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THE ISOTHERMAL COMPRESSIBILITY OF
FROZEN SOIL AND ICE TO 30 KILOSARS AT -10C

by

Edwin Chamberlain and Pieter Hoekstra

INTRODUCTION

The objective of this program was to investigate the compressibility of frozen soils and
ice in the pressurc region of 0 to 30 kbars at -10C. The data were obtained for use in model cal-
culations for mound and cavity growth and shock wave transmission during a nuclear or high-ex-
plosive craterir_lE'event in frozen ground. The wide variation of the properties of in situ frozen
soils with location precludes the direct use of the reported test resuits for a varticular site.
Therefore, emphasis has been placed on isolating the physical properties of frozen soils that
determine the compressibility so that the compressibility of in situ frozen soils can be predicted
from convenient measurable parameters.

Frozen soils consist of a matrix of mineral grains with pore spaces that may be filled with
ice (water) and air. The problem of prediction of compressibilities falls into two categories:
those for saturated frozen ground and those for partially saturated frozen ground. For saturated
frozen ground the compressibility can be predicted from the constituent components, ice and min-
eral. The required parameters are the volumetric proportions and the compressibilities of the min-
eral components and the ice. For partially saturated frozen ground, in addition to these parameters,
the closure of the pore spaces due to the crushing of the grains must be evaluated. This problem
remains partially unsolved. As will be demonstrated, this appears to be significant only for soil
with a low degree of saturation.

Bridgman (1911, 1912, 1914, and 1937) was tlie first to investigate the compressibility of
water and its many ice phases to high pressures. His work is the basis for this discussion. Other
investigators (Whalley et al., 1966; Brown and Whalley, 1966, Wilson, et al., 1965 ) have studied
the phase diagram of water in the pressure-temperature plane bat have not made volume change
observations.

Numerous investigators (Adams and Williamson, 1923; Bassett et al., 1968; Bridgman, 1964;
Brown et al., 1967. Stephens, 1964; Stephens and Lilley, 1966; Walsh, 1965, a,b) have studied the
comptessibility of minerals, soils, and rocks to high pressures.

A piston-die device with which a uniaxial load is imposed on a lead-encapsulated specimen
was used for these tests. The die restrains the encapsulated specimen from lateral expansion.
Load and deformation measuremeats are continuously recorded. The compressibility of gold is
used as a star.dard to provide a continuous calibration of the loading apparatus.

The techniques and operational procedures were developed with the aid of personnel of the
Lawrence Radiation Laboratory, Livermore, California.
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APPARATUS

The experimental procedure and isothermal compression apparatus are similar to those
described by Stephens (1964). The test samples were nominally 1.168 mm in diameter and 2.540
mm long. Each was encapsulated in lead and compressed between two 1.27-cm-diam carbide
pistons while confined in the bore of a die plate (see Fig 1 and 2). Hardened steel rings and plugs
prevented extrusion of the lead,

The piston was loaded by a Tinius-Olsen Universal, screw-type testing machine (see Fig
3) at a rate slow enough to obviate any compressive heating effects (= 40 min/cycle). The tests
were conducted in a coldroom maintained at approximately -10C. To obtain a more precise temp-
erature control, a coolant was circulated through coils attached to the die plate. The coolant was
maintained at a temperature of ~10 + 0,5C by a constant temperature bath. The die temperature
was sensed by a glass bead thermistor and recorded at intervals, The piston displacement was
measured by a linear film potentiometer and the load by a load cell. The load and displacement
were recorded on an X-Y plotter. Typical records are shown in Figures 4 and 5.

Figure 3. lsothermal compressibility test apparatus.
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SAMPLE DESCRIPTION

The relevant index properties and gradations of the materjals tested are shown in Table |
and Figure 6. The test specimens included two soils: West Lebanon glacial till (WLGT) and
Ottawa banding sand (OWS). They were prepared at various degrees of saturation (see Table I1).
In addition, tests were conducted on clear polycrystalline ice.

Ottaws bandiag sand

This material was well rounded, well sorted quartz sand with a median diameter f 100 u
and 100% of the material falling between 74 and 149 u. The material was selected for its high
porosity and granular nature, to allow sands and gravels to be modelad. The nature of the test
program restricted the maximum particle size to 149 u. Thu monomineralic structure of the sand
permitted more meaningful comparison with previous results for pure quarte.

