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DYNAMIC SOLUTIONS 

FOR SINGLE AND COUPLED MICROSTRIP LINES* 

ABSTRACT 

This investigation presents theoretical and experimental results of single and coupled 

microstrip propagation on both a pure dielectric and a ferrite substrate. The theory 

enables one to obtain the frequency dependence of phase velocity and characteristic 

impedance and also to obtain the electromagnetic field quantities around the micro- 

strip line. It utilizes a Fourier transform method in which the hybrid mode solutions 

for a "fictitious" surface current at the substrate-air interface are summed in such a 

way as to represent the fields caused by a current distribution that is finite only over 

the region occupied by the conducting strip and is assumed equal to that for the static 

case. The theory for the magnetized ferrite microstrip takes into account both the 

diagonal and off-diagonal components of the substrate's permeability tensor. 

Excellent agreement is obtained between experimental and theoretical results for sin- 

gle microstrip lines on both ceramic and demagnetized ferrite substrates. Coupled 

line experimental data also agree well with theory and show a significant difference in 

the amount of dispersion of the two normal modes of propagation, the even mode and 

the odd mode. 

The coupled microstrip theory is then applied to two commonly used microwave inte- 

grated circuit devices, the directional coupler and the meander-line phase shifter. 

Since the even- and odd-mode phase velocities for ferrite-filled coupled lines are 

closer together than those for the pure dielectric case, the coupler performance with 

ferrite is shown to be significantly better than with ceramic. Theoretical results 

which illustrate the nonreciprocal character of the meander-line's propagation con- 

stants are also presented. 

Accepted for the Air Force 
Franklin C. Hudson 
Chief, Lincoln Laboratory Office 

* This report is based on a thesis of the same title submitted to the faculty of the 
Graduate School of Arts and Sciences of the University of Pennsylvania on 1 December 
1969, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. 
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PREFACE 

For nearly seventeen years, microstrip transmission lines have been the subject 

of considerable theoretical and experimental investigation. They are extensively 
used today in microwave integrated circuits because of their relative ease of fab- 

rication by the use of printed circuit techniques. Up to the present time, their 
properties have been predicted assuming that they support a quasi-TEM mode. 
Various electrostatic approximations have been quite useful at low frequencies for 
the design of microstrip circuits. However, the fact which has been neglected is 

that the actual propagating modes cannot be TEM because of the presence of an 
air-dielectric interface. In reality, there are components of both electric and 
magnetic fields in the direction of propagation. 

A very important configuration that is an inherent part of such devices as direc- 
tional couplers, phase shifters, filters, etc., is a coupled pair of microstrip 

lines. In order to adequately predict the performance of these devices in terms of 
cutoff frequencies, bandwidth, etc., it would be advantageous to have a frequency- 

dependent solution of the coupled strip's propagation characteristics. This is 

particularly true when it is desirable to increase the power-handling capability by 
making the microstrip substrate thicker. The amount of dispersion is largely de- 
pendent upon the latter parameter. 

In this report, a solution is presented that will predict the dynamic behavior of 
single and coupled microstrip on both dielectric and ferrite substrates. It is a 

hybrid mode solution that accounts for the longitudinal components of the fields as 
well as the dielectric discontinuity of an open microstrip line. From the follow- 
ing theoretical and experimental results, more flexibility in choosing microstrip 

parameters, such as the substrate's material, dielectric constant, and thickness, 
should facilitate the attainment of the desired frequency characteristics of micro- 
strip circuit components. 



DYNAMIC SOLUTIONS 
FOR SINGLE AND COUPLED MICROSTRIP LINES 

I.      INTRODUCTION 

The major objective of this dissertation is to give a dynamic (frequency-dependent) solution 
for both a single microstrip line and a coupled pair of microstrip lines.    A microstrip is a two- 
conductor transmission line consisting of a narrow conducting strip deposited onto a thin sub- 

strate which has its other side entirely coated with a conducting ground plane.     The substrate 
materials that will be considered here are either a pure dielectric material,   such as rutile, 
alumina,   magnesium titanate,  teflon quartz,  etc.,  or a gyromagnetic material such as a ferrite, 
which is sometimes magnetized along the direction of propagation.    This type of transmission 
line is very attractive,  particularly in connection with microwave integrated circuit applications 
involving a large number of identical units and requiring a high density of packaging such as in 
phased-array radar where devices involving both single and coupled microstrip lines are used. 
These include transmission lines and matching networks in receiver amplifier circuits,  direc- 

tional couplers,  band-pass filters,  and nonreciprocal devices such as circulators,   isolators, 
and meander-line phase shifters. 

Since the microstrip structure is unsymmetrical,   an exact solution for the transmission 
line parameters such as phase velocity,   characteristic impedance,  etc.,   is very complicated. 
For this reason,  nearly all the numerical solutions obtained thus far have been quasi-static ap- 
proximations which assume a TEM mode of propagation. 

The first extensive study of microstrip lines for propagation of microwave energy was pub- 
lished nearly seventeen years ago by Assadourian and Rimai.     Their approximate analysis in- 
volving conformal mapping provided useful design equations for ratios of strip width to substrate 
thickness much greater than unity. 

2 
In 1954,   Deschamps    discussed the possible modes of propagation on a microstrip line.    He 

pointed out that no pure TE or TM mode solutions are possible and that the existence of at least 

one surface-wave mode resulting from the perturbation by the dielectric of the fundamental TEM 
3 

mode can be assumed.    During that same year,   Schetzen    obtained a TE-TM mode solution by 

assuming a longitudinal component of current having a constant amplitude across the width of 
the strip.    This led him to the false conclusion that the phase velocity is constant with frequency. 

4 
In 1955,   Black and Higgins    derived in a lengthy analysis an expression for the capacitance 

per unit length of line. 
The main difficulty in obtaining a complete solution stems from the necessity of taking into 

account the dielectric discontinuity at the insulator boundary,  the fringe fields,  the finite con- 
ductor size,   and the radiation loss.    The approximate theories,   which are based on TEM propa- 
gation,   account for the fringing fields but neglect the dielectric discontinuity and the radiation. 



5 
Wu   tried to account for some of these effects by formulating a pair of coupled integral equations 

for the two unknown components of current density that exist on the strip,  namely the longitudinal 
component I    and  the transverse component I  .     However,   because of the extreme complexity 

of these equations,  they have never been solved. 
/ 7 

In 1958,   Brodwin   used Van Trier's analysis    of a ferrite-filled parallel plane waveguide 
as an approximation to a ferrite-filled microstrip line having a strip width of at least a half- 
wavelength.    A simple relationship was obtained between the propagation constant and the applied 

longitudinal magnetic field for a quasi-TEM mode. 
8 9 Wheeler  '    published a conformal mapping analysis of TEM propagation on a dielectric- 

filled microstrip line which does account for the dielectric discontinuity.    His calculations show 
fairly good correlation with low-frequency experimental measurements for all lines,   including 

those with width-to-substrate thickness ratios less than unity. 
10 Green      presented a generalized numerical solution of Laplace's equation in two dimensions 

for determining the characteristic impedance and propagation constant of TEM-mode transmis- 

sion lines. He applied his method to a microstrip line by imagining the latter to be enclosed in 
a conducting screen of dimensions large compared with the cross section of the line.    This is 

an approximation of the boundary condition that the potential at infinity is zero. 
11 Caulton,  Hughes,  and Sobol      used Wheeler's conformal mapping theory to derive in 1966 

a set of design curves for microstrip lines applicable over a wide range of geometries and sub- 
strate materials. Design data was presented for characteristic impedance, wavelength, atten- 
uation,  and line width correction for finite-thickness conductors. 

1 2 Silvester      used the classical method of images as well as the Green's function solution for 

a pair of unit charges separated by a dielectric sheet to obtain a Fredholm integral equation for 

the unknown charge distribution on the strip.    Hence,  the electrostatic capacitance per unit 
length of the microstrip line can be determined along with the velocity of propagation and the 

characteristic impedance. 
13 14 A variational method was used by Yamashita    '      to calculate the microstrip line capaci- 

tance and guide wavelength.    This method is based on a variational calculation of the line capac- 

itance   in the  Fourier-transformed domain and  on the  charge density distribution as a trial 
function. 

15 Hartwig,   Masse",   and Pucel      qualitatively described the frequency-dependent behavior of 
microstrip.    As was earlier pointed out by Deschamps,  there exist surface-wave modes which 
couple to the TEM mode.    The two lowest order modes are the TM  ,   which has a zero frequency 

cutoff and the TE.,  which has a finite cutoff frequency,  below which it cannot exist.    Above this 
frequency f  ,   determined by the dielectric constant and thickness of the substrate,   it was exper- 

imentally found that the energy cannot be confined to the microstrip line.    In fact,  energy will 
propagate on the substrate and radiate from its edges. 

A theoretical analysis of both a single microstrip line and a coupled pair of lines was pub- 

lished by Bryant and Weiss.       The discontinuity of the fields at the dielectric-vacuum interface 
u 

was expressed by a "dielectric Green's function.     In a manner similar to Silvester's method, 
the capacitance for the single and coupled strips was determined from the charge distribution, 
which was the solution of a Fredholm integral equation.    Then the velocity of propagation and 
the characteristic impedance were obtained using quasi-static approximations. 

Recently,  there have been solutions for a microstrip line bounded by a metal "box" with 
dimensions large compared with the width of the strip and the substrate thickness.    For this 



17 case,  the boundary conditions are confined to a finite cross sectional area.    Stinehelfer      used 
a relaxation technique similar to that accomplished by Green for computing the solution of 

Laplace's equation.    A hybrid mode solution giving the frequency dependence of the guide wave- 
18 length was obtained by Zysman and Varon.       In this analysis,  the hybrid modes were decomposed 

into sums of LSE and LSMt space harmonics,  each satisfying the wave equation for an inhomo- 

geneously filled waveguide without the center conductor,  and their total satisfying the continuity 
conditions and boundary conditions on the strip. 

Today there is great need for a dynamic solution for open microstrip propagation.    In the 

early days,   this type of transmission line was abandoned in favor of the balanced-strip trans- 
mission line because of the radiative nature of the open-strip line.    However,  the recent avail- 

ability of low loss,  high-dielectric-constant materials made possible a great reduction of the 
radiation from microstrip.    As a result,  this line has recently been actively used for integrated 

microwave printed circuits.    Even though a higher dielectric-constant substrate reduces the ra- 
diation,   it also increases the amount of dispersion of the microstrip's parameters.    In addition, 
much effort is being placed on increasing the power-handling capability of microstrip circuits, 
which might include such devices as circulators and phase shifters.    This requires a reasonably 
thick substrate which again,   as shown in Sec. V,   increases the amount of dispersion.    Since 
microwave integrated circuits are being used frequently anywhere from 1 through 12 GHz,   and 

even higher in some cases,   the resulting amount of dispersion,   while taking account of such 
factors as radiation and power-handling capability,   results in TEM solutions which are no longer 
very good approximations. 

This report presents a solution that will give the frequency dependence of phase velocity 
and characteristic impedance for both a single microstrip line and a coupled pair of lines.    Four 
different situations pertaining to the substrate material are treated:   (1) a pure dielectric sub- 

strate;  (2) a demagnetized ferrite substrate;   (3) a magnetized ferrite substrate;  and (4) a mag- 
netized ferrite substrate with the RF magnetic fields assumed to be circularly polarized.    In 

Sec. II,  the theory for a single microstrip line on both a pure dielectric substrate and a demag- 

netized ferrite substrate is given.    Two different solutions for the electromagnetic fields and 
the microstrip phase velocity are presented:   one assumes the presence of both a longitudinal 
and a transverse component of current on the center conductor (or strip);  the other assumes the 

existence of only a longitudinal current.    The latter solution is much simpler and is proven to 

be an excellent approximation.    An equation for the characteristic impedance is then derived in 
terms of the field expressions and the phase velocity.    Section III is devoted to the theory for a 
ferrite-filled microstrip line which is magnetized along the direction of propagation.    Since the 
ferrite permeability is a tensor quantity,   a large number of symmetrical and unsymmetrical 
propagating modes can exist.    Section IV shows that a simple extension of the above two theories 
is required to solve the coupled microstrip problem.    Expressions for the phase velocity and 
the characteristic impedance are derived for the two normal modes of propagation,  which are 
known as the even and odd modes.    Application of this theory is made to two microstrip devices: 
the quarter-wave directional coupler and the meander-line phase shifter.    In Sec. V the theoret- 

ical equations presented in the previous sections are applied to typical microstrip cases by nu- 
merical computation on an IBM 360 digital computer situated at Lincoln Laboratory.    A com- 
parison with experimental results is included for both dielectric and ferrite-filled microstrip. 
In all the work described in this report,  the mks system of units is used whenever possible. 

t LSE refers to a mode which has no electric field component normal to the substrate-air interface; an LSM mode 
has no magnetic field component normal to the interface. 



II.    THEORY FOR MICROSTRIP ON A PURE DIELECTRIC 
OR ON A DEMAGNETIZED FERRITE SUBSTRATE 

A.    Introduction 
9 16 As outlined in the previous chapter,  Wheeler,   Bryant and Weiss,      and others have obtained 

quasi-static solutions of the microstrip problem which are applicable only in the low-frequency 
range where the propagation may be regarded as approximately TEM.     However,   Hartwig, 

15 19 et al.,     and Welch      have found that the microstrip line is quite dispersive at elevated frequen- 
cies due to coupling between the so-called TEM Wheeler mode and the two lowest-order surface- 

wave modes (TM    and the TE, modes).    The object of this section is to present a TE-TM mode 
solution which gives the frequency dependence of microstrip propagation on a pure dielectric sub- 

strate or a demagnetized ferrite substrate,  both of which are assumed to be completely lossless. 
Figure 1 shows the physical construction of the microstrip line,  which can be described as 

a narrow conducting strip deposited by printed circuit techniques onto a thin,  flat substrate that 

has its other side entirely coated with a conducting ground plane.    Both the substrate and the 
ground plane are infinite in extent.    The configuration is conventionally specified by the param- 
eters w/d and K for a ceramic substrate and an additional parameter u.    for a ferrite substrate; 

w is the strip width,  d is the substrate thickness,  K is the relative dielectric constant,   and u. "r 
is the relative ferrite permeability.    The latter two parameters are considered to be purely 
scalar quantities,   which is true for both a ceramic substrate and a demagnetized ferrite sub- 
strate.    As shown later,  ^    is frequency-dependent and is a function of the ferrite material's 
saturation magnetization.    In this analysis,   the strip is assumed to have a negligibly small thick- 

ness and both strip and ground plane are assumed to have infinite conductivity.    Given the values 
of the parameters defined above,  the theory enables one to obtain the phase velocity,  the effective 

dielectric constant,  and the effective permeability as a function of frequency.    Also,  the charac- 
teristic impedance of the microstrip line can be calculated using a quasi-static definition. 

The formulation of an exact theory for the microstrip structure is difficult because the cross 
section is not homogeneous.    Furthermore,   microstrip is an open structure where the energy is 
not confined to a finite region.    Without the dielectric,   it would be a Fecher-type structure that 

"V ////// /ft///////) 
MICROSTRIP   CONFIGURATION 

K    •    RELATIVE   DIELECTRIC   CONSTANT   OF   SUBSTRATE 
fir •    RELATIVE   PERMEABILITY   OF   SUBSTRATE 

d    •    SUBSTRATE   THICKNESS 
w   =    STRIP   WIDTH 

Fig. 1.   Microstrip configuration. 



could support a TEM mode.     However,   the presence of the dielectric causes the refractive 

index to vary over the cross section;  therefore,  the wave can be TEM only at zero frequency. 

