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* PREFACE

With the development of advanced Air Force Ballistic and Space

Systems there arises the requirement for increasingly sophisticated

guidance and control techniques. Fundamental to this area is the

identification of inertial measurement unit error parameters. This

report is one of the most comprehensive documents on the subject

prepared to date presenting numerous significant new results of direct

interest to Air Force systems in the ballistic missile, space, and

tactical systems area. Numerous fundamentai results are developed

and presented, virtually all of which are confirmed by extensive com-

putational studies presented herein.
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Missile and Space Systems Studies, and the Air Force Office of Scientific

Research under Contract No. AFOSR 699-67, Basic Control Systems.

This report was the basis for a Doctor of Philosophy dissertation sub-

mitted by the author.

i

I

i iv

•I I . . . .



ABSTRACT

The problem of identifyir.g the error parameters associated with inertial

measurement units is considered in this report. This is an i*rsportant

practical problem which is included in a large class of system param-

eter identification problems. A general approach for formulating the

many possible inertial measurement unit (IMU) error parameter configur

ations is given, and specific realizations are specified in detail. Tae

formulation is such that time correlated environmental and observational

random disturbances can be incorporated. Experimental results showing

the effects of state and cbservati,on noise power levels, and the nominal

trajectory on the identification of the error parameters for three specific

configurations are presented. These results indicate that a meaningful

optimization problem can be formulated in terms of the nominal trajectory

variables. The problem is then considered as an optimal control problem

with the cost being a functional of the estimation covariance matrix and the

controls, where ccrtain nominal trajectory variables are considered as the

controls. The question of the existence of optimal controls, the necessary

eonditioons which the optimal controls must satisfy, and the computational

aspects for computing the optimal controls are considered.
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NOMENC LATURE

En n-dimensional Euclidean space

x,x n-dimensional vectors

AAI nxm-dimensional matrices

x*,A* transpose of a vector and a matrix, respectively

<x, y >, !1x1 2 inner product of two vectors

t, to, T, I time, initial time, final time, and the time interval
[to, TI , respectively

4(t,7) fundamental solution (transition matrix) o' a linear
differential equation

IMU inertial measurement unit (.)

iBW object j in the system, with. = m.%s,r, and i,
respectively, to denote the vehicle, a reference
IMU (IMU)t, a slaved INU (IMUs), a, generally,
non-stationary reference point, and an inertially
fixed reference point, respectively

B. P6 )a fixed point of object j

_X(j) a= 1,2,3, orthogonal axes centered at B.P.(j

b(J,k), Eb(j,k) vector distance from B.P.(J) to B.p.(k), and
the error in the knowledge of b(jk), respectively

i•, [l angular velocity vector and matrli respectively

a, [a) acceleration vector and matrix, respectively

p flJ,[fW] especially defined angular velocity matrices

j) 1=,2,3, body angles fromX 0 ) toX(k)

T. k) orthogonal coordinate transformation from B(j) to B(k)

n random position changes
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F x a time derivative with respect to a non-stationary coordinate
system

Aa•j"k) difference in sensed acceleration between B(i) and B(k)

I,) difference in measured acceleration between BW and B(k)

• •, ~S), _(OS) first and second integrals, respectively, of the

measured acceleration between IMUs and IMUo
lb 1! 2,_c, ..w various random 'processes

() vetor 1, 2, 3 vect(r of initial misalegnment angles

Ka vector of the (six) aecelerometer error parameters
•! Kg vector of the (six) gyroscope error parameters

-K vector of various measurement error parameters

kS., s =1, 2,3, mass unbalance errors along the spin axis for1 taree gyros

k_, 11k, i=1, 2,3, mass unbalance errors along the input axis for
three gyros

"1- i't 1-,2,3, constant drifts for three gyros

Sx(u),R.,r) power spectrum and autocorrelation, respectively,
for the random process x

Configuration IA Identification of 4, with correlated rundom
LE acceleration

Configuration lB Identification of *, with uncorrelated -random
U •acceleration

Configuration H Identification of * and e

I •Configuration MI Identification of *, and the mass-unbalance gyro

I 2= , the correlated random acceleration power

01 . the uncorrelated random acceleration covariance matrix||
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.I the observation noise covariance matrix.

