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PREFACE

With the development of advanced Air Force Ballistic and Space
Systems there arises the requirement for increasingly sophisticated
guidance and control techniques. Fundamental to this area is the
identification of inertial measurement unit error parameters. This
report is one of the most comprehensive documents on the subject
prepared to date presenting numerous significant new results of direct
interest to Air Force systems in the ballistic missile, space, and
tactical systems area. Numerous fundamental results are developed
and presented, virtually all of which are confirmed by extensive com-~

putational studies presented herein.

The research described in this report "On the Identification of Inertial
Measurement Unit Error Parameters,' No. 70-32, by John Baziw,
was carried out under the direction of C. T. Leondes, E.B. Stear,
A.R. Stubberud, and D. A. Wismer, Co-Principal Investigators in the
Schools of Engineering in the University of California at Los Angeles,

Irvine, and Santa Barbara.

This research project is supported by the Air Force Space and Missile

Systems Organization under Contract No. F04701-69-C-0182, Advanced
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Missile and Space Systems Studies, and the Air Force Office of Scientific

Research under Contract No. AFOSR 6§95-67, Basic Control Systems.

This report was the basis for a Doctor of Philosophy dissertation sub-

mitted by the author.
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ABSTRACT

The problem of identifyirg the error parameters associated with inertial
measurement units is considered in this report. This is an Lmportant
practical problem which is included in a large class of system param-
eter identification problems. A genefal approach for formulating the
many possible inertial measurement unit (IMU) error parameter configor
ations is given, and specific realizations are specified in detail. Tae
formulation is such that timne correlated environmental and observational
random disturbances can be incorporated. Experimental results showing
the effects of state and clLservation noise power levels, and the nominal
trajectory on the identification of the error parameters for three specific
configurations are presented. These results indicate that a meaningful
optimization problem can be formulated in terms of the nominal trajectory
variables. The problem is then considered as an optimal control problem
with the cost being a functional of the estimation covariance mairix and the
E:Qnt’i‘qiisr,r where certain nominal trajeciory variables are considered as the
’cont”rélsi.i The question of the existence of optimal controls, the necessary
conditions which the optimal controls must satisfy, and the computational

aspe:c{;s for ce?np’gﬁng the optimai controls are considered.
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NOMENCLATURE

E, n-dimensional Euclidean space

x,X n-dimensional vectors

A,[A] nxm-dimensional matrices

x*¥,A* transpose of a vector and a matrix, respectively
X7, !lelg inner product of two vectors

t, ty, T,I time, initial time, final time, and the time interval
[to,T] y respectively

&(t,r) fundamental solution (transition matri®) ol a linear
differential equation

IMU( ) inertial measurement unit (-)

B(j) object j in the system, withi =m.n,s,r, and i,
respectively, to denote the vehicle, a reference
IMU (IMU,), a slaved IMU (IMUg), a, generaily,
non-stationary reference point, and an inertially
fixed reference point, respectively

B.P.) a fixed point of object j

X(;), a=1,2,3, orthogonal axes centerad at B, P, )

b(l’k), eb(l’k) vector distance from B, P, (i) to B.P.{K) and
the error in the knowledge of b(J,k) respectively

o,[w] angular velocity vector and matrix, respectively
a,[a] acceleration vector and matrix, respectively
[Q),In']  especially defined angular velocity matrices
afjrk) a=1,2,3, body angles from }_(_(Bj) to gg‘)
T\'j- k) orthogonal cocrdinate transformation from B(j) to B(k)

n random position changes




ES

X a time derivative with respect to a non-stationary coordinate
system

A_géj’k) difference in sensed acceleration between B(j) and B(k)
Agn;’k) difference in measured acceleration between B(j) and B(k)

gig’s), Ex(n?’ 8) first and second integrals, respectively, of the
measured acceleration between IMUg and IMUO

D, ¥, v, Yy Various random processes

¥, ¥(ty), T, 1= 1,2,3 vector of initial misalignment angles
K, vector of the (six) accelerometer error parameters
Ky vector of the (six) gyroscope error parameters

gm vector of various measurement error parameters

kg, kg, 1=1,2,3, mass unbalance errors along the spin axis for
1 taree gyros

ky, in, i=1,2,3, mass unbalance errors along the input axis for
three gyros

£ €, 1=1,2,3, constant drifts for three gyros

Sx(w),Ry(7) power spectrum and autocorreiation, respectively,
for the random process x

Configuration IA Identification of ¥, with correlated rundom
acceleration

Configuration IB Identification of ¥, with uncorrelated random
acceleration

Configuration I Identification of ¥ and €

Configuration I Identification of ¥, and the mass-ur:balance gyro
drifts, kn, .

cg =¢,, the correlated random acceleration power

4 §-I the uncorrelated random acceleration covariance matrix
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the observation noise covariance matrix.

the standard deviation in the estimated misalignment angles

on the standard deviation in the estimated constant gyro
‘1 drift rates

ks, ki, the standard deviation in the estimated mass-unbalance
gyro drift terms

E[x], Cov(x, y) expected value of X, and covariance of x and y,
respectively

P = E[(x-%){x-%)*] covariance matrixof errors in the estimated
value X from the true value x

pij elements of the covariance matrix P

PXY sovariance matrix associated with the x and y portions of a
vector z, where z = (Xx,y)¥*

IPl;,i=1,2,3,», various norms in E ,associated with matrix P

R,Q covariance matrices of the time uncorrelated observation
and state vector noise disturbances.

u,p an m-vector of control functions and a scalar-valuad awntrol
function, respectively

M; various consiraints on the control function v
U(t)CE,, a pointwise constraint set for u(t) for t € I
2 a set of control functions

J  a cost functional associated with P,u, and T

Trace [WP(T; :)] sum of the diagonal elements of WP evaiuated
* att =T, with the control uit), tostsT

{ux} a sequence i functions
u, . @ weak convergence of {uy} to &

Lg{!a,b]) space of square integrable vector funcuons on the
time interval {a,b]
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A, A, vector of adjoint variables associated with the cvariance

ii’
} matrix P, and the elements of A, respectively

I{Ao), I(Pp) cost functional assodated with the error inguessing
the initial adjoint matrix A{t,) =A,, and inguessing
the final covariance matrix P(T) =Py, respectively

W a non-negative weighting matrix associated with P,
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CHAPTER I

: INTRODUCTION

The problem of identifying the error parameters associated with

inertial measurement units (IMU) is considerad in detail. ‘This is

an important practical problem which is included in the genemi

class of problems formulated in the next zection. A general

} approach for formulating the many possible IMY error parametfer

configurations is given in Chapter II, and specific realizations are

‘? given in Chapter HI. Minimum variance estimation technigues for

the error analysis of the identification procedure, and typical ex-

f perimental results are presented in Chapters IV and V. In Chapter

1 g V1, techniques from optimal control theory are usédrto characterize

the best nominal trajectery from a class of admissible nominal

trajectories.  This trajectory is best in the sense that tthe identi-

fication of the error parameters is the mcst satisfactory under given

physical conditions. Computational aspects for obtaining the optimal :
nominal 7trajectory are discussed in Chapter VII.
b | 3
| .
- .
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1.1 The General Problem

o0 ek el 37 Spunys SR RS

Many physical systems might be described by the state equation

>
:
&
S
3
%
b
& .
¢
N
;

3-7 = f(t: Yy, ulswn"‘l) (101)
and the observation eguation
z = h(t, y, u, W, %)+ v (1.2)

In these equations 21l the variables are generally vectors, except
for the time t. The n-dimensional vector function f and the

m-dimensional vector function h are assumed to be sufficiently
smooth so0 that the required linearizations which are subsequently
required are valid. The specific definitions are as follows:

y is an nx1 vector of state variables, ‘
u; ig an 1y x1 vector of state control variatles, :
w, is a p'xl vector of random state disturbances,
a; is a kx1 vector of constant state parameters,
z is an mx1 vector of observation variables, :

u, is an r;x1 vector of observation control variables,

wp is a p2x1 vector of random observation disturbances,
@, is a kpx1 vector of constant state parameters,

v is an mx1 vector of random white noise ¢isturbances.

A,




T TIPTTRYIrY
s AR s
i b e i e 3 ok ¢

TTRRLEAL LIy
i w1

2

[RPR——— )

[P
.

e e gt

R oo p AN s S
Sl 2 -

The vectors o; and ag of syStem' parameters are assumed to be
made up of constants, although smooth functions would also ve
considered in this framework by making suitable polynomial
approximations, and then increasing the dimension of o; and ag
appropriately. The random disturbances w; and wg may be
time~correlated or not, but it is assumed that the statistics of
these vectors are completely known and that they may be modelled

by white noise passing through a linear dynamical system
(Markovian property).

The general problem which might be presented is to identify the
system parameters and ag based on the observations z. Of
course, it is also uvsually of interest to obtain esﬁmates of the
state y. The controls u; and up are functions which are avail-
able to change the evolution of the state and observation equations.
This change in these equations is to be made in such a way that the

identification might be accomplis»~1 in some optimal fashion,

subject to certain constraints in the controlling functions uy and ug.

Except for special theoretical questions, there is not much that
can be said about the analytical properties of this problem in this
generality. Certain linearizations might be made to make the

problem more tractable and perhaps ame: .ble to certain mean

square optimization techniques.

S L = TSR
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Under suitable assumptions, the system (1.1), (1.2) may be

written as

e
i

A¥(t,u) y + BYI(t,u,) w; + €% (t,u) e (1.3)
and

My(t,uz) y+ BW2(t,u2) Wy + Caz(t,lig)az +v
(1.4)

N
L]

These equations represent small deviations about nominal or
expected values of the variables described zbove, which are
denoted by §, W, etc. The matrices in Equations (1.3) and (1.4)
are the various partial derivatives of the functions f and h, and
are evaluated about the nominal or expected values, Typically,

¥, %,

W . ®
B ’(t, u'l) = 'af"atw' : _JL! -
! y ’ W‘l ’ &1

It is noticed that we do not linearize about the controls uy and Uy

and

because in the application which is considered here, the nominal
values {;, @iy are aiso to be chosen in an optimal way. 1Itis
next assumed that w;, wy have the Markovian representations

. U * ! -
W, = AMw+ BYy, ad W, = AMw,+ B¥ vy,

v
0 PRSIk PRGOS A 0 PUHEN Sty 3
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If we write @; = 0 and &2 = 0, “then the above equations might
be collected together and written as

e 4

AY + Bw - (L.5)

E 5 and

- z = MY + v ' (1.6)

whese

A ey e o GVt I

. _ *
b Y = {y, Wy, Wy, 9“2)

| i

. AY 8t o o™
=

=

0o A% o

A=A(t,y)= 0 0 A%

0
S 1 0
o 0o 0 o
| 16 0 o0 o

® @ o == |

0 0
g
B¥M 0

%5 > * !
i w = (W, W) B= |0 BW

- o o

E 0 0
£ f a - ‘:
E M=3l.[(t,u2)s[1 0o B™2 0 c"?]

e e e e st
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I the controls uy, uy have been brespecified, the problem formu-

lated by equations (1.5) and (1.6) is in the standard form for

applying the well-known minimum variance estimation techniques |
[1]; Assuming the random vectors possess the known statistical
properties ?
Ziw(t)= Elw@)=0, Elw(t}v@) =0,
Elw(t) w(r)) = Qt)s(t-n, Ev(t) ve§ =R(®)s(t-1),
EY(to) = 0, EI¥(t,)¥(t )] = Py,
EIY(t,) v)* =0, EIY(t)w@™ =0,
then the minimum variance estimate ¥ is given by the solution of 1
the differential equation
a9 - |4 _xul . = 1.7
3 lA KM]‘Q‘ +Kz; Y(t,) =0 (1.7)

The optimal gain matrix K is given by

: K = PM*R™]
EL ~ where the covariance matrix P, which is defined by
,f - Trace P = Trace E[(Y - (Y - Q)ﬂ,

éatisfies the matrix Riccati equation

[os—
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dP/dt = AP + DA* - PM* R "MP + BQB* ; (1.8)
P(t,) = E[Y(t,)Y(t,)"] = P,

The dependence of thg solution on the control parameters u=(u;, u;)
wili be denoted by €,, and P,. The optimal contrcl problem which
naturally arizes is to minimize some functional of P, for example
min tracefWP(T;u)] where W is é weighting matrix and T is the end
time, or else to choose a u such that certain diagonal elements of

P fall into a prespecified region in minimum time,

For a linearized minimum- variance estimator this cost would
depend on a particular stochasﬁic realization of the system. The
variances in the resulting P(T} for particular realizations would
then need to be considered to decide on a suitable "average'»' cost.
Thus a linearized minimum variance estimator would complicate
the optimization considerably. Since we should like to apply some
of the known techniques from optimal control theéry [2). it shall be
assumed that we have a linear system from the outcet. This is
indeed the case for tﬁe IMU error identification préblem, because
the design of the zssociated instruments is such that it keeps all
errors reasonably small. Soﬁ that even though the various errors
might be very complicated in nature, their contribution to the system

dynamics can be accurately represented by a linear transformation.
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1.2 The MU Error Paraméter Identification Problem

el

The problem of identifying the error parameters associated with

inertial measurement units (IMU's) arizes in many applications
agsociated with the inertial navigation of ships, airplanes, missiles,

and space vehicles. Investigation oi this specific class of

- important problems provides motivation and insight into the general
problem outlined above. A discussion of the error parametecrs

which are typically associated with IMU's and the physical en-

b
]

i
i
P
s~
L]
b :
X

vironment in which such systems operate is given in Chapter I1.

A general formulation of the problem and a discussion of experi-

o,

L TN LA PN RO O R e

mental results is given in Chapters II to V.

Generally, the IMU error identification problem has the form

x=A%x+B"nt+ C%a+ w*

A0
L]

';?: f=An+w
| (1.9)
::7 & = Q

Z=X+vVv

Equations (1.7) and (1.8) then become, respectively,

ak/dt = (& -P*RY &+ B* 8+ C* +pR1 5
di/dt= P*RIE + A"f + PURI; (1.19)
dd/dt= PR 2 + PR z

s
e
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and

4 p* AxPx“+19°‘Ax*+B“P“x+P?‘"B“*+C’;P”+Px"Cqﬁ°ﬁ1P“+d“

dt

'agt' Pnn= nppn +PnnAn __Pmcn-lpxn+ an

|£2.

o= pPEplp*™

al

t (1.11)

* B
pXi. pXp¥n, pih zn*, ghpin, Xpon pXXp-1p3n

e

p= AXp™, gt p"%, c¥p™® . p g lp*®

*h

aﬁ{ Pm___ An Pna - anR-l an

where the covariance matrix P has been partitioned in the obvious

way

PXX Pxn PXQ'
P = an Pnn Pnoz

aX
pr p" pw

b —

Generally, the control parameters would éppear in the matrices

A%, B", €% and Q™. Thus it is difficult to study the optimization
problem in detail at this level of generality, although the optimi-
zation problem can be clearly stated. If the assumptions used for
special configurations (configurations IB, 1, and II of Chapter HI}
are invoked, the optimization starts to be tractable. Briefly,

these assumptions are n = 0 (no correlated process noise), and

poemsnns
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diagonal noise covariance matrices QX = Glg + T and R = 03 -I.

Equation (1.10) and (1.11) reduce to

i
3
i
]

a‘lt. R = -o-wzpmlﬁ -Z] + c%a
(1.12)
d - L -2_ax,.A .
ir & = o P IX -2,
A p¥X. copRX , pRAcd 2pXXpxx 2
dt R =
: 4. 2ppe 1.13
2 dt w (1.13)
b 4 p™. c¥per o 2p"*p™
dt
respectively, The trajectory conirol parameters are now associa-
3
= ted with the matrix C¥ only. The optimization problem is then to
ji
chcose these trajectory control variables so that
'; Trace [W"'P“(T)],
g where W is a positive definite weighting matrix, is minimized at
i

some given end time T, or else to choose the control variables such

s

that |
ij(T)s g, specified, j=1,>*, f;
in a minimum time T = %,
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Discussions which are concerned with the existence of the opti-

mal controls and the necessary conditions which the optimal

controis must satisfy can be made on the basis of the problem

N 1dkAd St ORGSR PR L BN S i

g4

specified by Equation (1.9). However, to gain insight from
numerical results and to proceed with analytical calcuiations,
it is more fruitful to work with the simple. models,

This study has three main objects. The first is to formulate a
general method for treating the many possible IMU error para-

meter configurations. The second is to demonstrate, through

£
:

numerical experimentation with realistic error parameter con-
figurations, under which physical conditions it is possible to
identify the error parameters and that a realistic trajectory
optimization problem does exist. The third object is tc formu-
late the optimal control problem and discuss the existence of
the optimal controls, the necessary conditions which the optimal
controls must satisfy, and the computational aspects for obtain-
J ing the optimal controls.

i
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CHAPTER II

GENERAL APPROACH TO INFLIGHT IDENTIFICATION
OF IMU ERRCR PARAMETERS

2.1 INTROLDUCTION

There are many inertially guided vehicles serving as a common
carrier for a smaller inertially guided vehicle. Typically, the
smaller vehicle is deployed either during the common carrier's |
travel or at the carrier's nominal terminus. As a contrivance to
introduce the problem, consider the Saturn IV/Command and
Service Module (CSM ). Prior to launch of an Apollo mission it
may be difficult to calibrate and/or align the CSM (slave) IMU
because of its physical arrangement. The master IMU (IMU used
throughout boost powered flight) is assumed to be accurately
aligned and calibrated. When tihe vebicle is put into operation, the
slave IMU could be activated prior to its being used and its output
observed. The observed outputs of the slave IMU and the master
IMU would then be compared and the difference in the observations
used as a basis for inflight calibration and alignment of the,élave

IMU with respect to the master IMU.

13




Under ideal conditions, the readings from the two IMU's would be g
the same. However, there are geveral factors which cause the _
readings between the master and slave IMU's to be different.
These factors include master and slave IMU error parameters

(gyro drift errors, accelerometer scale factor and bias errors,

platform and acceleromeier misalignments), accelerometer
quantization errors, computer errors, and random-induced H
accelerations. Assumingr the variances of the master IMU

error parameters are negligibly small so that the master IMU

1 Gbitss Woesa Sdiseasrisdis 5 1 i H s

accelerometers read the true sensed acceleration, and assuming

7 availability of appropriate probabilistic descriptions of the vehicle
vibrations and of the computer and accelerometer quantization |
errors, which are random ir: nature, various techniques may be used
to identify the IMU error parameters. In this chapter a general
approach is formulated for identifying these IMU error parameters.

2.2 Dynamic Equations

The master IM¥, denoted by IMU,;, is the reference for calibrating

ik or dies Bl

and aligning the glaved IMU, IMUB . It is agsumed that IMUy is, in
_ general, a strapped-down system, thereby insuring the necessary
generality in the dynan{icali equations for treating either gimbaled

or strapped-down IMU's. In the discuasion of this gection, the

14
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notation listed below is used, Laier, whenever the meaning is

clear, a less complicated notation is adopted.

Referring to Figure 2.1, we let B} denote an object in the system
with orthogonal axes _};9‘), a<=1,2,3, centered at B.P.(j), a
point fixed in the object. The superscript j will be m for the
vehicle, o for IMU,, s for IMUg, r for some generally non-
stationary reference point, and i for an inertially fixed reference f
point. Q(j +K) is the vector from B;P.(j) to B.P.(k), where as
above j, k=m,o0,s,r, and i. Letting subscript o denote a
nominal, or assumed position, we define ep_g’s ) as the error
vector in the nominal position of the slaved IMU, and e_lg(é 10) ag

the error vector in the nominal position of the master IMU. For

waki s i s i et ot Y,

compactness, we shall use a dot in the superscripis to indicate

situations where j can either be s or o.

The position and velocity of IMU(,) , with all vectors expressed in
vehicle coordinates g‘a’,“), are given respectively by

b(i’.) = b(g’.) + 5(’)
B(i’ ). i’(i’ ) 4 i_'l(t)() +.‘t’.x£(6)

where the dot over a vector denotes a derivative with respect to

15




x5 (cooRDINATES OF SLAVED IMu)
o (MASTER IMU)
[

B.P.(°) = p
@ (ANGLUAR VELOCITY VECIOR)

(o) (COORDINATES OF MASTER IMU)

Xa

(BODY COORDINATES)
s.p. ©
[}

(X) 5.7 (POINT FIXED IN INERTIAL SPACE)
Figure 2.1 General Position of Master and Slaved IMU's

()

--‘
o -
-

{SECOND ROTATION)

OZ(J k)

TRANSFORMATIONS FROM X '3 INTo X (M

Figure 2.2 Rotations Between Coordinate Systems Using
Body Angles
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inertial space and the small circle over a vector denotes a der’~
vative with respect to vehicle coordinates, _X_(;n). Thus the

acceleration is
i) = ,’Ez(é’ Vo 80 + wxa@)) + @xrl) + oxil) 4 g_xgxg“

so that the acceleration of the points p and p' (Figure2.l) with
respect to inertial space are
(- o (1,°) eeren( . . . .
a (-)) " B+ 560 + 20x8(6)) + wxwxt ox)esth d iipy©)
where the subscript (-)”'aenotes either p or p'. The acceleration

of IMUg with respect IMU,, Ag(o ,s), is

220 %)= 01 8)+ (10 B)+ 20x (£ 8)t (wxux + ox)n(£f0- 9
’ {(2.1)
+ (wXwx*t wx) C_Q(g’s)
Eguation (2.1) gives the accelerations between the master and slave
IMU's due to random vehicle vibrations n(t), and the errors in
knowledge of the nominal locations of the IMU's. We can rewrite
(2.1) as Equation (2.2) using the following notation:

[o - o
[@] = Wg 0 -wy
bog w0

17
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@ = [(wl W + Ia::l]
Q] = [132 [w] - mﬂ
at) = (@), A0, 0"
A% = ) + 1o D+ 0 (2.2)

Thus the difference in acceleration:: between the master and slave
IMU's is composed of a term due to random: vibrations of the
vehicle, (2]n(t); a term due to an error in knowing the true
static iocations of the IMU's, [Q] el_:(g ’ s); and a term due to
gravity and the angular velocity of the vehicle, _'1'2(:’ s), which is
known as a function of time. Next the term Aéo, s) is considered
in the context of the measured acceleration errors.