For a simple grounded dielectric slab configuration subject to a physical field due to some arbi- 
trary source,  the complete solution consists of a discrete number of surface waves,  a continuous 

20 spectrum of evanescent waves,  and a continuous eigenvalue field,   i.e.,   radiation field.       Leaky 
modes which correspond to a flow of power away from the surface do not satisfy the radiation 
conditions at infinity and thus do not belong to the proper eigenvalue spectrum.    They are only 

21 used to partially represent the radiated field from some elementary source.       In the following 
theory for microstrip,  the sources for the electromagnetic field are assumed to be located at 

infinity so that the only free propagation modes that are considered to exist are surface wave 

modes and the TEM mode.    Due to boundary conditions involving transverse inhomogeneity in 
2 

the dielectric and the presence of the strip,  no pure TEM,  TE,   or TM modes may exist.     Thus, 
a hybrid mode solution that can be expressed in terms of a complete set of simpler solutions 

having a z-dependence of e •*      is sought.    The proof of mode orthogonality for surface wave- 
21 guides,  as presented by Collin,     enables a given arbitrary field to be expanded into a series of 

TE and TM modes. A linear combination of these modes is allowed for the case where the sub- 
strate's permeability and dielectric constant are both scalar quantities. The following gives the 
derivation of a hybrid TE-TM mode of propagation. 

B.    Derivation of Electromagnetic Field Expressions 

Two different analyses are presented here: one takes into account the presence of both a 
longitudinal and a transverse component of current on the strip; the other is more of a quasi- 
static solution which assumes that only a longitudinal current exists. 

1.      Analysis for Both Longitudinal and Transverse Currents 

The method of solution is to construct series of functions,   each of which independently sat- 
isfies the wave equation for a TE mode or a TM mode and also satisfies boundary conditions on 
the ground plane and at infinity.    Appropriate sets of functions are obtained by taking a Fourier 
transform of the fields along the x-axis,   which is oriented as shown in Fig. 1.    The remaining 
boundary conditions on the strip and along the substrate-air interface are satisfied by the use of 
a linear combination of the TE mode and TM mode fields.    A solution for the Fourier components 

of the fields is first obtained for a grounded dielectric (or ferrite) slab which does not possess 
a current carrying strip.    Instead,   it has a "fictitious" surface current whose amplitude varies 

sinusoidally in the x direction along the substrate-air interface and has vector components both 
in the x- and the z-directions.    The hybrid mode fields that are caused by the actual current 
distribution,  which is nonzero only over the region occupied by the strip,   are found by taking a 

Fourier integral of the above sinusoidal components and are forced to satisfy the requirement 
that the tangential electric field vanish on the strip. 

3 
The Fourier transform method described above was used by Schetzen    in 1954 to obtain the 

fields which result from a uniform longitudinal current distribution on the strip.    His theoretical 
analysis of a microstrip line on a pure dielectric substrate resulted in the invalid conclusion 
that the phase velocity is constant with frequency.    From the Green's function static solution of 
Bryant and Weiss,      it is clear that the current is not constant across the strip width.    In fact, 
its amplitude increases very rapidly at the edges of the strip.    Therefore,   a more valid longi- 

tudinal current distribution can be obtained from the following relationship for the charge density 



TABLE ll-l 

CURRENT DISTRIBUTION DATA -COMPARISON OF GREEN'S FUNCTION SOLUTION 
WITH THAT USING MAXWELL'S FUNCTION [Eq. (2-1)] 

[m = number of elementary strip widths 
(Ax/d = 0.025) from center of strip region (x = 0)] 

m 

l(m):   K= 1; w/d = 0.5 l(m):   K= 15; w/d = 0.5 

Maxwell's 
Function 

Green's 
Function 

Maxwell's 
Function 

Green's 
Function 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.5843 

0.5903 

0.6027 

0.6230 

0.6535 

0.6988 

0.7680 

0.8823 

1.1078 

1.8690 

0.5836 

0.5895 

0.6020 

0.6223 

0.6530 

0.6989 

0.7692 

0.8893 

1.0800 

2.4490 

0.5481 X 10 

0.5537 

0.5653 

0.5844 

0.6130 

0.6555 

0.7204 

0.8276 

1.0391 

1.7531 

0.5474 X 10 

0.5529 

0.5644 

0.5831 

0.6115 

0.6539 

0.7190 

0.8302 

1.0070 

2.2800 

Fig.2.    Longitudinal current distribution 
on microstrip. 



22 23 
distribution on an isolated conducting strip    '      (see Appendix A for derivation): 

a 
a(x) =   °   -w/2 < x < w/2 

,JT (2x/w)' 

= 0      otherwise      . (2-1) 

For the dynamic case,  the current is simply I (x) ~ vcr(x),  where v is the phase velocity.    This 

relationship agrees extremely well with the current distribution obtained from the Green's func- 

tion solution.       Table II-1 illustrates this agreement by giving the computed data for two widely 

different substrate dielectric constants.    It was also found that changing the w/d ratio between 

0.2 and 1.2 only affected the amplitude a   without changing the current's functional dependence 

on x.    In the analysis to follow,  the Fourier transform of I (x) is made use of.    Therefore,  the 

value of a    is not needed in order to find the desired quantities of phase velocity and character- 

istic impedance.    The Fourier transform of the current distribution is given by a zero order 

Bessel function,   which can be expanded into an infinite series in terms of the Fourier transform 

variable  a: 

v_ on 

In series form 

where 

^  I     J   (aw/2) 
2    zo  o 

,     . ,m ,        /..2m 

m = 0 <m;) 

I       = vcr 
zo o 

It will be shown in Sec. V that the use of this current function gives results that are in excellent 

agreement with experimental results and with the TEM solutions at zero frequency.    However, 

the computations require excessive computer time.    Another expression given by Eq. (2-3) was 

found to give sufficient accuracy and yet its Fourier transform allowed the computer time to be 

reduced by a factor of five (from two minutes to about twenty-four seconds per point): 

Iz(x) = IzQ(l +  |2x/w|3) |x|« w/2 

= 0      otherwise      . (2-3) 

The Fourier transform of Eq. (2-3) is 

21        I 2 
T  /    > zo        24 ,3 | (aw)    - 8] ,        ,_. 
lzia) = ~     ; ri + ,     \i L cosUnv/2) 

((aw) (aw) 

?. 

2" 
,   (aw)    — 12 ,        /-,, ,-,   .. +  ! ' =—  sin(o'W/2)}       . (2-4) 

(aw 

Figure 2 shows a comparison between the current distribution given by the above function and 

that calculated by the Green's function method.    The effect of the lower 1   (x) near' the edge of the 



strip is to give a slightly lower value (less than 1 percent) for the microstrip line's effective 

dielectric constant. 

In order- to estimate the transverse component of current, the continuity equation is utilized 

to relate this quantity to the charge density distribution cr(x) on the strip in the following manner 

(see Appendix A): 

dyx) 
dx -jwcr(x) (2-5) 

where w = angular frequency.    Substituting an expression of the same form as Eq. (2-1) for a(x) 

and solving for the current gives 

u'<r 
Ix(x)=-j 

o   w      .   -1,2x. 
— -=- sin     (— 7T       2 w 

— w/2 < x < w/2 

0      otherwise (2-6) 

Figure 3 shows the form of this current distribution across the width of the strip.    Taking the 

Fourier transform results in 

z   .T   (orw/2) 
I   (a) = — — ua w     jz— x 4        o aw/2 

(2-7) 

The electromagnetic field expressions to be derived are exact for the case of a sinusoidal 

surface current distribution flowing along the substrate-air interface which does not possess a 

conducting strip.    However, the solutions for an infinite number of these "fictitious" sinusoidal 

I„(x) |U-3-11M0-T| 

-w/2 

rrn—- 

GROUND PLANE 

Fig.3.    Transverse current distribution on microstrip. 



components are summed up in such a manner as to represent the fields caused by a current dis- 
tribution that is finite only over the strip width w and equal to the static charge distribution. 

At this stage,  the "conducting" strip is simply represented by a surface current over a finite 
region w.    The introduction of the boundary condition that the tangential electric field be zero 
at (y = d),   | x| < w/2) results from the strip being a perfect conductor. 

The "fictitious" surface current flowing at the substrate-air interface generates a hybrid 
TM-TE mode,   which can be represented as a linear combination of TM and TE modes because 
these modes form a complete set in terms of which an arbitrary field can be represented.    For 

a cylindrical structure of arbitrary cross section,  the TM and TE modes may be derived from 

an electric-type Hertzian potential ¥   = azNi/ie(x, y) e-' and a magnetic Hertzian potential 

H,   - a N#, (x, y) e-* ,   respectively.       N is an arbitrary constant that is dependent upon the 
source strength while the functions >f>    and $,   both satisfy a two-dimensional scalar Helmholtz 
equation given below. 

V.2*    .   + v' t re,h "e,h = 0 (2-8) 

where 

TD2 2        V P.   = to  u.  Ku   e 1 rr ^o o 

D2 2 i 2 

P_   = to   u.   e    — k 
2 ro  o 

y < d 

y >d 

Regions 1 and 2 are the substrate and air regions,   respectively.    The above potential functions 
can be written in terms of their Fourier transform ip{a, y) with respect to x, 

<Mx , y) = j- \       ip{a, y) e;,Q'xdtt (2-9) 

Combining Eqs. (2-8) and (2-9) results in the following differential equations: 

/^+p2_Q2\K<^> 0 y >d 

and 

(A + Pl-ff  )\thla.y)\ y < d (2-10) 

Since the total energy of the wave must be finite and the natural propagating modes for the 
20 grounded dielectric slab configuration are surface modes,     the fields must decay exponentially 

with y in the air region (y > d).    Therefore,  the transverse wave number can be defined by 

,   2     D2,l/2 (a   - P   )  ' (2-11) 

If radiation from the line is neglected,  then /3_ will always be a real positive number as long as 
2        2 25 k >d) |i c , which is true for a slow wave. Radiation from the microstrip becomes signifi- 

cant only when the line is in the form of an open-circuited resonator or a disc cavity resonator 
and has a large normalized substrate thickness (d/X    > 0.01) and/or a substrate of low dielectric 
constant (K < 9).    The fields for the hybrid TM-TE mode are obtained by means of the following 

21 equations: 



E = -iwiiV X IT,   4-VXVXTT J   r h e 

H = V X V x ¥    +JUEVX? 
h     J e 

(2-12) 

Using the boundary conditions that the tangential electric field and the normal derivative of the 

tangential magnetic field must be zero on the conductors and that the tangential magnetic field 

must vanish in the plane of symmetry x = 0,  the following form of the potential functions for the 

lowest order hybrid mode may be written 

^e<a. y) = A
s cos ax sin/31y 

B    cos ax exp [—/3?(y — d) 

y < d 

y >d 

and 

ip  (a,y) = C    sin ax cos/3 y 

D    sin ax exp[—j3_(y — d)] 

y< d 

y >d (2-13) 

where 

,„2 2.1/2 
(2-14) 

The coefficients A ,   B ,   C  ,  and D ,  and thus all the field expressions,   can be determined 
S S 8 8 

from the following boundary conditions at the interface between the substrate (region 1) and the 

air (region 2): 

zl        z2 

xl        x2 

«     A zl 
-K  , = -I  (a) z2          x 

H     A xl 
-H   , = I   (a) x2       z 

(2-15) 

(2-16) 

(2-17) 

(2-18) 

All the above field quantities are Fourier transforms with respect to x  of the real fields.    The 

boundary conditions lead to a matrix,   Eq. (2-19) shown below,   from which the potential's coeffi- 

cients can be obtained in term      f the two components of current on the strip and the unknown 

propagation constant  k  (see Appendix B): 

'11 l12 0 0 

0 ° a23        a24 

a31        a32        a33        a34 

a41        a42        a43        a44 

A 

C 

I) 

0 

-jkIx(a)/P* 

Iz(a) 

(2-19) 

1 C 



where 

all =   (pf)    Sin/3ld a12 = a24=-1 

/Pl\2 
a23 =  lp/    cos^id a3i = a sin/3!"3 

rro 1     .   n   , a,_ =— a... =—ct a,, =  ;  sin/3.d 32 44 33 k r\ 

ro  2 o  1 
a,,, = ;  a 34 k 41 k  cos/31d 

we  j3. 
o   2 a .., =  ;  a ., = — a cos /3,d 42 k 43 ^1 

2.      Analysis for Only Longitudinal Component of Current 

As shown in Appendix A,  the amplitude of the transverse component of current is propor- 

tional to the frequency and the strip width.    Since most practical strip widths are very small 

compared to a wavelength (on the order of 0.01 A   ), the transverse current is several orders of 

magnitude smaller than the longitudinal current.    Thus,  a good approximation to the exact micro- 

strip solution would be to follow the same procedure as discussed in the previous section but 

make I   equal to zero.    The Hertzian potential coefficients A ,   B  ,  C  ,  and D    can be solved x r s       s       s s 
easily from the matrix Eq. (2-19) and will be a function of the longitudinal component of current 

I   and the unknown propagation constant (see Appendix B). 

C.    Derivation of Integral Equation for Phase Velocity 

This section contains derivations of the integral equations for obtaining the microstrip phase 

velocity.    The same two cases treated in Sec. II-B involving the current components are con- 

sidered here. 

1.      Solution for Both Longitudinal and Transverse Currents 

In anticipation of a slow-wave type of solution for a lossless microstrip line, the axial prop- 

agation constant (jk) is taken to be a pure imaginary quantity and the value of k is expected to be 

in the range k •$ k < k /LI K, where k = OJ Jp e . The quantity k along with the phase veloc- 

ity v are of the form 

o 

and 

where 

v = voA/T (2-20) 

7    - velocity of light in vacuo 

A    = free-space wavelength 
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and 

k   =^effeeff 

[i. ff - effective relative permeability of microstrip line 

t   ,, = effective relative dielectric constant of microstrip line 
eff 

4   is found by using the following boundary conditions which result from the strip region being 

a perfect conductor: 

E-(x, d) = 0 -w/2 < x < w/2       . (2-21) 

llll
/,2(x-d) 

dy 
= 0 r/Z < x < w/2 (2-22) 

Now,  the total fields E  ? and H  - are given by the following Fourier integral representation in 

terms of the coefficients B    and D  : s s 

,oo     p 

E  _(x, y) =  \       -rr- Bg cos ax exp[-/32(y - d)] da (2-23) 

and 

l OO        P 

(x, y) = J       "-jf- Ug sincvx exp[-/32(y z2v (2-24) 

These expressions describe the longitudinal fields caused by the actual current distribution, 

which is nonzero only over the region occupied by the strip.    Use of the relations for B    and D 

given by Appendix B and the above boundary conditions results in the following coupled pair of 

integral equations involving the currents I  (a ) = I      J   (aw/2) and I  (a ) =  I      [J   (aw/2)/aw/2|: ° ° z zo    o x xo L   o        '    " ' 

CO J_ 

aju. LL  (3. tan/3.d rro  1 1 
b22 + —1 b12 

1 

J   (aw/2) 
 7T—   cos ari aw/2 

Det(b..) 

r SO J 

00   b    J  (aw/2) cos at) 

Det(bij) 
da = 0 

da 

(2-25) 

and 

r if*-. 
i,- wu, u S. tanfl.d 

tP2bll- 2 "b21 
1 1 

Jo(aw/2) 
 7=—  sin an 

aw/2 

Dettby) da 

- r zo J 

(3_b,,J  (aw/2) sin an 
6   11   o 

Det(b..) 
da = 0 (2-26) 

where   7)   is the value of x  over the strip region—w/2 < x< w/2.    The phase constant  k,   or the 

quantity | ,   can be found by setting the determinant of the coefficients of the unknown current 

amplitudes I      and 1      to zero.    It is quite apparent at this point that the computation time for 

such a solution will be enormous.    A more practical solution is presented below. 
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2.     Solution for Only Longitudinal Current 

As mentioned previously,  the strip width is very small compared to a wavelength,  so that 

for the lowest order hybrid mode it suffices to satisfy Eqs. (2-21) and (2-22) only at the center 

of the strip 77 = 0 instead of over the range — w/2 < rj < w/2.    Thus,  a single integral equation 

containing the unknown quantity £   can be obtained from Eqs. (2-25) and (2-26) by setting both 

I      and  7j   equal to zero.    Substituting in the expressions for b.. given in Appendix B,   making a 

change of variable y = aw,  and using Eq. (2-20), the integral equation becomes 

\          — dy = 0 (2-27) 

where 

O     (YHjZ + ^x^Qctn^d-j^) 

H  K- 1 ,       , r~r  f.        4—1 
Y = ^h?—r Q (x  K- I "* ~  a   K 

Xo " 2 
H = — y z = Qu   tan /?. d +  , w rr 1 /3. 