the standard deviation in the estimated misalignment angles

the standard deviation in the estimated constant gyro
drift rates

.,i the standard deviation in the estimated mass-unbalance
gyro drift terms

E E~x], Cov(x, y) expected value of x, and covariance of x and y,
respectively

P E((x -_)(x -_g)* covariance matrixof errors in the estimate:d
value • from the true value x

P elements of the ovariance matrix P

Pxy --ovariance matrix associated with the x and y portions of a
vector z, where z = (x, y)*

IIPIi, i =1,2, 3,o, various norms in En associated with matrix P

R, Q covariance matrices of the time uncorrelated observation
and state vector noise disturbances.

u,A an m-vector of control functions and a scalar-valued ontrol
function, respectively

SMi various constraints on the control function u

U(t)CEm a pointwise constraint set for u(t) for t E I

a set of control f.unctions

J a cost functional associated with P,u, and T

Trace [WP(T; .1 sum of the diagonal elements of WP evaluated

Sat t = T, with the control u(t), to g t;5 T

{ u ka sequence c-I functions

Mk -X -u6 weak convergence of {k} to 6

I L2 ( [a, b3) space of square integrable vector functons on the
time interval [a, b]
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H Hamiltonian function associated with P u and J

A. X ij, vector of adjoint variables associated with the covariance
matrix P, and the elements of A, respectively

I(Ao), I (I>,) cost functional associated with the error in guessing
the initial adjoint matrix A(t ) =A, and in guessing
the final covariance matrix ' (T) =PT' respectively

W a non-negative weighting matrix associated with P.
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CHAPTER I

INTRODUCTION

The problem of identifying the error parameters associated with

inertial measurement units (IMU) is considered in detail. This is

an important practical problem which is included in the genena

class of problems formulated in the next section. A general
approach for formulating the many possible IMU error parameter

configurations is given in Chapter I I, and specific realizations are

given in Chapter MI. Minimum variance estimation techniques for

the error analysis of the identification procedure, and typical ex-

perimental results are presented in Chapters IV and V. In Chapter

VI, techniques from optimal control theory are used to characterize

the best nominal trajectory from a class of admissible nominal

trajectories. This trajectory is best in the sense that the identi-

fication of the error parameters is the most satisfactory under given

physical conditions. Computational aspects for obtaining the optimal I

nominal trajectory are discussed in Chapter VII. S

1 1r
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1. I. The General Problem

Many physical systems might be described by the state equation

= f(t, y, ulw 1 , a- ) (1.1)

and the observation equation

z = h(t, y, u 2,wP 2 10) + v (1.2)

In these equations 92I the variables are generally vectors, except

for the time t. The n-dimensional vector function f and the

rn-dimensional vector function h are assumed to be sufficiently

smooth so that the required linearizations which are subsequently

required are valid. The specific definitions are as follows:

y is an n xl vector of state variables,

iu, is an r, x I vector of state control variables,

w, is a px 1 vector of random state disturbances,

t u! is a kx I vector of constant state parameters,

z is an mx 1 vector of observation variables,

u2 is an r2x 1 vector of observation control variables,

w2 is a p•x 1 vector of random observation disturbances,

ia2 is a k2x1 vector of constant state parameters,

v is an mx 1 vector of random white noise disturbances.

2
I!
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The vectors a1 and a2 of system parameters are assumed to be

made up of constants, although smooth functions would also be

considered in this framework by making suitable polynomial

approximations, and then increasing the dimension of a, and a2

appropriately. The random disturbances w1 and w2 may be

time-correlated or not, but it is assumed that the statistics of

these vectors are completely known and that they may be modelled

by white noise passing through a linear dynamical system

(Markovian property).

The general problem which might be presented is to identify the

system parameters a1 and a2 based on the observations z. Of

course, it is also usually of interest to obtain estimates of the

Sstate y. The controls u1 and u2 are functions which are avail-

able to change the evolution of the state and observation equations.

This change in these equations is to be made in such a way that the

identification might be accompli", 1 in some optimal fashion,

1 subject to certain constraints in the controlling functions uI and u2 .

I Except for special theoretical questions, there is not much that

can be said about the analytical properties of this problem in this

generality. Certain linearizations might be made to make the

problem more tractable and perhaps ame,..ble to certain mean

square optimization techniques.