West Lebanon glacial till

This material was an extremely well graded till with particles having a maximum di>metes
of 149 u and a mean diameter of 36 u. This gradation contained a high percentage of fine-grained
materials in contrast to the gradation of Ottawa banding sand. This material was cut from a
boundary till and in its test form was classified silt (ML) according to the Soil Classification
System.

lce

This material was a claar polycrystalline columnar ice having a maximum grain diameter of
0.5 cm, with the c-axis in the direction of compression.

US STO SIEVE SIZE
100 200
100

60

40

PERCENT FINER BY WEIGHT

20

\ -

AALAL LA L e A
0.01 0001
GRAIN SI12E, mm

ﬂ—:’l SILYer CLAY

Figure 6. Gradations of the soils tested.
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Tahle I. Material index properties.

Apperest Optimen
Uaified Soll ). g Liquld® Plasuc® Plasticity® Maz. dry water
Classification of solids limit limit iade~ dessity coatest
(¢/cm") (%)
Ottawa banding sand (OWS)
Sa ' (8P) 2.03 non-plastic 1.91
West Lebanon glacial tll (WLOT)
Sil: (ML) 2.88 16.2 18.4 non-plastic 1.91 12.2
Polyerystalline ice
0.917
* Atterderg limits.
Table I1. Sumnary of sample index properties.
Dry ot Set.
Sample Porosi:y dessity dessity with fce
(g/cm’) (g/cm’) (%)
Polycrystalline ice
11 0.917
43 17
“ F 3y
West Lebamnn glacial til)
16 0.387 1.842 2.040 58.3
40 . 364 1.852 2.0% 67.3
32 954 1.847 2.172 100.0
42 . 368 1.8%8 2.172 100.0
Ottawa banding saad
1 0.378 1.63% 2.002 100.0
18 . 454 1.498 1.880 100.0
24 .378 1.6%0 1.985 100.0
27 .83 1.651 1.990 100.0
b ) .53 1.851 1.903 76.6
17 427 1.507 1.940 86.7
- ) .58 1.651 1.820 50.9
) .73 1.661 1.782 £5.2
3 .872 1.651 1.782 28.1
35 .52 1.651 1.651 0
s .52 1.651 1.651 0
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SPECIMEN PREPARATION

All s0il specimens were prepared in 1,168-cm-ID lead capsules approximately 3.2 cm long,
with a wall thickness of 0.051 cm. The specimen length was approximately 2.4 cm. This provided
appeoximately 0.8 cm excess lead for sealing the capsule.

The West Lebanon glacial till specimens were compacted wet by tamping with a 1.15-cm-
diam rod. The (ttawa banding sand specimens were compacted dry by vibration. The water
content of each specimen was adjusted to the desired value after compaction. Saturated sofl
specimens were wetted under vacuum. All soil specimens were frozen rapidly in a -10C coldroom
and allowed to temper for at least 24 hours.

The ice specimens were frozen from de-aired distilled water in a 7.5-cm-diam plastic tube,
machined to size, and placed in the lead capsules. The ice specimens were also tempered for 24
hours at -10C.

TESTING PROCEDURE AND DATA EVALUATION

The primary data were generated by loading and unlcading the test samples to and from a
pressure of approximately 30 kbars. The load and the corresponding displacement signals were
recorded continuously (Fig. 4, 5). the recordings resulted in a loop. This hysteresis was primarily the
result of the intemal friction in the test specimen, the friction between the lead and the wall
of the die bore, und the imeversible closure of soil voids. The techniques used to correct
for friction required a closed loop. Thus, each specimen was subjected to several compression
cycles until a closed loop was obtained,

The friction was assumed to be equal upon loading and unloading; the average of the two
traces represented the compressibility of the material. The friction increased with load. The
friction-load relationship was assumed to be unique for each material and not influenced by heat
ol compression or by structural changes from one cycle to the next. For the partially saturated
soil samples, the compressibility was obtained from the first compression curve inasmuch as the
subsequent compressions resulted in the irreversible closure of the soil voids. The friction
correction for the first compression cycle was obtained from the closed-loop compression curve,
For the fully saturated specimens and polycrystalline ice, the friction-corrected closed-loop com-
pression curve was used to compute the sample compressibility, It was assumed that there was
no material loss during the loading and unloading cycles. In many cases, the lead capsule con-
taining the soil specimen ruptured, resulting in a moisture loss. These tests were disregarded.

After friction corrections were applied, the loading-unloading curves for the fully saturated
specimens and for the ice still exhibited some hysteresis (see Fig.4). This hysteresis is probably
related to the rate effects associated with the phase transition.