Note that the lower integration limit can be made zero since the integrand is an even function of 

y. Also note that the amplitude I of the current distribution function is not needed for the so- 

lution of £ ;  only the part of the Fourier transform that is a function of y  is utilized. 

As discussed in Sec. V,  the alternate expression for the current Fourier transform given by 

Eq. (2-4) gives better than 1 percent accuracy for  £   and,  furthermore,   requires much less com- 

puter time.    It is,  in fact,  the best function to use for microstrip lines having a large w/d ratio. 

This stems from the fact that the Maxwell current distribution is strictly correct for an isolated 

conducting strip,  i.e.,  for the case where the ground plane is an infinite distance away from the 

strip.    As the ground plane is brought closer,  the ratio w/d increases and the current distribution 
26 approaches a more constant distribution across the strip width.        Using the change of variable 

in Eq. (2-4) results in the following alternate expression for I  (y): 

lzM = J |fW I1'A)  COSI+   ('-^^l       • (2-28) 

3.     Determination of Characteristic Impedance 

A definition for the characteristic impedance Z    of the microstrip transmission line is in 

terms of the power  P flowing along the longitudinal direction as well as the total current  I flow- 

ing on the strip: 

Z0 = P/I2      • (2-29) 

An expression for power is obtained by integrating the z  component of the Poynting vector 
—     —     — 24 S = E x H* over the cross section a' of the microstrip configuration as shown below: 

III (E X H*) •  a   dxdy      . (2-30) 
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The total current is obtained simply by integrating the current distribution I  (x) across the width 

of the strip 

r> w/2 
I =  \ I  (x) dx (2-31) 

J-w/2    Z 

Thus,  the expression for Z    becomes 

i     p     p    ,, K*_   g   K* d 
7     -   2   J-«o ->o    J-°°       x   y y   x 

o [fw/2   .   ,   .   ,   12  (2_32> 
|J-W/Z VX) dx| 

The fact that the microstrip line is an open structure makes the computation of the above 

expression very lengthy.    Therefore,  from a practical standpoint,  it is more reasonable to use 

a quasi-static definition in terms of the voltage V between the strip and the ground plane and the 

current I.    Assuming that the width of the strip is small compared to a wavelength,  the voltage 
can be obtained by taking the line integral of the vertical electric field component at the center 
of the strip.    This integration is indeed not independent of the path for a propagating structure 

such as this,  which has longitudinal field components.    However,   since the amplitudes of the 

latter are quite small,  it is believed that the following expression for Z    is a good approximation: 

v       J°° fd   & dyda 
Z=l=     °      ,°      y • (2-33) O I fW/2      T      I       \    J I      /, I  (x   dx J-w/2   z 

Substituting the expression for &    obtained from Eqs. (2-12) and (2-13) and that for I  (x) given 
y z 

by Eq. (2-3),  the following integral represents the characteristic impedance in terms of the 

quantity  4 : 

H2 

192Nfi  YQ   r~ -p-yiOtan^d 
Zn=  -    -~    \          ; ^—: dy       . (2-34) 

°      w^T ° (YH)2 + ¥Ao2^(Qctnv-K^) 
An even simpler expression for impedance can be obtained if one uses the following TEM 

definition,   which should yield a good approximation since the microstrip's hybrid mode is very 
close to a TEM mode: 

•7   - _L - 0ML v 
°     vC        Jl      ° 

(2-351 
K=l 

where 

C = e ffC    = capacitance/unit length 

C    = C      for K = 1,   ii    =1 o r 

v o v = 
N/T 
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and 

Z 
o 

= —p-  = characteristic impedance of air microstrip line 
K=l        o   o 

The effective value of permeability \x ,f and the normalized propagation constant <v/T = k/k   are 
frequency-dependent quantities obtained from the integral equation (2-27) while Z may be 

9 K=l obtained from Wheeler's theory. 

4.     Summary 

The objective of this section has been to develop theoretical equations for the phase velocity 

and characteristic impedance of microstrip having a substrate made of either pure dielectric or 

demagnetized ferrite material.    Numerical solutions of these equations for typical microstrip 

parameters are presented in Sees. V-A and V-B.    The quantity £   = H ff«  ff and the phase velocity 
are determined from Eqs.(2-27) and (2-20),   respectively,  if only the longitudinal current solu- 
tion is used.    Equations (2-25) and (2-26) must be used for the more exact solution involving 
both current components.    The characteristic impedance is calculated by using Eq. (2-34) or (2-35). 

in.   THEORY FOR MAGNETIZED FERRITE-FILLED MICROSTRIP 

A.    Introduction 

Propagation of electromagnetic waves along a microstrip line that is deposited on a ferrite 
substrate has been the subject of considerable interest for the past few years.    It has been found 
especially fruitful to integrate a complete microstrip circuit that might include such gyromag- 
netic devices as meander-line phase shifters,  isolators,  and circulators,  all deposited on a sin- 

27 gle ferrite substrate.       As long as operation is restricted well above the ferrite's natural res- 
onant frequency f   ,  defined in Sec. V-B, the microwave losses encountered when using a ferrite 

substrate are comparable with those obtained when pure dielectric substrates are utilized. 
Even though a great amount of experimental work has been done involving ferrite-filled 

microstrip,   it has not been matched by a corresponding theoretical investigation.    A TE-TM 
mode solution for microstrip on a demagnetized ferrite substrate has been described in Sec. II, 
where the permeability was considered a scalar quantity which allows the fields to be expressed 
as a linear combination of TM and TE waves.    The only other theoretical work on ferrite micro- 

strip known by the author is that of Brodwin   who applied the parallel plane waveguide analysis 
7 

of Van Trier    to a microstrip having a strip width on the order of half a wavelength.    However, 
most practical microstrip lines have strip widths which are a small fraction of a wavelength 
(typically,  0.01 A.   ).    It is very doubtful that Brodwin's theory for the latter case can be considered 
valid any longer.    The purpose of this section is to present a theory that will describe the allowed 

propagating modes on a microstrip line whose width is a fraction of a wavelength and whose ferrite 
substrate is magnetized along the direction of propagation. 

The microstrip configuration is the same as that shown in Fig. 1.    Assuming the ferrite sub- 

strate to be a lossless medium,  the relative dielectric constant  K  is,   of course,  a scalar quan- 
tity,  while the relative permeability n    is a tensor whose components depend upon the ferrite's 

magnetization and the frequency.    Given the above parameters as well as the strip width and the 
substrate thickness,  the results derived here enable one to obtain the microstrip's phase velocity 
as a function of frequency.    Also,  the characteristic impedance can be calculated using the same 
quasi-static definition as in Sec. II. 
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B.    Theory 

As mentioned previously,  the microstrip configuration has a cross section which is inhomo- 

geneous,  and the structure is an open waveguide with its natural propagating modes being surface 

waves if the source of the electromagnetic fields is located at infinity.    Thus,  transverse wave 

numbers must be purely real in the air region that extends to infinity.    From the boundary con- 

ditions involving the continuity of fields at the substrate-air interface,   it can be shown that no 

pure TEM,  TE,  or TM modes may exist.    When the ferrite is demagnetized or when the fields 

in a magnetized medium exhibit perfect circular polarization,  the permeability can be taken as 

a scalar quantity and the fields expressed as a summation of TM- and TE-mode fields.    However, 

for the single microstrip line around which the fields cannot be considered circularly polarized 

and whose ferrite substrate is magnetized along the direction of propagation,  the permeability 

is a tensor of the form 

H,        J^2       0 

-j^2     *i       ° 

0 0       u 

(3-1) 

Substituting this tensor into Maxwell's equations yields two coupled wave equations involving the 

longitudinal field components 

3z 

^2    8 E    +kn    — /- H    =0 
Z O^Z   \1.    dz       z 

and 

(vt
2 + ^4   ^2,K)H    -kK^ \   t        n4   az2 o^z   /     z        o     n4 

2fE    =0 3z      z (3-2) 

where 

and 

M = ^ _ 

k    = a;    lu.   F~ 
o vro o 

co = angular frequency 

Assuming propagation described by eJ ,  where  k is the phase constant along the axis of 

the DC magnetization,  the above coupled equations can be converted to a fourth-order wave equa- 
28 tion that contains a scalar potential i/>F from which all the field quantities can be derived: 

(Vt2 + XiV <vt
2 + x2

2
F> vx.y> = ° (3-3) 

2 
V    is the transverse Laplacian operator and x.F and x7F are given by 
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X1F'   X2F Ji a + b ± V(a - b)    + 4c (3-4) 

where 

2 
,2J ^2 

b = u     k~K =. 
Z\    O fl 

and 

. 2.  2„     ^2 c = k k   Ku  ( — o ^zyhx1 

In this analysis,  the axial propagation constant is assumed to be a pure imaginary quantity so 
that k is purely real and is of the form 

k = k   N/? = £ o V (3-5) 

For the microstrip configuration,   it is convenient to choose the Cartesian coordinate sys- 
tem oriented as shown in Fig. 1 and to commence by taking a Fourier transform in the direction 
of the x-axis.    The general representation for the scalar potential functions both in the air and 

the ferrite regions is 

${x, y) = jj \      ${a,y) ejaxda (3-6) 

In the air,  the TE and TM mode scalar potential functions satisfy the wave equation 

*h(x, y) 
(vt

2 + P2
2) 

*e(x, y) 
(3-7) 

2 2        2 where P_  = k    — k  .    Taking the Fourier transform with respect to x gives 

(Jii+k2_k2_a2\ 
1>h{a,y) 

*e(<*. y) 
(3-8) 

[For the remainder of this analysis,  ip    and 4>h are understood to be Fourier transforms of the 
real potential functions given in Eq. (3-7)].    The transverse wave number is defined by 

ez - (k* . 2  ,     2.1/2 k     + a  )  ' 
o (3-9) 

If radiating modes are neglected,  the fields must decay exponentially with y in the air region. 
2        2 Therefore,  /?, w^ De a real positive number as long as k   > u |x  c ,  which is true for a slow 

wave.    The contour C that is used for computing the inverse Fourier transform in Eq.(3-6) 
can be chosen to be along the real axis since /3_ will be real for all values of a between — °° 
and  °°. 
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In the following,  each Fourier component of the field will be forced to satisfy the boundary 

conditions of a grounded ferrite slab without the narrow conducting strip but having a fictitious 

surface current whose amplitude varies sinusoidally in the x direction along the substrate-air 

interface.    The total fields are represented by a Fourier integral of the above components and 

must satisfy the continuity conditions at the interface as well as the boundary conditions at the 

strip,  which is assumed to have the same surface current distributions as given in Sec. II-B-1. 

The effect of the conducting strip is to couple the TE and TM modes in the air and the modes 

existing in the ferrite substrate to create hybrid modes in which all field components are present. 

The coupling is interpreted as the requirement that the tangential electric field vanish on the 

strip.    If the strip is assumed very narrow compared with a wavelength,  this requirement is 

necessary only at the center of the strip. 

Above the substrate's surface,  the fields which are created by a single Fourier component 

of the surface current distribution can be simply expressed as a linear combination of TE- and 
24 

TM-mode fields.    They can be derived from the following set of Hertzian potential functions 

for the lowest order hybrid mode: 

—       -  „,   ,        >    i(ait-kz) 7r    = a. Nip  (a, y) eJ 

e        z     e 

and 

where 

and 

¥h = a
z
N*h<Q,y) e 

-/32(y-d) 
il>    = G.e cos ax e        t 

j(wt-kz) (3_10) 

-/32(y-d) 
4>,   - F. e sin ax      . (3-11) 

Leaving out the  z   and  t  dependence of N e^ ,   where  N  is an arbitrary constant,   the fields 
24 

are given in terms of the above scalar potentials as follows: 

z2 TiT*e 

z2 TF*h 

^T2=-VT*e-nf2(VT*hX5z) 

and 

KT2^Vh-lT(5zXVe'      • <3"12> 

In the ferrite region, the potential function that satisfies the fourth-order wave Eq. (3-3) is 

expressed as a linear combination of solutions corresponding to the two possible eigenvalues in 

the following manner: 

IK 



V«.y>=*iF + *2F 
(3-13) 

where 

^1F = (At sin'3iFy + Ct cos^iFy) e 
jax 

and 

^2F = (Bt sin'32Fy + Dt COS ^2Fy) e 
jax 

The sine and cosine dependence is chosen in order to satisfy the boundary conditions on the con- 

ductor and to include both the symmetric and antisymmetric modes.    The transverse wave num- 

bers f!. v and /3  _, are given in terms of the eigenvalues x1F and X7V,  respectively,  by the 

relations: 

02 2 2 

and 

0Z 2 2 
^2F = X2F-tt (3-14) 

Note that values of a and k are common to both the air and the ferrite region since these quan- 

tities are given by the exciting current.    In terms of *Pv(a> y).  the Fourier components of the 
28 fields can now be written as 

jS T 0 F       lF 

-T
F    JSF        ° 

o     jwF 

Vtl> F(a,y) (3-15) 

and 

\ = "jk 

JMF      NF        ° 

-NF    jMF       0 

0 0        jR, 

V^F(o,y) (3-16) 

with 

2  , 2 

2    /^l  ~^Z 
T1F, 2F " koK(       ^ 

, 2_     2 
X1F, 2F 

W1F, 2F M„   
X1F, 2F 

1 
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M IF, 2F " ^1T   l   o    ^1      k        X1F, 2F> 

^2 
N„ = k  K — F        o     u 

and 

T x2 
_     'lF, 2F

X
1F, 2F 

1F-2F"      kT^       ' orz 

In the above relationships,  the subscripts IF and 2F are associated with the potential functions 

ip. „ and #__,,   respectively.    The following boundary conditions must be used to solve for the six 
IF ZF 

unknown coefficients,  A ,   B     C ,   D ,   G ,  and F : 

6      = 0      at      y = 0 (3-17) 
zl J 

and 

SH   . 
-^1 =0      at      y = 0 (3-18) 9y 

and at the substrate-air interface y = d, 

6zl=6z2 (3"19) 

Hzi-Hz2 = -y-» (3-20) 

&xl^x2 (3"21) 

and 

K   . - K   , = I (a)       . (3-22) xl x2        z 

Boundary conditions (3-17) and (3-18) can be used to express A, and C, in terms of the other co- 

efficients;  the remaining boundary conditions (3-19) through (3-22) lead to the following set of 

simultaneous equations: 

allBt+al2Dt+al3Gt+° = ° 

a21Bt+a22Dt + 0+a24Ft=-ya) 

a31Bt+a32Dt+a33Gt+a34Ft = ° 

and 

a41Bt + a42Dt + a43Gt + a44Ft = VQ>       " (3"23) 

The coefficients a., are given in Appendix C  along with the six potential coefficients. 

In order to obtain the propagation constant,  use is made of the boundary conditions that E  _ 

and 9H  2/^
v must vanish on the conducting strip.    This results in a pair of integral equations 

which involve the two components of current.    They are similar to Eqs. (2-25) and (2-26).    If the 

strip width is assumed to be small compared to a wavelength and the transverse current I    is 

neglected,  then the equation for the propagation constant reduces to 
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r ~WziVa)da (3-24) 

where Z. is given in Appendix C.    Since the integrand contains linear terms in u.?/u..,  the prop- 

agating modes must be of a nonreciprocal nature.    Also,  the tensor property of the magnetized 

ferrite substrate allows a number of symmetric and antisymmetric modes to propagate.    The 
29 and a types of modes are expected to be similar to that obtained for a ferrite-loaded wire 

30 ferrite-filled coaxial transmission line. 