3!-'I -- ~
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Under suitable assumptions, the system (1.1) , (1.2) may be

written as

= AY(t,ul) y + BW(t,ul) w, + 0 1 (t, u,)a, (1.3)

and

z= MY(t,u 2 )Y+BW2(t,u 2 )w 2 + Co2(tU 2 ) 2 + V
(1.4)

These equations represent small deviations about nominal or

expected values of the variables described above, which are

denoted by pW, etc. The matrices in Equations (1.3) and (1.4)

2are the various partial derivatives of the functions f and h, and

are evaluated about the nominal or expected values. Typically,

2Ay(t, u,) - (y

wByS•end

FBI(t, ul) a it. J8W

It is noticed that we do not linearize about the controls u1 and u2

because in the application which is considered here, the nominal

values (11, 02 are also to be chosen in an optimal way. It is

next assumed that w1 , w2 have the Markovian representations

*1 = AWlWi+ BW1'vl and w2 = AW2 w2 + BW2'V2 "

i __-_



If we write &1  0 and &2 = 0, then the above equations might

be collected together and written as

4= AY+Bw (1.5)

and

z = MY + v (1.6)

whe;ce

SY- (y, wl, w2, O 0'2)*

-, Iy Bo •

Ay Bwl 0 C'tl 0

0 AWl 0 0 0

A =A(t,ul)- 0 0 Aw2 0 0

I 0  0 0 0 0

EfW' 0

W =(W1 ,W2 ) 0 BW2

0 0

and0

M ~(tU2) 10 Bw2 0 CP2]

IF _ _ __ ____ ___ ____ ___5



i the controls ul, u2 bave been prespecified, the problem formu-

lated by equations (1.5) and (1.6) is in the standard form for

applying the well-known minimum variance estimation techniques

- [IN. Assuming the random vectors possess the known statistical

properties

;, w(t)- E [w(,)]= 0, E lw(t) v(r)V 0,

E[w(t)w•(r)• =Q(t)6(t-T), Efv(t) v(T)• = R(t)6(t-T),

E[Y(to)] = 0, EtY(to)Y(to)• = P0 .

E [Y(to)v(T)*]=0, ErY(to)w(T)*1 = 0,

A
then the minimum variance estimate Y is given by the solution of

the differential equation

d# [A - KM]9 + Kz Y Y(to) =0 (1.7)
dt I

The optimd gain matri•x K is given by

K = PM*R-
1

* where the covariance matrix P, which is defined by

STrace P = Trace[y)(Y-

- satsfies the matrix Riccati equation

6
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dP/dt = AP + PA* - PM* IMR P + BQB*; (1,-8)

P(to) = E[Y(to)Y(t)*j P

The dependence of the solution on the control parameters u =(u, u2)
will be denoted by 1u and Pu. The optimal control problem which

naturally arizes is to minimize some functional of P, for example

rnjn trac4WP(Tsuý where W iz a weighting matrix and T Is the end

time, or else to choose a u such that certain diagonal elements of

P fall into a prespeciffed region in minimum time.

SFor a linearized minimum variance estimator this cost would

depend on a particular stochastic realization of the system. The

variances in the resulting P (T) for particular realizations would

then need to be considered to decide on a suitable "average" cost.

Thus a linqarlzed minimum variancc estimator would complicate

the optimization considerably. Since we should like to apply some

of the known techniques from optimal control theory [O. it shall be

assumed that we have a linear system from the outret. This is

indeed the case for the IMU error identification problem, because

the design of the associated instruments is such that It keeps all

F errors reasonably small. So that even though the various errors

might be very complicated in nature, their contribution to the system

dynamics can be accurately represented by a linear transformation.



1.2 The IMU Error Parameter Identifioation Problem

The problem of identifying the error parameters associated with

inertial meas'irement units (IMU's) arizes in many applications

associated with the inertial navigation of ships, airplanes, missiles,

and space vehicles. Investigation of this specific class of

important problems provides motivation and insight into the general

problem outlined above. A discussion of the error parametFrs

which are typically asociated with IMU's and the physical en-

vironment in which such systems operate is given in Chapter I I.

A general formulation of the problem and a discussion of experi-

mental results is given in Chapters II to V.