To correct for mechanical effects external to the sample a differential technique was used:
the compressibility of the test specimen was compared with that of gold (Bridgman, 1940;
Stephens and Lilley, 1967). Every second sample tested was gold.

To adjust the displacements of the gold samples and the displacements of the test sample
1o a common datum further correction was applied. Each test sample was preloaded to 50 1b. This
load was selected because it was large enough 10 cause seating of the seals but not so largs as
to cause significant deformation of the test sample. The load was released, the piston was removed
and the depth to the upper seal D (See Fig. 7) was measwred with a depth micrometer. The piston
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was replaced and the test continued. Dial gauge readings were observed at a 50-1b load before and
after loading. For the gold samples, the difference between these readings represented the residual
displacement required to fill all voids between the seals with lead (the lead would flow under
pressure). This piston displacement is called the set S. It is plotted versus D for gold in Figure

7, resulting in the linear expression:

S ~ 0.596 - 0.965D . (1)
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The normalizing of the gold runs to the soil or ice runs is accomplished in the following
manner. The set S corresponding to the D for the test sample is found from eq 1. The set
correction Screquired to adjust the apparent axial deformation of the gold Ag.m to the same datum
as the test spucimen is equal to the differencs between the calculated set for the test sample and

the measured set for the gold (see Fig 8). The adjusted axial deformation of the gold \",m at
any load F is thus:
\ A S (2

gem g+m c

The use of this relationship reonires that the same total volume of material be contained between
the seals for all runs.

Another correction was made to account for the expansion of the die bore under pressure,
Stephens and Lilley (1967) gave a table relating the true pressure P to the apparent pressure P,
Fitting a straight lisie to their data resulted in the following relationship:

P . 0.988 P, )

The true change in the volume of the test specimen AV, is related to the cpparent change
in the volume of the test specimen AV, . the apparent change in the volume of the gold specimen
AV‘m. and the true change in the volume of the gold specimen Av‘ in the following expression:

AV, = AWV i - AV‘.. ’ A\V‘. 4
The apparent change in the volume of the gold is equal to the average value for the gold runs
before and after loading.

Figure 8 {llustrates the specimen configurations before and after loading. The assumed
deformation under load is cylindrical. The actual deformed shape is probably more barrel-like,
but the difficulties in the evaluation of suzh a shape lead us to the cylindrical approximation,
The apparent change in the volume of the test specimen AV, . i8 found as follows:

lan an

sem 4 | X2 ]

b}, )

sem

" one 2
L UDg - D7 A

From eq 3 the die bore diameter at any pressure D, can be related to the die bore diameter at
atmospheric pressure [}, by the following expression:

2

e Do
D= ——. (6)

0.988
Substituting eq 6 in eq 5 gives:
2
nDy Apem ™
AV . — (:-_. } _
Do 4 0.988 0.988
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Similarly:
2 8
AV "_"_°( 1, tem )
g 4 nN.o88 0.988 (8)

From Bridgman's (1940) work, we find that AV‘ at -10C can be expressed in terms of the
true pressure P and the initial volume V‘ as follows:

AV, v;’ (5.650x 10°4P - 7.235 x 10"7P2). (9)

By substituting 1.27 cm for [} eq 4. 7, 8 and 9 reduce to the following expression for the true
change in volume of the test specimen AV,:

s+m g+m

AV, - 1.282 (A -A ). Vg(5.650xIO"P--7.235xIO'7P2)' (10)
\

The results of the tests reported given in the relative volume V:‘ ’V(: versus true
pressure P plane. The relative volume is found as follows:

110 /
VRV 1AV VY. (11)

where V(.) is the volume of the test specimen at atmospheric pressure and -10C.

THE COMPRESSIBILITY OF ICE AT -10C

Essential to tl.e study of the compressibility of ice is a discussion of the phase diagram
of water, Bridgman (1911, 1912, 1914, 1937) published several articles which are still the main
source on the phase diayram of water and ice. Although the transition pressures in the phase
diagram of water have been studied by others since 1937, these studies have been concerned with
properties of water other than compressibility and specific uensity, the properties of main interest
here.

