, or each time an LDA (load accu-
mulator) instruction is executed, or each time any instruction for the user on console 2 is exe-

cuted. Each sync source is the input to one of the "event counter" registers, which may be
read or written under program control.

An experimental, interactive program has been written to illustrate one application area
for the new facility: software measurement. A user may specify a quantity to measure (e. g.,
program counter, index register contents, working-set size, contents of a specified register,
etc.) and several value ranges for the quantity. He may also specify an exact or average fre-
quency for sampling the value of the quantity, based on the state of one event counter (e. g.,
"every 7000 counts, on the average"). As the application program runs (entirely undisturbed),
the monitoring program will sample the indicated quantity at the indicated frequency, and dy-
namically plot a histogram (on the storage scope) of the number of occurrences of the value in

each specified value range.

B. Sample Measurements

Recently, a flowchart interpreter similar to the one described by W. R. Sutherland' has
been rewritten in LEAP. Figure 1 is a photograph of a typical flowchart. Individual boxes per-

form such functions as adding, multiplying, or dividing two numbers, making comparisons, etc.
The measurements described here represent interpretations by the flowchart interpreter of this
flowchart.

t W. R. Sutherland, "On-Line Graphical Specification of Computer Procedures," Technical
Report 405, Lincoln Laboratory, M.I.T. (23 May 1966), DDC AD-639734.

We began by sampling every 2500 instructions (Fig. 2) in order to get an overview of where

the program spends its time. Core was divided into three parts:

(1) PMATHIO — library code for such things as scope utilities,
mathematical routines, text manipulation packages, etc.

(2) USER — code compiled in-line for the flowchart interpreter.
(3) LEAP — data structuring routines which manipulate sets,

triples, etc.

The overview indicated a much higher percentage of time in the PMATHIO routines than was
suspected or understood. The PMATHIO routines were broken down into smaller units and a

second run was made (Fig. 3). The constituents which had significant quantities of time were

PMATII and RMATIL PMATH contains such pieces as the free storage allocator, block enter/

exit events, and several other utilities, thus its usage was not surprising. RMAT1I, however,

contained merely square root, sin/cos, log/exp, and arctan, and its use was most surprising.
We broke down RMATH into its pieces and ran once again (Fig. 4), discovering that the time was
spent in the square root and log/exp routines. Further investigation revealed that the reason
for this high usage was that the interpreter, after interpreting each block, must find the next
block to be interpreted. It performs this calculation by traveling down each line from the block

and seeing what is near to the end of the line. The distance function used to determine "nearness"
/ 2 2 is of the form \/x + y . It is precisely these calculations which showed up as time in RMATIL

The compiler translates x into exp(2 x log x) which accounts for the time in log and exp routines.
Therefore, we changed the distance function to abs (x) + abs(y). This trivial modification

of the program produced an improvement of 43 percent and took about 2 man-hours to discover
and implement [see Fig. 5(a-b)].

C. Character Generator

The new character generator' for the TX-2 graphic display has been installed. This gen-

erator utilizes the technique and circuits developed for the TX-2 conic display generator and a
read-only memory to store the character stroke data. There are two writing speeds — one for
refresh display scopes, and one for storage scopes. The average speed is 25 usec per character
for refresh scope and 300 \xsec per character for storage scope. The character writing rate for
storage scopes is slower than originally planned. This allows for variations between the storage

CRT characteristics as well as for aging. Samples of these character displays are shown in

Figs. 6 and 7.

D. Storage Scope Editor

The storage scope editor is now used in preference to others by roughly half the TX-2 users.
The remainder generally claim to have no use for its power. Since the editor has become a
standard tool, it has been modified to automatically use the refresh scope for those consoles
with no storage scope. Previously reported difficulty in distinguishing the cursor (displayed in
"write-thru" mode on the storage scope) has been overcome by a change to the APEX display

executive routines which causes information in the write-thru mode to be refreshed no more
often than six times per second. The resulting flashing effect draws the eye to the cursor
position.

t Graphics, Semiannual Technical Summary to the Advanced Research Projects Agency, Lincoln
Laboratory, M.I.T. (30 November 1969), pp. 6-7, DDC AD-700316.