C.    Summary 

In this section equations were derived for the propagation constants and the electromagnetic 

fields of magnetized ferrite-filled microstrip.   The formercan be obtained by the use of Eq. (3-24), 

while the field expressions require the combination of Eqs. (3-11) through (3-16).    Because the 

dependence of permeability on saturation magnetization,  applied field,  and frequency is not known 

for the ferrite slab configuration,   the scope of this study does not include any calculations for 

the magnetized microstrip case.    Once the permeability expressions are known,  then the contents 

of this section may be utilized to predict the various propagating modes. 

IV.   THEORY FOR A COUPLED PAIR OF MICROSTRIP LINES 

A.    Introduction 

Coupled microstrip lines,  which are deposited onto the surface of the substrate,  as shown 

in Fig. 4,   can be used in microstrip integrated circuits for making directional couplers,  band- 

pass filters, band reject filters,  and reaction cavities.    They are also the basic elements in such 

slow-wave structures as meander lines and interdigital lines.    The latter planar devices are ca- 

pable of producing nonreciprocal differential phase shift,  which is of great utility in phased array 

radar.    However,  the relation between the nonreciprocal properties of these devices and the 

geometry of the microstrip lines has not yet been thoroughly investigated. 

The static solution for two coupled lines on a pure dielectric substrate has been obtained by 

Bryant and Weiss.       Their results show that this microstrip configuration supports both even 

and odd modes which have different phase velocities.    As can be expected,  the even- and odd- 

mode characteristic impedances are also quite different.    This section presents a TE-TM mode 

MICROSTRIPS 

SUBSTRATE 

GROUND PLANE 

Fig.4.   Coupled pair of microstrip lines. 
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solution that will give the frequency dependence of the even- and odd-mode velocities and charac- 
teristic impedances for a coupled pair of microstrip lines.    Four different cases will be treated: 

(1) a pure dielectric substrate having no nonreciprocal effects,   (2) a demagnetized ferrite sub- 

strate having a scalar permeability as well as a scalar permittivity,   (3) a magnetized ferrite 

substrate whose permeability can be considered scalar when the lines are in a configuration that 
produces circular polarization between them,  as is the case for a meander line,  and (4) a mag- 

netized ferrite substrate whose permeability is a tensor with off-diagonal terms.    For the last 
two cases,   it is assumed that the applied magnetic field is along the direction of propagation. 
In addition,  the analysis for each case contains assumptions that the structure is lossless and 

that the fields vary as e^ ,  where the phase constant k is pure real. 
The theory is then applied to two commonly used microstrip devices,  namely,  the quarter- 

wave directional coupler and the meander-line phase shifter. 

B.    Determination of the Even- and Odd-Mode Fields 
and Propagation Constants 

The theory for propagation on a coupled pair of microstrip lines,  or for any number of par- 

allel,   coplanar microstrip lines,   is a simple extension of that presented in Sees. II and III.    First, 
a solution is obtained for the sinusoidal surface current distribution at the substrate-air inter- 
face.    Then,  a Fourier integral of these "fictitious" sinusoidal components is formed in order 

to represent the fields caused by the actual current distribution,  which now is nonzero over two 
strip regions of equal dimensions that are symmetric about the origin,  as shown in Fig. 4.    For 

the even mode of propagation,  the direction of the current is the same for both strips and,  there- 

fore,  exhibits even symmetry with respect to reflection in a central bisecting plane.    On the 

other hand,  the odd mode with equal currents flowing in opposite directions has odd symmetry 
with respect to that same plane. 

The Green's function method of Bryant and Weiss is again used to estimate the current dis- 
tribution on the pair of coupled lines.    Since the spatial distribution of charge is dependent on the 
parameters w/d and s/d,  where  s  is the spacing between adjacent edges of the strip,   it is now 
much more difficult to arrive at an analytical expression for I (x) that will give reasonably ac- 
curate results.    Thus,   in order to get I (a),  a discrete Fourier transform of the charge data ob- 
tained from the Green's function method is formed. 

In Bryant and Weiss's numerical solution,  the strips and the space between them are divided 
into elements of width Ax/d,  which is chosen equal to 0.025 in order to provide sufficient accu- 
racy in treating most practical microstrip lines.    Their Green's function solution (\>.. gives the 

th th l3 potential at the i     element due to the j      element carrying unit charge.    The values of charge q. 

on the i     element of the  m  elements comprising the normalized strip width,   w/d = m(Ax/d), 
are then found by solving a set of m  simultaneous equations: 

in 

£   V*ij**i.2m+N +l-j> = V <4"1) 

j=l s 

where 

V = potential of the strip 

This gives the desired current distribution for the microstrip propagation problem as 
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and 

I     . = I    q  . (odd mode) zoi      oo^oi 

I     . = I    q  . (even mode) (4-2) zei      oe^ei 

where I      and I      are proportionality constants.    The total currents I     , and I        flowing on the oo oe r    r J zod zev & 

strip are simply a summation of the above equations over values of i between 1 and m.    Taking 
the discrete Fourier transform of this current distribution yields 

N +m s 

I    (y) = I 7,      qn sin(-^r =?-) p (odd mode) zo "       oo     u      nP w/d   d  ' r 

p=N 

and 

N  +m s 
E*y AY 

qP cos("w/d ~) p (even mode) (4"3) 

where 

y 

Ax = 0.025 
d 

The integral equation for obtaining the even- and odd-mode propagation constants will then con- 
tain the above series expressions for the current transform I (y) instead of the analytic expres- 
sions used in Sees. II and III. 

Referring to the four possible cases of microstrip propagation listed in Sec. IV-A, the first 
three involve both a scalar permeability and a scalar permittivity. If only longitudinal currents 
are assumed to flow on the conductors, then these cases will require the use of integral Eq. (2-27) 
subject to the above change in the current transform. For the magnetized ferrite case in which 
the permeability is a tensor quantity, Eqs. (3-24) and (4-3) must be used to obtain the even- and 
odd-mode propagation constants. Due to symmetry and the fact that the conducting strips are 
now situated at x = ±(s + w/2) instead of at the origin, the integrands of these integral equations 

must be multiplied by cosofs + w/2) for the even mode and sina(s + w/2) for the odd mode. 

C.    Characteristic Impedance 

The same kind of quasi-static definition involving voltage and current used for the single 
strip (see Sec. II-C-3) will be used here to obtain the characteristic impedance associated with 
the even and odd modes of propagation on the coupled microstrip structure.    However,  the paths 
of integration as well as the field components involved are different.    The validity of these rather 
arbitrary definitions can be tested once a measurement technique that accounts for connector 
mismatch is established. 

For the odd mode,   symmetry dictates that the plane x = 0 be at ground potential and the two 
strips be at a potential of +V and —V,  respectively.    Thus,  the odd-mode characteristic imped- 

ance Z      can be defined as the ratio of the voltage V   between the strip and the bisecting plane 
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to the total current flowing on a strip I     ,.    Expressing V in terms of the line integral of the 

electric field gives 

r«    ri 
J-OO    JQ 

s/2g 
x 

Z 

dxda 
y=d  

oo I      , zod 
(4-4) 

For the even mode,  both strips are at a potential +V   with respect to the ground plane and 
each strip carries half the total current 21       .    The even-mode characteristic impedance Z r zev r oe 
per strip to ground is then given by the ratio of V   to I       .In terms of the electric field and 
the current distribution function Z      becomes oe 

J — oo    J 0 
d& 

Z 

dyda 
x=(s+w)/2  (4_5) 

oe I zev 

where I is given in Sec. IV-B.    Note that the line integral of the vertical electric field com- 
ponent can be taken at the center of the strip if it is assumed that the strip width is small com- 
pared to a wavelength. 

More approximate expressions for characteristic impedance can be obtained by using the 
TEM definitions 

and 

Z      =^£ff_od  z 

z      _    eff ev z 
oe"    jg-        oe 

K=l 

(4-6) 
K=l 

The impedances for the air microstrip line (K = 1) are obtained from Bryant and Weiss's TEM 

solution.    Their dependence on w/d and s/d is illustrated in Fig. 5.    The above impedance equa- 
tions agree very well with the more complex set of Eqs. (4-4) and (4-5) at zero frequency.    How- 
ever,  the relative merit of these two sets of impedance equations for finite values of frequency 
has not been determined because of the lack of an adequate measurement technique. 

D.    Application to a Directional Coupler 

The theory that has been presented on coupled microstrip lines is directly applicable to the 
design of the microstrip quarter-wave directional coupler,   shown in Fig. 6.    With pure TEM 
lines,   such as the stripline configuration,  one can design a broadband directional coupler for 
any degree of coupling.    However,  the asymmetry of microstrip with its imbalance of even- and 
odd-mode phase velocities results in a narrow bandwidth and what has been experimentally found 

31 to be a finite directivity limit for tight coupling. 

The scattering matrix for a microstrip directional coupler with lines of characteristic im- 
pedance ZQ connected to all four ports is a function of the even- and odd-mode velocities and 
impedances (weY>y0d>zoe>Z'QO,  respectively) and has the form 
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[S  ] 1   cJ 

A       B       C       D c       c       c       c 

B      A       D      C c        c        c        c 

C       D       A       B c       c       c       c 

D       C       B      A c       c       c       c 

(4-7) 

The quantities A  ,  B  ,   C  ,  and D   are given for convenience in Appendix D.    In the special 
c      c      c c 1/2 

case where v      = v   , and Z    = (Z     Z     )  '   ,  the matrix terms A    and D   are both equal to zero, ev       od o oe   00 c c 
which makes the device a perfect coupler.    This can only hold true for TEM transmission lines. 
However,  for the microstrip case,  all the terms are finite due to the unequal phase velocities 
which cause the coupler to exhibit poor directivity and narrow bandwidth. 

To the best of our knowledge,  no experimental results on ferrite-filled microstrip directional 
couplers have been reported to date in the literature.    Since this report gives equations for cal- 

culating the even- and odd-mode velocities and impedances for both a dielectric and a ferrite 

substrate, there is more flexibility in choosing the geometry and substrate material for the 

microstrip device.    In order to improve the coupler's performance,  the phase velocities must 

be brought closer together.    As illustrated by the theoretical and experimental results described 
in Sec. V-D,  this can be accomplished in a microstrip with a demagnetized ferrite substrate if 

operation is restricted to a frequency band corresponding to values of normalized saturation 
magnetization m    (defined in Sec. V-B) between about 0.4 and 1.0. 

E.    Application to a Meander-Line Phase Shifter 

In order to get a nonreciprocal interaction with a ferrite substrate,  a microwave circuit 
which produces circularly polarized magnetic fields in the ferrite material is required.    A cir- 

cuit component that can achieve this is a meander line that consists of a periodic array of the 
basic element shown in Fig. 7.    By making the meander path length 1 a quarter-wavelength,  both 

time quadrature and space quadrature of the 
RF magnetic fields will be provided at point A. 

If a DC internal field is applied parallel to the 
strip,  as shown in Fig. 7,  the magnetic moments 
in the ferrite material will precess in a circular 
orbit about the steady internal field vector.    If 

this precession is in coincidence with the signal 
circular polarization established by the meander- 
line circuit,  there will be strong coupling and 
enhancement of phase delay for one direction 
of propagation,   but very weak coupling and an 

opposition to phase delay for the opposite direc- 

tion.    This produces the desired "differential" 
phase shift,  the amount of which depends upon 

the strength of the applied field,  the ferrite material's saturation magnetization,  and the frequency. 

The analysis of this ferrite device is quite complex because of the fact that the degree of RF 
magnetic field circular polarization not only varies from purely circular at the center of the lines 
through elliptical to linear at its ends,  but also varies throughout the cross section of the line, 

Fig.7.    Basic element of meander-line phase shifter. 
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i.e.,  perpendicular to the direction of propagation.    Another complication for meander lines 

having a small pitch (period of repetition of the basic elements) is the dispersion of the micro- 
32 

wave circuit due to coupling between nonadjacent elements.    Butcher      only studies this effect 

for a meander-line structure without the presence of a ground plane or any dielectric disconti- 

nuity.    Thus, there exists at present no way of theoretically predicting the amount of differential 

phase for this device. 

There has been some recent work in obtaining a design procedure for yielding a matched 
27 meander line.    Hair and Roome      used an iterative-type procedure based on an infinite number 

of meanders and involving the reading of several sets of curves which give various fringing ca- 

pacitances.    Their analysis falsely assumes equal impedances and velocities for the even and 

odd modes that propagate on the meander line. 
33 A recent Ph.D. dissertation by Libbey      contains a more valid approach for the case of a 

few meanders.    The differences in the velocities and in the impedances are accounted for by a 
34 

modification of Jones and Bolljahn's      all-pass filter equations.    Libbey's derived expressions 

for image impedance Z. and insertion phase <p. of the single meander,  shown in Fig. 7,  are 

given below. 

tan k   ,i 

and 

where 

ZT =   [z    Z        /- pSS- (4_8) I     v   oe   oo   / tank    t v       ' ev 

(Z     /Z     ) - tank    1 tank   ,i oe     oo ev od ,.   _. 
cos<^I=  (Z     /Z     )+tank    itank   .1 (4"9) 

oe'    oo ev od 

od      vod 

and 

k     .-2-    . 
ev     v ev 

The dynamic theory for coupled microstrip lines given in Sees. IV-C and IV-D can now be 

used for determining Z   and <j> .    The only difficulty that remains is the question of what expres- 

sion to use for the permeability of the magnetized ferrite substrate.    If it is assumed that the 

fields are circularly polarized and that the effect of the short meander-line section oriented per- 

pendicular to the applied field is neglected,  then the permeability for the forward (+) and reverse 

(—) directions of propagation can be taken as scalar quantities 

+ 
M-    = M-4 -^2 (4-10) 

and 

M-    = M-1  
+ M-2 (4-11) 

where |i. and ji9 are the diagonal and off-diagonal components of the permeability tensor,   re- 
35 spectively.    These components are known for the case of an infinite ferrite medium      but not for 

3A 
the microstrip slab configuration.    Schlomann      recently obtained a solution for the effective 
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permeability tensor components of a magnetized ferrite configuration consisting of an arbitrary 

number of concentric,  cylindrical,  magnetic domains which are oriented along the cylinder's 
axis either parallel or anti-parallel to the applied DC magnetic field.    This theory may be ap- 

plicable to microstrip if one views the ferrite substrate as being composed of a large number of 
cylindrical magnetic domains oriented either parallel or anti-parallel to the direction of propa- 

gation and the applied field H  .    The forms taken by Schlomann's theoretical curves of permea- 
bility versus relative magnetization M/M   for a ferrite sample having at least 80 domains were 

nearly parabolic in the case of the diagonal component \i.   ,f and approximately linear in the case 
of the off-diagonal component [i-   ff.    As a result,  the following equations were derived from 

these curves: 

LL    .    + (1 -u    .   ) (M/M  )2 (4-12) 1 eff     ^min 

and 

where 

^ off = m(M/MJ (4-13) 2 eff s      '     s 

u. = (1 — m   )  ' ^min s 

m    = 2.8(47rM  )/f      ,       as defined in Sec. V-B 

Substituting these expressions into Eqs. (4-10) and (4-11) results in the following scalar perme- 
abilities for the circularly polarized case: 

/•,„,.*»-,„,„»  (^)2-».(*) ,4-14, mm rmin 

and 

--•-*• «-•"**>(*)*•-.(*)   • <4-5» x    s s 

As illustrated in Sec. V-E,  these equations can then be used in the propagation constant integral 
equations that are applicable for both a scalar permeability and a scalar permittivity. 

F.    Summary 

This section has been devoted to the dynamic theory for a coupled pair of microstrip lines 
on both a dielectric and a ferrite substrate.    For the cases in which the substrate can be char- 
acterized by a scalar permeability as well as a scalar permittivity,   integral Eq. (2-27) is utilized 
in conjunction with a discrete Fourier transform of the static current distribution given byEq.(4-3) 

to obtain the coupled microstrip's even- and odd-mode propagation constants.    The numerical 
results for typical microstrip parameters are described in Sees. V-C,  V-D and V-E.    As soon 
as the permeability is known for the magnetized ferrite substrate,  Eqs. (3-24) and (4-3) can be 
used to obtain the magnetized coupled microstrip propagation constants. 