Figure 9 illustrates the phase diagram of water as it is known today. This figure shows
that the following transition will occur during the isothermal compressibility of ice at -10C. At
a pressure of 1.11 kbars ice | will melt to the liquid phase (water). If the pressure is raised
further, the liquid phase will freeze to ice V at a pressure of 4.42 kbars. Upon continued pressure
increase, ice V will undergo a polymorphic transition to ice VI at a pressure of 6.25 kbars.
Finally ice V1 will transform into ice VIl at & pressure of 20.8 kbars. The densities and the
specific volumes of the various water phases at different temperatures and pressures may be
extracted from Bridgman's data (1911, Tables XXV and XXX and 1937, Table ).

The specific volume of ice 1 at 0C and atnospheric pressure i8 given in Table Il as
1.0900 cm'/g. It is assumed that the coefficient of thermal expansion of ice | is small; there-
fore, the specific volume of ice 1 at -10C is also 1.0900 cm'/g. From the same table the specific
volume of ice 1 and water at the transition point of 1.11 kbars and -10C can be interpolated as
1,0664 and 0.9544 cm'/g respectively. Other points on the specific volume-pressure curve are
determined below.

Table 1V gives the specific v lume of water and ice V at the transition points for various
temperatures, The water-ice v transition at -10C occurs at 4.42 kbars. At a temperature of -10C
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Table IIl. Specific volume of water aad ice | om the equilibrium curve®
Specitic Specific Specific
vol. of vol. vol. of
Pressure Pressure Temp. waler change ice
(kg/ca’) (kbars) t (%) rem'/g) {cam’ g} (cm’ g
0 0.0 0 1.0000 0.0900 1.0900
500 0.49 - 4.1 0.9777 .0098 1.0775
1000 0.98 - 8.7 0.9588 . 1096 1.06884
1500 1.47 - 140 0.9414 .1201 1.0615
2000 1.96 -20.3 0.9253 .1318 1.0571
* Bridgman. 1911. taken from Table XXX
t 1kg em’ 0.98 « 10°' hbass
Table IV. Specitic volume of water aad 100 V on the equilidrium curve®
Specitic Specilic Specilic
vol. ab. vol. voi. ol
Pressure Pressure Temp. water chaage ice
(kg/cm?y (kbdars) t (c) (cm'/g) (cm'/g) (cm' g)
3500 3.43 -17.0 0.8870 0.078% 0.808%
4000 3.92 -13.8 8781 .0733 .8048
4500 4.41 -10.1 .8094 .0881 .8013
5000 4.90 - 7.0 .8810 0834 .7976
$800 5.3 - 4.2 8543 .0590 .7953
6000 5.88 - 1.6 8478 .05649 792
6500 .37 + 0.6 .8418 .06168 .7902

¢ Bridgman. 1911, taken from Table XXX
t 1kg cm’

0.98 x 10°° kbars
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Table V. Specific volume chaage oa the ice V - ice VI equilibrium curve®

Specitic
vol.

Pressure Pressure Temp. chsage
(kg/cm?®) (kbars) () (cm'/g)
6385 8.2¢ -20.0 0.03809
6370 8.26 -15.0 .03828
6374 6 25 -10.0 (3847
6377 6.26 - 5.0 .03868

6381 8.25 0.0 .03886

* Bridgman. 1911; taken from Table XXV
t 1kg/em’ - 0.98 x 10°" kbars

Table V1. Specilic volume change om the ice VI - ice VII equilibrium curve*

Specilic

vol.
Pressure Pressure Temp. change
(kg/cm’) (kbars)t (c) (cm'/g)
22,000 21.8 - 00 0.0687
22,260 21.8 20.0 .0570
22,350 21.9 40.0 .0678

¢ Bridgman. 1937; taken from Table !
t 1kg/em® - 0.98 x 10°" kbats

and a pressure of 4.42 kbars the specific volume of water is interpolated as 0.8688 cm'/g. At the
same temperature and pressure the specific volume of ice V is interpolated as 0.8012 cm'/g.

From here on it becomes more difficult to find reliable data. Although Bridgman was most
successful in obtaining the volume changes occurring at the phase changes, he had great difficulty
measuring the compressibilities of the various phases of water. He did, however, develop specific
volume data for ice and water along tiieir equilibrium curves.

From the equilibrium data for the fce V - water transition (Table 1V) it is possible to
approximate the specific volume of ice V at -10C. At a pressure of 6.25 kbars and a temperature
of +0.2C the specific volume of ice V is interpolated as 0.7907 cm'/g. It is assumed that changes
in pressure hava a much greater effect than changes in temperature on the specific volume of ice
V. The volume change associated with the temperature difference of 10.2C is neglected and the
specific volume of ice V at 6.25 kbars and -10C is assumed to be 0.7907 cm'/g. For the phase
transition of ice V to ice V1 at -10C, Table V gives the change in volume as 0.03847 cm'/g. The
specific volume of ice V1 at -10C and 6.25 kbars is thus 0.7907-0.0385 - 0.7522 cm'/g.