As a result of experience with the editor, a number of changes have been made in the

previously described features and some new features have been added. In the course of this
development, the program has grown considerably (from 1650 to 3130 registers).

The commands mentioned in the last semiannual report for bulk text movement have been
discarded. In their place, the following commands have been implemented.

€ — Carves out a section of text from the working file and sends
it to be edited recursively. The recursive editor can make
a text file out of it or any portions of it, and specify whether
the text should be removed from its original position.

M — Creates a text file out of lines specified by the user.
A — Appends lines following the cursor to a specified text file.
t — Inserts a full text file immediately before the cursor. This

is specifically used to insert segments of text the user is
moving or copying.

To protect users from system crashes, hardware malfunctions, and their own serious mis-

takes, a drum save feature was added to the storage scope editor. The editor carves out seg-

ments from a special drum area assigned to the console, and uses these to save all typing to the
editor. The request to write out (save) is given after almost every line, so that usually no more

than one line of typing can be lost. By using the text from this area as command input, it is
possible to rerun the editing session, in the vast majority of cases recovering fully from the

disaster.
By taking command input from a text file instead of the keyboard, it is possible to use the

storage scope editor for quite complex changes. To make the use of this facility reasonable, it
was necessary to implement commands to switch the command source, and some conditional
branching facility. So far, the only conditional branching is done by ignoring the rest of a line

when any locate is requested and the string is not found. The following commands have been
implemented to facilitate programming:

j - Stack current command source and start taking commands
from a specified text file. This amounts to a recursive sub-
routine jump.

h — Abort current command source and start taking commands
from a specified text file. This enables exiting a subroutine
as well as branch tables.

q — Test the presence of a string immediately following the cursor.

Since the editor was designed to be indifferent to whether the user moved forward or back-
wards, it has been found that users quite frequently prefer to move backwards. Consequently,
reverse direction locate commands ('A' and 'n', corresponding to ' L' and ' N') have been installed.

Through monitoring the usage of the storage scope editor (by examining the drum areas

where the typing is saved), it has been determined that those commands which take a number
as a parameter CN', 'n', 'X', 'ü', 'M' and 'A'), and which allowed the use of a locate string as

an afterthought, were actually more useful when used with the locate string option. The moni-
toring also showed that, because the rules of parameter decoding were sufficiently different for
these commands, many users were having difficulty with them. Accordingly, it was decided
that they should be thought of as primarily string commands, and the parameter scan was changed
to be the same as for the other string commands.

K)

The windowing, or selection of text to display, had come under fire for not showing suffi-

cient context in many cases, and also for not indicating whether any text was above and/or below
the window. The windowing routine has been modified to:

(1) Put tic marks ('A' and V) in the left margin to indicate the presence
of text above and below the window.

(2) Show four lines before the cursor when starting a new window.
(3) Show at least two lines before the cursor whenever the display is

repainted.

E. BCPL Compiler

Since the LIL compiler is to be written in BCPL, some work has been done to optimize the
BCPL compiler. Using the performance measurement facility, we found that most of the com-
piler's time was spent in the read- and write-character routines. These were carefully hand-

coded, speeding up the compiler phase by 37 percent. Further changes have gained an overall
speed improvement of 374 percent. The most significant change was the elimination of the first
pass of the TAP assembler.

Multiple character streams for the storage scope have been implemented. Experiments
using this are in progress to evaluate the notions for possible use in the TSP system.

F. On-Line Documentation

An on-line system for APEX user documentation has been developed and is now in regular

use. The system consists of two major components — the text, and the supporting hardware.
A simple, but flexible, format for the text was developed which implements outline form

through the artifacts of indenting a 'section' by starting it with the desired number of spaces
and using one line, however long, per 'section' or 'subsection'.

The supporting software enables one to insert, modify, and retrieve any desired documen-

tation. Output is available via console typewriter, scope (both storage and refresh), or high-
speed printer. The output routines break up the long lines into smaller lines to fit the constraints
of the output device, and set up the continuations of the lines with the proper indentation. The
result is a pleasing and easy to read outline form output for all the output devices.