V.     PRESENTATION AND DISCUSSION OF THEORETICAL 
AND EXPERIMENTAL RESULTS 

The numerical solutions of the theoretical equations obtained in preceding sections are dis- 
cussed below and,   in some cases,   compared with experimental results.     Cases for a pure 
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dielectric substrate as well as a demagnetized or magnetized ferrite substrate will be covered. 
The microstrip geometry and material are chosen to represent typical microwave integrated 
circuit applications. 

Using a digital computer to solve integral Eq. (2-27) for the quantity £,  it was only neces- 
sary to sum over values of the integration variable y between 0 and 100 in order to acquire ac- 
curacy to within the fourth decimal place,  because the integrand converged quite rapidly.    A 
half-interval search technique (subroutine TRANS) was used to find the roots of the equation. 

All the computer programs in Fortran IV language and the flow chart are given in Appendix E. 

A.    Single Microstrip Line on a Pure Dielectric Substrate 

In order to establish the validity of the theory presented in Sec. II,   it was necessary to ini- 
tially make a comparison with the static solutions of Bryant and Weiss      by solving for £ = e ff 

at zero frequency.    Longitudinal current solutions were obtained using the Fourier transforms 
for both current distributions given by Eqs. (2-27) and (2-28) and the results plotted as a function 
of K and w/d,   as shown in Figs. 8 and 9,   respectively.    The first curve,   which was calculated 
for a w/d ratio of 0.4,   showed that the use of the Maxwell distribution for the current produces 
results that agree almost exactly (within 0.2 percent) with Bryant and Weiss's solution,  whereas 
the current distribution of Eq. (2-28) yields a solution which is about 0.6 to 0.8 percent low. 

With K held constant,  Fig. 9 shows that the solution utilizing the Maxwell function agrees best 
with the recent static solutions mentioned in Sec. I for w/d values in the range o < w/d < 1.2, 
while the current distribution function of Eq. (2-28) yields better agreement for higher w/d values 

(w/d > 1.2).    If the least amount of computer time is desired,  then the use of the latter function, 
which is accurate to better than 1 percent for all values of w/d and K,  is recommended. 

The complete solution described by Eqs. (2-25) and (2-26) was found to require a large 

amount of computer time.    A couple of points were computed and the results were in excellent 
agreement with the longitudinal current solution both at zero frequency and at a finite frequency. 
It was concluded that the  solution which neglects the transverse  current is  a very good 
approximation. 

In regard to the characteristic impedance Z  ,  the zero frequency values calculated from 
Eq. (2-34) with N equal to unity agree within 1 percent of Wheeler's results,   which are the most 

accurate of the available TEM solutions for small w/d values (<0.2).    The theoretical equation 
for Z   that involves a line integral in the plane x = 0 necessarily implies that a very narrow 
strip is considered.    However,   Fig. 10 illustrates that better than 1 percent accuracy can be ob- 
tained for wider strips by choosing a normalization constant N of 0.95.    Figure 11 shows the 
variation of Z    with substrate dielectric constant K. o 

Returning to Eq. (2-27) and solving for j = c ,, as a function of frequency results in a dis- 

persion curve,   illustrated by Fig. 12.    Note that the curve asymptotically approaches the sub- 
strate's dielectric constant at very high frequencies,   indicating that all the energy is being 
confined to the dielectric.    The phase velocity v can now be obtained from Eq. (2-20);  its fre- 
quency dependence is shown in Fig. 13.    An interesting observation is that this curve has an 
inflection point at which the velocity starts to approach the value v /\/K and is given by the 
following equation: 

v 
f   =  ° . (5-1) 
c      4d sJK- 1 
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This   same    frequency   was   defined   by   Hartwig, 
15 et al.,     as the "divergence frequency" above which 

the   propagation of   energy is not confined   to the 
microstrip configuration,   but is coupled to a TE. 

surface wave.     Consequently,   for frequency f > f , 
the energy can propagate along the  surface of the 
substrate in all directions and will radiate from the 
edges. 

An experimental check of the above frequency 
dependence of velocity can easily be accomplished 

by the use of a microstrip resonator which is in the 
37 form of   a ring       or   a straight  open-ended   line. 

The former,   shown in Fig. 14,   is employed when- 

ever end effects associated with the  straight-line 
resonator  become significant.     It is seldom useful 

for low-frequency measurements (typically,  <3GHz) since the length must be at least five wave- 
lengths in order to avoid the effects of mutual inductance.    However,  the fringing effects of an 
open circuit are negligible at the low-frequency end,   so that here the multiple half-wavelength 
long,   straight-line resonator can be used. 

COUPLING   GAP :50-0HM  TRANSMISSION 
TEST   PROBE 

Fig. 14.    Ring resonator. 
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Fig. 15.   Experimental arrangement for velocity measurement. 

Figure 15 shows the experimental arrangement for measuring the microstrip line's phase 
velocity with the use of either one of the resonators mentioned above.    Transmission Q-factor 
measurements are made using sweep gear,  and the coupling gap to either the ring or to the end 
of a straight microstrip line is adjusted until the unloaded Q factor is measured.    This occurs 
whenever there is no further increase in the value of Q with increasing gap size and is usually 

at a level of — 30 dB relative to straight-through transmission without the resonator.    Knowing 
the mean length of the ring or the straight line,  the resonant frequency can be measured at any 
of the harmonic resonances.    Then the phase velocity is simply given by 
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Lf 
(ring) (5-2) 

and 

2Lf 
(straight line) (5-3) 

where 

and 

L = length of resonator 

n = harmonic number 

f   = resonant frequency for n     harmonic 

The results of velocity measurements along with theoretical curves are shown in Fig. 16 for 

a 50-ohm microstrip line deposited by vacuum-deposition techniques onto a very commonly used 

magnesium titanate substrate.    The dielectric constant of a sample of this material was accu- 
38 rately measured by Courtney      of the M. I. T. 

Lincoln Laboratory,  using a precise TE.. cavity 

technique.    Since the substrate's dielectric con- 

stant was large and its thickness small,  no sig- 
nificant fringing at the end of the straight-line 

25 resonator would be expected.       However,   as a 

check,   two different lengths of line were used 

in the measurement and the velocities compared. 

Negligible difference was observed.    In compar- 

ing the above results with the theory,   there is 
extremely good agreement if Maxwell's current 
distribution is used in the integral Eq. (2-27). 
The other distribution [Eq. (2-28)] produces an 

inaccuracy of only about 0.3 percent,   while re- 

quiring one-fifth as much computer time as 
Maxwell's function. 

Using the values of effective dielectric con- 

stant versus frequency obtained from the above 
calculations,   Eqs. (2-34) and (2-35) were used 
to get the variation of characteristic impedance 

with frequency.    Negligible difference was observed between the results of these two equations. 

The theoretical curve is given in Fig. 17 and shows a total impedance change of only 3 percent 
at 8 GHz. 

B.    Single Microstrip Line on a Demagnetized Ferrite Substrate 

For the demagnetized ferrite case,   integral Eq. (2-27) is again used to obtain £ = u.  fff  ,f. 
The expression for the ferrite's scalar permeability,  which must be substituted into the integral 
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equation,   is a function of the material's saturation magnetization 47rM    (in kG) and the frequency 
f (in GHz), 

36 

2  ,, 2,1/2  ,   1 
^r=   3   (1-ms) +  3 (5-4) 

where m    is known as the normalized saturation magnetization and is given by 

2.8(4TTM  ) 

s f 

with the factor 2.8 being the gyromagnetic ratio in units of GHz/kG.    With the use of Eq. (2-20), 
a theoretical curve of ferrite microstrip phase velocity versus frequency can be obtained with 
47rM ,   K,  w/d,  and d as parameters.    Figure 18 shows such a curve for a microstrip on a 
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garnet substrate.    As the permeability of the material decreases rapidly near the natural reso- 

nant frequency,  f     = 2.8(47rM ),  the phase velocity increases at a fast rate.    Experimental meas- 

urements obtained with a ring resonator given in the same figure show good agreement with the 

theoretical results. 

A curve that is universally true for all ferrite substrate materials is that of effective per- 

meability \i  „ versus normalized saturation magnetization m  .    Such a curve can be derived by 

using the quantity calculated above as well as an e „ that is a solution of the integral equation 

for a pure dielectric substrate having the same values of K,  w/d,  and d as the ferrite.    Then 

\s. ff will be simply given by 

—6      • (5-5) 
eff      eeff, I dielectric 

Figure 19 shows the results of this calculation along with experimental values.    It has been ex- 

perimentally verified by the author at Lincoln Laboratory that microstrip lines with frequently 

used ferrite materials having saturation magnetizations between 400 and 1400 gauss obey this 

same ji ff. vs m    curve. 

C.    Coupled Pair of Microstrip Lines on a Pure Dielectric Substrate 

Using the theory described in Sec. IV-C,  the zero frequency values of even- and odd-mode 

effective dielectric constants were calculated and were found to agree within 1 percent of the 

coupled strip results of Bryant and Weiss.       This agreement is expected since the static current 

distribution data is used directly instead of using an approximate current distribution function 

as for the single strip problem.    The only discrepancy might arise in the case of very narrow 

strips (w/d < 0.3),  for which the discrete Fourier transform of a small number of current ele- 

ments is not accurate enough.    This can be remedied by making a finer grid than that chosen by 

Bryant and Weiss (Ax/d = 0.025). 

Figure 20 shows the effect of frequency on the even- and odd-mode effective dielectric con- 

stants.    The percentage change at 8 GHz for the even mode is more than five times that for the 

odd mode,  and it has 2.5 percent more dispersion than a single microstrip line with the same 

parameters of K,  w/d,  and d.    The latter calculation was made using Maxwell's current function, 

which is the most accurate for a w/d ratio of 0.5.    Figure 21 illustrates the effect of substrate 

thickness on the dispersion.    This curve is given for a value of d which is three times that for 

the previous curve,  but otherwise has the same microstrip parameters.    An important conclusion 

can be drawn from the two curves.    If only the parameter d is changed by a ratio d./d_,  then 

the resulting percentage changes of the effective dielectric constant from the static value are 

approximately related by this same ratio.    The latter can also be expressed in terms of the di- 

vergence frequency given by Eq. (5-1).    This conclusion is summarized in the following manner: 

At  ,, eff 

Ae   .. eff 

d,,f f ,       d. 
•* = 7£i = di    • <5"6> 

cl       Q2 
% 

d2,f 

If the substrate dielectric constant should also be changed, then the divergence frequency ratio 

can again be used as 
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Fig.21. Effective dielectric constant versus frequency for a coupled pair 
of microstrip lines on a thick substrate: K = 14.4, w/d = 0.5, s/d = 0.2, 

d = 0.3048 cm. 
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Fig.22. Theoretical and experimental curves of even- and odd-mode phase 
velocity versus frequency for coupled lines: K = 16.24, w/d = 0.375, 
s/d = 0.25, d = 0.1041 cm. 
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(Aeeff 
dl'Ki'f 

% 
fc2 

|Aeeff d2,K2,f 
% 

fcl 

hJ^7 

1     ^J^F* 
(5-7) 

Of course,  for both of these relationships to hold,  the parameters of w/d and s/d for the even- 

and odd-mode calculations and w/d for the single strip must remain constant.    However,   it has 

been observed that the strip width and gap spacing have much less effect on the amount of disper- 

sion than does the substrate's thickness and dielectric constant.    Therefore,  an approximation 

of the effective dielectric constant for any set of microstrip parameters can be obtained by using 

the frequency dependence given in Fig. 21 and the static values of effective dielectric constant 

given by Bryant and Weiss     : 

f 
feff(f) = eeff(0) +T^ 6'(f) (5"8) 

where 

f    = divergence frequency for the desired microstrip line 

and 

= v /4d «JK- 1 
o' 

E ff(0) = static value of effective dielectric constant given by 
Bryant and Weiss for the desired microstrip line 

eeff(f) - Eeff(0) 

S'(f) =    ;—Tfpj   for parameters given in Fig. 21 
eetty ' 

f   = divergence frequency in Fig. 21 = 6.35 GHz 

It must be pointed out that the above formulas are only rough approximations.    In reality, the 

even and odd modes and the single microstrip mode all have different inflection points for their 

dispersion curves because of their different degrees of dielectric luading.    The inflection point 

f   shown in Fig. 21 applies only to the single microstrip line.    It is evident from the shapes of 

the curves in this figure that the even mode's inflection point is lowest,  the single line point is 

a little further out on the frequency axis,  and the odd-mode point is much further out and is the 

highest of the three.    Thus,  Eq. (5-8) is most accurate for the even mode and the single strip 

effective dielectric constants. 

Figure 22 gives a comparison between theoretical and experimental curves of phase velocity 

versus frequency for coupled lines on a magnesium titanate substrate. The disagreement is less 

than 0.5 percent over the entire frequency range of 1.0 to 8.0GHz. 

D.    Coupled Pair of Microstrip Lines on a Demagnetized Ferrite Substrate 

For coupled lines on a demagnetized ferrite substrate, the same procedure as for the pure 

dielectric substrate is followed. Schlomann's expression for permeability [Eq.(5-4)] is used 

in the integral equation for obtaining £ = \i ffe   .. and the phase velocity v = v /\!T- 

Curves of phase velocity versus frequency for a typical garnet material (composed of 

aluminum-gadolinium-substituted yttrium iron garnet) having the same microstrip parameters 
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Fig.23. Phase velocity versus frequency for 
coupled lines on a demagnetized ferrite sub- 
strate:   K = 14.4, w/d = 0.5, s/d = 0.2, 
d = 0.1016 cm, 4irM  = 0.800 kG. 
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Fig.24. Product of effective dielectric constant and effective 
permeability (pefj) versus normalized saturation magnetization 
(ms) for coupled lines on a demagnetized ferrite substrate: 
K = 14.4, w/d = 0.5, s/d = 0.2, d = 0.1016 cm. 
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of K,  w/d,  s/d,  and d as those used in Sec. V-C,  are shown in Fig. 23.    For comparison,   the 

even- and odd-mode velocity curves for a pure dielectric with identical relative dielectric con- 

stant,  K = 14.4,  are also shown.    At high frequencies,  the ferrite curves asymptotically approach 

those for the dielectric.    However,  near the natural resonant frequency,  they are quite different 

since at this point,  the ferrite microstrip even- and odd-mode phase velocities increase rapidly 
as the material's permeability becomes small.    The important thing to note here is that over a 

wide frequency band,  the even- and odd-mode phase velocities for coupled lines on ferrite are 
closer together than those on pure dielectric.    This should make ferrite a very attractive sub- 

strate material to use for microstrip directional couplers.    The reason for this has already been 
discussed in Sec. IV-E. 

Curves that are applicable to all ferrite materials with the same dielectric constant are 
shown in Figs. 24 and 25.    The former shows how the propagation constants for the two modes 
approach one another as the normalized saturation magnetization m    is varied between 0.4 and 

Q z S 

1.0.    By judicious choice of ferrite material,     operation with reasonable losses is limited to the 
region mg < 0.85.    For mg > 0.85, the ferrite's natural resonance causes the material to be ex- 
ceedingly lossy.    Figure 25 shows curves of effective permeability versus normalized saturation 
magnetization.    Note the very small difference between the values for the even mode and for the 
single strip,  while the odd-mode values are somewhat higher and become increasingly different 

as mg = 1.0 is approached.    The odd mode exhibits a higher effective permeability for the simple 
reason that more of its fields extend into the air region above the surface of the microstrip 
substrate. 