The acceleration of IMU(,) with respect to inertial gpace g(i’ ) ,
ﬁay be wriiten as éi’ Yo _g('; + _g(s’) where _g{-‘) is the
gravitational acceleration acting cn IMU;.j, and 3(5.) is the
thrust acceleation acting at IMU(.) . Furthernore, _g(é) may
be written as a(sf) = a(:x;)easured - a2 50 we can write the

difference in acceleiation between the two IMU's as

2g::é:;s)ured =- (5(3)' 5( o) - (A~(sgasured - A?:gz‘:)e)asured)

s121 () + (21 b9 + 5or8)
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Henceforth, we shall use the subscript m for the word measured.
We note that the vecior _4(31’ 8) ig the quantity which may be
physically observed, although perhaps indirectly, through the
(0,8)

integral of & - We can now write the differential equation for

the measured accelerations.

The motion of the vehicle is described by the equation

R = g(R,&) + £(R,R, &)

a——

where R, R, R, represent the position, velocity and acceleration
of the vehicle relative to an inertial reference frame, g(R, _c_g) is
the acceleration due to gravity, f(R,R, gg) is the true sensed
acceleration, g is a vector of gravity error parameters, and £

is a vector of sensed acceleration error parameters.

'
¥ R ) is the true position of the geometrical center of IMU(‘) then
r = R®) . R(®) satisties the differential equation

d%r/dt? = (g8) - )y 4 (f8) . £o)),

&),

and, neglecting the effect of the error parameters £y

d"’}:/dt2

= (E(S) - (O)) +'§(l?l, s).l.. (Ag(:l) - Aé(gl))
or
a’r/dt? = (o) () + (@) B9 + BOs8) (2.3)
19
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If R(')' is the compated or measured position of IMU(.) and
r'= _li_(s)' - ﬂ(o)', then Equation (2.3) may be rewritten in terms
of r' as

d%rydt?= al08) 4 o8
that is

dzrn/dt2= lﬂlﬂ(t) + (9] Ep(g, 8) _Ai(% S) +§(0, S)' _-g-:(O, S)

(2.4)
i r,= _go, 8), the nominal or reference distance from IMU, to

MU, the term 5{%5) can be written as

by = [5(3(:)) - 5(3(3))] + WXWADX L
It is reasonable to assume that g(g(s) -3(0) ) = g(g_(:) -_11(:)),
so that Equation {2.4) becomes

(o,8) _ (o,8)
a’’= [l n(t) + [@]ex, + (9] I +aa, (2.5)

Further we can define the observahle quantities 3(:1’ s) and 2(&’ 8)

by 28 = fi(:f 8) and 2(?_3, 8) = jfg(% 5). g0 we can write Equation
(2.5) as

4297 [oi1] [#2 ;
4| i D i Y S
29 loio] [#09] [wrex,+ ad)-adde it ray,

(2.6)

20




IR o A IR 1 X S

 qusahg

oy M, TR YRR

e e

Next it is shown that the measurement errors can be written as

linear combination of constants: Aégz) = B(t)('):z_{_('), where B(t)(')

is a matrix relating the error coefficients k() of IMU(,) to trajectory

variables (acceleration, angular velocities, and time-varying co-

ordinate transformations).

Let T(l’ ) denote the transformation from an inertial coordinate

system to a moving (or body) coordinate system. The inverse

transformation is written as T(; ) i), where the dot as before, in-

dicates a particular object in the system. The coordinate systems

specified earlier, 3_(_(&), are related to one another by the transformation

28 - (8 2, where a,6=1,2,8 andj,k=n,0,s,r,1.

The OQB’ k) are elements of the usual transformation matrix, which
is implicitly defined in Figure 2.2 in terms of vehicle body angles.
Figure 2.3 is included to provide a set of accelerometer and gyro
coordinates. In addition, two transformations, M(:) and M(os), are
defined to express the transformations of the master IMU and the
slave IMU, respectively, relative tc some fixed inertial coordinate
systemas, and are constant transformations relating the initial

orientations of two IMU's to some inertially fixed coordinate éystem.

It is next necessary to define the time-varying transformation M(s)(t)

relating the slaved IMU's present position relative to its original

21
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Accelerometer Coordinates
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I a torque is applied to the
inner gimbal about the x-axis,
E. - the wheel and inner gimbal
3 will process about the z-axis.
H a torque is applied to the

3 outer gimbal about the z-axis,
: the wheel and inner gimbal

i - will process about the x-axis.
4 wo Degree Freedomi Gyro

Figure 2.3 Accelerometer and Gyro Coordinates
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position as specified by M(:). (This is due to the assumption of a

strapped-down system)., Similarly, if the master IMU is not

RE R URTEO R LRt LIHR U SR A I SRR ki Lt i

inertially fixed, a time-varying transformation, M(°)(t), ig

specified in terms of the body angles 80Xt) , e =1,2,3, the

rotations of the master IMU's relative orientations, as specified

-

by M(g). Then, T{l*)= Mg')M(t)(°), and a vector in inertial

coordinates, vy, can be expressed as a vector in moving (or body)

LA LA R N E B U UL AR

coordinates v p by the transformation !(B) = '1‘(i >+ 1&'). Thus, we

may write the thrust accelerativn as ay, - sap = (T~ AT)(gI -4a,)

where the superscripts have been temporarily dropped for ease of
notation, ap is the true thrust acceleration in body coordinates,
A2 p is the error in measuring the thrust acceleration, expressed
in body coordinates, and AT is the error in knowing the trué traus-

formation T.

Expanding the above equation aad then neglecting the second-order

terms gives

s2g - E'B -T31+ TAgI+ ATQI

)R AR

cr

-1 -1
a3y = T sag-T 4Tz (2.7

Noting that the term aTT ! can be written as an antisymmetric

matrix of misalignment angles expressed in body coordinates,

TR et d GG SR D ] TN
L R T p
K nanes
S T vy
LS U ,‘%\v LT ‘f.m,l i RO COCEN T i
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we have from Equation (2.7)

sa =T (s2p - Ngl 2p)

Wy 0 i

iy

? IB =El’x ‘Py

Now the transformation T is computed by integrating the equation

d(T -4T)/dt = (lwgl-leg) (T - AT)

where

b -

0 ~wp Wy

wg O

“wy wx O

1

(2.8)

“wy | and @p = [wx:“’y9wz]*

is the nominal angular velocity of the body, and where

-

gyro drift rates expressed in body coordinaies.

€ 0

~€y &y 0_}

‘.ex s CB = lex’ ey’ez]

*

and neglecting second-order terms gives
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Expanding (2. 8)
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; d(AT)/dt = (ep] T - [wg) AT
i but from the definition of ATT ~ we can write
i
y (dT/dt) (¥1] + T (dl¥;}/dt) = leg] T - [wg] T [¥y]
Next, we note that {dT/dt) ¥y} = -(wg]. T [¥;] which implies

T(dl¥y)/dt) = leg) T or dii/dt=T " leg!T = ig]

; Using vector notation, this iatter equation becomes
-1

di/dt = T g5 = g

g whose solution is
t
50 =10 2T T @ e (@9)

0
This means Equation (2.7) may be written as

1

- -1
a2, = T {(aag - T T ag)

I

or, by defining an antisymmetric matrix {a;] whose elements are

the components of a;, we can write

-1
Substituting (2.9) into (2. 10) gives

' t
62;1=T 1A§B+ [a;] !(to)l + [a;]L T 1(0) §B(o) doe (2.11)
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From equations (2.22) and (2, 23), infra, we have
Aap = Ba(t)l{_a and _E_B = Bg(t)_l_(_g

where K, is a constant vector of accelerometer errors and Koisa

constant vector of gyro errors.

]* and a matrix

By defining a vector K = (¥ (to)I » Ky, _Igg

t
-1 I -1
B(t) = [lagu T (t) B (t)hiagi] T(o) B,(o)do
CRACECT Rl
we car write (2,11) as Aay = B(t)K. Thus, for the two IMU's
agy) = 8Okl (2.12)

where Aéi) is a vector of errors in thrust acceleration due to the

]MU(,) instrument errors.

2.3 IMU Instrument Errors

The accelerometer meagurement error for the ith accelerometer may
be written as
2
= % 1
Aami v + [Kai, .i, aci} g,r + aT (Kgi] a.T (2.13)

and the gyro dr..t rate for the ith gyro may be written as

26
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i g T e = =

g = e +IK + K., K_, 0]
17 S My gy o 27 Py By 2
+w*K2) 4, + 2, [K2)a (2.14)

In these equations, a is the thrust acceleration in the ith
accelerometer (gyro) coordinates; Vv; is the bias error for the

:th

i * accelerometer; Kai is the scale factor in the ith acceleromeier;

aNi is the misalignment of the ith accelerometer's input axis in the
plane of the input and normal axes; °’C1 is the misalignment of the
ith accelerometer's input axig in the plane of the input and cross
axes; w is the angular velocity in the ith gyro coordinates (for ideal
gimbaled systems this term will be the zero vector); ¢, ¢ is the ith
gyro's constant drift rate; K“’i is the scale factor of the iﬂ‘ gyro;
"8 ('yoi) is the misalignment of the ith gyro's input axis in the plane
defined by the input and spin (output) axes; Kli (Ks i) is the ith
gyro's error coefficient due to mass unbalance along the input (spin)

axis; [-ng] is a symmetric matrix where the elements K(]i]) are the

i
ith accelerometers non-linearity for accelerations 2long the ith axis

and the elements K(jilz are the cross-axis sensitivity of the ith acceler-
ometer in the j -k plane; [K‘?i] is a symmetric matrix where K,f,:;
are the error coefficients sensitive to the angular velocity com-
ponents w i Yk for the ith gyro; and [ng is a symmetric matrix
whose components K(gijg; are the error coefficients sensitive to the

acceleration coxhponents 2jaK (anisolastic effect) for the ith gyro.
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It is certain that many of the elexﬁents in the above matrices will

be so small that they may be neglected. If the gyros are used on
a gimbaled platform, the terms proportional to @ and w® would
be neglected. By inserting the superscripts o and s in (2.13)
and (2. 14) the corresponding equations are obtained for the master

and slave IMU's, respectively.

In the above error equations, the input accelerations and angular

velocities are agsumed to have been transformed into the co-

ordinates of the particular instrument in question. Thus assuming

a vector gg) is expressed in some inertial frame, it may be

expressed in accelerometer coordinates by

vi) = a0 1))

acc

AV

or in gyro coordiaates by replacing A(I') by G(i), so that
(.) _ N i,- ‘) = . .
R GPCRNOEFIONY
gyro
Applying these transformations to (2. 13) and (2. 14) gives :
() +x()aN qc)]x()mﬂm A’[xé’“u”a“’
(2.15)
and i

: °) _ ol . o} . . . D) (I
i e(i) = gg )4,, [K( )’ -yé , ‘,O }4( )g(l) > [K§i)’ K(Si)’ 0] 4( )E(T) (2. 16) ;

(x)(* I D* ,(:)%.,2'0), ,().@
4) Kz( ‘()() (T) 4()[K81 )-'4()-"5('1')
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frame,

of A(i') and G(i') are included here.

adl) = <j_)§i); Kg)>

i

() ()
<‘bg1 ‘&gi>
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<,

()
€y

=

(-

Ay,

is the thrust acceleration in some inertial reference

frame and Q(I) is the angular velocity in the same inertial reference

To express the acceleration measurement eérroys and gyro drift
errors in platform coordinates, the coriponents A‘*‘mi and g; are

multiplied by the transformation 5:11 and g_}l respectively, thus

)

3

] (2.17)

(2.18)

where the bar under A, G indicates that only the appropriate elements

If (2.15) is ex. x.ded, it could be written as the scalar product of a
vector, bg:, which depends only on the nominal trajectory pa-ameters

and a vector of the ith accelerometer error parameters, i.e.,

(2.19)
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Thus (2. 17) and {2, 18) may be written, respectively, as

A_a_.(m) = [B(;)(t)lgg) (2.21)
and
). s‘B(fg)(t)l g(é) (2.22)
Letting
K - pl.ig;,x('),g(%], &} - [ggi,xg;;xg;]* where
) - [0
K, - e(a: KR k) k) -]* (2.2

and thc matrices [Bg)(t)], (B(g')(t)] are defined by equations {2.17),
(2.18), (2.19), and (2.20).

In any realistic problem, a good many «t the components in (2. 13)
and (2. 14) would be zero, especially for the master IMU and for
quadratic error terms. Equations (2.21) and (2.22) are a useful
form of the instrument error terms for use in the minirmum-

O e K S K DRSS SO ) b

variance estimator since the vectors K-‘aza K_(g;) are constant
vectors depending oniy on the error parameters ¢. the accelerometers

and gyros.

30

[P




s

4

il e S g

YA e LR

2% A i
Sk inls LML A Sl

2.4 Structure of the Minimum-Variance Estimator

It is necessary to assume that 2 statistical description of random
inputs due to-vehicle induced, random acceleration is avai’able, and
that these inputs can be represented by white noise passing thrcugh
a linear dynamical system, Such a linear filtering operatiea is
performed by what is usuaily called a shaping filter (Appendix "A"
presents the method ™ which tae random vibrations, n (i), can be
represented by a linear dynamical system along with illustrative
examples). Thus, it is assumed that the vehicle induced, random

accelerations may be represented by
dn/dt = AP(t)rr + BF(w() (2.25)

where AP(t) and BP(t) are, in general, time vafying matrices
which are related to the covariance matrixof », and w(t) is a
white noise vector process. The prime on n is to indicate that

1" may be composed of 1 and other additional suitably defined
vectors arranged one upon the other. We shall write n <= [1'ln’

to indicate that only the components 1 are used from n'.  We now

combine equations (2.6), (2.12), and (2.25) and get
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The observations, or measurements, are assumed to be 2&’;2
(o,s)

and v~ . (Actually one might also include the vehicle's
angular velocity as an observation, but on2 can show that the
angular velocity equation can be uncoupled from the rest; thus,

it can be studied independantly.) These observations are assumed
to have errors, and it is assumed that the error in the observa-
ticns, because of observation error parameters, may be written

as

Az = Bp(t)k™ (2.27)

where Az is a vector denoting the error in the observation vector,
2, due to the observation error parameters, gm, which are
assumed to be constants over a particular obéervation period, and
B m(t) is a matrix relating the observation error parameters to
the nominal (or known) variables in the observation and dynamical
equations. The vector k™ would include such things as biases and

scale factor errors in the various IMU integrators.

Next the observations are assmed to be contaminated by a random
noise v. To be general, it is assumed that this noise could be

correlated, so it is expressed as
Y o= oy o+t Yy (2.28)

where v, is a vector of correlated noise components and vy, is a
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vector of white noise components. As above (2.25), it is assumed

the correlated noise may be represented in the Markovian form
dvt /dt = Am(t)g;: + BM(t)z] (2.29)

where the prime carries the same connotation as above. The

observations are thus

_ |Pmeas —
=7 [!meas + By kT4 I + vy (2.30)
Defining the state vector as
b 3
X= (.E’ v,n', ve, ,l_:(s),_ls(o),gm, GE(O,S))

Equations (2.26) and (2.30) may be written in canonical form as

X= AX + BW + £
Z=HK+ ¥ (2.31)
where

' t t [ ‘ Y !
0:Y,0,0, ¢;: 9 ,0,0 00
o el ole e nleo o wale w- l---;-l--!-- cenmnlawae
0'0'iRI1 O ¢ (ssB(Oluos[m 0'9
--l_-l--‘l-__l-_-_i-___-l__lo_ ___l_.__

[ ]

+ = 10,0,AP, 0, 0, 0 ;0,0{, B=|BP, 0
- i er S W B T O b W e S T W W W) e X I L
O:D:O:Am: o: o:o:o 0 * gt
J I FERERY JERRN NS U S D R S

]
0;,0,06.0, 0, 0 ,0,0 0,0

t 1 ) | ! !
H=1|[,0,I' 0 0 B, 0, W=(w,u)

_f_ - (ﬂ,[ﬁ'jh‘g’s), Q, .Q, n; n’ ﬂ: ﬂ): Y. = -!W
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Equations (2.31) have the discrete form X(k+1) = o(k+1,k)X(k) + W(k)
and Z(k+1) =H(k+1)X(k+1)+V(k+1)., We next show how the dis-

crete equation set is formulated in terms of a specific problem.

2.5 Specialized Calibration and Alignment Probiem

In this concluding section a discrete form of (2. 31) ie developed
in a manner to give concrete meaning to the ideas presented above,
and to indicate the approach used in the next chapters where further
examples and numerical results are presented. In the problem
' considered here, IMU, is well calibrated and aligned prior tv
vehicle operation so that IMUg could be considered adequately
calibrated and aligned when compared wita IMU, as a standard.

Thus, the vector of IMU, error parameters, (0}, may be taken

to be the zero vector.

Next it is assumed nonlinear error terms and fixed misalignment
angles on the accelerometers and gyros are negligible and that
these instruments are nominally located so that the instruments'

sensitive axes form orthogonal triads.. Under these assumptions

the matrix B(8)(t) becomes

B(S)(t) = [a}?M s)(t) M(s) ﬂf[a}/t do M(S)( ) M(S)B
to
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a 3x21 matrix where

1 0o 0 a 0 O
A = 0 0 a O
] 0 0 ag
[1 0 0 wg 0 0 ag ay 0 0 0 0]
3=0100my000ay3200J
(0 0 1 0 0 w 6 0 0 0 a; ay

and _g(s) is given by the 21-vector
s) [ £9)t,), A8, K, €8, o), g(g)]

In the matrix BIS)(L), ay, By, 2z, Wy, wy, Wy are nominal
acceleration and angular velocity components in the IMUg co-
ordinates. Assuming the random angular acceleration of the
vehicle is negligible,  small or nearly constant, means the
"angalar velocity matrix" is defined by [2)= [[1]} 2 (], and by
defining a vehicle vibration vector as n(t)* = (¥ %), then

(2.8) becomes

T B A 1Y S
dt ..v.m LO : Gj L!m ‘Aé(:z*f}:-i-{w}i

Next it is assumed 1 18 suitably approximatad by

“ﬁ”i n+B(t) w

n

dg /dt = {.‘A_, L
Az
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where n* =[79, 13] where 19 and xi3 are 3-vectors and the Aij are
3x3 time varying matrices, ny = I, n = % = [npdt. BYt) isa
6x6 time varying matrix and w is a 6-white noise vector, Thus

we can write 1' = AX(t) n + BF(t) w where 1™=(n;, no, ngl=t.%,ng

and
o ,fr' o
t
ARt) = 0 ' An' A BP(t) = ° [11={nio}
>~ \¥] = 9-:.4&-11-:-A12 ’ ( ) - B-'(t- ’ = M
0 ! AZI! A - 6 -

where (I} is a 6x6 identity matrix, w is uncorrelated, and g(m)= G.
Assuming the angular velocity equation is treated separately, the
observation eguation becomes Z = E!E:] + v(t) where v(t) is a
6-vector of white measurement noise. If we define a 36-state

* . .
vector as X = @m’ ¥, % %, ng, g(s)] and the matrices

LR XN
0 0 M il B g
0 ' I {w ' s
Ay=s PO QLM 172 -1, B(t)=|BP
] -
-(z-'-(.),..:--...AP ..... '-9- 0

L]
0.0, 0 ' 0|

i
and H = [f!]: 0],then the continuous problem is specified by

i(_ =A(t) X+ B(t) w and Z = HX + v{t). The equations for the

discrete formulation are

Aie1 =0kt 1 k) Xy + Wy and  Zg, 1 = HB+ DX (k+1)+ 3y, g
- (2.32}
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where ¢(k+ 1,k) is given by

#(k+1,k) L dk+1,k) | efk+1,k)
o(k+1,k) = 0 1 ak+lLk), 0O (2.33)
...... o o 0 @ = = miles = > ® o o=
o ' o ' g

1, au |
%k*l,k) = :-0-:--1---’
&i(k+1,k) = -.A;’.}

k+1 \ .
ofk+ 1,k) = [ Koy Ko in e 1]
k
k+1
o(k+1,k) =/ & (o.k)B®No)do
3 k 1
I; is a 21x21 identity matrix and 04(k+ 1,k) is the sclution of the
homogeneous equation d 9(t,7) /dt = AXt) 9(t,7) where, as in-
dicated below, ¢(t,t) = I. Qualitatively, ¢y is a matrix which
gives the contributions to p,., and Y due to vehicle vibrations 1,
and ¢ is the 9x9 transition matrix for the random vehicle
vibrations. The white noise sequence w; is given by
o = f‘“‘l [ o4c, k)BP{) x(aﬂ do . The white noise observation
k

sequence v+, is similarly obtained from the whitc noise

observation: process, v{t). I, = identity - indicates that the error
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parameters _lg(s) remain constant. The transition matrices have

the following properties:

2) alty, )t = ot t,),

tas ts,

3) #(t,r) = X(t)X(r)"1 where X(t) is the solution
to the equation dX/dt = A (t)X(t), X(o) = 1.