On-line documentation is now available for all the APEX supervisor calls, for over three
quarters of the utility programs, and for miscellaneous other aspects of the APEX environment.
Documentation for major systems such as assemblers and compilers is not yet available on-line.

11

3*

15

cH/JT
AJ

>orr

rr+p
, i h CHECK

*ESET

* «UN

r**i HELP

lEK KT UJ TU*Nf*AGE

■ PUE

*E*D

Fig. 1. Typical display produced by flowchart interpreter. This program was sketched
in and is now being executed.

12

1-2-9316 I

l5fB OVERALL VIEW OF OLD FLOWCHART INTERPRETER

\2ee

*00

60e

300

PMATH10 USER LEAP

Fig. 2. This graph, photographed directly from the Tektronix 611 storage tube, shows the total
number of instructions executed in each of three blocks of core during the interpretation of the
flowchart in Fig. 1. Each unit on the vertical axis represents 2500 instructions executed.

13

|-?-931T|

31t LIBRARY VIEW OF OLD FLOWCHART INTERPRETER

««*

3#8

zee

100

TEXT PHATH SCOPE MUTIL RMATH ALGIO READ USER LEAP

Fig. 3. This graph provides a more detailed breakup of the PMATHIO block in Fig. 2. The vertical
scale size is three times larger than in Fig. 2.

14

1-2-9318 1

510 P%NATH DETAIL» OLD FLOWCHART INTERPRETER

400

300

200

100

SQRT SINCOS ARCTAN LOGEXP

Fig. 4. This detailed view of the RMATH block in Fig. 3 reveals that 34 percent of the total
number of instructions were executed in the SQRT and LOG/EXP routines.

15

[-2-9319 ;

1S00 OVERALL VIEW OF NEW FLOWCHART INTERPRETER

1?00

*00

600

300

PMATHIO USER LEAP

(a)

Fig. 5(a-b). These graphs correspond to those of Figs. 2 and 3 after the change
in the distance function in the flowchart interpreter.

It.

I-2-3520 I

*«■ ttBRARY VIEW OF MC« FLOWCHART INTCRPRCTF.R

««•

-9««

2*e

iff

TEXT PMATH SCOPE MUUL RMATH ALCIO READ USER LEAP

(b)

Fig. 5. Continued.

17

1-3-9321 I

PAGE 4 6E

CROUP HEHBERS--STLINE XS RO NE BK 13» STL1NE <t RO BK 2
STLINE XI F ILE FRI t? DEC 14 05 26
STLINE XS TILE FR1 12 DEC 1405 26
STROKE FILE HON 21 APR 2120 20
STROKE D MK5 DIR HON 2t APR 2120 15
TARCETTEST FILE HON 20 OCT 1643 46
TEST3 FILE HON 2t APR 2120 17

TEST6 FILE HON 2t APR

APR

2120 17

10 TEST9 F ILE HON 2 t 2120
TESTRREG F ILE HON 2 t APR 2120 17
TSPTH ARinr pc trvT Tuil 7 MAY 1341

1324

40

40 TSP 1

1 £ A 1

TEXT

i nu

TUE

/

19 HAT
UNSORT FILE HON l 7 NOV 1553 40
V REF TO 5VITAL HON 21 APR 2120 00
VL REF TO 5VITLEAP HON 21 APR 2120 00
WJP TEXT TUE 19 HAT 1325 39
XX REF TO 5SCRATCH HON 21 APR 2120 00
Z REF TO 5H5 HON 21 APR 2120 00

722

Fig. 6. Sample of text as photographed on a 17-inch refresh CRT.