The advantage of using ferrite for couplers was demonstrated by comparing ferrite micro- 
strip contradirectional couplers, constructed as shown in Fig. 6, with a device having the same 

microstrip parameters but with a pure dielectric substrate.    The parameters w/d,   s/d,  d,  and 
K were those used for the theoretical curves shown in Figs. 23,   24,  and 25 and were chosen to 

31 give a coupling coefficient of 9dB.       With the ceramic substrate, the bandwidth over which this 
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Fig.25. Effective permeability versus normalized saturation magnetization 
for coupled lines on a demagnetized ferrite substrate: K = 14.4, w/d = 0.5, 
s/d = 0.2, d = 0.1016 cm. 
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coefficient remained constant was 1.2 GHz.    By using a ferrite substrate,  the coupling bandwidth 

was increased to 2.0GHz.    Also,  the device's directivity was improved by at least 5 dB over the 

coupler's useful bandwidth.    The forward loss from ports 1 to 2 did not significantly increase 
until the normalized saturation magnetization (m  ) exceeded 0.85.    Above m    =1.0,  there was 

more than 30 dB of loss at all of the ports. 

E.   Coupled Pair of Microstrip Lines on a Magnetized Ferrite Substrate 
with Fields Circularly Polarized 

This section illustrates how nonreciprocal interaction can take place when a pair of ferrite 

microstrip lines,  subject to a steady longitudinal magnetic field,  are in a configuration which 

causes their RF magnetic fields to be circularly polarized.    This case is discussed in Sec. IV-E 

in connection with a meander-line phase shifter.    If the scalar permeability Eqs. (4-14) and (4-15) 
are used for calculating the forward and reverse propagation constants,  respectively,  then curves 

of £, = u   ..£   ., versus frequency are obtained,   as shown in Fig. 26.    These curves are for a garnet 

substrate,  which is assumed to be latched at the remanent point of its B-H loop with  k parallel 
to  M.    Even- and odd-mode phase velocities can easily be obtained by using the relation 
v = v /*>/|.    The values of £   for the reverse direction are essentially the same as for a pure 

dielectric substrate,  which indicates there is very little interaction of the fields with the ferrite. 
However,  when the wave is propagating in the same direction as the ferrite's magnetic moments 

are aligned,   there is strong interaction with the ferrite.    This results in a large differential 
phase shift. 
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Fig.26. Product of effective dielectric constant and effective permeability 
((jgff) versus frequency for coupled lines on a magnetized ferrite substrate 
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F.    Summary 

In this section, the frequency dependence of single and coupled microstrip lines was illus- 
trated by the use of theoretical equations developed in previous sections. For microstrip with 

a pure dielectric substrate, the amount of frequency dispersion is primarily affected by the sub- 

strate's dielectric constant K and thickness d. However, in the case of a ferrite substrate, the 
normalized saturation magnetization m is the most important factor to consider. Agreement 
between theoretical and experimental results for both single and coupled microstrip was found 

to be very good. 
When the coupled microstrip theory was applied to a quarter-wave directional coupler,  the 

use of a ferrite substrate resulted in a significant improvement of device performance over that 
obtained with a ceramic substrate.    Nonreciprocal interaction with coupled microstrip lines on 
a magnetized ferrite substrate,  which is essential for meander-line phase shifter operation,  was 

also demonstrated. 

VI.   CONCLUSIONS 

The main contribution of this study is a frequency-dependent solution for microstrip on both 
a pure dielectric substrate and a ferrite substrate which exhibits gyromagnetic properties upon 
being magnetized.    It utilizes a novel Fourier transform method that sums up the solutions for 
a "fictitious"  surface current distribution in order to obtain the  fields that are caused by the 

actual current distribution that is finite only over the region occupied by the conducting strip 
(or strips for the coupled line case).    Due to the fact that the transverse current is expected to 
be much smaller in amplitude than the longitudinal current for normal operating frequencies and 
strip widths,  a solution involving only the longitudinal current was found to be sufficiently accur- 
ate.    This has been demonstrated by the excellent agreement obtained between theoretical and 
experimental values of phase velocity over a wide frequency range for both single and coupled 
lines on dielectric and ferrite substrates. 

Some of the most interesting theoretical results obtained from the study of frequency de- 
pendent behavior of microstrip lines are:   (1) the dispersion curve has an inflection point which 

is a function of the substrate's thickness  d,   dielectric constant K,   and velocity of light v 

according to the equation f   = v /(4d \l K — 1); (2) at very high frequencies,  the effective dielectric 

constant asymptotically approaches the substrate's dielectric constant K and the phase velocity 
approaches v /"•fK,  which indicates an increasing part of the energy is being confined to the di- 

electric;  (3) the dispersion of the even mode in coupled microstrip lines is about five times as 
great as that of the odd mode and is slightly greater than that for a single microstrip line;   and 
(4) the effective permeability of coupled microstrip on a demagnetized ferrite substrate is higher 
for the odd mode than for the even mode,  and the values for the two modes become increasingly 
different as m   approaches 1.0. 

The theory presented for a coupled pair of microstrip lines is applicable to a variety of 
microwave integrated circuit devices.    Two examples have been given here:   a directional coupler 
and a meander-line phase shifter.    An interesting result was obtained in regard to the former 

device.    If a ferrite substrate is operated in a frequency region corresponding to normalized 
saturation magnetization (m  ) values greater than about 0.4,  then the even- and odd-mode phase 
velocities become increasingly closer together as m   approaches 1.0 and are always closer to- 

gether than for the case of a pure dielectric substrate.    Since the coupler's scattering matrix 

4 3 



predicts better performance with more equal phase velocities,  the use of a ferrite substrate for 
this much-needed device looks very promising.    Experimental data show that a significant im- 

provement in bandwidth and directivity can be obtained by using ferrite instead of ceramics. 
Much more work is required before the complete understanding of the meander-line phase 

shifter is achieved.    It requires a knowledge of how the degree of circular polarization varies 
over the cross section of the device in order to theoretically predict the phase shift.    Such an 
investigation might well result in an "effective polarization factor" that one can use in modifying 

the result for perfect circular polarization given in this study. 
The most important investigation that is needed for the magnetized ferrite microstrip prob- 

lem is that regarding the permeability of the substrate.    An analysis similar to that accomplished 
by Schlomann for the cylindrical domain configuration must be made for obtaining the effective 

diagonal and off-diagonal permeability tensor components for the thin slab configuration.    Once 
these are obtained,  they can be used in the integral equation of this study for the propagation 
constant and phase velocity of either a single or a coupled pair of ferrite-filled microstrip lines 
for any degree of magnetization along the direction of propagation. 

In the microstrip theory presented here,  losses were completely neglected.    For a ferrite 
substrate,  the imaginary part of the permeability JJ." becomes very significant as the normalized 

saturation magnetization approaches unity.    Thus,  it is recommended that the theory be modified 
to include the losses of the ferrite material.    This is not believed necessary for most dielectric 
materials since their loss tangents are usually quite low (tan6 , s 0.0002). 

Another factor which was neglected in this study is radiation.    If the latter is included,  the 

transverse propagation constant is no longer a real quantity but is complex.    As a result,  care 
must be taken in choosing the proper contour of integration in the complex  a plane for obtaining 
the field quantities.    Integration can no longer be taken along the real axis as was done in 

Eqs.(2-9) and (3-6). 
It is hoped that this dynamic solution for both dielectric-filled and ferrite-filled microstrip 

will explain the frequently observed discrepancies between experimental results and the existing 

tabulated results from static solutions.    Now required lengths of line such as quarter-wave 
matching transformers for circulators,  etc.,   can be very accurately determined at any frequency 
without the use of trial and error methods. 
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APPENDIX A 

MICROSTRIP CURRENT DISTRIBUTION 

This appendix gives a derivation of the expressions of Eqs. (2-1) and (2-6) for the longitudinal 

and transverse components of current,  respectively,  and also the relative magnitude of these 
two components. 

I.      DERIVATION OF MAXWELL'S CHARGE DISTRIBUTION FUNCTION 

The following derivation for the charge density distribution on an isolated conducting strip 
23 was abstracted from Maxwell.       For the dynamic case,   it applies to the TEM solution for the 

longitudinal surface current distribution on a microstrip line as long as the ground plane is spaced 

far enough away from the strip.    As shown in Sec. V-B,  this restriction corresponds to keeping 
the w/d values less than about 1.2.    Because the circuit dimensions are very small compared to 

a wavelength,  we assume this treatment to be quasi-static in nature and thus the hybrid mode 
current distribution is taken to be the same as that for a pure TEM mode.    This assumption is 

borne out by the extremely good agreement between theoretical and experimental results.    Since 
this good agreement extends up to very high frequencies (at least 8 GHz),  the skin effect,  which 
would draw the current distribution even further to the edges of the strip with increasing fre- 
quency,  must be a second order effect.    The Maxwell distribution approaches infinity at the 
strip's edge anyway,  so that the form of the distribution remains consistent with the skin effect. 

Maxwell considered an isolated conducting strip,  as shown in Fig. A-l,  on which a charge 
of 1 coulomb/meter was placed.    He used a conformal transformation to find how this charge 
distributes itself across the strip. 

^   *   CONSTANT 

Fig.A-l, Isolated conducting strip with 
equipotential lines fa> = constant) and 
charge flow lines (<|> = constant). 

CONFOCAL  ELLIPSES   ANO   HYPERBOLAS 
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The variables x and y were expressed as conjugate functions of the variables  #  and ip by 

summing two sets of conjugate functions: 

x. = e^ cos^i y1 = e''' simp 

x, = e'V cos ip y2 = — e  ** sinip 

2x = x.  + x_ = (e^ + e-''') cos <p 2y = y. + y2 = (e^ - e  <p) simp 

The points for which <p   is constant lie on the ellipse whose axes are e' + e  • and e^ — e     . 

The points for which ip  is constant lie on the hyperbola whose axes are 2 cos ip and 2 simp.    The 
x axis between x = — 1 and x = +1 is accordingly described by 

_1 
0=0      ,       ip = cos     x      . (A-i) 

In order to apply this analysis to the microstrip problem,  we note that <f> = constant and ip = 

constant from an orthogonal family of curves.    Therefore,   <p   is taken as the potential function 
and tp the function of flow.    The surface charge density at any point on the conducting strip is 

then given by 

a(x) = i^| -l«x<l       . (A-2) 

Substituting Eq. (A-l) into the above equation gives 

ff(x) =   * -l<x<l      . (A-3) 
7T Vl  — X 

If the strip width is w instead of 2 and the total charge on the strip is a    instead of 1,  then the 
surface charge distribution becomes 

a 
a(x) =   ° — -w/2<Cx<w/2      . (A-4) 

TT N/l — (2x/v v 

II.    DERIVATION OF TRANSVERSE CURRENT DISTRIBUTION FUNCTION 

Since the charge density varies across the width of the microstrip line and the phase velocity 
in the substrate is different from that in the air,   a transverse component of current is never 
identically zero.    The following analysis uses the equation of continuity and the previously derived 
charge density distribution function to obtain an approximate expression for this  x  component of 
surface current I  .    It is assumed that there is much less spatial variation of the longitudinal 
current with  z   as there is variation of the transverse current with  x.    This is to say that the 
strip width is assumed to be much less than a wavelength. 

Consider an incremental area S in the center of the strip,  as shown in Fig. A-2.    Both lon- 
gitudinal and transverse surface currents are assumed to flow on the strip which has a surface 
charge density given by Eq. (A-4).    The equation of continuity relating the total vector surface 
current   I to the above quantity a  is 

V-T=-f     - (A-3) 
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GROUND   PLANE 

Fig.A-2.    Surface currents on the conducting strip of the microstrip configuration. 

This equation can also be expressed in integral form by 

iT'»dM'f dS (A-6) 

where C. is the curve enclosing area  S,   di is an incremental distance along this curve,   and  n 

is an outward normal vector to the curve.    Assume that  a  and  I  vary as e^      "        and that  6   is 

infinitesimally small.    Then the above continuity equation becomes 

-jkz pz   +6  px 
e °[2xl   -61    -2x1   -6I] = -jw\    °       \       a(x) e"J      dxdz 

z X Z xJ J      J„ J 

261    e x 

-ikz 
3« \      o-(x)  t 

-jk(6 + zQ)        -jkzQ 

e — e 
-jk 

dx 

juj6e 
-jkz T- (x) dx 

T
x(x) = ja>  \      a(x) dx 

' o 
(A-7) 

Substituting Eq. (A-4) into this equation gives for the transverse current distribution function 

(A-8) T  ,   > o w     . -1 , 2x. I  (x) = — jo; — -r- sin     (—) x J      i    2 ( w -T<X<T 
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m.   RELATIVE AMPLITUDE OF LONGITUDINAL AND TRANSVERSE  CURRENTS 

As shown in Sees. II and III,  the dynamic solution for the microstrip transmission line is 

enormously simplified if one can assume that only a longitudinal current flows on the strip.    The 

purpose of this section is to illustrate how insignificant the transverse component is relative to 

the longitudinal component and,  therefore,  to justify the above assumption. 

Consider a microstrip line on a substrate whose dielectric constant is 15.    According to the 

charge distribution data of Bryant and Weiss,  the total charge on a strip which is at a potential 
— 1 2 

of 1 volt is approximately 200 x 10       coul/m-volt.    If 1 milliwatt of power P is being carried 

by a microstrip line with Z    =50 ohms,  then the actual potential of the strip is 

4   o V =    Z P 

a 0.02 volt      . (A-9) 

Thus,  the total charge becomes 

a    a 0.02 volt X 200 x 10"12 coul/m-volt 
o ' 

a 4.0 x 10       coul/m      . (A-10) 

Substituting this value of aQ into Eq. (A-4) gives 

,   ,        1.3 X 10"12 ,.   ,., 
a(x) = — . (A-ll) 

«/l - (2x/w)2 

The surface current on the strip is related to the above charge function by 

-4 
I  (x) = vcr(x) =       j coul/sec (A-12) 

N/I - (2x/w)2 

where v = phase velocity « 1 x 10   m/sec.    Then the total longitudinal current is approximately 

I        = VCT zo o 

= 4.0X10"    coul/sec       . (A-13) 

In order to get the approximate amplitude of the transverse current,  the continuity Eq. (2-5) 

relating cr(x) and I (x) gives 

I  (x) = -jw  \     (T(X) dx      . (A-14) 
x Jo 

Substituting Eq. (A-ll) into this equation results in the transverse current distribution function 

Ix(x) =-j(l.3 x 10"12) to  ^ sin"1 (2x/w) coul/sec      . (A-15) 

Notice that this current function is directly proportional to the angular frequency to = 27rf' and 

the strip width w.    Averaging the function over half the strip width gives the approximate 

amplitude 
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/2 
(x) dx 

(0.37 X 10-12) cow (A-16) 

Typical values of frequency and strip width are 

f = •£• = 3 GHz 

-4 w = 5 x 10     m 

Using these values,  the magnitude of the transverse current is 

ll      I  = 0.035 X 10"14coul/sec     . 1 xo ' (A-17) 

Comparing this with the amplitude of the longitudinal current given by Eq. (A-13) results in a 
ratio 

1 
= 0.009 (A-18) 

Thus,  for typical operating frequencies and strip widths,  the transverse current amplitude is 
on the order of 1 percent of the longitudinal current amplitude. 
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APPENDIX B 
COEFFICIENTS OF HERTZIAN POTENTIALS FOR MICROSTRIP 
ON A DIELECTRIC OR DEMAGNETIZED FERRITE SUBSTRATE 

This appendix derives expressions for the coefficients of the potential functions given by 

Eq. (2-13) in Sec. II.    Once these coefficients are known,  then all the field quantities can be ob- 
tained by using the relationship for the Hertzian potentials and Eqs. (2-12). 

Expanding matrix Eq. (2-19) into four equations gives 

allAs+al2Bs+0+0 = 0 (B-l) 

0 + 0 + a„C    + a, .DQ = -jkl (a)/P' 
23   s        24   s 

a31As + a32Bs + a33Cs + a34Ds = ° 

(B-2) 

(B-3) 

and 

a..A    + a._B    +a.,C    + a. .D    = I (a) 41    s        42   s        43   s        44   s       z (B-4) 

Solving these equations simultaneously for the coefficients A  ,   B ,  C  ,  and D    results in s      s      s s 

As = (P2/Pl>    VsinV 

Cs = (P2/P1)Z Dg/coB/Jjd- jklx(a)/pf cos fid 

(B-5) 

(B-6) 

jlx(a) 

B    = s 

^/o^l tan/3ld . k« . 
 ~Z  b22 + -2b12 

1 1 
Va)b12 

Det(b.) (B-7) 

and 

-jy«> 
D. 

ka . ^y^jtan^d 
~^ bH ^Z  b21 

1 M 
Det(b..) 

z 11 
(B-8) 

where 

Det(V =bllb22-b12b21 

bll =_b22 • w- 
"^l    f/P2\2 ^2 

^2 = -^   l(pf)    ^rtan^ld-^ 

and 

o;Ke  /3. 