From the above properties it is seen that if t5=0, ¢(t;,0) = X(o),
and it is not difficult to see that in general tye1, ) = XKD (¢))
Efa(k‘*’l)(tl, 0) where X(k+ 1)(tk) is the solution to the matrix
equation X (t) = A{t+t )X(t), X(0) =I. This means that it is
only necessary to solve for the matrix X(tl) for each time
interval, (tk, te.1)» With an updated A(t) matrix using the same
initial conditions X(0) =I. Thus the computer routine for

generating the tranzition matrix, *{tir 1, t) is not changed for

each k, only the elements of A{t) need to be updated,
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CHAPTER I

FORMULATION OF S2PECIFIC ERROR PARAMETER
IDENTIFICATION PROBLEMS

In Chapter I, a very general formulation of the IMU error parameters
was considered. This formulation is general in the sense that most
specific problems can be placed into this framework. When a specific
problem is considerec¢, the equations of Chapter Ii simplify considerably
and the dimensions of the various matrices are decreased accordingly.
For example, it could be assumed that all the error parameters are
known and that only the initial misulignment angles, ¥(t;), need to be
estirrated. Another important simple example might be to eqﬁma.::
the random: motion only. This might occur when a vehicle is launched

from the wing of an airplane or raother-ship.

In this chapter we discuss three important IMU error parameter con-

figurations which were considered in this study. They are as follows:

1. Initial misalignment angles, ¥, only.

2. Initial misalignment angles plus gyr¢ mass-unbalance
terms, ks and kj .

3. Initial misalignment angles plus gyro constant drift

rates, €.
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Both time correfated and uncorrelated random accelerations are con-
sidered. The correlated model used is discussed in considerable dotail
ir Appendix "A". The correlated random acceleration is assumed to
act along one axis of the vehicle (axis of major disturbance) and depends
upon specific parameters which cannot be readily varied for parametric
or analytic studies. For this reason extensive experimental results for
this model are not included - although they are availabie. The main
purpose of this study is to determine effects of state and observation
noise levels, and the trajectory parameters on the identification of the

errors, and the uncorrelated noise models are most convenient for these

purposes.

For these specific models, the master IMU is assumed to be perfect,
and the slaved "™MU is assumed to be a gimballed system. The only
degree of freedom in the nominal trajectory specificaticn is assumed

to be in the vehicle's pitch angle. That is, the vehicle is assumed to
have a fixed thrust program. The experimental results of this
chapter indicate that the quality of the identification depends very much
on the manner in which the particular error parameters enter the sys-
tem and on the power levels in the random disturbances. Thus a mean-
ingful optimization prublem can be fcrmulated with respect to the nominal

trajectory variables, such as for example, the trajectory pitch angle.
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3.1

Time Correlated Random Vehicle Accelerations

For the present purposes it is as-umed that significant random
motion occurs along the vehicle's yaw axis only. Such a random
motion might cceur if the thrust engine were to move randomly
about the pitch axis while controlling the vehicle's trajectory to lie

in a vertical plane. Furthermore, it is assumed that this random
motion is stationary and has a power spectrum of the form discussed
in Appendix ""A’", Section A.:. 1In this section the assumption that
the given power spectrum inay he suitable approximated by the fourth-

order rational power spectrum

¢$.b ¢,b
S{w) = Q SN + LA 3.1
) (w-2a?2 + b2 ! @+ aP + b2 (3.5a)

is made. The corresponding autocorrelation function is
Ry(v] = ¢y exp(-blsl) cos ar (3.1b)

By Equation (A.5)of AppendixA, a model of the process defined by
Equation (3.1a) is given by

g x\ -b a (x / 1

dt B -a -b * y2be, c-pI¥ cs\]a2+ ¥ (3.1c)
y a \¥ =/

The "noise", w(t), is such that E[w(t)] = E[w(t) w(r)} = g{t - 7).

For engineering nurposes, Equaticn (3.1c) is usuaily discretized by
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approximating the white noise process w{t} by the white noise :
sequence Wi /{4 where k denctes the number of the sample and 2

A denotes the sarnpling interval (see Secdion A.4}. The discrete

form of (3.1c) is given by (A.20c) as

X; €0S aA sin aA s "
1 - e"bA /x1 1 + -
Vi -sin aa cos aA \yi -1 {3.1d) =
e-ba (—"—;79 sin aa ~cos + 1 )
' ) i-1

¢V ha (e“bA (_g%lg ¢os aa + sin az_\.) + (—b—'-—

a

Simplifying the notation, Equation (3.1d) may be written as
Xi=AOD X-1+ bOwi-1 (s.1)

where the definition of x;, Ay;, and by is cbvious from Equation

(3.1c). The "white noise" sequence w; _ ; has the property
E [wj] =0and cov(w;, wj)= E lw; w5)] = 3; (3.1e)

Another discrete model of the process defined by Equation (3. 1a)
is given in Section A. 4, Equation {A.21c), as

x1\ _ fb1 -b2 (Xi-1 , a1) s (3.28)
¥i 10/ \¥ia -’%,

To simplify the notation, Equation (3.22) is written

Xj= Apy X; -1 +bom Vi -1 (3.2h)
The definitions of a3, ag, bj, by are given in Section A.4.

E:
%
§4
|
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Nexi it is assumed that the random mction whizh is introduced
through the "angular velocity matrix” [ 1s negligible. Thiz is a
reasonzble assumption if the nominz! angular velocity v iz smuall
and nearly constant. In the present case, w{™ = (O,éz(c’ ) gy
where ez(o‘m) is the vehicle pitch angle and 6 2{9’ M) is zero
except at the transitions where it is a constant. This means that

the "angular velocity matrix" {9] is defired by

10 e£ 0 -2wg 2w,
|
lo] = [fzt]=fo 1 0! 203 0 2] =

69 1'-20p 2u; 0

3.3a)
190 G: ¢ 0 20;2
=g 101 0 2 o0
H
00 1:-2uw 0 0]
and the vehicle’s random acceleration vecdor is
at)y =foox oo (3.3b)

According to Equation (3. 1c), n and H may be ¢xpressed in the form

;o
n 311 352 0 [s ( By
_dgt- ® = agy gy O T+ ! bay (W (3.3¢c)
A \ 1o o8 “ 5

where fi' is an additional variable which is required to take cure of
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the correlation in §. The clements in the matrix equation above are

obtained from Equations (3. 1c) or (5.2a). Equation (3.3¢) may be

written in discrete form as

{au % O {?7 811
0121 (222 0 ]+ 321 Wi (3.3d)

\ﬁlkd a 0 ll\ﬁ 0

i i
--—c-—\..
=8 =8

where the subscripts k + 1, k refer to the sampling interval, and the

elements in the matrices are obtained from Equation (3. 1d) or(3.2b).

1 ir R T W TR Sr e B
0 QU S et e g A Ry It e it b3

et it
oAl glitaks
framh

The random raotion of the vebicle, in vehicle coordinates, may thus

be written as

A - Mz ={n2joito 0 4 008"

dhidct Rl

Wireh o

S
3
4
kS
5
-5
B

If we substitute into the above matrices, this becomes

n(m} = "20)] ] = { ¢ ¢ “3&-’1 ﬁ' (3138)

i B \10 0 \n/

Equation (3.3e) may be written as

E: : ) g (3.42)

R
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where

o o 200™)
fej= {0 0 O . and n' = (R, %, A)* (3.4b)
10 0

In ('31 it is shown that under reasonable agsumptiong the effects of

(o, m)

) may be neglected; that is, random coriolis accelerations

can be neglected.

3.2 Uncorrelated Random Accelerations

For various reasons, it may be possible t¢ assume that the discrete
form of the random acceleration due to vehicle vibrations may be
uncorrelated in time. Su~h would be the case, for example, if the
estimation interval Ao was required {c be greater than, say 0.1 sec.
Such a requirement would depend on how fast a digital computer
could process the data, i.e., the velocity diiferences between the two
IMU's. In the pres<ut study, it has been found that, in order to
egtimate initial misalignments and mass-unbalance drift rates, a4
would need to be greater than 0.1 se¢c. Inthe sventthat 4 > 0.1
Figare 3.1 illustrates how the correlated noise model assumed
in the previous section might generate essentially uncorrelated

velocity sequences., As a further example, a gensgible candidate
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‘o 2 suboptimal estimator would be cne in which the raidom
accelerations are assumed uncorrelated in time, It ig thus assumed

that the random acceleration added to the IMU velocity differences

1s of the form

- -

Ip = |Te] ; where EE_r__x;*]k-t 0 rz9 0 |=R {3.5a)

r 0 ¢
Sk e 33

k
Further, it is assumed that o% =STy) = Yoo T ¥ This
asguraption is made for romputational convenience and is not con-

ceptual in nature. The random acceleration in IMUgz cocrdinates
is given by (with 7= 79 8) om, o))'

y el (m) '
£§§Sl =£( +1)a T(Oy s) T(m’ O) (t) dt :Jg-:“ (3.5b)
a a

The covariance of this random acceleration is given by,

O rtk+t tj+ 1
Cov{xk, 53) = E Kf T(t) r(t) dt).(j; T r(rjdr
ty j

}

3. 5¢)

21

]

due to the fact that T(t) is ap orthogonal transformation.
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3.3 Initial Misalignment Angles,¥;, i=1,2,3

If it iz assumed tbat the accelerometer error parameters Egs) and
the gyre error parameters gés) are either zero or known (Chapter
II), then the difference in acceleration between the slave and master

IMU (expressed the IMUg coordinates) becomes

22t®°) = Kmis (&Y o + o{m8)gn o (3.6a)

In this equation the terms are defined in Chapter II.

If the random coriolis acceleration is neglected {as described above)

then

w- b .09

In order to write Equation (3.6b) in discrete form, let
; k
#8:0)_ (8,0), 22(8:9) (7} ar (3.6c)
kT k-1 Jey T
where k denotes the time t = t;. Equation (3.6c) ma& then be

written as

k
P Y

Combining Equations (3.6d) and (3. 2b) into one equation gives
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] k ]
gl | l{l.r(m.-) (arfan] o k. {l [y e |y, 9] | o
' - ¢ -

‘mis Yyl
""""" o | R O o
""""" T
(3.5¢)

which is the state equation for the misalignment prcblem.

" (0,8
Yi’)

y‘f’ 8)

J’go’ 8)

= v‘f’s) + | wy

cov (wg,

Next a state vector

It is assumed that the velocity increments between the twe IMU's
can be observed. Hawever, these observaitione are contaminated
by IMU instrument quantization errors and digital computer round-
off errors. Further, it is assumed thst these errors form an

uncerrelated random sequence. Thus the obgervations made are

- -

W) ¥

1o, 8)_

e b -

¥3

where t-e wj, 1=1,3,3, are uncorrelated sequences of gaussian

random variables with

Q}) =W. & {R.7k;

i

Xk i= defined as

Zg = [E&o,s)’ Ak, .‘?.k]* (3.8a)
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an observation v':ctor_

Ve = {y("’s), y(08), y(°’8)]k (3.8b)

a state tramsition matrix

1k . k
' {m, s) ' ' (s)
1 :‘1{-1 T (1) dr [a"] : ki i{-l[a'('r)]d'r
Y, k-1 = |0 Am ! 0
cdmeeecrmcmmcmemeem—————— qreemmemecmmm—;———————
[0 ¢ 0 : I ]
(3.8¢)
a measurement matrix
M ={1]{0]; Iis 3x3 and 0 is 3x5 (3.8d)
and a process noise vector
0
Yk = bm Wk (3.83)
)
With these definitions, Equations (3.8c) and (3.7a) become
.x.k = Qk,k*l ék-l + Ve (3.9)
Y = Mxp + xry (3. 10)

with the covariance matrices of wix and ri givenby Wi and Rg

respectively.
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In the discussion which Jollows, it is convenient to define the

quantities

k+ 1A
AXi.m.““ 1Lk= km%i 0 (a(akr))d‘r ¥ (3.113)

and

(k+ 1A
(i~ (P, 10

3.4 Initial Misalignment Argles and Mass-Unbalance Drift Rates

In this section we obtain the equations for estimating initial gyro
misalignment angles, ¥;, and the gyro drift terms which are due
to gyro mass unbalances, The drift rate for the ith gyro is

- (g
S Y °] af) (3. 122)
where the following notation is used:

The superscript g; refers to the ith gyro;
ky, = the ith gyro's error coefficient due to mass-

unbalance along the gyro's input axis, in deg/hr/g

ksi = the ith gyro's error coefficient due to mass-
unbalance along the spin axis, in deg/hr/g
gfegi) = the sensed acceleration vector in ft/ secz, expressed

in the coordinates of the ith gyre
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Kpu = 0.15068493 x 10 is the factor which

converts deg/hr/g to rad/sec/(it/ secz)

e(&1) drift rate of the it® gyro in rad/sec

The arrangement of the gyro coordinates on the IMU; is shown

in Figure 3.2.

t,

G3; GYRO 3
% )‘— 3
3

2 .
2 G, GYRO 2
1
3/
x(s)
3 2
. SLAVE IMU
Gy GYRO | l 2 COORDINATES

] x(’])

Figure 3.2 Orientation of Slaved IMU Gyros

After intvoducing the required coordinate transformations, the
acceleration error, in slaved IMU coordinates, due to mass un-

balance drifts is given by

bk \\
ky
2 '
..(.) 0 0 :‘.(') 9 0
i N o (s)
O B B e e A
k
{e) (o) S
\o 0 ., , 0 0 %, !

ks2 (3. 12b)
\k53
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The total velocity error due to mass unbalance drifis between

samples is than given by:

k+1)a
-v-:n.ul(k* 13@ = km.u
ka

t .
[agsktﬂ , Uo {ags)(.ﬂzdrg dtggm'.m

(3.12¢}
The matrix product in Equation (3.12¢) is
F 0 -a33382 a82a83 0 -383a53 aszas1
(s)" lash . _
{as 1 ay 2 assa.s1 0 asla83 assas2 0 aslas1

a_3a a_a 0 ~3.,a, a.a
_8251 5152 8.8, “8

2% ®1%; o |

- e e e e me em e e

(3. 12d)
where the superscript s has bteen dropped. Thus each element in

the integrated 3 x6 matrix of Equation (2.12¢c) will involve a term

of the form

. s k+1)a t
11’1(k+1,k)sf a(s)( (t)dettdt; i,j = 1,2,3 (3.12¢)
L, A °§fo syrecfat; 1,

It is convenient to define

(k+ 1)A

[ (s) - (s)
[, = [rmesn] = [ [20],
kA
t
. / {a (s)(,,,] ol at (3 12t
8 2

(o]
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so that Equation (3.12¢c) may be written as

- (s)
AV o (k+1,E) = km.u.[vs (N F . (3.12g)

The estimator equations are then cbtained by replacing

Kmis (ng))mis

in Equation (3.6c) by

[kmis ("(ss )>mis E Km.u. ("(:)) m.u.}

In the case of this configuration, it is assumed that the random
accelerations are uncorrelated, so that Ay = 0 in Equation (3. 6e).

Further, the vector by in Equation (3.6¢c) is replaced by the
3x3 matrix of Equation (2. 5b).

3.5 Initial Misalignment Angles and Constant Gyro Drifts

= In this section we obtain the equations for estimating the initial
g H

gyro misaiignments, ¥; , and the constant gyro drift terms

€,1=1,2,3. The constant drift of the ith gyro, g, is
expressed in deg/hr. The arrangement of the gyros is as

shown in Figure 3.2. The velocity error expressed in IMUg

R A T

coordinates between samples will thus be

A b VAR SRR Y sy
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k+1)a t
avg o (el k) = Ky [ (af)(t)) 3]0 £ dt'% dt
(ks 1o {3.13a)
k+ DA
-k ¢ . [a8) ] ae -
d.r, kA {as ( 2

.
In this equation [ags)(t)‘x is the matrix defined in Chapter I1,
Section 2.2, and kg, = 0.48481368x10 is the conversio

factor from deg/hr to rad/sec. Next we define

k+1)a
e - L7 ]

so that

Agd.r.(ki-l,k) = kg p. [v(:)]d.r. € . {3.12¢)

The estimetor equations are then obtained by replacing kmis (v(:))

mis
in Equation (3.6¢) by [kppgg (V) kg (¥8), 7. For this

mis dr]

estimator it is assumed that the random accelerations are uncorrelated,

so thai in Equation (3.6e) Ay = 0, and by is replaced by
Equation {3. 5b).

For convenience in the discussion of the experimental results, the

follnwing notation is used for the configurations of the various slaved
IMU error models:
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Configuratior LA:  Identification of initial misalignment angles
¥, using correlated random acceleration.

Configuration IB:  Identificatior of the initial misalignment
angles ¥, using uncorrelated iandom accel-
eration.

Confizuration Ii: Ideniification of the initial misalignment
angles ¥, and the constant gyro drifts £ .

Configuration II:  Identification of the initial misalignment
angles ¥, and the mass-unbalance gyro

drifts, k-

PP
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CHAPTER IV

EXPERIMENTAL RESULTS

it is quite useful to obtain an idea of the type of resulis which are
possible for the trajectory optimization which is considered in
later chapters. In this chapter we give some experimental results
concerning the identification of the error parameters for config-
urations 1A, IB, I and III, The effects of state noise, measurement
noise, and the nominal trajectory are considered. The nominal
trajectory is reasonably assumed to be specified by the thrust
acceleration and by the itrajectory pitch angle (which is assumed
very nearly equal the vehicle's pitch angle). The vehicle mnsidered
is assumed to have a tixed acceleration profile, so that the only degiee
¢f frcedom in specifying the nominal trajectory is its pitch angle, u.
These functicns, p(t), te Ity t,+ T1, are a2lsc constrained in a
certain sense. Generally, the pitch angle is constrained to be £ 10
degrees from some reference value, and the pitch rate might be
zimiianly conetrained. Typically, the nominal irajectories would be
as shown in Figure 4.1. It should be noted that most of the simpiify-
ing assuwmpilons are made in order to facilitate the parametric study,

and are not corceptual in nature,
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\TRAJECTORY PITCH ANGLE PROFILE
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w
w
-
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150.0 - 50.0 7
ACCELERATION PROFILE o m)
**M
-&_._—_,'-J""'
120.0 & 0.0 C
0.0 2.0 4.0 6.0 8.0 10.0 12.0

Figure 41 Reference Thrust Acceleration Profile
and Trajectory Pitch Angle Profile

A discussion of the various initial conditions (a priori estimates,
etc.} may be found in [3]. The notation used below is essen-

tially as follows:

aﬁ =¢, the correlated random acceleration power

0122- 1 the uncorrelated random acceieration covaviance matrix.
a%,-f the observaiion noise covariarce matrix,

e@i the standard deviation in the estimated misalignment angles.

o8 the standard deviation in the estimaied constant gyro drift
rates,

) O the standard deviation in the estimated mass-unbalance
Iy gyro drift terms.
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The initial IMUg orientation angles, 6(%'5) do not seem to affect

;}f%i? . However, the %, of the individual estimated ¥;, "31, do
(;epend on this orien‘tation: For this reason an orientation in which
the accelerometers each sense about the same thrust acceleration
was chosen for most of the experimental work to minimize the maxi-

mum of the %1 . The geometry is as shown below.

X3
3 X&)
Pox
{m) (O,m) a3 ! :
XY 05 (©,m) THRUST VECTOR
;]
THRUST VECTOR 2 a
x(0) 2
2 . J x("
2
x(‘°) (MASTER IMU COORDINATES) x“" (SLAVED IMU COCIRDINATES)

The thrust vector in IMU o coordinates is

sinez(o’m) S¢
a.(o) = a 0 £ a( 0
<s

cosez(o'm) Cé

¢
and it is necessary to pick the three fixed rotations 63’ 8), 0(2"’ s),
8{0,8) such that the three direction cosines o, a4, agare equal,
Thus /1

(8) _ 2 - {0.8) _ (0.,8) _ (o,3}} (o}
ass - A -T(33 . 0,7, 8y )g’
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1 elom) _ (TP -90°) = -25° and eizo» )= Tp -45° the solution tc the

above equation gives 60 8)=48,9°, 60, 5)=20°, and 6{% 5)= .22, 5°,

4.1 Experimental Results for Correlated Random Acceleration
(Configuration IA)

The correlated random acceleration model is studied in considerable
detail in [3} For this configuration the gyro drift rates are
assumed negligible so that only the initial misalignment angles

are estimated. The effects of the sampling rate (data processing
rate), A, are shown in Figure 4,2, The sampling time 13 varied
between 0.025 sec and 0. 100 sec to determine how much improve-
ment in the identification of the ¥; and the correlated noise com-
ponents is possible. The most suitable sampling rate depends on
the particular correlated noise model, in that it should be fast
enough to obtain a reasonable representation of the correlated
random accelerztion, The effects of the random acceleration

rms power leveis and measurement noise ievels are shown in
Figure 4.3 . It seems that it is of advantage to structure the
estimator for correlated random accelerations if it is only required
to estimate the initial misalignment angles and if the correlated
noise is of a sufficiently low "frequency" (say less than three

cycles/sec). It is also of advantage to consider the correlated
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model if it ig of prime importance to estimate the random motion
3 vith all error parameters known, as, for example, in launching
from a mother sliip. If errors in addition to the y, are also to be

estimated it does not seem possible to use the time correlation in

[

the random aceeleration to advantage,
Since the results for the correlated noise model depend on many
1 parameters and on the specific noise model considered, further

discussion will not be made here, Considerable experimental

results for the correlated random acceleraticn model may L¢

E 12— T T T
. WITH UNKNOWN
1 MISALIGNMENT ANGLES
< 1.0~ i
= o MEASUREMENT NOISE
3 2 0.8} COVARIANCE o2« 0,001
‘ g w" o
£
e <«
3 3 WITH KNOWN MISALIGNMENT ANGLES
- el XY ot -
. o
; z
_ 0.4~ NOTE: THE STEADY-STATE VALUES ARE REACHED
3 WITHIN A FRACTION OF A SECOND
0.2l L 1 P

0.025 0.050 0.075 0,100
SAMPLING TIME A(SEC)

Figure4.2 Steady-State Standard Deviation of the Eatimate

of the Acceleration Noise, o'g for Various
Sampling Times &
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found in [ 3]. In this case a parametric study is not as readily
made, or as meaningful, as for the uncorrelated noise model

which is considered next. Since one of the main objects of this

study is to coneider the maneuver which allows (hat the

identification of the errors be accomplished in an optimal
fashicn (Chapter VI), the uncorrelated model is used because

it provides a better setting for this purpose.

bS5 v it 2

d
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E : i
K 0.6 :
= N H
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i l i ] J
0 : i |
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Figure 4.3b cn@i for various @, using the Nominal shown in Fig4.1
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4.2 Experimental Results for Initial Misalignment Angles

and Uncorrelated State Noise (Configuration IB)

In this case the data the data processing rate was fixed at 4 = 0. 10
seconds and the '"equal acceleration' orientation discussed above
was used. The effect of the state noise, measurement noise, and
trajectory pitch profile are considered. Figure 4.5 illustrates

the sigma ¥; for different values of measurement noise standard
deviation, oyy. The random acceleration variance o, for these
cases was fixed at op = 10'3, and Nominal Trajectery IB-7, Figure
4.4, was used. Figure 4,6 illustrates the sigma ¥; for different
values of random acceleration variance, og. A pertinent discussion

of the effects of process noise (random acceleration) and measure-

ment noise on the covariance equation P, is given in Section 4. 5.