|-?-932?|

PAGE 1 6E MORE

4 1E2007 1 7 FILE THU 2 1 MAY 70 1127 11

6M4DRUH SCALAR 0 THU 21 MAY 70 1127 It

9LAEP GROUP 0 AT 6 MON 2 1 APR 69 2128 07

GROUP HEHBERS--

9LEAP GROUP 0 AT 6 HON 2 1 APR 69 2128 07

GROUP HEHBERS--9LEAP SHORTLINE >
9LEAP SPEEDLINE , 9LEAP RINGS > 9LEAP TEST9 i

9LEAP TESTRREG > 9LEAP > MLGN , 9LEAP STLINE

9LEAP ALLGN GROUP 0 AT 14 MON 2 1 APR 69 2128 07

GROUP HEHBERS--

9LEAP ALLGN 3D FILE HON 21 APR 69 2128 15

9LEAP ALLGN 3L FILE MON 2 1 APR 69 2128 19

9LEAP RINGS GROUP 0 AT 14 HON 2 1 APR 69 2128 07

GROUP MEMBERS--

9LEAP RINGS 3D FILE HON 2 1 APR 69 2128 18

9LEAP RINGS 3L FILE HON 2 1 APR 69 2128 20

9LEAP SHORTL1NE

GROUP 0 AT 20 HON 2 1 APR 69 2128 07

GROUP HEHBERS--

9LEAP SHORTL INE 3D

FILE HON 21 APR 69 2128 18

9LEAP SHORTLINE 3L

FILE MON 2 l APR 69 2128 19

9LEAP SPEEDLINE

GROUP 0 AT 20 MON 2 1 APR 69 2128 07

GROUP HEHBERS--

9LEAP SPEEDLINE 3D

FILE MON 2 t APR 69 2128 18

9LEAP-SPE EDLINE 3L

FILE MON 2 1 APR 69 2128 19

Fig. 7. Sample of text on a Tektronix 611 storage display unit.

1"

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

I. ORIGINATING ACTIVITY (Corporate author)

Lincoln Laboratory, M.l.T.

2a. REPORT SECURITY CLASSIFICATION

Unclassified
Zb. GROUP

None

3. REPORT TITLE

Graphics, Semiannual Technical Summary Report to the Advanced Research Projects Agency

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Semiannual Technical Summary - 1 December 1969 through 31 May 1970

5. AUTHOR(S) (Last name, first name, initial)

Forgie, James W.

6. REPORT DATE

31 May 1970
la. TOTAL NO. OF PAGES

28

7b. NO. OF REFS

2

8a. CONTRACT OR GRANT NO. AF 19(628/-3I6"

b. PROJECT NO. ARPA Order 69 •

9a. ORIGINATOR'S REPORT NUMBER(S)

Semiannual Technical Summary
for 31 May 1970

9b. OTHER REPORT NO(S) (Any other numbers that may be

assigned this report)

ESD-TR-70-151

10. AVAILABILITY/LIMITATION NOTICES

This document has been approved for public release and sale; its distribution is unlimited.

11. SUPPLEMENTARY NOTES

None

12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency,
Department of Defense

13. ABSTRACT

Software design for the Terminal Support Processor (TSP) system has concentrated on the specifi-
cation of a language called LIL (for Local Interaction Language). Designed for interpretation by a micro-
processor in the TSP system, LIL is a general-purpose language with primitives for manipulating display
structures and handling message-oriented input-output. The user specifications for LIL are now availa-
ble and are presented here in considerable detail.

A new mechanism for triggering a user program at interrupt level has been implemented on TX-2.
The mechanism uses signals derived from hardware devices which can monitor the state of TX-2 control
registers. An experimental interactive program has been written to illustrate one application area for
the new facility: boftware measurement. A new character generator has been installed on TX-2. The
storage scope editor on TX-2 has been refined and extended on the basis of user experience. Cursor
visibility has been improved by flashing the cursor at a rate of six per second. The Basic Combined
Programming Language (BCPL) compiler on TX-2 has been optimized. An overall compilation speed im-
provement of 374 percent has been achieved in part by making use of the new performance measurement
tools now available. An on-line documentation system has been developed for preparing, editing, and
presenting system documentation on a variety of output devices. On-line documentation is now available
for many parts of the TX-2 system.

14. KEY WORDS

graphical communication
TX-2

time sharing
man-machine

display systems
programming languages

20 UNCLASSIFIED

Security Classification

U. S. GOVERNMENT PRINTING OFFICE: 1970 1*33-269/3