The volume of ice VIl at -10C and 20.8 kbars is the next calculation to be made. Bridgman
did not recognize this phase of ice but thought it to be ice VIl. lce VIIl was first oboerved by
Brown and Whalley (1966) and Whalley et al (1966), using dielectric techniques. They did not
provide data for ice V1ll. However, they did suggest that the volume change associated with the
ice VIl to fce VIII transition is very small (0 ¢ - 2.78 ~ 10™* cm"/g at the ice VI-VII-VIII triple
point).

With this in mind, we can approximate the volume of ice VIll. From Bridgman's work, we
find that ice VII has a specific volume of approximately 0.60 cm'/g at room temperature and
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Table VIl. Compressibility of ice®

Specitic Relative
Phase Pressure vol. vol.
(kbars) (cm’/g)

Temperature - 10C

Icel 0.0 1.0900 1.000
Icel .1 1.0664 0.978
Water 1.11 0.9544 0.878
Water 4.42 0.868R8 0.796
Ice V 4.42 0.8012 0.738
lce V 8.25 0.7907 0.728
Ice VI 8.25 0.7522 0.890
Ice V1 2.8 0.702 0.644
Ice VIII 2.8 0.645 0.592
Ice VIII 49.1 C.60 0.55

Temperature + 5C

Water 0.0 0.9999 1.0000
Water 8.87 .8370 0.8370
Ice V1 8.87 .7488 0.7488
Ice VI 21.7 .702 0.702
lce VIII 21.7 .645 0.645
Ice VIII 49.1 .80 0.60

* Calculated from experimental data reported by Bridgman (1911, 1937).

49.1 kbars. We assume that the 1emperature effect on the specific volume of ice VI is sinall in
comparison with pressure effects. Furthermore, we assume that the volume change associated
with the phase transition of ice VIl to ice VIII is negligible and that ice VIl exhibits the same
compeessibility as ice V1. Thus, the specific volume of ice V111 at 49.1 kbars and -10C is 0.60
cm'/g. The volume change associated with a pressure increase from 19.6 to 44.1 kbars for ice
V11 is given by Bridgman (1937) as a mean value of 0.039 cm'/g. We assume that this value is
representative in the pressure range of 20.8 to 49.1 kbars at -10C. The resulting volume change
for ice V11l at -10C from 49.1 to 20.8 kbars is 0.045 cm’/g. The specific volume for ice V1l at
-10C and 20.8 kbars is, thus, calculated to be 0.60 + 0.045 - 0.645 cm’/g.

The volume change of ice V11 to ice V] at the transition temperature of -10C and 21.4 kbars
is extrapolated from Table VI to be 0.057 cm’/g. We assume that this vslue holds for the volume
change of ice VIl to ice V1 at -10C and 20.8 kbars. The resulting specific volume for ice V1 at
-10C and 20.8 kbars is 0.645 + 0.057 - 0.702 cm’/g. This completes the calculations for the
compressibility of ice at -10C from O to 49.1 kbars. The results are tabulated in Table V1l and
illustrated in Figure 10. The compressibility of each phase is assumed to be linear,

Similar calculations can be performed at other temperatures. In Figure 10, the compres-
sibility of water at +5C is ploited along with the compressibility of ice at -10C. lce is more
compressible than water; therefore, saturated frozen ground would be expected to be more com-
preasible 1han saturaled unfrozen ground.

Figures 11 through 13 and Tables Al-Alll, Appendix A, give test results for 1he isotheimal
compressibility of ice. The compressibility as predicted from Bridgman's data is plotted for
comparison. The variation of the test results from Bridgman's results can be attributed primarily
to rate effects. Bridgman (1911) reported that the change in the volunw: of the phase changes was
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time dependent; e.g., the time for completion of the liquid-solid reaction was about two hours on

the ice I-liquid boundary. The solid-solid reactions were nearly explosive near the triple point

but were slow at other points. The time allotted for the tests reported here (=~ 40 min/cycle) was
probably inadequate to allow complete phase transformations at the transition pressures.

The slightly greater compressibility of the res ults reported might be explained by the pres-
ence of microscopic air bubbles. An included air volume of approximately 1% would account for
the differences.