The manner in which the IMUg is aligned relative to IMU, (through
the angles 8 go, s)) and the trajectory pitch profile enter the variance
equation are outlined in Chapter V. Since the object is to minimize
the trace of this equation, the angles gg” s) and p could be con-
sidered as control variables in this minimization. Theoretical
considerations regarding the existence of a minimum with respect
to _Qs)o’ 8) and u are made in Chapter VI. Only experimental

results are presented here which might give some insight into this

optimization problem. The sigma ¥ for the
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IMU, initial misalignment anglee, (%5} listed below were

considered first.

0{9:8) = (48.9, 20, -22.5), (0,0,45); (0,45,0%; (45,0,0f

To make a comparison ¢ = [ﬁ: a@i ]1’/ 2 was plotted for the four
=]

different initial IMU,, alignment angles, g(g’s) . In the four

cases presented, ¢ did not depend on the initial alignment angles,

g(;” s), indicating that a minimum of the sum of the variances of

the e‘f,f does not exist as a function of gg‘” s). It was clear from

the results that the individual 0§, do depend on g(g» 8), so that
more realistic performance criteria might be to minimize the
maximum of, s a fnction of 8{%8),  Theoretical difficulties
will arise with such a criterion because the maximura principle
cannot be used to obtain necessary conditions for optimality.
However, it does seem that the equal acceleration orientation
satisfies the above criterion. For the remainder cf this study,
the IMUj orientation is such that 6$% %) = (46.9 , 20 , -22.5)*
(equal acceleration crientation) was chosen because the three czr@,i
are about the same, and there is no reason to have them other-
wise at this point. It should be noted that the random accelera-
tion and the measurement noise were assumed to he such that
the variances on each component were equal, i.e., each com-

ponent of velocity difference. In the case in whick these
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variances are different for each component of velocity difference,

the initial IMU orientation, ggo, 5) would surely affect 8.

The sigma $; for four different u profiles arc shown in Figure
4,7, The four different nominal trajectories used are shown in
Figure 4.4, and are essentially such that ¢ approaches its

lower value of 55 deg stepwise, but at different rates. In all
cases the steady-state a\f,i for each constant portion of u

{for each of the four trajectories) is the same. Only the rate

at which these steady-state values of o-Q,i are approached is
different., If larger R and W were used, it is possible that
the steady-state values would not be reached, and that the U"I\’i
time histories for the four nomina' irajectories would be different.
Actually, the size of the step determines how much larger the
error due to ¥, in the velocity differences, 7o S) is than that
due to random acceleration and measurement noise. The larger
this difference, the more confidence the estimator has in
choosing the '?'i' The corresponding minimum variance
estimates, %; , for two cases are shown in Figure 4.8, Further
discussion of the nominal trajectories are given in the next

section,
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4,3 Experimental Results for Initiai Misalignment Angles

and Constant Gyro Drift Rates (Configuration II)

Effect of Random Acceleration and Measurement Noise
on Configuration 11

Figures 4.9 and 4. 10 show the effects that the measurement

noise, o_ ., and the random acceleration, o, have on the esti-

R,

mates of the constant gyro drifts, €., and the initial misalign-

i!
ment angles, ¥ The value of % does not affect the ¥ too
i
much (Figure 4.9a), except 0‘?’1 decreases faster for smaller O
The steady-state values of the o‘q,i are independent of Oy 25 is
discussed in Section 4.5. The effect of O On the op 1is stronger
1
than for the o , especially between oW = 1073 and 1074 ft/sec
i
{Figure 4.9b). No conclusions about the steady-state values of
the o¢ a8 2 function of oy, can be deduced, since the gp are
i

still decreasing at t = 24 sec.

The effect of the random acceleration (oR ) on the estimaticn of

the ¥ and ¢ is illustrated in Fignres 4. 10a and 4. 10b respectively.
For % = 10-3 ft/secz, there is an appreciable steady-state value
{(~0.05 arc min) in the o.g,i, that is, appreciable when compared to
the error due to the constant gyro drifts, ¢;. As shown in Figure

4, 10b, the effect of the random acceleration noise leveis on the
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estimation of the € is considerably more pronounced. For
oR = 10" and 10~8 ft/sec?, the 3 are about the same values,
decreasing significantly to about 0.0125 deg/hr at t = 24.0 sec.
These results indicate that it would be desirable to keep the
measurement noise levels such that 107 < O < 10~4 ft/sec and

the random acceleration noise levels such that 10'5< R s 10‘4

2
ft/sec .

1.2
z | | | l
3 NOTE: IN ALL CASES &-0.1, 7, = 0™
2 NOMINAL TRAJECTORY 1'-5C WAS USED.
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Figure §.9a Effects of Measurement Noise, Oyt o the
Estimates of the Initial Misalignment Angles
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STANDARD DEVIATIONS IN ESTHAATED CONSTANT GYRO DRIFTS (DEG/HR)

STAITARD DEVIATION IN INITIAL MISALIGNMENT
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Figure 4.9b Effects of Measurement Noise, Ours OR the
Estimation of tie Constant Gyro Drift Rates
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Figure 4.10b Effect of the Random Acceleration, Op» O
the Estimates of the Constant Gyro Drifts

Effect of the Nominal Trajectory on Configuration 11

The trajectory pitch profile, u, is varied to study its effect on
the estimation. The variations are such that the effects of the
rate of change of u, total amount of change ir y, and direction
of the change in i on the estimates can be observed. It should
be noted that the constant drift rates, ¢;, do not app: eciably

affect the estimates of the initial misalignment angles, ¥,
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because the errors due to €; are much smaller than those due to
the ¥y for short estimation times. For this reason the conclu-
sions regarding the ¥ deduced from this section can be used in

the previous section.

Figure 4.11 shows six trajectory pitch profiles in which they
change as ramp functions. The corresponding standard deviations
in the §;, of;, and the standard deviations in the &;, o2,, are
shown in Figures 4. 12a and 4. 12b respectively. It is seen from
Figures 4. 12a and 4. 12b that the higher rate of changes in TP
result in faster decreasing os,i and aé«i. However, the steady
values in the o@i, that is at £ = 24.0 sec, are about the same
(about 0.025 arc min). The Vgi are still rapidly decreasing at

t = 24,0 and the rate of decrease of the crgi is proportional to the
rate of change of the piich angle. For TP-2f, the o@i, have

decreased from 0. 15 deg/hr to about 0.040 deg/hr.
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Figure 4.12b Standard Deviations in the Estimated Constant Gyro

Drifts, o'é\‘ , for Nominal Trajectories lI-2a to II-2f
]

Next, the effect of the total change in TP on the estimates is
considered. The pitch profile is changed discretely at t = 10 sec,
as shown in Figure 4,13a. These nominal trajectories are
referred to as Cases II-3a to I-3g. The corresponding a@i and
Gi‘i are shown in Figures 4. 13b and 4.13c, d respectively.  The
ra;e of decrease of the sigmas for &1 and ¢ for the various
"step” pitch profiles is proportional to the larger changes in TP.
This is reasonable because the larger the change in the pitch

profile, the larger the contribution of the ¥ and e to the
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velocity differences, x(o’ s) , as compared to the contribution due
to the random acceleration and measurement noises. From
Figure 4, 14a it is noticed that op and 092 improve when TP
increases (I-3e and II-3g) and it 1is relatively ingensitive to down-
ward changes. On the other nand, Figure 4.14b shows that 093
improves as TP decreases (II-3d and II-3f) and does not change
much when TP increases {JI-3g and li-3e}. This indicates that

a combination of an upward and a downward maneuver would be
better for extracting the constant gyro drift e, . This is further in-

dicated by the results shown in figure 4. {5b using nominal 1i-5c.
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Figure 4.13d Standard Deviations in the Estimated Constant Gyro

Drifts, o¢, , for Nominals II-3a Through I-5g
The trajectory is next varied in such a way that the step of 10 deg
(trajectory TP II-3f) is approached at different rates. This type of
variation gives the tradeoff in performance of Configuration I as a
function as less abrupt changes in the pitch angle. The trajectory
pitch angles are shown in Figure 4.14a. The corresponding mi and
crei are shown in Figures 4.14b, 4.14c and 4.144, respectively., As
would be expected, the trajectory profile with the most abrupt
changes produces better results, for ‘lli as the tr;!\,i steady out
within one second and the most abruot changes in the trajectory con-
tribute a larger amount to y_(o’ 8) for a longer period of time. For
the ¢; the slower ramps produce better results because the crg\i
take longer to steady out, and better results would be obtained if

the changes are made later.
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It should be noted that if the estimation time is long enough, it
doesn't seem to matter how the tréjectory changes - aslong as
it does change. This is true for the §,, at least, because the
ag,i all seem to steady out to the same values. This could be
expiained in terms of ow and % and the discussion of Section 4.5
Note that the slower the ramp decreases, the better the fi are
estimated (contrary to the situation for the qfi). This is clear

from Figure 4.14c and 4.14a. Also, £, is better than ?1 and &

3 2
because the trajectory pitch angle is decreased from 65 deg.
This behavior was ohserved for the step profile of Nominal

Trajectories II-3a to Ii-3g.

Figures 4. 13 and 4. 14 indicate that oel is better than O’é‘\z and o£3
if 1 changes downwardly from 65deg, and vice-versa. Figure

4, 15b shows the oei for a combination of a downward and an
upward maneuver., The specific trajectories used are II-5a,

b, and ¢ shown in Figure 4. 15a with oy, = o = 1074, Iis

clear from Figure 4. 15b that the €; can be equally well estimated,
and % is less than 0.055 deg/hr after 24 sec of estimation.

If the trajectory pitch prcfile were varied in an optimal manner,

better estimates would surely result.
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4.4 Experimental Results for Initial Misalignment Angles

and Mass Unbalance Drift Rates (Configuration III)

The effect of the nominal trajectory and the initial orientation of
IMUj on the estimates has been discussed in Sections 4.2 and 4.3.
These effects on Configuration IIl are not studied here, but it is
expected that the rasults obtained in the previous sections would
generally apply, at least for the estimation of ¥ The estimation
of the ks. and in errors would possibly require more trajectory

i
maneuvering.

The first set of standard deviation curves (Figures 4.17 and 4.19)
show the effects of the random accelerztion on the estimates. The
sigma Q'i are shown in Figure 4.17, and it ic clear from these
curves that the trajectory pitch ancle could have been changedl
earlier, since the steady-state values of about 0.87 are reached
rather quickly, Estimates of the ¥, such that U‘?‘i <0.1 arc min
are obtained in all cases, except for op = 1073 ft/sec®.  The
spin-axis mass-unbalance standard deviations, oﬁsi , for the
difierent ag are shown in Figure 4.19a. Except for the case
where on = 10"3, u could also have been changed earlier. The
input-axis mass-unbalance standard deviations, aﬁli , are shown

in Figure 4.19.  These estimates are somewhat better than

those for the spin-axis termis. Again the pitch angle could have
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oeen changed earlier, say at t = 5.0 sec. These results show

e a4
that if oW 107" ft/sec and R

need op < 10"4) and estimating times are in excess of 20 sec,

excellent estimates of ¥s5 ksi’ and in would be obtained, Based

<1074 ft/sec \except the ksi terms

on these results it is conjectured that a well chosen maneuver
weuld improve the estimates, especially the estimates of the spin-

axis terms, kg, .

Next the effect of the measurerient noise on the estimates is con-
sidered. The nominal trajectory is TY¥-II-3 in Figure 4. 16.
This is essentially che same as Nominal Trajectory II-2, except
that TP is changed from 65 deg at 5 sec instead of at 10 sec, The
corresponding estimation sigmas are shown in Figures 4.18 and
4,20, Typical minimum variance estimates (for oy, = 10~ and
%R = 16"4) are shown in Figure 4.21, Generally, the measure-
ment noise does not affect the estimates as in the case of the
random acceleration on. Figures 4.18 and 4.20 show that there

ig not muchdifference in the sigmas for oy = 1073 and ow = 1074,

PIYCH ANGLE (DEG)

60 cag

1
5 10 viAE 1SEC) z

Figure 4.1§ Nominal Trajectories III-2 and TP II-3

P VP VI
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4.5 Discussion of the Steady State Estimates

The knowledge of the steady state estimates and of the error bounds
on the estimation covariances is not required directly in the maneu-
ver optimization problem. However, this type of discussion could
help to answer certain problems of controllability which mightarize,
For example, the final error covariances which need to be speci-
fied for certain trajectory optimization probiems (Section 5. 4)
couid not be less than the steady state results given below. For
this reason some results which might be applied to the asymptotic
estimator of the covariances are included [ 4 ]. To present the
main results of this section, the general state and measurement

equations are written

Xk = %, k-1 Xk k-1* Wk-1
Zg = Mxg+ v
Cov{(w) =QandCov(v)=R

We write M instead of M in the last equation because M = (I : O),

a constant matrix in the present problem.

Definition: The above system is said to be q-stage observable
(1 <q < N) on an interval tos b sty if and only if the matrix
Mk, k-q+ 1 (which is defined below) is positive definite for arbitrary

ty and g such thai t) s ty o, 7 and tp < ty.
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Mk,] = zj @i, k* M* R] Mq’i,k

In the present problem

* =1 _ -2 91*01521*?_
P*M*R " Mo = Oy LZ‘STEM‘&

which can be made positive definite for the three configurations

considered here,

Regult 1: If the process noise is zero and if the system is q-stage
observable, then the error covariance matrix of the estimates Py
vanishes as k —e« if u(MklEdl)‘lii——O mere rapidly than !Pk’ 0%12
increases, where
M S -1
Mg, 1= igl ®,0" MR Me; o

Result 2: If the process noise is zero and the system is q-stage
observable, then P| becomes essentially independent (that is, for

k large enough) of the a priori statistics P .

Result 3: I the measurement noise is zero, then I’} satisfies
{a) MPy =O and PyM* = O for each k,
(b) P, is nonnegative definite, but never positive
definite
r *
() KR = %, k-1 Py o k-1* Qj . is positive definite,

and m<n {where M is mxn), then Py can never vanish.
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Further, the error in the estimate ,':_”gk: gk - X is any element of

the null space of M, i.e., Mg, = o for arbitrary k.

Result 4: The error bounds for P for the q-stage observable

system are given by

-1 M|-1 * ; pP
°k,0[P°+ k,l] °.0 " Pk

t]

~1 -1 % S
< N
*Pk‘“’k,o[l’o * Mk,i] %,0 * Wk, 1

where Pi is any nonn~gative-definite matrix (never positive defi-

nite and generally nonzero) and

s
Wi, 1

ok
P 1 Qg 4,
& k1 %41 %,

It would be useful to compute the above error bounds as a function

of the various system paramaters.

If it is assumed that estimator IB is q-stage observable, then the
above results may be used to interpret Figures 4.4 and 4.5, Figure
4,4 illustrates that all of the curves seem to be going to the same
steady-state values for cp fixed and varying oy . This observation
is implied by Result 1 above. Result 2 implies that the estimation
covariance will become essentiaily independent of the initial statis-

tic P although no experimental results are presented as verification.
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Figure 4.5 indicates that the %i will reach steady-state values
which are proportional to on. This is implied from Result 3(c)
above. Figure 4.4 indicates that the estimates are not improved
for decreasing oW if the estimation time is sufficiently long. These
results are not used to discuss Figures 4.9, 4.10 and Figures 4. 17,
4,18, 4.19, 4.20, because steady-state values were not reached
for these configurations. It should be noted that the bounds on
the covariance equation which are given in [ 4 ] for the discrete case
are similar to those given in Section 15 and 16 of [ 5] for the con-

tinuous case.

Remark 4.1 The experimental results of this chapter indicate

that significant improvements in the identification of the specific
error parameters consideredcan be obtained by changing the
nominal trajectory., ¥urthermore, certain changes result in
estimation variances wl.\ich. decrease quicker than for other changes.
The best time to make a trajectory change for a particular error
parameter seems to be when the ¢ for this error is approaching a
steady state value. Section 4.5 indicates that if the system satis-
fies certain properties the steady values (that is, ¢ —«) can be
estimated independently of the nominal trajectory. In section 5.1
it will be seen that some of these propertiea are related to the

"no-noise' situation.
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CHAPTER V

ANALYSIS OF TRAJECTORY MANEUVER AND FORMULATION ;
OF THE OPTIMAL CONTROL PROBLEM

5.1 Identification of errors under ideal conditions

For the purposes of determining the minimum number of trajectory
changes for the uniqueness of the solutions, we consider the mini-
mum number of trajectory maneuvers which are required to
identify the IMU error parameters under ideal conditions, that is,
under the conditions of no randon: disturbances (o = oW = 0). To

make the discussion as uncomplicated as possible, the simplest

configuration (Configuration IB) is considered first. For the

no-noise situation we have '
[0 1.0 2 =55 (x(°’s)(k+ 1) - ,z(°’s)(k)) (5.1a)

I all subscripts are dropped and k takes on two different values,

the abeve equation gives

All-"y_l and A21=32 (5.1b)

h
-
?
A
3
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E
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3
3

where the subscripts 1 and 2 correspond tok;+1 and kg+1
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Property 5.1 For the no-noise situation, at least one trajec-

tory maneuver must be made in order that the misalignment angles

¥; be determined uniquely.

Demonstration The matrix A; is of the skew symmetric form

0 -ag ag

for which the eigenvalues are 7\1 =0, Ay = +jllall and Ag = -jlaf,
where llaj is the magnitude of the sensed acceleration. This
means the three dimensional space in which ¥ is defined, £3, can
be spanned by the set{_1 , 3} where xJ is the dgenvector
corresponding to the eigenvalue Aj » and any vector x in Eq can be

represented by

x-algl-i-azxz-i-a = oyX +02x2+a3

so that

R LR LE SR LS
(5.1d)
If ¥ has a component in the null space of A; = 0,Ng (i.e., N,=
{xin E3 | Ax =0} ), then ¥ cannot be solved for. On the other
hand, if ¥ does not have a component in N, then any multiple of

a vector in N, can be added to ¥ and this will also satisfy the
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equation A¥ = v.

For convenience, the common factor which takes care of the thrust

acceleration can be factred from the A matrix, so that we have

Aj ¥ =y, (5.2a)
where
Aj={tg 0 -t;|and E 2 =1 (5.2b)
i=i
-tz ti 0

The eigenvalues of A and Ag are thra the same, namely,
A1=0’ k2=\,c1andk2=\[:-1

If the estimation were performed at the same time, then the
problem is the following: find the vector ¥ such that

A
i P LS (5. 2¢)

Ag )
If the matrix [Al : Az}* has rank 3, then a unique ¥ may be
obtained by multipiying Equation (5.2c) and then computing ¥
by the equation
* -1 *
g= {k} L}.l \ f‘f‘}_.l !-.l.:}_ (5.2d)

[A2] |22]] |22 \ 82)
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When the estimation is performed recursively, A% = y; must be
solved for % first, and then Ay = y, is solved. The vector ¥

rnay be represented by the eigenvectors

1.1 1.2 1T 2 _ 1.1 1.2 TZ,
2—-011_)51-9» 02_)51+a3§1 —a151+ a2;_<1+a2§1 \5_33)
The vector y; is then given by
¥y = V1 (01%5%-&%_5{)= -21m(aé§§) (5.3b)

The coefficients 0;_ may be solved fer in terms of ¥ and _:g%, which
are both known. This corresponds to the solution of minimum norm
(pseudo-inverse). If this solution is denoted by ¥4, then

¥ =¥ty _:g} where ¢, is 4 unknown constant and 3% is the eigen-
vecter of Ay corresponding to the zero eigenvalue. Next the
Equation Ag¥ = y3 is solved for a corresponding Lo, and ¥ is then

given by ¥ = ¥9 + Cq 5{‘ . These Equations can be solved for ¢; and

¢g9, and thus give ¥ uniquely.

Remark 5.1 When random distrubances are added, a
similar discussion goes through with the reasoning that the change
in u(and therefore the change in the matrix A) must be Iarge enough
so that the error due to ¥ can be detected over the errors due to

the random disturbances.
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Remark 5.2 The probiem of uniqueness of the estimates
for Configuration II can be considered as in the above discussion.

In this case the matrices A; are 3x¢€ instead of 3x3, and it is re-

quired that [A’? E - :: A7]* have rank 6. The matrix A is
the 3 x6 matrix corresponding to the ith observation. a=d is of the
form

([0 -tg ty 0 -ty tg]|

1
!
¢
x|ty 0 -t : Bl tg 0 -t
¢

l:tz t1 0}

-

Et2 ot 0
where o, g. and the t; change with time. With ro trajectory
maneuvers, the matrix A*A, where A* =[A’; i A;] has two eigen-
vaiues which are essentially zero and cne which is close to zero,
even though the factors o, g change at different rates. With one
maneuver, the matrix A*A still has the same zero eigenvalue
properties, and with two trajectory maneuvers, the marrix A*A,
where A* = [A’I f A}Z 5 Ag] , has no zero eigenvalues, Thus itis
sufficient for configuration II tc have two trajecto;‘y maneuvers in

order that ¥ and & be iderntifiable under ideal conditions.