21 
1 [(if) co^id + ^^ 

For the analysis which includes only the longitudinal component of current,   set I (a) equal 
to zero in the above equations for the coefficients. 

so 



APPENDIX C 

COEFFICIENTS OF HERTZIAN POTENTIALS FOR MICROSTRIP 

ON A MAGNETIZED FERRITE SUBSTRATE 

I.      COMPLETE SOLUTION 

The complete solution that includes all the propagating modes supported by the ferrite-filled 

microstrip line has six Hertzian potential coefficients.    Four of these can be obtained by solving 

the set of simultaneous Eqs. (3-24),   given in Sec. III.    The remaining two coefficients A, and C. 

are obtained from boundary conditions (3-17) and (3-18).    All the electromagnetic field quantities 

can then be obtained by using Eqs. (3-11),   (3-12),   (3-13),   (3-15),   and (3-16). 

The potential coefficients needed for obtaining the propagation constant are given by 

Gt=-ZlIz(a)+Z2Ix(a) 

Ft = Z3Iz(Q)-Z4Ix(o) 

where 

Z,   = 
Det(ar) 

ail     a12 

a21     a22     a24 

a31     a32    a34 

2      Det(a.) 

ail     a12 

a31     a32     a34 

a41     a42     a44 

Z3      Det(ai;j) 

all     al2     a13 

a21     a22       ° 

a31     a32     a33 

and 4      Det(a..) 
il 

aH     ai2     a!3 

a31     a32     a33 

a41     a42     a43 

The rest of the coefficients are expressed in terms of F   and G   by the relationships 

B. 
ai2[a24Ft + Ix(a)]-al3a22Gt 

alla22_a2iai2 

I), 
ai3a21Gt-all[a24Ft + Ix(tt)1 

alla22~ a2iai2 

and 

Ct=-(x2FA1F)2Dt 

,32FT2F 
t (31FT1F  VX2F/X1F'    Dt 

The coefficients a., are: 
iJ 

si 



a11=bo(S2-b3Sl)      ,       a12 = bo(C2-Cl) ai3 ~ a24 
12. 

and 

where 

a21 =bl(S2-^fJS1)       '       a22 = bl(C2-^C1) 

a31 = aSF [b3(X2F/x1F)2 SI - S2] + /32FT2Fb2 

a32 = -°SFb2 + ^2FT2F  [^ (
^2F/

X
1F

)2
 

S1 ~ S2] 

a33 = a44 = ja 

'3 

Ct/fJ. 

l34 = IT ^2 a43 "  IT *2 

a41 = Jk 

a42 = Jk 

Q[M2FS2-b3(X2F/XlF)2M1FSl]+NF^F  [|2I   (^Z)2
cl_C2]j 

a [M2FC2 - (X2F/X1F)2 M1FC1] + N^ S2 
2F   VX1F; i 

b   = —k — v__, o ^   *2F 

X2FT2F 
b.,  = j    T 

o^z 
b2 = C2 /*2F 

U1F 

b, = ^2FT2F 
3 ~  ^1FT1F 

SI = sin(/31Fd) S2 = sin(/32Fd) 

Cl = cos(01Fd)      and      C2 = cos (0-pd) 
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APPENDIX D 
SCATTERING MATRIX FOR A MICROSTRIP DIRECTIONAL COUPLER 

The scattering matrix for a quarter-wave microstrip directional coupler,  which has all its 

ports connected to lines of characteristic impedance Z    and is shown in Fig. 4- 3,   is of the form 
34 given by Eq. (4-7).    By following a procedure similar to that of Jones and Bolljahn,      Thomas 

Bryant of Lincoln Laboratory derived the following expressions for the matrix elements from 
which the coupler's forward loss,  coupling coefficient,  isolation,  and input reflection coefficient 
can be determined: 

B    = T^CT-T (2(D   cose    +D    cose   ) + j(A,D   tane    cose    + A.D   tan6    cose   )) c      DEN  l       e e        o o      J     3   e o e        1   o e o ; 

C    = K4TK7 f(Z'   A. -Z'   AJ tane    tane    + i(A_ tane    + A. tane   )) c      DEN  l     oo   1        oe   3 e o     J     2 e        4 o J 

I) 4^7 (2(D    cose    -D   cose   ) + i(A,D   tane    cose    -A,D   tane    cose   )) EN  l       e e        o o'     JV   3   e o e        1   o e o ' DEN 

39 By using the power-conservation condition for a lossless junction,       the matrix element A    can 

be found from the following relations: 

|Acl"^-|Bc|
2-|Cc|

2-|Dc|
S 

0A= 0B-cos 
|BCI   |AC| 

COS(<t>c -  0D) 

where 

6    = ^^ t 
°      vod 

A, = Z'     + =7 1 oe      Z' oe 

71     _  i. 
^oe       Z' 

A    = — A3      Z' 
+ Z' 

oo 
-Z' 

oo 

D    = 1 + tan   e o o D    = 1 + tan   e e e 

DEN = 4-(A,Z'     +A,Z'   ) tane    tane    + j    (3Z'     + •£-) tane 1   oo        3   oe e o     J    \     oe      Z'   / « 1 oe 

+ |3Z'    + -£r-) tane \     oo      Z'    / o I v no' •• 

and 

(0.,0_,0 _,,</)_} = phase angles of matrix elements 
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The coupler's transmission losses (in dB) and reflection coefficient are given by 

Forward loss (1-2) = 10 log1Q IBJ
2 

Coupling (1-3) = 10 log10 |Cc|
2 

Isolation (1-4) = 10 log10 IDJ
2 

|D   |2 

Directivity = 10 log. n —=—v 
10 |C   |2 

'   c ' 

and 

Reflection Coefficient =  |A   I 1   c' 
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APPENDIX E 

COMPUTER PROGRAMS 

This appendix consists of computer programs that are written in Fortran IV language for 

the IBM-360 computer.    The results of the numerical computations are described in Sec. V. 

Section I below lists an entire program, while the remaining sections give modifications of that 

program.    The Fortran symbols used in this appendix are given below. 

Fortran IV Symbol 

d I) 

K El 

f F 

R RR 

4TTM s SATM 

m s 
SATMN 

s/d SD 

s SQ or PSI 

nr Ul 

^min UMIN 

w/d WD 

value of integral XINT 

y/0.2 7r XN 

discrete current dis- DIST 
tribution used as 
input data for coupled 
strip solution 

input parameter to denote I 
either odd mode (1 = 1) 
or even mode (1 = 2) 

I.      PROGRAM TO COMPUTE £   FOR DIELECTRIC-FILLED MICROSTRIP 

The following is a program that computes the effective dielectric constant for a single 

microstrip line on a pure dielectric substrate by the use of Eq. (2-27) and the current Fourier 

transform,  given by Eq. (2-28).    A flow chart of the program,  which consists of five parts,   is 

shown in Fig.E-1.    The first,   shown in Fig. E-2,  is a general program that coordinates all the 

remaining subprograms and subroutines.    Figure E-3 shows the next subprogram,  which sums 

the integrand FN(XN, SQ) over values of XN ranging from 0 to 100.    The integrand is evaluated 

by the program listed in Fig. E-4.    A root-finding subroutine consisting of a half-interval search 

technique is given in Fig. E-5.    It finds the value of £  that makes the left-hand side of the inte- 
-5 

gral Eq. (2-27) less than 10     .    Figure E-6 presents an integration subroutine that uses the 

trapezoidal rule. 
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118-3-11948-11 

INTEGRATION 
SUBROUTINE: 

DQTFE 

' 
100 

I     FUNCTION (XN.SQ) 

XN = 0 

' 
END 

FUNCTION 
(XN.SQI 

CALL 
TRANS 

PRINT  OUT 
SO 

ROOT-FINDING 
SUBROUTINE: 

HALF-INTERVAL 
—    SEARCH 

TECHNIQUE 

TRY (I) = A 
TRY (21= B 

CALL  DQTFE 

Fig. E — 1.    Flow chart for computer programs. 
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I -3-1232« | 

IMPLICIT REAL*8 !A-H,0-Z) 
COMMON /FSUP/ Ul,El,WD,D,F,XINr 
COMMON /AM/ Dl.02.D3,D4,Nl,N2,N3,N4 
DIMENSION TRYI3J 
NAMELIST /NAM1/ Ul,E1,WD.D.F 
EXTERNAL SUN 
CALL CPNMON 
Nl«601 
N2*30l 
N3*201 
N4-101 
00 100 JP=1,2 
WRITEI6.31) 

31 FORMAT!1 Ul,El,WD.D.F• ) 
READI5.NAM1) 
TRYID-1.0 
TRYI2)*!El*l.01/2.0 
TRYI3I-EI 
01*25./600. 
D2-25./300. 
D3*25./20O. 
04*25./100. 
LL«0 

*0 LL*LL*1 
IFILL+1.GT.3) GO TO 99 
AB*TRY!LL)*.01 
AE«TRYILL*l)-.Ol 
EPS-.00001 
CALL TRANS!ABtAEtEPStROOT,SUM>IERI 
IF(IER.NE.O) GO TO *0 
SQ*ROOT 
WRITE(6,NAM1) 
WRITEI6.38) SQ.XINT 

38 FORMAT!/' PSI^.E^.S,'  VALUE OF INTEGRAL** ,E12.5/ I 
GO TO 100 

99 WRITE(6,39) 
39 FORMAT!• ROOT TROUBLE") 

GO TO 12 
100 CONTINUE 
12 CALL EXIT 

END 

Fig.E-2.    General program. 
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1-3-123?? I 

FUNCTION SUM(SQ) 
IMPLICIT REAL*8 IA-H.O-Z) 
COMMON /FSUB/ U1.E1,WD,DtF.XINT 
COMMON /AM/ Dl,D2,D3,D4,Nl,N2tN3,N4 
DIMENSION FF(BOl),Z(BOl) 
XB*0.0 
DO 1 J=l,Nl 
XN«XB*(J-1)*D1 
FF(J)=FN(XN,SQ) 
CALL DQTFE(D1,FF,Z,N1) 
SWfNll 
XB-25. 
00 2 J=1,N2 
XN«XB+(J-ll*D2 
FFU)*FN(XN.SO> 
CALL 0QTFE(D2,FF,Z.N2I 
S2»Z(N2) 
XB-50. 
00 3 J=l,N3 
XN=XB*(J-ll*D3 
FF(J>=FN(XN-SO» 
CALL DQTFE<D3,FF,Z,N3) 
S3*Z(N3> 
XB«75. 
DO 4 J=l,N<» 
XN«XB+(J-1)*D4 
FF(J)=FN(XN,SQ> 
CALL DQTFE!D4,FF,Z,N4) 
SWIN4I 
XIMT»S1*S2*S3*S4 
SUM'XINT 
RETURN 
END 

Fig.E-3.    Summation program. 
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|-3-1232» 

FUNCTION FN(XN.SQ) 
IMPLICIT REAL*8 (A-H.O-ZI 
COMMON /FSUB/ Ul,E1,WD,D,F,X I NT 
IF(XN.EQ.O) GO TO 4 
DL=D/30. 
T=U1*E1-SQ 
Q=(SQ-1.I/T 
R=(UI*E1-1.)/T 
ARG1=0.2*3.1415927*XN/WD 
ARG3 = 0.3141'i927*XN 
DTDEF=DTANH(ARG1) 
P3=19 3.5092O66/XN**3 
P1 = 9.'5492966B/XN 
P2=60.79271019/XN**2 
A=1./XN*(P3+(P1-P3)*DC0S(ARG3)*(2.-P2)*DSIN(ARG3)) 
IF(F.EQ.O.O) GO TO 44 
Al=IARGl/(F*DU)**2 
A2=I2.*3.1M5927)»*2*T 
SIGN=1. 
B12=(A2-A1) 
IFIB12.LT.0.0) SIGN=-1. 
Bl=DSQRT(SinN*Bl2) 
Z=DTAN(F*DL*Bl) 
IFIB12.LT.0.0) Z=DTANH(F*DL*Bl) 
B2=DSQRT((2.*3.1415927)»*2*(SQ-l.)*Al) 
PART=SIGN*(0»U1*Z*SIGN*B2/B1) 
XNUM=A«PART*B1 
XDEN=AI*R**?+SIGN*E1/SQ«B12*PART*IQ*1./Z-1./E1*B2/B1> 
GO TO 43 

44 PART=Q*U1*DTDEF-1.0 
XNUM=1.0/XN*A*PART 
XDEN=R**2-EI/SQ*PART*!Q*1.0/DTDEF-1.0/E1) 

43 IF(XDEN.tQ.O.O) WRITE(6,42) XNUM.XOEN 
42 FORMAT!' NUM=« ,E12.5, • DEN«',E12.5) 

FN=XNUM/XDEN 
r.O TO 5 

4 FN=0.0 
5 RETURN 

END 

Fig.E-4.    Integrand evaluation program. 
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C     FILENAME IHPLI FORTRAN | -3-12329 | 
SUBROUTINE TRANS!A,B,EPS,ROOT,FCT,IERJ 

r»«********»****»****************************************************** 

C 
C THIS SUBROUTINE SOLVES A TRANSCENDENTAL EQUATION OF ONE UNKNOWN 
C BY HALF INTERVAL SEARCH METHOD. 
C 
C INPUT ARGUMENTSO 
C A=LEFT VALUE FOR INTERVAL (ROOT GREATER THAN A) 
C B = RIGHT VALUE FOR INTERVAL I ROOT LESS THAN Bl 
C EPS=REQUIRED ACCURACY, E.G. ERROR NO GREATER THAN 
C .OOOOOl 
C FCT=EXTERNAL FUNCTION SUBPROGRAM PROVIDED BY USER. 
C 
C OUTPUT RETURNEDO 
C ROOT=ANSWER RETURNED WITH ERROR NO GREATER THAN 
C EPS 
C IER-0 IF ROOT FOUND 
C IER=1 IF ROOT NOT IN INITIAL INTERVAL 
C 
c********************************************************************** 
C     FOR DOUBLE PRECISION CHANGE ABS TO ABS THROUGHOUT AND REMOVE 
C     C IN FRONT OF THE FOLLOWINGO 

IMPLICIT REAL*U IA-H.O-ZI 
FA=FCT(A) 
IER = 0 
FB=FCT(B) 
IF(FA*FB.GT.O.) GO TO 9 
IF(DABSIFA).LE.EPS) GO TO 10 
IF(DABS(FB).LE.EPSI GO TO 11 
IK = 0 

100 IK=IK*1 
X=IA*Bl/2. 
IF! IK.GT.40t GO TO 20 
FX=FCT(X) 
IF(OABSIFX).LE.EPS) GO TO 20 
IF(FA*FX.LT.O.) GO TO 5 
IF(FA*FX.GT.0.I GO TO 6 

5 B = X 
FB*FX 
GO TO 100 

6 A = X 
FA = FX 
GO TO 100 

9 IER=1 
66 FORMAT!' IER= ',141 

GO TO 30 
10 KOOI=A 

GO TO 30 
11 ROOT=B 

GO TO 30 
20 ROOT=X 
30 RETURN 

END 

Fig.E-5.    Root-finding subroutine. 
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1-3-12330 | 

SUBROUTINE DQTFE(H,Y,Z,NDIM) 
DIMENSION Yl 1) ,H 1) 
DOUBLE PRECTSION YtL,H,HH,SUM1,SUM2 
SUH2=0.D0 
IF(NDIM-l) 4t3»l 

1 HH=.5D0*H 
DO 2 I=2,NDIM 
SUM1=SUH2 
SUM2=SUM2*HH*(YlI 1 *YI I — i 1 1 

2 Z(I-l)=SUhl 
3 ZINDIM)=SUM? 
4 RETURN 

END 

Fig.E—6.    Integration subroutine. 