Bridgman (1911) found that ice V nucleated only in the presence of glass splinters. Two
of the three ice specimens tested showed the liquid-ice V transition. However, for specimen 43

(Fig 12) ice V did not nucleate and the liquid phase froze to ice VI upon loading beyond the liquid-
ice V transition. In all tests ice V was observed on the unloading cycle; this is consistent with
Bridgman's results,
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THE COMPRESSIBILITY OF FROZEN SAND AND SILT AT -10C

The results of the isothermal compressibility tests on frozen sand and silt are given in

Appendix A and in Figures 14-28,

It was suggested in the introduction that only a few material properties were n2oeded to
estimate the compressibility of frozen ground. This problem has been discussed by Brace (1965)
and Stephens (1964) for rocks. The general approach has been to average the compressibilities of
the minerals making up the rock. Two kinds of averages have been employed: the Reuss average
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and the Voigt average. The Reuss average B, is given by:
B,:'V.%0Vb8b4 V‘Bco... 12)

where V. W, etc. are volume percentages of the minerals in the rock, and B.. B,. etc. are the
volume compressibilities of the minerals. The Reuss average provides an upper bound. The lower
bound, the Voigt average B, is given by:

1/8

v

/B, v V/By o+ V/B 4 ... (13)
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The Rs:uss averaging method assumes uniform distribution of stress throughout the matrix and neg-
lects the difficulty in fitting the distorted grains together. The Voigt model assumes a uniform
strain throughout the matrix and neglects the non-equilibrium stress conditions that exist, If
discrepancies occurred between the predicted compressibilities given by eq 12 and 13 and the
measured values, porosity or alterations of the minerals in the rock were listed as causes.

The prediction of the compressibility of frozen soil is analogous to that of rock. Fully and
partially saturated frozen ground are discussed separately,

THE COMPRESSKBILITY OF FULLY SATURATED FROZEN GROUND

A saturated frozen ground can be considered as a rock made up of two components: ice and
mineral particles. The compressibility of saturated frozen ground can be estimated by either eq 12 or
13 if we assume that the ice flow. plastically. The problem is complicated by the pl.ase trn-
siticns that ice undergoes when compressed to 30 kbars at -10C. This fact precludes the cirect use

of eq 12 or 13. A consequence of eq 12 is that the total volume change AV, is the mere sum of
the volume changes in the component materials, the mineral particles AVm and the ice M{ . Le.

AV, = AV« AV,

g (14)

With knowledge of AV and AV,, AV, can thus be computed at any pressure and temperature. Val.
ues for AVm can be obtained from data given by Brace (1965), Stephens and Lilley (1966), and
Stephens (1964),

A general equation for the compressibility of frozen ground, with porosity as the main pa-
rameter, can now be derived, Porosity n is defined as the ratio of the volume of voids V?, to the
total volume Vg at atmospheric pressure:

n = Ve/vg. (15)
For a porous medium saturated with ice, eq 15 becomes:
n = V?/VB (16)
where V? is the volume of ice at atmospheric pressure.
AV, at pressure P is given by:
av, = av9 (1 - vpv)) (17)

where v}f ’v? is the value that can be obtained from Table VII, at any pressure, The volume of
the mineral solids Vg is:

VoL vo o (18)
and AVm is given by

AV, - (V9 - v9)(aP - bP?) (19



ISOTHERMAL COMPRESSIBILITY OF FROZEN SOIL AND ICE 21

where a and b are compressibility coefficients and P is pressure in kbars, Values for a range
from 2.68 <« 10" for quartz to 1.01 x 10° for augite (Brace. 1965). Values for b range from 24 x 10™
for quartz to 3.9 x 107° for calcite.

The total volume change caused by pressure P is given by:
0 0 20
W, - V0 (1 w0 ) (V2 - VE)(aP - 0P (20
The relative volume ratio V'.’/V‘: is usually plotted versus P. Thus
vev? LAV /WO - 1on (1) -(1-n) v (aP . bPR). @

Figures 14-19 show the compressibilities of saturated frozen Ottawa banding sand and
West Lebanon glacial till with the predicted compressibilities. The compressibilities for ice
obtained from Bridgman's work are used for the prediction. Other than in the regions of the phase
changes, the differences are subtle. The differences noted at the phase changes are of the same
nature as those observed for pure ice. However, the ice Vi-ice VIII transition appears to begin at
a highor pressure than expected (22.6 kbars vs 20.8 kbars). This again may be the result of the
time-dependeat behavior of the reaction. But it may also be caused by a nonhomogeneous presstire
distribution; i.e., the time is not sufficient for the pressure on the mineral component and that on
the ice to equilibrate so the mineral component takes a higher pressure.