Remark 5.3 The uniqueness property for Configuration I

is again discussed as above, where the matrix A; is now of the

form
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0 ~t3 ty]. [0 tgy th3 | 0 gy ty

3(31 6 -~tigitgg O -ty

1
¢
! '

, tteg tia 0 -tz tig O

where o, 3, &, tij , change with time. In this case it is required
* . *

that [A; }--- sA;]" be of rank 9. Tor this configuration A A has

zero eigenvalues when nc maneuver is executed, and no zero eigen-

values when three maneuvers are executed,

From Property 5.1 and the above remarks, the following conjecture

is made

Conjecture 5. 1 In order that the parameters of a particular

parameter identification problem be identifiable under ideal con-
ditions it is sufficient that & minimum number of trajectery man-
euvers be executed. The number of trajectory variations can

be obtained from the transition matrix of the system. In the
presence of randcin disturbances it is plaugible that a similar
situation prevails, wich the maneuvers being large enough to detect
the changes in the errors due ‘o the error parameters over that

cdue to the random disturbances.

Remark 5.4 The lower bounds cof the minimum number of

trajectory maneuvers could be useful in determining the "optimal
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controls" discussed pelow and in Chapters VI and VII, In Chapter
VI it is shown that the optimal controls are often bang-bang. A
lower limit on the number of switches in the controls reduces the
search procedure which might be used to obtain good initial guesses

for the computation of the optimal controls as discussed in Chapter

VL.

Figures 5.1 and 5.2 illustrate the standard deviations in the esti-
mated misalignment angles and the corresponding estimates, ¥,
resgectively, for 0 =0y = 0. The trajectory pitch angle profiles,
1, for these two cases were such that 4 = constant (IB-1) and u
changed discretely downward by 5 degrees at 0.2 seconds (IB-2).
The "squares’ in FigureS5. 1b indicate the estimates for the second
trajectory, where the actual values for ¢ are (0.5, 0.1, -0.3).
The variances and the estimates for Configuration II are shown in
Figures 5,22 through 5.2b. Withnoprocess and measurement
noise, the standard deviations m the estimated misalignments,
U(f,i, do not drop immediately to zero, but seem to steady out
at approximately 0.67. At t=0.4 sec the pitch profile changes
discretely by 5 deg, and these rigmas then go essentially to zeroc.
The estimated misalignment angles, \'ffi, are estimated perfectly
after t = 0.4sec. The reason that these angles are not given cor-

recily before t=0.4 sec is that the estimated misalignments need
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Figure 5.1a Initial Misalienment Sigmas, og , for the
No-Noise Situation og = og; = 01
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Figure 5.1b Estimates of the Misalignment angles, § ., for
the No-Noise Situation 0p = 0y, = 0 {actual ¥ values
are 0.5, 0.1, and -0.3).
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Figure 5.2¢ Estimates ¥; for the case oy = op = 0
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Figure 5.2d Estimates £, for the case op = oo, =0
(Actual Values were 0, 15, 005 3d -0, 15)
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not be unique. With the estimation of the constant drift rates, «;,
there is some dificulty at first. At 0.7 sec it seems that there
is a "numerical instability" in the crAi. However, the sigmas
settle down to essentially zero at t = 1.0, and the estimated ¢;

come out perfectly.

Using the nominal tréjectories shown it; Figure 5.3 below (Nominals
II-1a and TII-1b), the sigmas for the misalignment angles, °y;, and
the sigmas for the mass-urbalance gyro drift rates, a’k‘s ; and U&i’
far the no-noise conditions ( og = o = 0) are shown in Figures 5.4
and 5.5 respectively. The corresponding estimates J;, fisi, and
ky;, are shown in Figure 5.6. It is noted in Figures 5.4 and 5.5
that the sigmas do not go to zero for the constant pitch profile

(TP II-ia). When the pitch profile is varied (TP Ii-1b), the
sigmas go down to zero. For this particular case perfect esti-

mates of ¥; are obtained for both nominal trajectories (Figure 5.6 ).

T Top

g

3 a TPIII-12

@65

£ w3

‘ 2 \ TF 1II-1b

g < -

o 60

. | &)

E [

(3 —

3 R L L y 1 3
¢ 0 0.2 oL G.6 0.8 1.0

TIME (SEC)
Figure 5.3 Nominal Pitch Profiles IIl-1a and II-1b
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Figure 5.4 Misalignment Sigmas, ¢ # , Using Nominals
i
HI-1a and II-1b with og = oy = 0.
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5.2 Formulation of the Optimal Control Problem

In this section the manner in which the control {{rajectory pitch
angle) enwers the covariance equation for the error parameters «
is indicated, and the pertinent optimization equations are formu-
lated. Under the assumptions for Configurations IB, I and I,
the state and observation equations are, respectively

X =Ax+ Bw
and

z=Mx+v

where x = (V(O’S),a)*, a3 (3+N) x 1 vector, where N indicates the
number of components in a, ap =¥ (Configuration I), ap = (¥,€)*
(Configuration ), epy = ( ke ky)™* (Configuration II), wis 2 3x1
vector of random (uncorrelated) vehicle accelerations, and v is a
3x1 vector of uncorrelated observation disturbances. The

respective covariances of these random vectors are
Q=coviw)=q-I and R = cov(v)=r-1

The more convenient notation q and r are used from here on instead

of o2 and o2, The matrix B is defined by B= (T@i 8) - 7l 9).)

0
((3+N ) x 3) , where {0, 8) i5 the 3x3 coordinate transformation
from the master to the slaved IMU. This transformation involves

the angles which orient the slaved IMU, 6(i°’ 8) i=1,2,3, which
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are now assumed to be fixed for the "equal acceleration' orienta-
tion and T¢™ ©) 35 the 3x3 cocrdinate transformation from the
vehicle to the master IMU coordinates. This transformation

involves the trajectory pitch profile, 9%}-' m)’ wlich we write as
o2 ™) (t) = (1) + w(t)

to denote a nominal profile #,(t) and an off-nominal control in the

profile p(t). The observation matrix M is given by
M= [I | O] (3x{(3+N))
t

The matrix A is given by

O :Ai
A= jomcpma- , lzlfu’m’

O'0

t
where
A = kq,[a(;)] (3%3)
! s | -

ag = [f 8 tkar, 2007 e

]
]
|
-8
=
%
[t
_;‘_
<!
=
i
Y
»

o], o] oo

It is recalled that the matrix [a(ssﬂ is defined by
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as) o) 0

(s)

where asi » 1=1,2,3 are the components of the nominal acceleration
in the IMUg coordirates, g,(ss). The superscript and subscript s
on the acceleration will be dropped, unless the meaning is not clear.
In particular, each component is given by

az(t) = Ty(t) Z2)(t)

where
T, 1
T = |Ty| = (@S im0 -1
T3 0

For the equal acceleraticn orientation and 9(;) »m) _ -250,

T=1, = %(1, 1, 1)*. The thrust acceleration agm)(t) is of the
forra a/(g -t), which approximates a vehicle with a constant pro-

pellant burning rate.

The matrix [a(ss)] is defined by

2
a, 0 0 : 2, 0 0
()| - '
{ag g 0 ay 0 : 0 ag 0
6 ¢ a ;¢ ¢ a
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when multiplied cut,

0 -agy a3 ' 0 -agy ag;
r 8 - t
Ifg) . ) =l 0 33 a5 0 -3y
-ag; 212 0 ,-ap a3 0

where

aij(t) = Ty(t) a(;n)(t)f"'rj(r) a(sm)(‘r) dr, 1,j=1,2.3,
o

If we make a small angle approximation for u{t), we obtain

¢ cos -5in
é\:)(t) = _E% ( o 510)+ u(t) ( ) "O)
-8in ko coSs N |

For po(t) = -250 and the equal acceleration orientation,

®) L/ 815 !
s a

ag(t) === =1 )+ u) ( -..394)
T et 3(1) 09/ |

Thus the control p{t) enters linearly into Ay, App, and in a compli-

cated bilinear fashion in Am- Thatis,

az:(t) = t) + dy(t)u(t {r)+d 7)d
24it) = (a1 + a0 [ ey + ) e a)

Remark It is noted that vehicles with variable thrust engines (for
example, airplanes and ships) can be censidered in this framework
as well, In this case, the term a(sm) becomes a control variable,

and a(ss) is of the form
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al®) = uy () g, (1) + g5 (8 uy (8) ug(0),

where cy(t), co(t) are known 3x1 vectors, uy(t) is the thrust ac-

celeration, and vy(t) is the trajectcry pitch angle,

The estimation covariance equation, P =E [(x- Q)(x - Q)*] , is
specified by
P = AP + PA* - PM*R™IMP + Q

If P is partiticned in the obvious way
p= pxa
P =
prx p
there regults
PR = P AL A PR _rlpmpX,g.1
PO - ¢ g%l pox ps®
P = ol p pax’

Remark 3f the column vectors of P* are written p,, ..., By then

& x
pl‘pl. N .PN

PrXpIx’ -
T e s e p¥
P!;Pl By Py
and
Trace P**PAX = ﬁ |11 Pf'ﬁ é (Pi?)z
=1 i=1 j=1
Thus

t 2
Trace PYt) = 3. pg,(o).fi ;: [ ehar’a
=17 @R
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5.3

g0 that minimizing Trace P™Xt) is the same as maximizing

The maximization is performed with respect to changes in the

trajectory pitch angle, (t).

Trajectory Constraints

The constraints on the vehicle's trajectory will determine con-
straints on the pitch angle . In the simplest forms, {he mwajectory

constraints might be specified in several different ways as listed

below,
jult)] < My (C-1)
la(t)l < Mo (C-2)
fTu(t)dt$M3 (C-3)
[ )g u(t)dt!55M4 (C-4)

and various combinaticas of the above cumstraints, The constraint
(C-4) is the most difficult to treat »nalytically, and will not ve
discussed ferther here. Constraint (C-~2) can be coasidered by
defining i ae the control, and u as a state vaxiable. If constraint
(C-1) is also in force, then the problem becu.aes one with bounded

state variables. In this cage the specification of the necessary
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conG ‘lons which the optimal c¢ontrol 4 must satisfy become quite

complicated. However, with some of the cost functionals in the
next section it can be shown {Chapter VI that with (C-1) in force,
we require |x{t)] = M; and with (C-2) in force we require li(t)] = My,
that is, p and ¢ are bang-bang controlg. Thus with (C-1) and
(C-2) in force, then it is :plausible that f(t) = :Mg until x{t) =+M,
and then i is switched to3M,. The consiraint (C-3) gives a
measure of the amount of trajectory maneuvering allowed, or
required, in order that the vehicl i's pc.sition and velocity fall within

some specified region at time ¢t =T.

Pointwise counstraints of the form (C-1),(C-2) specify the control
functions to belong to a set of U for each t « I, whereas global con-
straints of the form (C-3),(C-4) specify the conirols as subsets of
certain function spaces. In general; the control functions are
considered to be bounded, measurable functions and the control

set (L (considered as a subset of a function space) is as follows:

t.={u: uis bdd, mble, u({t)eU{t) forte1}
where

U = {u{t):(C-1) or (C-2) hold}
or else

(L ={u; uiz bdd, mble, {C-3) or (C-4) hold}
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5.4

For analytical purporces, (C-3), with no pointwise constraints
would be the easiest toc handle., However, the cost function should
ther. be such that mearii;gful expressions for u are obtained when
the Hamiltonian i3 minimized. For example, if it is only required
to minimize Trace P*Yt) with the conatraint {L-3), then the mntrol
u is eliminated completely when the Hamiltonlan is inimized.

Cost Functionals

Choosing the appropriate cost function is an important agpect of the
design problexn. When it is only required to obtain good estimates
of the error parameters in some fixed interval of time, then a

reascnable cost functional would be
J4{u) = Trace {Wu Paa(T;u)j , (J-1)

where W¥is a positive cefinite weighting matrix. More generally,
all of the members of P(T) could be considered in the minimizstion

by considering the cost functional
Jofu} = Trace {WP(T;U,)} , (J-2}
i

where W is a waighting matrix, Cu the other hand, it may cnly
be required that the diagonzl elements of Qm f2ll within a given
region in the least possible time. This could be written as
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J3(u) =ng dt and P(T*;4)cG {J-3)

where P(T*;«} denotes the elements of the covariance matrix P

which are to lie within the region G. The region G ie= azsumed to
have a smooth boundary., Wi this cost function, the question of
eonfroliability must be considered. Forthe minimization to make
senze, it must be verified that controls exist which can drive the

giates P into the region G.

It is possible that itis disadvantageous to perform too much maneu-
vering for the purpose of identifying the error parameters. In
this case a term of the formwgzx'm{t}g dt, which ig proportional to
the fuel used, or else a term jg Tﬂg‘{t) dt, which is proportional to
the energy used for the maneuvering, could be added to the above

cost functionals, Thus we could have
b |
Jg(m) = TraceEVP {'Z';u]+ Cp E (P dt p=1,2 (J-4

T
7509 = [ “atvoyf "ute)® a p=12 (I-5)

The weighting factor Cp might be chosen large enough so0 that
pointwise constraints on u are not required. In this case the iin-
earization which is made for u in section 5.2 would stiil be valid.
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In the next chapter a particular optimization nroblem will be
specified by referring to the various consiraints (C-i} and the cost
functionals (J-1).

We can now make the general definition:

The optimization problem is to find a control i such that

# is a member of the adiaissible class of {, and

J() € J(2) for all pegy

The Simpiest Examples

In this section we consider the example
X=pX+W, ¥ =mX+V;CcovV(W)=q, cov(w)=r,

to get an idea of the minimization procedure. In this aase the

covariance equation satisfies the scalar equaticn

b = 2up - r nff+q, plo) = P, given.

Problem I J4m =p(T), lu(t)ls M, ; T, M, given,

Minimizing the Hamiltonian gives u =-M, sign (Ap), where A
satisfies the adjoint equation

A= -anop=(-2u+ 25 mip)a ; A(T) =1

118

A S T I R I TR e e ST Ly ey e




Ifq >0, then p{t}>Cand p= -My sgn x. Itisnot difficult to

see that A(t) > 0, and therefor« u{t) = -Mj.

T
Problem II I o) =f0 at, p(T) = a, and Ju(t) s My °
Minimizing H = A-p+ A, 1 gives u(t) = -My sgn (xp). Att=T*,

the minimum time, p(T*) = «, H(T*) =0, and therefore
; p -1 2.2 -
AMT) (-2Mysgn AM(T)-r m“e®+q)+1=0

Assw.ning MT) < 0, means that 20 « - 2r-l m2 o2 4 q >0,
which implies p(T*) is increaging. This contradiction implies
MT*) 2 0 in {0,TI], and thus «(t) = -Mj, as above,

For u = a, a constant, the solution to the covariance equation can

be written as
- 1Py -2a \| P
Tanh! (2r 22 -7
qmerl + a2 29qmér+a¥lp

For the first problem T is given, and is required to minimize
p(T). In the second problem p{(T) = « is given, and it is neces-
sary to minimize T. From this expression it is clear that we

choose a=-Mjy.
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CHAPTER VI

Existence of Optimal Controls snd Necessary Conditions
for Optimal Control

In this chapter the existence of the optimal controls and the necessary
conditions which the optimal controls must satisfy for the optimization
problems formulated in Chapter V, and for generalizations of these
problems, are considered. It is of practical importance to insure

the existence of the optimal controls, since the maximum principle

of Pontryagin is used to obtain the necessary conditions. Matisx
notation is used to specify the Hamiltonian, the adjoint equation, and
the equation which gives the optimal control in terms of the covariance
matrix and the matrix of adjoint variables.

Although the equations which must be satisfied along the optimal
trajectories are quite difficult to solve, and the resulting controls
are open loop in nature, the results are still of practical interest.
This is due to the fact that in the present application to Meter
identification, it is entirely acceptable to devote considerable efiort
tc obtaining optimal trajectory maneuvers before any experimental

werk or "flight testing' is performed.
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6.1 Existence of Uptimal Controls for Problem I

For Problem I we congider a cost function of the form

Ji(u) = Trace WP(T; u) (6.1
where W is a non-negative weighting matrix, T is the specified
time of operati~n for the identification procedure, and u is a
control vector. The manner in which u enters the covari-
ance equation

P = A(u) P+PA*(u) - PM*R'IMP+Q (6.2
is assumed to be such that the elements of A which involve u
can only be linear combinations of the components of
u=(u,+.,uM)*, Further, it is assumed that for each
t e I ={ty,T],u(t) € U(t), a compact, convex set in Ep,, and
it is assumed that u satisfiss the constraint (6.3), where c is

a constant vector.
fx u(t)dt = ¢ (6.3)
The control set U is thus defined by the set of functions
U={u: u(t)e U(t) for teI, fu(t) =c}

The existence of an optimal control ﬁeu is next assured by tie
Property 6.1 For the non linear system (6.2), with point-

wise constraints u(t) ¢ U(t) for te I, and U(t), a compact,

122

o menthdionth bl ki b

N T A R

m“lﬁlrﬁk Wepbt i ptens ot 1




e e Adea s mapert S ey ez

convex set in Ey,, and the integral constraint (6.3), there
exists an optimal control @ <2f such that the cost functional

(6. 1) achieves a global minimum.

Demonstration It is first shown that there is a uniform bound

for the elements of P, considered as a vector P. That is, it |
shall be proven that

[Pllgsv<e (6.43)
where the norm | - [, ig defined by

tel, :\,gj pﬁﬁ = fTrace PP , (6.4b)

and the B are the elements of the matrix P. Indeed, since
B= M*R"1M and Q are non-negative,

P s A(u) P+PA¥u) +Q (6.4c)
Let P' be a solution of the equation

P'= AP'+ P'A*+Q, P'(ty) = P, (6.4d)
This solution can be written as (see Property 7.1, Chapter VII)

P(t) = 8(t, t)Pg 8¥(t, t5) + f:)a»(t, s)Q(s) 8*(t, s)ds, (6.4e)
where # (t, &) is a fundamental solution of the system

28(6.8) = At)a(t, 5), 28LE) - o, 5)A(s); 0(t, 1) =1

(6.4f)

By hypothesis, the elements of A will be integrable functions on
the interval I, so that the solutions to (6.4f) will be unique.

Further, it can be concluded that P'(t) is symmetric and
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non-negative for t ¢ I, since P, and Q possess this property.
By taking into consideration the problem from which P(t)

arizes, it can be assumed that P(t) is non-negative, Thus
0<X,P(t)x)< &X,P'(t)D <= (6. 4¢g)
For non-negative symmetric matrices

sup = Su 1= =1
i1 x, Px) !lx!!fl WP x!1“= N Jp”l’

where 2y is the greatest eigenvalue of P. Howéver,
Py = ,f:"’j Pz = yTrace PP =570 37« iy,
?

which implies that

< | < .
T4 IRl = IPY; < Pl

Since J(u) is obviously finitely bounded from below, we can
select a sequence {up+}el{ such that J(uy) decreases mono-
tonically to inf J(u), where ucZ/. We let {P,.}denote the
solutions to the Riccati equation (6,2) which correspond to

the control sequence { v,.}. For convenience, Equation (6. 2)

is written in the vector form

L

= F(P,u,t) (6.52)

where the definition of the vector function F is derived from
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Equation {6,2). Since the set U is compact and convex, 2/
will be weakly sequentially compact for the corapact interval
I={ty, Tl. Thus a subsequence {uy} can be selected such
that up(t) == d(t) for t< I. The solutions to (6.5a) for each

eontrol yy are given by
£
Ri(t) =Bo+f,_ F®3(1), wy(),7)ds (6.5b)

Since |Fls a|P}{ + 3, and |P| is uniformly bourded, the sequence
{ Py} forms a uniformly bounded and equimntinuous family of
functions. The theorem of Ascoli then assuras us that a sub-
sequence {Py(t)} converges uniformly to some function i’(t),

where

- . t
B = o+l [, F(Ril),umx(r), ) dr (6.5¢)
Similarly, since d is continuous in Py,

klim Ji(u) = klim trace WPy (T ; ug)=Trace WP(T)
(6.5d)
It is still required to shcw that P is the response to u and that
ne 2/. This is accomplished by the techniques which are
used in existence theo.y. In particular, by the assumptions on

the way u enters the covariance equation, F can be written as

F(,u,t) = G(2,t) + H(R,t)u (8. 5e)
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and weak limits are taken to show that P is the response to u,
as in page 40 {6]. In this case Lebesgue's dominated conver-
gence theorem and a theorem on almost uniform convergence
and the continuity of G, H and of the partial derivatives of G,4
with respect to the p;j are used to show the weak convergence
of H{Py(t),t) to H (_f_\’(t),t) where Py is the response to uj ard
P is the response to @, and P =P.  The compactuess and the
convexity of the restraint set U(t) are used to show that
a(t)eU{t) for a.e. tel. Then ii(t) is redefined on this null

set go that U(t)e U(t) for all tel.

This implies that J ()= ui?qu J(v), and U is the required opti-

mal control.

Existence of Time Optimal Controls

The time optimal problem is formulated as follows. For the
Riccati equation (6.2), find a control u, where u belongs to
sorme admissible set 3/, such that certain elements of P are
less than some prescribed values in minimum time, In partic-
ular, we shall reguire that the diagonal elements of P, pjj, be
less than ;. To be specific, U is defined by (6.6), as in the

previous section.
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U ={u:nt) € ), [T u(ae-c) (6.6)

Property 6.2 I U(t) is a compact, convex set, then there

exists a control Ue?{ such that pjjs@j, j=1,**,n. in mini-
mum time, where the pjj are the diagonal elements of the
covariance matrix P which satisfies the differential equation
(6.2).