II.    MODIFICATION FOR USE OF MAXWELL'S FUNCTION 

The following is a modification of the program given in the previous section for solving 

integral Eq. (2-27) with the Fourier transform taken equal to that of the Maxwell current distri- 

bution function. 

(a) The bracketed part of the program given in Fig. E-4 is replaced by 

YARG3 = ARG3 

N = 0 

D = 0.00001 

CALL BESJ(YARG3, N, YA, D, IER) 

A = YA 

Replace the second line in that same figure by 

IMPLICIT REAL*8(A-H, O-X, Z) 

(b) Add the Bessel function subroutine BESJ given in Fig.E-7. 

m.   MODIFICATION FOR COUPLED PAIR OF MICROSTRIP LINES 

A discrete Fourier transform of the static current distribution is used in the integral equa- 

tion for  J.    This transform is given by Eq. (4-3) in Sec. IV.    Before the following coupled line 

program can be run,   the discrete values of the static current distribution using the Green's func- 

tion method of Bryant and Weiss must be obtained across the substrate's surface from the origin 

to the outer edge of the strip.    Because of the symmetry of the coupled line configuration,   only 

the static current distribution across one of the strips is required and is evaluated at incremental 

strip width elements of Ax/d = 0.025.    An example of this distribution is illustrated in Table E-l. 

It is used as input data and designated DIST(1, K) for the odd mode and DIST(2, K) for the even 

mode,  where K = 1, 24 since there are 24 strip-width elements from the origin x/d = 0 to the 

outer edge of the strip x/d = s/2d + w/d. 

The following modifications of the program given in Sec. I must be made in order to solve 

the coupled strip problem: 

(a) All the common/FSUB/statements are changed to: 

COMMON/FSUB/DIST(2, 100), F, Ul, El, WD, SD, D, XINT, I 

(b) The NAMELIST statement is changed to: 

NAMELIST/NAMl/F, Ul, El, WD, SD, D 
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L       
C -1 1 
C        SUBROUTINE BESJ |-3-l»31| 
C 
C PURPOSE 
C COMPUTE THE J BESSEL FUNCTION FOR A GIVEN ARGUMENT AND ORDER 
C 
C USAGE 
C CALL RESJ(X,N>BJtD,IERI 
C 
C DESCRIPTION OF PARAMETERS 
C X  -THE ARGUMENT OF THE J BESSEL FUNCTION DESIRED 
C N  -THE ORDER OF THE J BESSEL FUNCTION DESIRED 
C BJ -THE RESULTANT J BESSEL FUNCTION 
C D  -REQUIRED ACCURACY 
C IER-RFSULTANT ERROR CODE WHERE 
C IER=0  NO ERROR 
C IEP*1  N IS NEGATIVE 
C IER = 2  X IS NEGATIVE OR ZERO 
C IER=3  REQUIRED ACCURACY NOT OBTAINED 
C IER*4  RANGE OF N COMPARED TO X NOT CORRECT (SEE REMARKS) 
C 
C REMARKS 
C N MUST BE GREATER THAN OR EQUAL TO ZERO, BUT IT MUST BE 
C LESS THAN 
C 20*10*X-X»* 2/3   FOR X LESS THAN OR EQUAL TO 15 
C 9CHX/2 FOR X GREATER THAN 15 
C 
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED 
C NONE 
C 
C METHOD 
C RECURRENCE RELATION TECHNIQUE DESCRIBED BY H. GOLDSTEIN AND 
C R.M. THALER,'RECURRENCE TECHNIQUES FOR THE CALCULATION OF 
C BESSEL FUNCTIONS',M.T.A.C.,V.13,PP.102-108 AND I.A. STEGUN 
C AND M. ABRAMOHITZ,'GENERATION OF BESSEL FUNCTIONS ON HIGH 
C SPEED COMPUTERS',M.T.A.C.,V.11,1957,PP.255-257 
C 
C  
c 

SUBROUTINE BESJIX,N,BJ,D,IER) 
C 

BJ = .0 
IF(N>10,20,?0 

10 IER=1 
RETURN 

20 IF(X)30,30,31 
30 IER = 2 

RETURN 
31 IF(X-15.)32,32,34 
32 NTEST»20.*10.*X-X** 2/3 

GO TO 36 
3* NTEST*90.*X/2. 
36 IF«N-NTEST)40,38,38 
38 IER=4 

RETURN 
*0 IER=0 

N1=N*1 

Fig.E-7.    Bessel function subroutine. 
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BPREV=.0 1-3-1233? | 
C 
C COMPUTE   STATING   VALUE   DF   M 
C 

IF(X-5.)50,60,60 
50   MA=X*6. 

GO TO 70 
60 MA=1.4*X+60./X 
70 MB = N*IFIX(X)M*:> 

MZER0=MAX0(MA,MB> 
C 
C     SET UPPER LIMIT OF M 
C 

MMAX=NTEST 
100 DO 190 M=MZFR0,MMAX,3 

C 
C     SET F(Ml.F(M-l) 
C 

FMl=1.0E-28 
FM = .0 
ALPHA=.0 
IF<M-<M/2)*?)120,110,120 

110 JT=-1 
GO TO 130 

120 JT=1 
130 M2=M-2 

DO 160 K=1,M2 
MK=M-K 
BMK=2.*FL0AT(MK)*FM1/X-FM 
FM=FM1 
FM1=BMK 
IF(MK-N-l)150,140,150 

140 BJ=BMK 
150 JT=-JT 

S=l*JT 
160 ALPHA=ALPHA+BMK*S 

BMK=2.*FM1/X-FM 
IF(NU80,170,180 

170   BJ=BMK 
180   ALPHA=ALPHA+BMK 

BJ=BJ/ALPHA 
IF(ABS(BJ-BPREV)-ABS(D*BJ))200,200,190 

190 BPREV=BJ 
IER = 3 

200 RETURN 
END 

Fig.E-7.    Continued. 
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TABLE E-l 

STATIC CURRENT DISTRIBUTION DATA 
FOR COUPLED PAIR OF MICROSTRIP LINES 

Parameters:   K = 16.0, w/d = 0.50, s/d=0.2 
m = number of elementary strip widths (Ax/d = 0 

from plane of symmetry at x = 0. 
.025) 

Odd Mode Even Mode Odd Mode Even Mode 
m 1  On) 

o l.« m lo(m) 1   M e 

1 0 0 13 0.08819 0.04617 

2 0 0 14 0.08414 0.04702 

3 0 0 15 0.08130 0.04821 

4 0 0 16 0.07954 0.04977 

5 0.56634 0.11176 17 0.07882 0.05181 

6 ">.22929 0.05703 18 0.07923 0.05448 

7 0.17809 0.05120 19 0. 08099 0.05802 

8 0.14517 0.04783 20 0.08457 0.06292 

9 0.12495 0.04627 21 0.09096 0.07006 

10 0.11108 0.04557 22 0.10289 0.08182 

11 0.10108 0.04540 23 0.12257 0.10016 

12 0.09370 0.04562 24 0.27188 0.22928 

(c) Statement number M is changed to: 

31  FORMAT! F, Ul, El, WD, SD, D') 

(d) After the statement "CALL CPNMON," insert the statements: 

READ(5,83)   (DIST(1, K), K=l, 24) 

READ(5, 83)  (DIST(2, K), K=l, 24) 

83 FORMAT(10F8.6) 

(e) Replace the part of the original program given by Fig. E-4 by another 
integrand evaluation program shown in Fig. E-8 plus an additional 
program TSUM,  which computes the discrete Fourier transform of 
the current distribution and is given in Fig. E-9. 

IV.   MODIFICATION FOR COMPUTING THE  CHARACTERISTIC IMPEDANCE 

The characteristic impedance is determined by using Eq. (2-34) with input parameters the 

same as in Sec. I except for an additional parameter  |,  which can be calculated using the pro- 

gram described in Sec. I.    The required modifications of this program consist of eliminating the 

root-finding subroutine and changing the programs given in Figs.E-2 and E-4 to those shown in 

Figs.E-10 and E-ll,   respectively. 
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[ -5-12333 

FUNCTION FN(XN.SQ) 
IMPLICIT REAL*8 (A-H,0-2) 
COMMON /FSUR/ 01ST(2,100),F,U1,El,WO,SO,O.XINT,I 
IF(XN.EQ.O) GO TO 4 
DL=0/30. 
T=U1*E1-SQ 
Q=(SQ-l.)/T 
R=(U1*E1-1.)/T 
ARG1=0.2*3.1415927*XN/WD 
ARG2=0.31415927*XN*(SD/WD*1.0) 
DTDEF=DTANH(ARG1) 
A=TSUM(XN,ARG1) 
IFII.EQ.l) f=DSIN(ARG2J 
IFU.EQ.2) r=DC0S(ARG2) 
IF(F.EQ.O.O) GO TO 44 
A1=(ARG1/(F*DL)>**2 
A2*I2.*3.141592 7)**2*T 
SIGN-1. 
B12=IA2-A1) 
IFIB12.LT.0.0) SIGN=-1. 
B1=DSQRT(SIGN*B12) 
Z=DTAN(F*DL*B1) 
IFIB12.LT.0.0) Z=DTANH(F*DL*B1) 
B2=0SQRTI(2.*3.1415927)**2*ISQ-l.)+Al) 
PART=SIGN*(0*U1*Z*SIGN*B2/Bl) 
XNUM=A*PART*Bl*E 
XDEN=A1*R**?»SIGN*E1/SQ*B12*PART*IQ*1./Z-1./E1*B2/B1) 
GO TO 43 

44 PART=Q»Ul*DTDEF-l.O 
XNUM=1.0/XN*A*PART*E 
XDEN=R**2-E1/SQ*PART*(Q*1.0/DT0EF-1.0/E1> 

43 IF(XDEN.EQ.O.O) MRITEI6,42) XNUM.XDEN 
42 FORMAT!' NUM =•,E1?.5.• DEN*',E12.5) 

FN*XNUM/XDEN 
GO TO 5 

4 FN=0.0 
5 RETURN 

END 

Fig.E-8.    Integrand program for coupled strip. 

1-3-12334 1 

FUNCTION TSMM(XN.ARGl) 
IMPLICIT REAL*d (A-H.O-Z) 
COMMON /FSUW/ DIST(2,100),F,U1,E1,W0,SD,D,XINT,I 
MS«(SD/2.0)/0.025*1 
MW»(SO/2.0*WDI/O.025 
S = 0.0 
M=MS-1 

6 M=M*1 
SIGMA=DIST(!,M) 
ARG3=ARG1*M*0.025 
IFII.EQ.l) C=DSIN(ARG3> 
IFII.EQ.2) C=DC0S(ARG3) 
S=S+SIGMA*C 
IF(M.LT.MW) GO TO 6 
TSUM=S 
RETURN 
END 

Fig.E-9.    Fourier transform program for coupled strip. 
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~~[~- 3-12335 | 

IMPLICIT REAL*8 (A-H.CW) 
COMMON /FSUR/ Ul.El,WD,D,F,XINT 
COMMON /AM/ Dl,D2,D3,D4,Nl,N2,N3,N4 
DIMENSION TRY(3» 
NAMELIST /NAM1/ Ul.El,WD.O.F,SQ 
CALL CPNMON 
Nl=60l 
N2=30l 
N3=201 
N4-101 
DO LOO JP=l,'t 
WRITE(6,31) 

31 FORMAT!" Ul,E1,WD,D,F,SQ»J 
READI5.NAMII 
01=25./600. 
02*25./300. 
03=25./200. 
D4=25./100. 
XINT=SUM(SQ) 
WRITEI6.NAM1) 
WRITEI6.3B) SQ.XINT 

38 FORMAT!/' PSI=•,E12.5,•  VALUE OF INTEGRAL*',E12.5/) 
100 CONTINUE 
12 CALL EXIT 

END 

Fig. E-10.   General program for Z . 
o 
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FUNCTION FN(XN.SQ) 
IMPLICIT REAL*8 (A-H.O-Z) 
COMMON /FSUP7 Ul,EI,WD,D,F,XINT 
IF(XN.EQ.O.O) GO TO 4 
DL=D/30. 
ARGI=0.2*3.1415927*XN/WD 
ARG3=0.31<tlS927*XN 
P3=193.5092O66/XN**3 
Pl = 9.549296f>8/XN 
P2=60.792 71019/XN**2 
A=l./XN*(P3*(Pl-P3>*DCOS(ARG3)+(2.-P2)*DSIN(ARG3>) 
T=UI*E1-SQ 
Q=(SQ-1.)/T 
R=tUl*El-l.)/T 
DTDEF=DTANHfARG1) 
Cl=192./3.1415927*Ul/DSQRT(SQ) 
IF(F.EO.O.O) GO TO 44 
A1=<ARG1/(F*DL))**2 
A2=(2.*3.141592 7)**2«T 
SIGN=1. 
B12=(A2-A1) 
IFIB12.LT.0.0) SIGN=-1. 
BI = DS0RTISir,N*B12) 
Z=DTAN(F*DL*B1) 
IFIB12.LT.0.0) Z=DTANH(F*DL*B1) 
B2=DS0RT(<2.*3. 1415927)**2*<SQ-1.)+A1) 
PART=SIGN*(0*U1*Z+SIGN*B2/B1) 
XNUM=C1*R*Q*Z*A/(F*0L*WD*B1) 
XDEN=R**2+SIGN*EI/SQ*B12/A1*PART*<Q/Z-1./E1*B2/B1) 
GO TO 43 

44 PART=Q*U1*DTDEF-1.0 
XNUM=5.0*C1*R*Q/XN*A*DT0EF 
XDEN=R**2-E1/SQ*PART*(Q*1.0/DTDEF-1.0/E1) 

43 IF(XOEN.EQ.O.O) WRITEI6.42) XNUM,XOEN 
42 FORMAT!' NUM =•,E12.5,• DEN=',E12.5) 

FN=XNUM/XOEN 
GO TO 5 

4 FN = 0.0 
5 RETURN 

END 

Fig.E-11.    Integrand program for Z  . 
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V. MODIFICATION FOR MICROSTRIP HAVTNG A DEMAGNETIZED 
FERRITE SUBSTRATE 

All the programs given in the previous sections of this appendix may be used for obtaining 

£ = n  ..e  .. and Z    of demagnetized ferrite microstrip if the following minor revisions are made: 

(a) The ferrite's saturation magnetization,  symbolized by "SATM," 
is an additional input parameter.    Thus,  it must be added to all 
"COMMON" statements,  the "NAMELIST" statement,  and 
statement 31. 

(b) In the integrand program, the following statements must be in- 
serted between the fourth and fifth lines: 

SATMN = 2.8*SATM/F 

Ul = 2./3.*(l--SATMN**2)**0.5+l./3. 

The output of this program will be £ = ji ffe  ... 

VI. MODIFICATION FOR COUPLED MICROSTRIP ON MAGNETIZED 
FERRITE SUBSTRATE WITH FIELDS CIRCULARLY POLARIZED 

The following minor revisions of the coupled strip program in Sec. Ill must be made when 

the substrate material is magnetized ferrite and the RF magnetic fields are circularly polarized. 

(a) The ferrite's saturation magnetization and remanence ratio, 
denoted by the symbols SATM and RR,  respectively,  are addi- 
tional input parameters.    They must be added to all "COMMON" 
statements, the "NAMELIST" statement,  and statement 31. 

(b) In the integrand program,  the following statements must be in- 
serted between the fourth and fifth lines: 

SATMN = 2.8*SATM/F 

UMIN = DSQRT(1.-SATMN**2) 

Ul = UMIN+(1.-UMIN)*RR**2-SATMN*RR 

The output of this program is £ - \±  ..e  ... 
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