THE COMPRESSIBILITY OF PARTIALLY SATURATED FROZEN GROUND

By definition, unsaturated frozen ground consists of a mineral phase. a gas phase, and an
ice phase. The degree of saturation S‘ is defined as the ratio of the volume of the voids filled
with fce V? and the total voids volume Ve Thus

0
v) . s Vo (22)
V?can be expressed in terms of the total volume V(.’ and the porosity o by

0 0
V‘ S‘nV'. (23)

In an analogy with our analysis for saturated frozen ground, the changes in the volume of

unsaturated frozen ground can be written as the sum of the true change in the volume of the mineral
material AV,, of the ice AV and of the air voids AV,. Thus

AV, - AV, 4 AV + AV, (24)

In a partially saturated soil, the volume of the air voids Vg is given by
0
VO -(1-s)pe =(1-5)a Vo (25)
We will assume for now that all voids close with slight pressure. Then

AV - V‘j (a-s)avo (26)
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In an analogy with eq 17, the voiume change of the ice at any pressure in an unsaturated
frozen ground is given by

W, oS avl (i-vPv)) (27)

and AV,, is given by

‘ 0 _y0 2 28)
W, - (V- v, (aP . bP 2), (
Hence
0 /4,0 0 0 H P
Wo-(1-S)aVEes aVl(-vPiw)) o (v, -V)(aP + bP¥), (29)
and

0 0 w© _ 2, (30
vevl oAV v 1 (Spa - Siad v -G -m@P o bP?), (30)

The isothermal compressibility of unsaturated frozen ground is thus . function of the degree of
saturation with ice Si the porosity n, and the isothermal compressibility of ice and mineral par-

ticles.

In Figures 20-28, the results for the compressibility of partially saturated Ottawa banding
sand and West Lehanon glacial till are plotted with the predicted compressibility. The values
used for a and b in eq 30 were 2.68 x 107 and 24 x 10°*; P was in kbars. Specimens with various
degrees of saturation were tested,

For the partially saturated (S; = 58%) West Lebanon glacial till (Fig 27 and 28) jt appears
that the air void closure occurred at some pressure below 2 kbars. The air void closure as ob-
served is somewhat complicated and is partially obscured *)y the phase change that occurs at 1.11
kbars, The predicted compressibility is plotted for comparison. At the higher pressures there
appears to be some deviation of the test results from the predicted values. Moreover, on the
loading cycle the phase changes nucleate at a higher pressure than predicted. This occurrence
indicates that complete air void closure has nottaken place or, what is more likely, thatthe
mineral component is subjected to a greater stress than the ice. This behavior is undoubtedly
dependent upon the rate of comptession.

The compressibilities for partially saturated Ottawa banding sand are plotted in Figures
20-26, Againthe predicted values are shown for comparison. It appears that the air void closure
is not obtained at 2 kbars, For 75% and 50% saturated specimens closure does not appear to occw
until approximately 10 kbars. The phase changes arc not well defined nor do they appear to be
complete. Again, the phase changes nucleate at Ligher pressures than precicted. On the unloading
curves the phase changes appear as predicted, although tho rate dependence is still in evidence.
The diffecence between the test results and the predicted values for the compressibilities of par-
tially saturated sand is small (approximately 1% of the initial volume), This difference is well
within the experimental accuracy,

It can be observed in the loading curves that a significant pressure is required to close the
air voids., The prediction of the closure of the air voids as a function of pressure appears to be
difficult,

The compressibility of rocks with small cracks or with spherical pores was investigated
by Walsh (1965 a,b). He investigated analytically the elastic behavior of solids with cracks run-
ning through them. Important parameters are the shape and direction of the crack. Small differences



ISOTHERMAL COMPRESSIBILITY OF FROZEN SOIL AND ICE 23

in crack length with direction could lead to significant differences in linear compressibility,
According to Walsh, the hydrostatic pressure necessary to close an elliptic cavity is

P = Ed (31)

where E is Young's modulus and a is the ratio of minor to major radius of the cavity. A spherical
cavity requires a larger pressure for closure. Equation 31 applies to a dry homogeneous rock, or
to a dry nonhomogeneous rock if E is the Young's modulus of the weakest material. Equation 31
alsc assumes that the cavity is closed by elastic deformation. 1f the crack is closed by plastic
flow or by brittle failure, eq 31 does not apply.