Demonstration First it is assured that there exist controls in

Y which transfer the matrix P from Pg to Py, in finite time
intervals [to, T] by appropriately chocsing the positive numbers
aj. This assumption can be made .id by solving (5.2} for
arbitrary ue 2{ and then observing the pj;'s until such time that

they reach satisfactory levels o The target set for Py, call

i
it X(T), will be compact since the vector P was shown to be
uniformly bounded in the previous demonstration. We iet /'

denote the set of all controls in % whici: transfer Py to Prp in the

: time T-t,, and let T-t, be the infimum. Thus the existence of

a control iic ' which corresponds to the time T-t, must be

aeraonstrated.

The proof of this result is similar to that required in Property

6.1. Let {uk'} be a minimizing sequence of controls from %/,
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8.3

which are defined on intervals [t5: Tk'l In such a way that
the sequence {Ty'} approaches T monotonically from above.
The controls defined in this way define a sphere in Ly (ty, T] .
Thus a weakly convergent subsequence {u} exists such that

Wy {t)— u(t) weakly in Lgf[t,, T]). Thus we mus{ show ihat
ucl’, which means that G{t) must be in U(t) for telty, T}, &
transfers P, to X(T) in 2 time T-t,. As in the proof of the
preceeding property it can be shown (page 40 [6] ) that G<U(t),
the equibounded and equicontinuous responses Pi(t; to the con-
trols Ek(t) contain a subsequence which converges uniformly to
P(t), which is the response to the limiting control Gi{t). It is
then shown that P(T)e X(T), and that gizl_f( J(u) =T-tq, s0

that U is the required cptimal control.

Some Basic Properties of the Riccati Equation

In order to discuss the existence and uniquerniess properties of
the Riccati equation (6.72a), it is convenient to write it in the
form (6.7b) or (6.7c), where the definition of F(P,u, ¢} and

Fy {P,u,t) ig clear from (6.7a).

P = A(u)P+PA(u)* -PM*RIMP+Q, P(t,)=P, (6.7a)

P = F(P,u,t) (6.7b)

By = Fyy(P,u,t), ,j=1,+--,n {6.7c)
128
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Since the matrix A involves the contrdls u, it can usually only be
assumed that the Fy; are integrable in the time interval ¢, T1.
The basic existence and uniqueness resiults for the above systems
may be found in {8}, [ 7], the Appendix of (8] , and (9} . The

following result can be applied directly to the above problem.

Thzorem Assume that the functions Fy; in (6.7c) and the

partial derivative 9F;;/apy, are continuous in P,u,t, that is,
in the space E 2. ... 1 Then given an initial point B, =P{ts),
where t, < IC E3, and a measurable control u, with u(tje U(t),
asetin E,, for tcl, there exists a unique absolutely continuous

solution of (6.7¢) cn some subinterval I' of I, such that P(t }=Pg »

If there exist integrable functions M(t) and K(t) on (¢, T}
such that

IF3;(P,u,t)l s M(t) and I8Fy; (P, u,t)/opyg, |5 K(t)
(6.17d)

for i,j,k,2 = ., +++,n, and the solution ¥(t) with P(t,) =P, is
uniformly bounded, that is, [P(t)|s v<« for tcitg, Ti, then
this is sufficient to insure that the absolutely continuous solu-

tion P{t) of {€.7) is unique for the iaterval {.,,T1.

End of Theorem
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The continuity of the functions Fj; and aFﬁ/ op,, In (6.7c)
with respect to the variables P,u, and t is clear, They are
continuous with respect to P pecause the right side of (6.7¢)

is quadratic in P, they are continuous in u because u enters
the elements of A linearly. 'They are continuous in t because
M, R, and Q are assumed continuous in t. In order to demon-
strate the condition (6. 7d) it is clear that it will be sufficient
to show that the elements of P(t) are uniformly bounded for

te [t,,T], thatis, lpﬁ(t)!s"m © fori,j = 1,-+-,n, and
te{ty,T]. In the case that U(t) is a compact set, a bound of
the form used in the proof of Property §.1 can be used.
Sharper bounds can be obtained by considering the equaticn

(& 7d) belew [10] instead of {6.4c) where S is a symmetric
matrix which can be chosen to lower the bound P'(t) of P(t).

The solution of {(6.7d) is given by (6.4e},
P' 5 (A-SB)}P'+ P'(A*-BS)+{Q+SBS) (6.7d)

Kalman {5] has derived upper snd lowex bounds for P(t) using
cbservabilily and controllability properties of the lincar esti-
mation problem. Treae proparties, whick are defined next,
are for the linear estimation p;'obiem, and are not to be con-
fused with similar notions which might be introduced ice the

control problem.
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Definitions: The system

y=Ay+w ; cov(w)=Q
(6.8a)
z=My+ v ; cov(v}) =R

is said to be completely observable on [t,,T] = I if

M(t,, T)= j; S T)MORYOM(t)a(E,T)dt  (6.8b)

is positive definite on I. The system is said to be completely

controllableon I {

W (to,T)= 4 2 (£,T) Q(t)e™* (t,T)dt (6.8¢)

is positive definite on I. The system is said to be uniformly

completely observatle (u.c,o.) if there exists fixed positive

constants gy, oy, 83, such that
0< allsM(t-ol,t)sﬁll \A {6.8d)

The system is uniformly completely controllable {u,c.c.) i

there exists constants og, g, Bg, such that

0< UZISW{t- Tyt) 5,321 vt (6.8e)
For the parameter identification problem

% = A%+ C%+ WX, cov{wX) = Q¥ ;

¢ = wa, coviwe) = Q% ; (6.9a)

zZ=X+V, cov{v) = R ;
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X
s = | ¥l mM-u'a
0 1
.
X" K le*  oX"R 6]
S*M*R 1Mo = .1 1. (6.9b)
(6" R 9" ¢" R 9"
¢xQx¢x*+ ¢0Qa¢a* ¢.Q¢-
$Qe* = [ (6.9¢)
) a I* a
Q¢ Q" |

It is thus required that the integrals of the above two matrices
be positive definite, and a small random disturbance w* must
be added to the unknown parameters @ to insure controllability.
Assuming that R, Q* and Q% are positive definite, the positive
definiteness of the integrals of (6, 9b) and (6.9¢) will depend on
the amount of ""maneuvering" in the ¢*and @ matrices, as was
ohserved for the special cases which were considered in

Section 5.1,

Kalman (Lemma 16.9 and Lemma 16,10 [5] ) has obtained the
following bounds ior P(t), under the assumption that the linear
estimation probiem is uniformly completely obserwable and
uniformly compictely controllable, The upper bound requires
| that P, be non-negative definite, and the Jower bound requires
that Pg be positive definite. For tzio+o,

AR N
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[W' H(t-o, t)+M(t-o, t)].ls P(t) s M (t-0,t)}+W(t-2,t)  (6.10)

Property 6.8 The solution P(t) te [ty,T], of the Riccati

equation (6.7a) is symmetric and non-negative definite.

Demonstration Since R and Q are symmetric, P(t) and its

transpose P*(t) satisfy the same differential equation and,
since P, is symmetric, P(ty) and P*{t,) both satisfy the same
initial conditions. Assuming that suitable bounds as in (6. 7d)
are obtainable, the uniqueness of the solution to (6.7a) implies
that P(t) = P*(t) for te [t,,T]. The non-negative definiteness
of P(t) is plausible if it is noted that the variance in the esti-
mate of a costate y* (see " .eoreml, [1]) is given by

E [y (9] = vk B(t)y2 0

[=7]
V-9

The Necessary Conditions for the Optimization Problem

In this section the necessary conditions which the optimal con-
trol must satisfy are specified. The matrix {orm of the
Hamiltonian and the adjoint equations have been previously
stated in [11] . The proofs which reguire only straightforward
matrix manipulations are included. To be specific, the problem

formulated in section 6.1 (Problem1) is considered.
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Property 6.4 If A, is an mx1 adjoint vector which corres-

ponds to the integral constraint j; u(t)dt=c, and A is a matrix

of adjoint variables with elements A;; which correspond to the

I3

elements p}._j of the covariance matrix P, i,j. =1, n, then the

Hamiltonian for this problem is given by
H=Qg,ud+ Trace{l AP + PA* -PM*RIMP+QIA*} (6. 11)

Demonstration As in section 6,2, the matrix Riccati equation

can be expanded as

py5{t) = Fy5(P,u,t), i,j=1,""",n (6.12a)
and we define a further state vector by

Xo (t)=u(t) . (6. 128)

Applying the Maximum Principle of Pontryagin, there resvlts

n n
= De: Ass
H <—05E)+§1328:1p13 7\1]

By Pin
=<{2.,u> +Trace :

}ll. * . Aln z
Pai® * *Pan il 2ot ° " Mmn

b

= QA,,u> +Trace -(-a‘f‘f- P)A*}

and (5. 11) follows when the right side of (8.2) is substituted for

d
"d-i‘po

L N
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Remark 6.1 If the assumptions of section 5.3 are made,

then (6. 11) may be written as equation(6. 13c) below, where

AXX AXCI’
A= {Aax L (6.133)

*
X = c¥pax, pXaat rlpXXpXX g
P*Y = copee_,lpxxpxe |
(Pozx = paaca*-r.l Pax Pxx (6. 13b)

(Poza - _r-l Paxpxa"

H =) i+ Trace[®@XX \XX ypX X1 Trace[ XN U@ %HX)
{6.13¢c)
Property 6.5 Along the optimal trajectory, the adjoint vari-

ables satisfy the differential equations
A= 0, (6.14a)
A= -A*A - AA+MFRIMPA+AP (MR M) (6.14b)
with the end condition
AT) = -;—NE)trace[WP(T)] =W (6.14c)

Demonstration Applying the maximum principle of Pontryagin,

along the optimal trajectory gives
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4, __3¥E =
dt =0 = " o
-ﬂ
and
dH
d A, = o me—
it Py

1o

2 i’J=l,-.o,n-

The terms in the definition of H are consider=ed one at a time.

lapa]

]
H
>

oy

Zplj ST ZPlJ Mg

. .

and Ay oo s ‘./_:pn‘j Mg

Thus the matrix of partial derivatives

3er [APAD)

oP

3(tr [APA ™))

= AA

(6.15a)

i




-

Next we consider the term

a,jlll.j"' ajllnj
* * L] L)
Trace({PAA J=Trace { P . . =
: e BN
8013000 B gntng |

= P?lzaal TR plnza,jn 1yt
+ LK X ] +

+ D 128‘31 g+ eer ¥ P Za,jn nj
Thus the matrix of partial derivatives becomes

‘?"‘ajl)‘lj . 'Za,jnklj
* %

erlEa A | : = AA.

gl | o

(6.15b)

Next

* .1 *
Trace[PM R MPA' ] = Trace [PM'PA ]

D’lg 1 'Yp*g"nj-l 1
= Trace {(PM! . (
i
J

l-zl?n.j)‘lj C Epnjknj J

'ZlemJl Zleli +Zpljmjn§:pnj)‘lj +
= S

+ anamal PP PR 20y ym 03%n 2 Pnstny

137




et

Tl

o
e g 1

i

The matrix of partial derivatives becomes

mllx pl,j)'l:j e 'mlnz an)‘lJ' . S Y ZleAl‘j"""mnannJ)‘lJ
<. 4 .
my 20 P14%03 ** ‘mlnzpnj)‘nj‘ c e 0y EPlj"nJ*’ : '*mnnzpnj)‘m

’*1121’13“’31 toaut d o an,jm;}l' - )‘lnzpljmalh“dnnzpnjmj‘
+ T

)“11 Zpljmjn oot an zanmJn. . o klnzpljmjnh”&nnzpn.jmj

e & 'Y *» e @ > @ » e .k

STRRRLom B BIRPER WY b N Boal 1 ™12 Paaf [Pt Payf [Pttt

= + =
an. . .)\nn pln - .pnn mln . mnn mln Py plno . -pnn nl‘ . .X

= AP*M™+M"™*pP*a . (6. 15¢)

Using the results of (6.15a), (6. 15b), (6.15c) and setting up the

matrixz of adjoint variables

. {oH
<% - 'i'safi]

yields equation (6. i4b).
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Since the "'state'" variables Pj are free at t=T, the correspond-

ing adjoint variables satisfy
3 .
\. (T) = ( j
13( ) -a—m Trace [WP (T) )
along the optimal trajectory. This may be written as

Iy = ___a__'?‘ s D4 2e0e . =
AT) [‘”’Pij (T)(z...wij Pyt et Wy pjn)] w.

Property 6.6 There exists a solution of the adjoint equation

’

(6. 14b) which is unique and symmetric for t ¢ I={t,,T].
Furthermore, if thie weighting matrix W is positive definite,

then this solutior. is positive definite for t ¢ I,

Demonstration The uniqueness result follows from the fact that

Alt) satisfies a linear homogeneous equation in A . Thus (6.14b)

2

can be written as an n®x1 vector equation

£=G(t) A, AT)=W.
The elements of the n2xn2 matrix G(t), which involve the
optimal covariance elements pij(t) and the control u(t), are
integrable on [ t;,T]. Therefore Theorem 5.1, Appendix (8]
implies that the solution A(t), such that A(T) =W, exists and
is unique. To show that the solution is symmetric, we let
B =M*RM, and take the transpose of both sides of (6. 14b).
This gives
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da *= A% = | AtA-AMAY *
(-fA 7= A - A'A-A™A + K'PB+ BPA*,
and A*(T) =W¥=W. Thus A*(t) and A(t) satisfy the same
differential equation. Since the solution to this equaticn i3
wiique, it foliows that A*(t) =A(t), for t e I. The positive

definiteness of A(t) is given by Property 7.1, Chapter VII

Remark 6. 2 For the system specified in section 5.3,

equations (6. 14b) and (8. 14c) become

.gg R 2 p L (pIE I, KPS pRROK | Xopprky . Xy o (6. 164)

- :

L oy P e S Tl s ) R I CR TS
*

'é% %= (A A8 2% =W, {6.16c¢)

Property 6.7 For the cost functional

J(u) = Trace WP(T ;u), (6.17a)
an optimal control {i satisfies the condition

(Ao, By + Trace [A(d) PA™+ PAME)A*ls

‘ . (6. 17b)
£ {Ag,ud>+ Tracef A(u) PA*+ PA*(u)A']
for all u € 2/, where 7/ is specified by
U={H:5(t)eu(t),te I, flgdt=5_:_}. (6. 17¢)

- In particular, if U(t) is a ""cube", that is

U(t) = {u(t): luy{t)ls Mjforte I, i=1,---,m} (6.17d)
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then the optimal controls are "'bang-bang", that ig,
Gj(t) = £ Mj for t e I (6.17e)
This result, of course, assumes that singuiar controls do not

arize,

Demonstration Equation (6. 17b) is a direct result of the defi-

nition of the Hamiltonian H and the maximum principie since
the conirol u enters the matrix A only. To obtain the "bang-
bang" resuit (6.17d), it is recalled that u enters the matrix 4 in
a iinear fashion. Thus that portion of the left sides of {6, 17h)
which involve u can be written as

DG Og + (R, 1) (8. 17)
i=1
Thus to minimize the Hamiltonian in the case U is defined by

(5. 17d), we choose

iy = -Mj sign (A2 + by (P,A)) (6. 17g)
Tnis implies §j(t) =+M;, provided that A\ + hy(P,A) = 0. If
the latter condition results for a finite time interval, then G;(t)

is indeterminate.

Remark 6.3 In the case of Configurations I and II,
— N ,
0 Ag[P= pZ‘] [p"" P40 o HAXX AX*

APA*+ PATA' = +
[p°X p*%|A} 0 )[A“"‘ A%

o of|p™p

which results in a contro' law
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6.5

(a{s J%

£(t) = -M sign[xow'- Trace(AiP"‘"i-PmA’;)Axx+Trace(AiP°!%°"‘+P Ailﬁ
(6.18)
where i=1 for Configuration I and 1 for Configuration I1.

Remark 6.4 By considering certain monotone properties of
the elements of A and P, it is possibie to obtain upper bounds
on the number of switches the optimal control will have. In
particular, it is clear that the diagonal elements of P““ are
non-increasing. I certain assumptions about the noise covari-
ance matrices Q and R can be made as, for example, they are
also non-increasing, then it is plausible that P*¥ and p*X

have similar monotone properties.

Unconstrained Controls

If it is assumed that the controls do not have pointwise con-
straints and the cost functional is of the form (6. 19¢), with the
integral constraint j; u(t) dt = ¢, then the optimal control is
specified by (6.19b), where the components of h, and hy, are
determined by (6.19c). In order to obtain such smooth controls
and at the same time insure that the control components u; (t)
are not too large, it might be possible to adjust the weighting

matrix C(t).
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b i ds

Jo(u) = —;-£||g(t);;g + Trace [ WP(T ;u)] (6. 192)

a(t)=-CH(t) A, + h (P,A, t)] (6. 19b)
2 {Trace [ APA + PA*a |} (6. 19¢)
i
In particular, for Configurations I and I the optimal control is
specified by
-y Y * 3%
B() = - ot tr{(AP P A AT (AP AP AN )]} (6. 109)

If pointwise constraints are alsc included for these special con-
figurations then the optimal control is specified by (6. 19e) where
Bmig 1S the right side of (6.19d). This result follows from the

fact that a?‘H(u)/au2 =¢>0.

-Ml if Hmin (t) E -Ml
ﬁ(t) = “‘min(t) if Hprin (t) ES Ml (6. 19e)
+M; M kg (t) 2 My

Property 6.8 For the unconstrained control problem formu-

lated above with cost functional (6.19a) and with no integral
constraint and with W positive definite, there exists an admis-
sible optimal control u such that J 2(5) achieves a global

minimum.

Demonstration Choosing the control u{t)= 0, the corresponding

respoase is P (t;o0) and the cost is J (o) = Trace [WP(T;0)].

A finite bound for IP(t, o)., Esi“]P Ipjj(thl  can always be

143




e e e T TR T B R LT % T P T et i o S S T T R R ST T PR D e e b o f Fa ks e A e SR S
ETEDI I T T T

obtained as discussed in section 6.3 ov in the proof of Property
6.1. It is next assertad that all other controls u; which yield a
cost such that

§(ui) = J(o)
will satisfy iP(t; y)l_slIP(t; o), fort ¢« I. This is due to
tiie fact that at each instant of time t'¢I there is the same
amount of control available when either u(t) =u;(t) or u(t)=o
were used for t ¢ [ty,t']. Thus if the trace P(t ; u;) >
trace P(t; o) at t=t', the control

u(t) ={g tostst'

uj(t) t'stsT

would yield a smaller cost than u; since W> 0. Since the
norms in E, are topologically equivalent, the assertion follows,
It is remarked that this result is not necessarily true if the
integral constraint on u is in force, or 1f W z 0. Further,

since all the controls u; yield a finite cost, we have

J(_gi)zj;llgi(t)!lg dtzc“;[lg_xi(t)ll2 dt, 0<c< o . (6.20a)

If there is only a finite number of controls with the above
property, then the existence of an optimal control is immediate.
Otherwise, a subsequence {uj'} of these controls can be selec-
ted such that J{u;} tends menotonically towards the infimum j

of J. Further, since the unit sphere in L is weakly
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sequentially compact, a further subsequence can be selected
such that

u; (t) X~ d(t) with G ¢ La((tg,T])
The responses {Pj+} to the controls { u;:} will be equibounded,
and we can show that they are also equicontinuous, Indeed, for
two times t,st', t''sT, we have

g

I Pyt -Pyo(tli, < f t'{ﬂ G{P;(t), Oli +IH (Pyo(t), t)p_iv(t)!lw}dt
Since the partial derivatives 9 f)ij/a p,, are continucus for
i,j,k,2 =1,**>,n, P ¢« E, and u¢E_,, the above inequality

becomes

s ey 1"t + ¢y f RO
tl

w b 9 {6.20b)
sep lv-tl+ oyt (f Tmp(t)iFdt)
However, (6.20a) implies that for i' sufficiently large,
cflngi,(t)n% dt s j+e, 0s€e< =, (6.20c)
Inequalities (6.20b) and (6.20c) give the required result
IP3{t) - Byt s € ] t'-t'l + e | t-te” (6.20d)

Since the sequence {_Iji-} is equibounded and equicontinuous,

e
>
2.
e
3
k2
e
3
2
3
)
<
<
E
=
=

Ascoli's Theorem insures the existence of a subsequence { Pi"}

such tbat
P;i(t) — P(t) uniform’y for each te I,

The fact that the u;. enier the dyaamical equations linearly is

it b R A B R ol
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6.6

then used to take weak limits and show that P is the response to
é , the weak limit of {gi.}. The convexity of Hu(t)llé will imply
that the cost functional is weakly lower semicontinvous., Thus

J(i)= j, and G is the required optimal control,

An Example

At this point it is instructive to consider the system below as a

simple illustration of the above ideas.