On the other hand, partially saturated frozen ground consists of ice and an unconsolidated
mineral matrix. The first reduction in air void volume would occur not by elastic deformation or
by plastic flowbut by rearrangement of the mineral particles. This would be followed or accompa-
nied by crushing of the individual particles. The extent of the rearrangement and the crushing
would be governed by the amount of ice present. As the mineral particles are being rearranged and
crushed, the ice would flow plastically. At some pressure the icc would completely fill the voids
and be subjected to the same overall pressure as the particles. The compressibility then would
be governed by the deformation of the mineral particles and the plastic deformation of the ice.

The pressure at which the air voids close is influenced by the degree of saturation with ice.
The air voids in soils with a high degree of saturation would close at a relatively low pressure
while those with a low degree of saturation would require a highet pressure for air void closure,
Moreover, the rearrangement and crushing may be expected to be more efficient for a wet soil than
for a dry soil.

The Ottawa sand specimen 33 (Fig. 23), with a 25% saturation, exhibits a somewhat different
behavior from that of the specimens with higher degrees of saturation. Closure does not appear to
occur until a pressure of approximately 20 kbars has been reached. Upon unloading, the test data
follow the predicted data down to a pressure of approximately 1 kbar. The phase changes are not
well defined. This would be expected because of the small volume of ice present. However, at
approximately 1 kbar, the test data leave the predicted values and the specimen appears to expand
elastically. Figures 25 and 26 show that the dry Ottawa sand specimens have the same elastic
expansion for the low-pressure release curve. In fact, the dry and 25% saturated specimens release
to approximately the same relative volume (0.78). This relative volume is the smallest volume
regardless of the degree of saturation to which Ottawa banding sand can be compressed under the
test conditions.

The Ottawa banding sand compressibility curves look much like those reported for dry
Monterey sand by Stephens and Lilley (1966). Complete closure of the voids is not obtained and
the mineral particles deform elastically.

To test the validity of the methods used in reducing the raw data for the partially saturated
soils, the first and second compressibilities were calculated for a fully saturated sand. The results
of this comparison (Fig. 29) indicate that the methods used to reduce the data from the first com-
pression are valid. However, the phase transition of ice | to water is somewhat obscurec. and the
subsequent phase transitions occir at somewhat high pressures than expected.

The results of three compression cycles on dry Ottawa banding sand are illustrated in
Figure 30. This figure shows that the voids undergo maximum closure during the first compression.
The first release curve and the additional compression cycles follow nearly the same path. Thus,
it appears that the working of the mineral particles and the subsequent breakdown do not result in
a further change in compressibility.
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The isothermal compressibilily of indium was detlermined as an additional check on the
accuracy of our procedures and equipment. The procedures followed were identical 10 those used
for the compressibility of the frozen sand, frozen silt, and ice. The compressibility of indium was
compared with thal of gold. The results are given in Figure 31, Resulis obtained by Bridgman
(1935) and Siephens (1967) are shown for comparison,

CONCLUSIONS

The compressibility of frozen soil is readily predicted from the knowledge of material prop.
erties such as 1the degree of saturation with ice, the porosity, and the compressibilities of the
ice and mineral components. The behavior of the phase transitions for partially saturated frozen
soils is somewhat obscured by the rearrangement and crushing of the mineral particles. Materials
with no ice or a low degree of saturation demonstrate elastic rebound on the release leg of the
compression cycle. Apparently there is a maximum dry density to which a particular soil can be
compressed, and 1his density is somewhat less than thal of the voidless mineral parent.

The compressibility of ice is as predicted by Bridgman (1911, 1937). However, 1ime-depend-
eut behavior is demonstrated for the phase transitions., Complete phase transitions were not
observed al constani pressute.

The compressibilities inthe low-pressure region (below 2 kbars) were not well defined.
This i8 primarily a result of the test method. A technique employing a liquid cell in the low-
pressure region is being pursued and the resulis will be reported later.
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Table AV. Isothermal compressibility of Ottawa banding sand specimen 35.
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Table AXL Isothermal compressibility of
Ottawa banding sand specimen 1.

Ottawa banding sand specimen 34.

Table AX. Isothermal compressibility of

Table AIX, Isothermal compressibility of
Nttawa banding sand specimen 17.
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n = 0,378
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