X = ax+uoatwe, cov (w¥) =q¥ ;
@ = o+w®, cov (w¥) =q%;
y = X+V, cov(v) =r ;
Thus
fa u @ 6
A= , Q= , R=r, M=[1,0],
0 0 0 ¢

and the matrix Riccati equation
P=AP+PA*-PM*RIMP+Q
vields the state equations
Py; = 2(apy;+upyq) -r'lp'fﬁqx, p;4(0) given;
Pig = 3PyptUPyy TPy Pyp  Pyyl0) =05
by = - Pyt Pg9{0) given.
Assuming the integral constraint f ;r u{t) dt=0, we define the

additional state equation
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X, =4, %,(0) =x,(T) = 0
The necessary conditions specified by
A= -A"A AA+MPRIMPA + AP* (M RIM)*

yields the adjoint equations

. - -1 - ‘1

(Ayg = 257y -a) Ry + 28 Tpphyy

N = + -1 - -1

Mg = “UA (TR m2)A, 4D 0,
i"?.z = -2ulr,

\/\O = 0

Next the constraint [ul £ M;, and the two cost functionals
J1(u) = c%pgy(T;u) + c*pyy(T;u)
Ta(u) = c%oga(Tsw) + " f T uP () at

are assumed. For J;andJg the boundary conditions for Ajj

are, respectively

Ay(T) = e A4(T) =0
Ag(T) =0  and A(T)=0
Ago(T) = ¢ Ago(T) =

and the initial valuez of the A i are unknown. ForJdy, the

Hamiltonian is

H, (u) = Aqu + Trace[(AP+PA* - PM*RIMP + Q) A*)

2
11

4 ol a_ -1 2
2A19(3P;p+UPgy =T PyyP1p) +A22(07 - TP )

-1
=Aju+ Au(z(ap11+up21)or prl +q%) +

which means that the optimal control is specified by
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u(t) = -M, sign EI:\°+ 2 A11Poy* 2 A12p22) .
Since Hy(t)=H{T) -ft(aa/at) dt, and 8H/at = 0, we can set
H(0) = H(T) to obtain

-1
My ol + (-2 (T)+q=-Mry+ 211 5(0)paf0)] +
+ A11(0)(2ap; (0)-r"Ip 2 (0) + ) + Ap5(0) + 0.

This equation can be used to eliminate one of the unknown
boundary values by considering the various possibilities {or the

signs of A, and AO+27\12(0)p22(0).

Numerical results show that the optimal control is constant if
there is no integral constraint, and switches once if the integral
constraint is in force. For the cost functional Jg, minimizing
the Hamiltonian implies that it is necessary to minimize

h{) = (A +2211Pp1 + 22 5Dgq) + el 2
Since 8211(u)/au2 =cl> 0, we set

Upin = ~(Ag*+ 2711 Pg1*t M2 Pgg)/cY,
and the optimal cortrol is specified by

u(t) = My oup, <My

u(t)

u(t)
If u is unbounded, then u(t) = u; (t),

in

Ui I 'uminl M;

%Ml if umm ZMI
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CHAPTER VII

COMPUTATIONAL ASPECTS FOR COMPUTING THE
OPTIMAL CONTROLS

In order to compute the optimal conirols using the necessary conditions
oi the previous chapter, it is necessary to solve the two-point boundary
vaiue problem associated with the matrix Riccati equation and the
matrix adjoint equation. The iaitial condition for the covariance
matrix P is specified by P,, and, generally, the final values for the
matt ix of adjoint variables A is gpecified by Arp, which depends on the
particular cost functional which is being minimized. Many people have
been concerned with the numerical solution of similar two point bound-
ary valuz problems. The success of a particular scheme depends on
having considerable insight about the solutions of the particular proovlem
being solved, since a fairly accurate guess of the unknown adjoint
variables A, is required. Infact, many published results which show
successful iteration schemes for choosing the unknown boundary con-
dition for reasonably ccmplicated problems, start with initial guesses
in which the cost functional is quite close to being a minimum., The
nature of the problem considered here is such that considerable compu-

tational effort can be justified for the numerical solution of a particular
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identification problem due to the practical interest in improved identifi-
cation. A particular example in which improved identification of IMU
error parameters is very profitable occurs in the flight testing of
inertial platforms for purposes of obtaining the instrument errors under
actual operating conditions. In thk-se cases it is necessary to "design
the experiment", that is, select a nominal trajectory for the flight test
vehirie so as to obtain as much information about the error parameters
as possible for a particular flight. The material presented in the
previous chapters offerg a systematic way to maximize this information.
The same remarks can be made in regards to inflight alignment and
calibration of inertial measurement units, and for the flight testing of

other devices in which it is desirable to identify error parameters.

Due to the complicated nature of the present optimization problem, we
are primarily interested in computation schemes in which it is possible
to observe certain iterations of the computation and then choose new
boundary values based on these observations. The possibility of using
algorithms which are based on a direct minimization of the cost func-
tionals involved are not considered, although such algorithms are
suitable topics for further investigations. In particular, the e-method
which has recently been studied for optimal control problems [16)
could be considered.
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7.1 Iteration on the Initial Adjoint Variables, A,

For this scheme a cost functional involving Ap and P is specified,

for example, as

I(Ao) = Bp-Pp) WPEr-Pp) + Bp-Ap) WA Ep-ap)  (T.1)

where the tilda denotes a final value of P or of A resulting from

an initial guess on the adjoint variables Ay, and WP and W? are
non-negative weighting matrices. If an integral constraint on the
controls is included, say of the form j; u(t)dt = ¢, then we let

X (T = ATg (t) dt, and add a term of the form (Zo(T) -C)W¥(X(T) -¢ D>
to the functional (7.1). Associated with this cost functional are

the differential equations
P=AP+PA* -PBP+Q, P(t,) = Pg given; (7.2)
A = -A"A-AA+ BPA + APB, A(T) = Ap may be given. (7.3)

and the control equation (which results from minimizing the Hamil-
tonian)

u(t) = h(P,A, t) (7.4)

The idea in the minimization is to choose a sequence (A} of initial
adjoint variahleg so that I(A%)) approaches zero after a reasonable

number of iterations.
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A straightforward method for choeosing the successive iterations
is to form a1 (Ao)/ai_so and then proceed in the direction of steepest

descent.  Since I(A,) = I(PT(AQ),AT(AO)), we have

2L _ o 9Br ol %A1 _ _py 3 Ar a2
3o EET&A%”aAT&é 2WHEy gT)a-EE\&zw (ATI_&ﬁfATO (7.5)

The partial derivatives can be approximated by AQT/M_\O andAz_\TAAQ.
respectively, where APy and AAp denotes the changes in the
elements of Pp and Ap due to incremental changes in the initial
values of A. The approximate derivatives would be cbtained by
solving (7.2), (7.3), (7.4) as initial value problems n{n+1)2
times. If all the elements of Py are unspecified, then WP=0 and

the resulting computations are considerably reduced.

The main idea in the steepest descent approach is as follows:

. . 1
(1) Make an initial guess A(a)
(2) Compute a1/an | = aaAY = o)
(3) Let 2=V k. o), wherek <0
(4) ¥ 1(8%) < 1(), return to step (1) and continue this
0 0

process until I(A%‘)) is sufficiently close to zero.

There are several methods available for chooging the "gain' k.
The value of k should be smail enough so that the minimization

proceeds in the right direction and yet k must be suificiently
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large so that the minimization does not require too many

iterations. = One method for choosing k might be to specify
a fixed percent change in the cost for such iteration, so
that for n fixed, AI(i) = -nI(i'l). This results in k(i) =
-nI(i‘ly ElaI(i'l)/aé(g)Hz. Another method is to choose k such
that I(Ay + kA;) is minimized with respect to k where A; is a
prespecified matrix., This results in a k specified by

~Hlg i2/<A¢, grad I(A¢)>. If it is oractical to be in the compu-
tation "'loop", then it is prob.oly more satisfactory to select k
by observing the resulting changes in 1), Thus i I(A(ci,ﬂ)) >
1(), then k is too large, and if I{I*1) is nearly equal to 1(1),

then k cowm be increased.

7.2 Iteration on the Final Covariance Matrix, P(T)

For particular problems, it might be more efficient to iterate
on the finai covariance matrix PT instead oi on the initial adjoint
variables A,. The iteration procedure is e¢ssentially as in the
previous section, except that the adjeint and covariance equa-
tions are solved with the time variable reversed and the iteration

is with Bp.. More specifically, the costfunctional (7.1) becomes

I(Pp) =B, - Foligp + 1%, ~ Aoy (7.6)
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and we let 7=T - t in equations (7.2), (7.3) and (7.4). This
method has the advantage that the backwards covariance equation

might be less '"unstable' than the forward adjoint equation.

7.3 Selection of Initial Values, A, (or P)

Since the adioint equation is highly unstable it may be impossible
to obtain convergence in the above iteration schemes unless good
initial choices of A, (or PT) can be made. Firstly, using results

of W.T. Reid [15] we show the

Property 7.1 If the cost functional is of the form

trace [WP(T ;u)], then the solution A{i) of the adjoint equation
will be positive definite if W is positive definite.

Demonstration: W.T. Reid [15] considered the matrix

differential equation
T = H(t) T + TK(t) (7.7)

and showed that the general solution is of the form T(t) = U(t)CV(t),
where U(t) is a fundamental solution of U = HU and V (t) is a fun-
damental solution of V = VK, and C is an arbitrary constant
matrix. The elements of H and K are assumed to be continuous

on the interval I= [t,,T]. If the elements of these matrices
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are assumed only tc be integrable, then the solution io (7.7) is

a matrix whose elements are absgolutely continuous and (7.7) is

satisfied almost everywhere in I.

Under the assumption that H = K*, it is clear that if U(t) is a
fundamental solution of U = KU, then U*(t) is a fundamental solu-
tion of V = VK*, and the solution of (7.2) under this assumption
will be T(t) = U(t) CU*(t). Now the adjoint equation can be

written as
A = K*A +AK, whereK = -A+(PM*R-1M)* (7.8)

Using the usual notation #{t,T) for the fundamental solution of

V =KV, the solution of (7.8) is A(t) = #(t,T) C#*(t,T). Since
A(T) = W, and W is positive definite by hypothesis, the solutjun
is A(t) = #(t, T) We*(t,T). "This solution is positive definite

-1
since ¢ “(t,T) always exists.

Remark This property couid be of practical value in

the selection of the initial values A, If the solution fails to
remain positive definite for a particular positive definite choice
of A, then'a new choice can be made without necessarily com-

pleting the sclution of the equations.
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Since the optimal control can be assumed bang-bang in most
instances, it is feasible to test the effect of various control
functions upon the covariance functions in an open loop manner.
If, for exampie, useful upper and lower bounds on the number
of switchings were available, the search procedure would be
greatly simplified. For the example introduced in Section 6.
the effect of the number of switchings is shown in figure 7.1.

In this example at least one switch is required because of the
integral constraint flu(t) dt = 0. These results show that a
control which switches once at t = 0.5 seconds seens to be the
optimal. Once several controls have been {ried, the one which
gives the best results could be used to solve the adjoint equation

backwards (or else give Pp directly) to obtain a good initial

guess A(g.
2.0 .0
2 A=0.05 P=2.0 g%=0.001
— a==-10 r=01 g¥=0.01
<3
i
5 2
Z
- &
1.0 o~ % 1 0 %
Z 3]
=
: e
>
L 0.03 )
0.9 0.5 0 0 5 10
TIME (SEC) NUMBER OF SWITCHES

Figure 7.1 Effect of Switching on the Estimation of a
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7.4

Discrete Form of the Covariance and Adjoint Equations

For computational purposes it may be more efficient to work with
the discrete form of the covariance and adjoint equations.
Actually, in some applications it is necessary to work with dis-
crete state and observation equations. The discrete form of the

matrix Riccati equation is given by

[ { . l [
Pt =Pp.1 - Py 1M 1Myes 1 Pry tMEE 1+ Ry 1) "My yPrey
(7.92)

v *

Pk+1 = ék‘l‘i,k Pk ¢k+1,k + Qk (7.9b)
If Fi = F(Pg,uk) is defined by Pi41 - Pk, then, with the integral
constraint on u, the Hamiltonian becomes

H = Q. >+Trace [FkA;;} (7.10}

and the adjoint variables will satisfy the equation

ey = Ag = -9H/3Pj (7.11)

along the optimal trajectory. The optimal control uk is obtained
by minimizing H. When it is possible to evaluate the matr
5H/? Py, the adjoint equation will now be in discrete form. Itis

noted that in minimizing Hj, a neat resuit for the optimal u, is
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not obtained as in the continuous case because of the inverse
matrix operations involved in equation (7.9). A good approxi-
mation which might be considered is to minimize the centinuous

version of the Hamiltonian for the selection of ug.

For the example presented in section 6.6, the covariance equation
satisfies

ror - C ror’ -d

P, -P (7. 12a)

k r"}ﬂ"d qa_nzﬂ'

and the adjoint equation satisfies
-1+(rar)® -2rnalr? (nan)?
Agri =B =" 2abr 72 (2abr{r+r-n)r?-2) -2am'¥r+r-bn) Oy
(rb2 2rb1r’2(1r+r-bn) ~bnr'e(2r+1)-bn)

In these equations the variables are defined as follows: (7. 120)
a = e b= Ly ;

¢ = bylk) d = Ryk) e = Py(k) ;

r = a{ca+db)+b(da+cb)+q* : (7. 12¢)
n = ad+ be = 1/7 +7r.

For this example, with cost functional J (u) of section 6.8, the
iteration scheme is thus to choose the sequence A(i) } =

J\i Am (o),>(i2(o),>\22(o)) such that I(A( )) tends to zero, where
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I(?.t(‘f,)) = (R,L(T)- cx)2+(7t112(T))2+(X2i2(T) Pk (T)2 (7. 12d)

For each i, the vector of partial derivatives BI(i)(A(:;))/a 7_\&)) was
obtained by changing the initial adjoint wector o) by ax1) as shown
in the table below, and then resolving equat.ons (7. 12a), (7. 12b)
and omputing the optimal control from (7. 12e), four times.

ul(t) = -M sign @1+ leilp2i1+2x1{2p212), (7. 12¢)

: i

1 X O O o =*
P D X O o *
3 O 0O X o0 =*
4 2 O O X *

7.5 Future Problem Areas

The material presented in this study suggests numerous areas in
which both practical and theoretical problems @an be found. A few
of the problems which the author feels might be fruitful areas for
future research are mentioned in this section. This collection of
problems is by no means complete, and, depending on one's particu-
lar practical or theoretical interests, additional problem areas

would be formulated.

The techniques outlined in Chapter I might te used to study gravity
errors and systems in which radar is used to obtain observation

data. In the case of strapped-down IMU's, the elements of the
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computed transformation matrix might be used to obtain
additional observational data. As mentioned in Chapter I,
angular velocity observaticns couid also be used to improve the
icentification of the error parameters. Additional work (both
experimental and analytical) must be directed towards obtaining
realistic probabilistic descriptions of the environmental and
observational random disturbances. To supblement the experi-
mental data presented in Chapter IV additional specific error
parameter configurations, such as configurations which would
include accelerometer bias, scale-factor, and misalignment
angles, should be considered to obtain additional insight into the
trajectory optimization problem. Additional wurk on the "no-

noise" properties presented in Chapter V would also be desirable.

A meaningful area of research in regards to control theory appli-
cations would be to study the properties of the two-point boundary -
value problem associated with the matrix Riccati equation and the
adjoint equation. Theorems on the number of switches the optimal
controi makes, whether or not singular controls result, and
whether or not the optimal controls are unique, would be of great
value in computing the optimal controis. Numerical experimenta-
tion with direct and indirect methods for computing the optimal

controls shculd be made. Indirect methods (that is, in terms of
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the adjoint equations) have been presented in Chapter VI,
Although the resulting optimal controls are open-loop, these are
of practical interest because the maneuvering associated with the
parameter identification problems of flight-testing inertial
components, and inflight alignment and calibration of IMU's

can be precalculated.

Additional theoretical control problems arize when the control
functions enter the dynamical equations in the complicated
fashion suggested in section 5.2 for Configuration IIl. In this
case (and in other cases in which mass-unbalance terms are
included) the product of the control and its integral appear in
the dynamical equations. Finally, there are systems in which
the identification problem requires that a linearized miniraum
variance estimator be used, In this case a stechastic optimi-
zation proolem must be considered, or else Monte Carlo
studies would need to be made to compare the covariance which
is assumed to be a solution of the Riccati equation with the true

covariance,
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APPENDIX "A"

Discussion of the Correlated Noise Model

We consider stationary, correlated gauscian random processes, with
band-pass power spectra of the form shown in Figure A,1. Such pro-
cesses are typical of many physical systems - in particular the vib-
rations of airpiane wings and rocket vehicles., In this appendix we
shall be concerned with the selection of shaping filters for use in the
Minimum Variance Estimator equaticns, the step-size for faithful
numerical integration, ana the digital generation of the random pro-
cesses. This appendix is included because certair: of the results
are used in previous chapters, and it provides practical information

which is not easily discerned from the literature,

\ 4 8,
A"" e

| / \
3
3 } e + 4 w
I- - 1 :
Figure A.1 Experimental  Figure A.2 Approximating
Spectrum Spectrum
%

A.1 Shaping Filter

In order to determine a suitable shaping filter, the experimental

power spectrum shown in Figure A. 1 needs to be approximated
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by an analytical function of the form shown in Figure A.2,
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Power spectrums which might be used to represent the given power

spectrum Sx(w) are

S( 1) (w)

2 f W +2a)° (w+a)2
A ‘exp-i-é?z)--i-exp—i—a-z’—} (Anl)
and

(2) K ‘ AZ
7 @ a2ib? | (e ariee

(A.2)

We next approximate the given power spectrum {based on assump-
tion and/or experimental data) by the fourth order rational function,
and then synthesize a shaping filter for this rational spectrum

using frequency domain techniques.

It should be remarked that the purpose of the shaping filters dis-
cussed here are no! for generating random variables. They are
ugsed to give our problem the required canonic structure, and thus
the approximations made here are not expected io he as critical as
in the case of th2 shaping filters used for generating the correlated

random process (Section A.2).

Given the experimental data, si‘(“’)’ the fourth order approximating
spectrum, Sx(w), would be obtained by minimizing (A.3) using
standard approximating techniques,

= Q.. -
¢ S Sx", (A'3)
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where the norm | . || might be of the form

/“’0 (sg( - Sx(w))p dw 1s p<w (A.3a)
|t
or
su IS - S, {u = o A.3b
0 <P " 3 @) @ p ( )

Of course the minimization is with respect to the parameters
A,a,b, in Equation (A.2). We next demonstrate several pro-

perties of the assumed shaping filter,

Property 1 A shezping filter for the spectrum (A.2) is given
by
Hy(s) _2A(s+¢c) (A.4)
(s + b)*+
Demonstration

2A2 2, .2 .2

S.(s) = ~-8°+b +a
X s* + 284 (af - b%)+(a? + bE)
Letting
- -1 2ab 2_.2
6 = Tan , and cc=a"+ b2
<(aZ? - b?) ’

there results

- 242 (-s+c)(s+c)
Sx(e) (s + c” el9) (s* + c* e7Ib)
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whose pole-zero pattern is shown below

~92
Figure A.3 Pole-Zero Pattern of Sg(w)

The transfer function of the shaping filter H (s} is obtained from

the left-half plane poles and zeros of S,(s), since we may write
8.(s) = |H (s)® S(s)
X X w-

where Sw(s) = 1 is the power density spectrum of the white noise
input to the filter, and in(s}iz = Hy(s) H (-s}. Thus there

results

J2A (s+¢)
(8 + ced¥2)(s+ ce?¥2)

H,(s) =

and (A.4) follows by substituting for c and e,

Ii Equation (A.4) is written in the time domain, we obtain
¥+ 2bx + (az+ b2) x=JAw+J ZAcw

Thkus, the representation of x as given above is not Markovian,
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because it requires thaf the white noise w be differentiated. In
the following property a method for rearranging the transfer

function of Equation (A.4) is given so that a first-order Markovian

process results.

Property 2 By using the arrangement H§(s) shown below
in figure A, 4 a first order Markovian form

results. Furthermore, this form may be

written as

'i_ w  (A.5)
fi dt yz -3 _b yz \Q ]
where x=2yy, and A;a, b, ¢ are as defined above.
% Demonstration From Figure A.4 we have

A
E X =Xyt Ky
- here Xy = - .t w .5
- wher Xy ‘Blfxx i (A.5a)
§ and Ko = =cle Xo + % w
E
5, 2 = T %2
: e % e

. en e ven mhe e mwe  ama  wn e S

. a1 Bde)

Figure A.4 3 _JP2Als+ ¢} . -3
i s+ + a ¥

Rearrangement of ! A

the Shaping Filter  ~ ~ ~ cTTT T
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The random variable & has the Markovian property which we are
seeking, and the constants a;, by, c¢j, ap, by, and cg are chosen

such that x has the same power spectrum as x. Now
- a1 a -
Hy(s) = bys+ c1+ by s + Cg

g+ 21C2+33C)

k(2 b o aje2 + agng
by Bg g%, S1B2+ €201 5, €16
bi by by by

and equation (A.4) can be wrirten as

JZA(s + ¢)
H =
A% 82 + 2bs + (a2 + bz)

Equating coefficients in the equations for H- and H, gives

a.by+ a,b . a;Cy+ 2,C

K 13‘21___ JTA, 1bz “blsc’
192 21% 2b

€13 5 o ¢y by + (egby)

B—B—=a 'irb, b = 2b.

102 109

From tnese relatiors there results
cy/by=b+ja and e9/bg=b-ja
after further substitution there r2sults
by = by, 1 =c = by(b+ia), and by = 1+j T(1tch)

(A.5Db)
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Equations (A.5b) imply that (choosing the negative sign)

K _._XK - 2K s+c
bys+cf ~ bps+ ey 112 821 2bs + 2

Hg(s) =

so that

Mo e wve e . a— w. o—

]
! K/b i
(|l s+b+ja ; is
W] | ] X equivalent w H,(8) —x
N %/ ‘ to
| s+b-ja |
{

e wm den e e e ome

Summarizing, we now have x = x it Xz, where

Xy = -{bsja)x + II)-(I—W

(A.5c)
-(b-ja) xg + %(i- w

L}

X2
by and K are constants specified above,
From the symmetry in equations (A.5c) it is seen that Xy=X, sothat

5{=5{1+5:2 = -(b+ja)x1~\o-ja)x1+K&1£+ -gl-]w
(hl + bi)

bif¢ he

= -2Re [(b+ja) x}]+K
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T and
] - v, A
51—-(y1b-ay2,+3§-w, (A.5d)
: where x; £y + jys. Equation(A.5c)implies that
Ja=-(ayy+byy) - H 2 (1- L)w (A.5e)
Equations (A.5d) and (A.5e) may be combined to give
r r '
y -b ally i
. _(%;_ 1. 1+3‘%— en | ¥ @A)
1 ¥g -a -b Yo a
where x=4%= 2y, . This is th required Markov form for the
random process x which was to be demonstrated.
Remark: The process specified by Equation (A.5) has the discrete
: representation
i 2\
: x/2 _ ba cos aA sin aaA\ /x/
3 Y et -sinaA cos aA Y A
7 __e'bA(Q-;-L-bi-sina~cosa)+1 w
+8 J—B- k
: 23 e'bA(%-b- cosa + gina )+(9-=39-)
(A.6)
j where A=t -ty, “k=w(t) for tes sty g
: Property 3 The equation (A.7) below may also be used as a
representation of the random process x.
) E
(_}
|
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d [x] o 1 XIJ+ﬁA[1]“
U Ixy| {-c? -2b|{x e-2b
(A.7)
Demonstration Let
X, = x {A.7a)
X} =% +JZ A w {A.7b)
Xy = -2bxg -(a2+ b2) x; + V2 A {c-2b)w (A.Tc)

Substituting (A.7a) into (A.7b) gives
Xg = X -2Aw
which upon substitution into equation (A. 7¢) gives
% ~VR2AW=-2bk+2bJ2 Aw-cix+ J2A(c-2b)w
=-2bk-c2x+ V2 A cw (A.7d)
This equation has the vector form of Equation (A.7)

Remark This procedure is certainly shorter than the method
given in Property 2, however, the substitutions are

not obtained in a straightforward manner.
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A.2 Digital Generation of a Correlated Random Proccuss Specified

by an Arbitrary Band-Pass Power Spectrum

A method for generating random variables digitally is to take linear
combinations of outputs from some *'standard’’ uncorrelated random
number generator. In this Section we discuss a method for com-
puting the coefficients in the linear ~ombination of uncorrelated
random numbers. The coefficients are chosen so that the resulting
random variable has a power spectrum which approximates the

given power spectrums in a mean square sense,

A white noise sequence sampled at unity time intervals has the

spectral representation

W .-:f’r eiwj dZy(w) (A.8)

where
2
E Eizw(w)] =0 and E 'dZw(w)l = dw,
dzw(-w) = dzwzw”

E dZy () dZy(w) = 0 if @ = o' (independant increments).

In order to generate thie correlated noise, we do not need a

physically realizable scheme,i.e., we can use future values of
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the random sequence, since these would be available in the

computer memory.,

Property 4 Suppose we assume fhat X; can be approximated

satisfactorily by a polynomial of the form

Xj = a Ny Vi.Nt AN+l VjNer
1 w]'i + ao WJ B4 al W3+1 +

+e e s ot aN_l wj+N~1+ aj+ij+N =
=z Y Wik, (A.9)
It is assumed that a = (corresponding future and past values

are equally weighed), then the coefficients which approximate the

given power spectrum in a least squares sense are given by

at
ay = %E ‘[lew} cos katw dw, k=0,1,...,N,
0
(A.10)
Demongtration  Applying Equation (A.8) to (A.9) gives
N
_ iwk]  iw]j <
=-N
K . (A. 10a)
n {wi L S
[ [rod 2 cos et gt o ez
n =1 -r
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Thus

N
E Idzx("')'z = lao+ 22 a cos k“’lz E| dzw(“’)'
k=1

or
N
Sg(w) dw = 'ao + ZZ ay Cos kw'z dw,
k=1
and
N
Sylw) = !ao + Zkz:l aj CO8 kw! (A.10b)

where S, (w) is the given power spectrum of the correlated noise x.

The quantity in the brackets of (A.10b) is real, so that we can write

N 2
Sy(w) = (ao + 2 Z a; €03 ka) (A.10c)
k=1

We shall pick a mean-square error criterion for evaluating the co-
efficients ay. However, in order to obtain simplified expressions
for these coefficients, we approximate \féx(w) instead of Sx{w).

We then obtain the mean-square error over the interval [-», =] as

. N
€ =f [\!sx(“” - ZZ' ay cos J dw
. k=0 -

(Note: The prime on the summation indicates 2, is divided by two).

n ' 2 (-w 2
= 4% kodw -
1; Selw) du+ ) 3y 'L( cos“kwdw
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- 4kz=(;ak ji :lgx-(z;*} cos kwdw + 4§="6 ?;:kaj [w ::ros kwcos jwdw
k~j

Now in actual fact, the power spectrum S x(w) will be zero after
some sufficiently large angular frequencyw = @, and the sampling
frequency wouid not be unity, but 1/At, where at i3 the time (in
seconds) between samples. Thus, instead of coskw, we have
coskAtw. If we choose the interval [-n/At, 7/at] and the sampling
period At such that n/at >Q and At is compatible with integration
requirements (next section) then

mjat X j=k
f coskAtw cosjatw dw = AT
-m/At 0 j=k

The error ¢ is then

N A
b ' ¢ /At
€ =[ 8. {«) dw+%’{-; akz -4 i ay - \/Sx(“’) cos katwdw
NUSY k=0 k=0 ~T/At

Since we are minimizing ¢ with resgect to the a;, which are
differentiable and unconstrained, we obtain

Lt
-glt'- Gy -4/7;/ \/Sx(w)coskAtwdw =0 k=0,1,...,N.
At

or

/At

ak=%;-/; 5. (@) coskatwdw, k=0,1,...,N (A.10¢)
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We are sure that this is a miniraum since the second derivatives
with respect to ay are > 0, Since the integrand in equation (A. 10d)

is an even function, we obtain (A.10) as required.

Property 5§ The percent error in the representation specified
by Property 4 is given by

4 302 S 2

1 - L  ——_— + An 11

l Pat | 2 %—_‘1 % | ( )
where P is tne power in the given random process.

Demonstration Since \] Sx(w) is an even function, it has a

Fourier 3eries expansion

\[Sx(w = 129 +;1ak cos %—’.’w, we[~ r I‘], {A.11a)
where
0

If we compare equations (A.11b) and{A. i0) with /At =T, we see

that ay =ay /9. Thus V8 () = ay+ 2;1 ay cos katw, and the

power in the random process is

miat Q _rmat 3 2,
P=2 0 Sx(w)dw=2./; Sx{w) dw = ot (ag+ 2éakcoslmtw) dw=

= f"/ﬁ‘ao2+ 4; a2 A ofkatwdw = i {?Li akz}
-l =1

4.7/\ LyAt
(A.ilc)
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2
~ a
B = Az [-—9— .y akz] (A.11d)
the error in total power between the given random variable %, and
the synthesized random variable ¥ is

$ 2
AP =|P-§I =-‘i2f Sy (w) dw - %% [%L+§lak2]l (A.lle)
0 =

This error is a function of the number of coefficients used, N, and
the error is inversely proportional tec N. This monotonicity of
the truncated Fourier series approximation is due to the orthnzon-
ality of the cosine functions. As a percentage, Equation (A.lle)

becomes

A

2
|1 -4 (20 i 2
AP/P |1 iz [2 +k=1akj“ (A.11f)

the required result (A.11).

Remark: Suppose it is required that the coefficients a; and N are
chosen so that the total power of X be within a of the power in x,

that is,

IE-F q (A. llg)
tp

This cculd ke a good criterion for determining the number of co-

eificients N.
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Computational Results

The two power spectrums specified below by Equations (A. :2a) and
(A. 12b) were considered.

(1), - A2
57 (w) o f2r

{w-a weal? | .
exp '_—'Zf' + exp 'LT (A. 122)
20 2o t

and

¢

3(2)(w) =A% N ffgz _— (A.13a)
w-a)p+b® (+al+pe

The orresponding autocorrelation furnictions are, respectively,
- /
R(l)(r) = ZAge 72 62/2 cosart (A.12D)
and
2 .
R(z)(‘f) = -‘%—e bl tcos ar {A.13b)
Computational results for S(l)(w) with a = 24.0 radians, o = 10.0,

and S(l)(a) =1.0, and for S(z)(w), with a=24.0 radians, b= 5.0,

and 5(2)(a) = 1.0, are shown below. In these tables
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TABLE 1  SAMPLING TIME at = x/0 = /75 = . 0427 sec

a(1)y) s{8) )
i

N ay o ay a

9 . 455257* . 387541%

1 . 196292 . 14930 . 113448 . 18522
2 -. 113420 .07431 -.066344 . 14067
3 -. 106863 .00398 -, 095744 .04768
4 -, 025387 .00012 -.045514 .02683
5 ~, 002584 . 00007 -.016735 .02399
6 -. 002264 .00604 .037336 .00988
7 -. 001855 00602 .021766 .00513
8 -.001288 .00601 -.004489 .00487

*This cocfficient has not beer divided by two,

The two sets of curves on the following pages show S(1 )(w) and

S(z)(w) and the approximating power spectrums

S(;)(w) ={ag + 2 i:ak coskatw ,i=1,2,

-

for N = 10 and 15, and at = 0,02 seconds {That is, the curves

corresponding to the coefficients of Table 2).
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From these cur.es we gee that the exponential power spectrum,

S(l)(w), is reasonably well approximated ag a function of w-by N=19,

and very well by N=15. On the cther hand, the rationai power

spectrum, S(z)(w) is not well approximated, even by N=15. Thus

N depends on t and on the shape of the given power spectrum.

TABLE 2 SAMPLING TIME At = .02 sec
) 5@

N ay o Ay a

0 . 217369% . 175520*

1 . 184170 . 27880 . 139382 .26105
2 . 102510 . 14710 .061514 . 18285
3 . 013242 . 14490 -, 002265 . 18066
4 -. 047379 . 11677 -.028463 . 16222
5 -.067106 .06033 -.037714 . 13207
8 -.056730 .019969 -.044446 .09016
7 -.035391 . 00430 -. 044527 .04810
8 -. 1704986 .00065 -,029811 .02924
9 -. 006412 .00014 -. 008786 .02761
10 -.002085 .00008 . 004843 .02711
11 -, 061062 .0000% .010375 .02482
12 -.001053 .D15116 .01998
13 -, 001071 .018987 .01233
14 -.000988 .0160650 .G0686
15 - 000845 .007177 .00577

* Coefficient has not been divided by two.
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A.3 Step Size for Digital Generation and Integradon 3 Of the

Carselated Random Process

We aunsider & zero-miean stationary, gaussian random process

with power spectrum 84} and autocovariance function R{rj given
Rir) = —g; -{0 S4) enBwTdw

where it is noted that here the one-sided specteum §{ej is used.

A good indication of the ster sizes can be obtained if the number of
zero-crossings per unit time the numbsr of maximur and minimam
per unit time and the v, m. 8, value of the derivative are known.
For stationary, gaussian, random processes the expected values of
these quantities can be calculated relatively easily in terms of the
power spedrums or autocovariance functions. Since the mndom
process is assumed zero-mean and gaussian, the probability dis~
tribution is completely sypccified by R(ﬂ}v %, '{'hat is, the

probability that x(t) lies between x aud x+d> is

dx
m XD 22/23(0).

Thus the probability distributions of such provcvses are completely

specified by their variance.
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The expected nwmber of zeros per second of x{t} is given hy

(Eguationfd, 3-13) of {12])

The expected rmber of maxima and minima is given by (Equation

(30 a"s Of
g W) 0 1/'2
= E[Ro, cfmaxandminpersec}%[ CRG } =

/2 (A.15)
[Lz:‘s(w) dw

The r.m,s. vaiue of x(t) is given by

[ (0) [ﬁ f %(w)aw}m (A.16)

where

n{M(0) = —%n(f) (A.17)

T=0

Remark In the above expressions it is assumed that the necessary

derivatives of R{7) in the neighborhood of r=0exist, According to
Theorems VIII and XI in section 20.5 of A, E, Taylor's Advanced
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Calculus, the necessary derivatives of R(r) exist in the neighbor-

hood of T=0 provided that the integrals in eguations (A, 14), (A. 15),
(A.16) converge. This is = useful resuit as we do not need to have
R(7) explicitly. For exumple, in equations (A.13a} and (A, 13b)
above, Rz('r) does not have the necessary derividves at =0, H
we truncate Ss{w) all of the necessary integrals in equations (A. 14),
(A.15) and (A. i6) converge, thus we are sure by this result that
the necessary deriva:des of Ro{r) corresponding to this truncated
Sg{w) exist. It would be fairly tedious to obtain the Ry(r) corres-
ponding to this trurcated Sz(‘*’) , and then to verily that the necessary

derivatives exist.

Generally, the relations {(A. 14}, {A.15) and (A. 18) cannot be
caiculated readily. FHowever, for the exponential power spectrum
{A.122) we may calcalate the quantities given by {A. 14}, (A.15)
ant {4. 16} in terms of the derivatives of Ry(} evaluated at 7=0.

In particular we have

Property & ¥or the exponential apectrum, the asymptotic

valuss {Q - =} may be caleulated from

E [No. of zeros/sec] = %~,’;é—%l = %- a2+ 02 {A. 182}
2 4
E {No, of max and min/se c]= 1 3 eaz "‘z—%&’ (A. 18D}
) YV  afaig
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and
R ((’))]‘E R"(O)]’ \/2A(a + az) " (A.18c)
Demcnstration Letting
’ -7'2 2/2
R(7)/2A =¢ ©9/€¢og ar= fl(‘!’) * fo(7)
there results

R{0) = £;(0)£,(0) =1
RY0) = 1300 1500+ 26001500 100/ Vtyfoy = 022
R%0) = 1,0800f D« 42,0 W1,0® + 6t (o)(z)fz(e‘(z) s

+4f (0( )fw( s 60100 = 2%+ 62202+ 304

Substituting these results into {A. 14}, (A. 15) and (A. 18) yields
equations (A.18a),(A. 18b),{A. 18c), as required.

Experimental Results

St N e

W e

Values of expressions (A.14), (A.15), and(A.16) for the two power
spectrums {A.12a) and(A.13a), and for various values of the con-
stants a, b,o, and Q are shown in the curves below. The asymptotic
values for the exponential spectrum(Figure A.6)agree exactly with
the values calculated from Equations {A.18a) and (A.18b) (that is,

when the asymptotic values are reached in Figure A.S6.
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To give some physical J2eling for the above discussion and
results, a white noise sequence having a flat power spectrum to
100 cycles/second was generated (white noise was sampled 100
times/second), This sequence was th2n passed through the
low-pass filter {0 to 7C radians/second), By actually counting
the number of zzro crossings and the rumber of maximum and
minimum on the time histories the experimental results are com-
pared below with those cbtained frein the integral equations
{A.14) and (A, 15).

Time-Interval No. of Zeros No. of Max & Min

0-1 11 i8
1-2 14 8
2-3 14 20
3-4 17 117
4-5 14 19
5-6 15 22
6-17 13 14
7-8 13 17
8-9 14 i7
3-10 13 17
TOTAL 138 179

These results show good correspondence between values calcu~

lated from Equations (A.14) and (A.15). In particular, the
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average number of experimental zero crossings is 13,8, and
the expected number of zero crossings from Equation (A, 14) is
14,0, The average number of experimental maxima and minima

is 17.9, and the expected number of maxima and minima from
Equation (A.15) is 18.4,

It is important to note that the observed values of zero-crossings
and maxima and minima do not vary drastically from the
average values. This may be readily observed by comparing

the columns of values above with the average values, 13. 8 and
17.93, respectively.
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A.4 Comparison of Three Methods for Generating

Digitally Stationary Correlated Rancom Processes

In this section we compare the two models for generating the cor-
related random processes specified above by Equations (A.6) and
(A.9), along with a third set of equations to be specified below.
It is instructive to make such a comparison because each of the .
three shaping filtecs considered here has been formulated using
different assumptiorns and approximations. Furthermore, each
of the shaping filters would have advantages over the other two in

the application of the minimum variance techniques.

The {irst filter, Filter I (Equation A.9)), is useful because arbit-
rary power spectra may be approximated without altering the filter
design. Essentially this filter uses a moving average of uncorre-
lated random numbers to generate correlated noise. This method
has the disadvantages that a digital subroutine is required to
generate ite coefficients, and that the filter is not in canonic form
for use in the error-analysis equation of the minimuni-variance

estimator. However, it is useful for generating observations.

Th? second and third filters, Filter Il (Equation (A.6)) and Filter

III, both require that the gi ven power spectra be first approximated
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by a fourth order rational Spectra; These filters use feedback to
generate the desired correlated noise in terms of uncorrelé.ted
random numbers. Filters I and Il generally would not represent
the given power spectra as faithfully as Filter I, However, these
filters are ir the canonic form for use in the error-analysis
equation. The third filter probably gives a more faithful represen-
tatior: of the specific rational spectrum considered than does

Filter II, since the coefficients of Filter IIT have been adjusted to
improve the approximation in going from a contiauous random

process to a discrete random process.

Fiiter II is used for the same purpose a3 Filter IIl and the deriva-
tion of Filter II is obtained in a straightforward fashion. The
derivation of Filters I and II is given above, and the specification
of Filter IIl is given in {14] . Combinations of the three above-
mentioned shaping filters could be useful in studying the sensitivity
of the minimum-variance estimates of the state vector dve to

variations in the state noise power spectra.

We give only a brief description of the three shaping filters

considered., Additional details of these filters may be found above.
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Filter I (Section A.2)

We are given a stationary, gaussian random process, x, with a
power spectrura S,(w). We assume that x(jat) 2 X; may be
approximated by

N

gj = (gg Wj> = = aij_k (Aalg)

swwhere wj is a white noise sequence and is obtained from a "standard"
uncorrelated random number generator, and the coefficients ay are
constants which can be computed from the power spectrum Sx(w) of
x;. Specifically, the aj are given by Equation (A.10) and N is
chosen to satisfy (A. 11g).

Filter I (Section A.1)

We make the assumption that the givun power spectrum may be

suitably approximated by the fourth order raticnal power spectrum

2 2
50 = GAPTR G TR (a.202)

where B is chosen so that Sx(:aj = A2, A model for this process
is specified by Equation (A.5). If it is assumed that
the noise w(t) is constant over the relatively short computation

interval A, (in Section A.3 quantitative procedures are givea
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which insure that this assumption is realistic; the distinction
between a white noise process and 2 white noise sequence will be

discussed below) then the solution of (A.20b) may be written as*

X X{-1
2] -ba (cos aA sin aA) )
= e +

Y) -8in as cos aa/ \yj.

+AE e s (Q‘g:bsinaa~cosazs) + 1 )
C

Wi-1
g s (%bcos aa+ sin aA)+(b-;-9)
' {A.20b)
Simplifying the notation, (A.20) may be writter as
X =ApX 1+bpw (A.20)

where the definition of Xj, Aqp, and by is obvious from {A. &0).

The "white noise" sequence w; _1 has the property
E[wi]=0 and Cov(wi,wj)= E[wi wj} =85 »
where

6 -—

lfori=j
5]

Ofori i

*Wong and Zakai, [13] , have shown that one generally can’t
replace a stochastic differentiai equation with the 1imit of solu-
tions of an ordinary differential equation, as the solutions of
the latter usually do not converge to the solution of the former.
However, the soiution (A.20b) would converge to that of (A.8)
due to linearity of the equation.

R TR
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Filter Il

A discrete model of ihe process desined by (A.202) 18 given in [14]
as

X =b1¥j.1 - baXp g+ a3 wi ) + agwyg (A.21a)
where wy is as above, and where

by = 2¢"PAcog an by = e-2bs

a3 = %y(1-ba)e, E/I-t-bg-hl -\]1+b2+b1]
] (A.21b)

a9 ’/z\i(l-bz)‘# [\[1+b2- +\[i+ba+b1

Ap

A = gampling interval ¢ 0 ==~

i

Next let, y; & x;.1 - {ay/bg) Wi-1 sothat »j = byxy_1 -bayj.1+ay Wi.

Thege equations may be written in matrix form as

Xj by ~b Xj.1 ajy
= 1 2 + Wi-1 (A .210)
1 0]\ 22
Y3 Ji-1 bz

Agair, to simplify the notation, we write (A.2ic) as

X = Amrxg+ by wig (a.21)

"o

Hemark I a white noise process, w(t) has covariance R{t}s{t-7),
then the corresponding white noise sequence is
- W= w(t=ja){s and Cov{wj) =R(t=ja)/a
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The covariances for Filter { and I were assumed to te for a white
noise process, and that for Filter III was for a white noise éequence.

Thug suitable normalizing factors must be introduced into each.

Specific Parameters Used for the Numerical Comparisen

In order to make a quantitive comparison of the three shaping
filters discussed above, we took a =24, b=56 and A =5, For
these values of a and b, a sampling rate of 4 = .02 seconds was
gselected. This value of A was chosen according to the criteria
given in Section A.3. For these values of a, b, 4, and 4, the
coefficients in Equation(A.19) are given in Table II, Section A. 2,
and the matrices in Equations (A.20) and (A.21) become

.802586 .417835 2.724374
An = bn =
-.417835 802586 1.305003

Am;:

1.0 0

1.605172 -.818731 (3.286653
b =
T 3 6.688670

Simuiziion Results

By actually counting the numbex of zero crossings and the numbex

of maxims and minima on the time histories of simulated filters
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the results of the three filters can be comnared with those estab-

lished in Section A.3. The cbgserved values for a & secoﬁd sample

are sicwn below

Numerical Results (a=24, b=5, A=,(2)

Number of Zeros | Number of Maxima &
in 5 Seconds Minima in 5 Seconds

White Noise i29 170
Filter 1 50 111
Filter II 51 817
Filter II 47 g6

From Section A.3, the expectzd number of zeros in 5 seconds is
approximately 51, and the expected number of maxima and minima
in 5 seconds is approximately 115 when sampled 50 times/second.

For white noise sampled every .02 seconds, these numbers are

22.9/second and 32.6/second, resgectively.

Since we are assuming gaussian random variatles, it is of interest

to count the number of points outside of ¢ 1 sigma:

White Filter Fiiter Filter
Noise ¢ I I

sl

Percent of Toizl points )
outside of * 1 sigms | 59 24 32 28
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