Generally, the IMU error identification problem has the form

.= Axx+Bn n+C'a +v
Stt = A n n w n

S~11,9)

i" z = X+ V

Equations (1.7) and(1.8) then become, respectively,

4!d = , PxR1 i +BEPA+ C*6+P'O'Rl

dA/dt = -]pxR A^ + + pn'l z (1.10)

d&/dt= -,PxRl k + P"cIKl z

Ai 8
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and

d. Ax PXK+ PpofA'+ EP IP+ p n +Cy X+ Pd WI P+
dt

dt' p(1.11)

_ p = Axpen + Bnn CA pxf x- + a
dt

d Ppa= .?npn1 . pnx-

S•: where the covariance matrix P has been partitioned in the obvious

|d 
t

S• way

n* "npxx ppn ppxx Ip-

lia n na x x

whr thpoaince matri Pnhsbe attondI h biu

x nnSP =

~4E3 :all

Generally, the conTrol parameters would appear in the matrices

X nl a XA , Bn C, and QXX. Thus it is difficult to study the optimization

problem in detail at this level of generality, although the optimi-

zation problem can be clearly stated. If the assumptions used for

special configurations (configurations IB, It, and 11 of Chapter M)

are invoked, the optimization starts to be tractable. Briefly,

these assumptions are n = 0 (no correlated process noise), and

9



diagonal noise covariance matrices Q' R • I and R =

Equation (1. 10) and (1. 11) reduce to

d Or-d t
"dt" (1.12)

"-2 ,CpX A

dt W

and

d pX~d a* x 1pXpxx +2
dt

-2 ax Xad__ = o(wP p (1.13)

dt W

d~tpXc= Cp, _-2_Xx_ M•

dt w
1~ I

respectively. The trajectory control parameters are now associa- i

ted with the matrix Ca only. The optimization problem is then to

choose these trajectory control variables so that

Trace [WaP'T],

where WO is a positive definite weighting matrix, is minimized at

some giwn end time T, or else to choose the control variables such

that

iij (T- naii (Zej~~ ejspecified, j 17 1
•i•! ~~In a mtinimumPJ() ,j jsefid - .. ,time T =,

1



Discussions which are concerned with the existence of the opti-

mal controls and the necessary conditions vhich the optimal

controls must satisfy can be made on the basis of the problem

specified by Equation (1.9). However, to gain insight from

numerical results and to proceed with analytical calculations,

it is more fruitful to work with the simple.- models,

This study has three main objects. The first is to formulate a

general method for treating the many possible IMU error para-

meter configurations. The second is to demonstrate, through

numerical experimentation with realistic error parameter con-

figurations, under which physical conditions it is possible to

identify the error parameters and that a realistic trajectory

optimization problem does exist. The third object is to formu-

late the optimal control problem and discuss the existence of

the optimal controls, the necessary conditions which the optimal

controls must satisfy, and the computational aspects for obtain-

ing the optimal controls.

71!
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CHAPTER II

GENERAL APPROACH TO INFLIGHT IDENTIFICATION

OF IMU ERROR PARAMETERS

2.1 INTRODUCTION

There are many inertially guided vehicles serving as a common

carrier for a smaller inertially guided vehicle. Typically, the

smaller vehicle is deployed either during the common carrier's

travel or at the carrier's nominal terminus. As a contrivance to

introduce the problem, consider the Saturn IV/Command and

Service Module (CSM). Prior to launch of an Apollo mission it

may be difficult to calibrate and/or align the CSM (slave) MU

because of its physical arrangement. The master MU (IMU used

throughout boost powered flight) is assumed to be accurately

aligned and calibrated. When tde vehicle is put into operation, the

slave IMU could be activated prior to its being used and its output

observed. The observed outputs of the slave IMU and the master

IMU would then be compared and the difference in the observations

used as a basis for inflight calibration and alignment of the slave

IMU with respect to the master IMU.

13



Under ideal conditions, the readings from the two IMU's would be

the same. However, there are several factors which cause the

readings- between the master and slave IMU's to be different.

These factors include master and slave IMU error parameters

(gyro drift errors, accelerometer scale factor and bias errors,

platform and accelerometer misalignments), accelerometer

quantization errors, computer errors, and random-induced

accelerations. Assuming the variances of the master IMU

error parametero are negligibly small so that the master IMU

accelerometers read the true sensed acceleration, and assuming

availability of appropriate probabilistic description3 of the vehicle

vibrations and of the computer and accelerometer quantization

errors, which are random in nature, various techniques may be used

to identify the [MU error parameters. In this chapter a general

approach is formulated for identifying these [MU error parameters.

2.2 Dynamic Equations

The master IMU, denoted by IMUo, is the reference for calibrating

and-aligning the slaved-IMU, IMUs. It is assumed that IMUs is, in

general, a strapped-down system, thereby insuring the necessary

generality in the dynamical- equations for treating either gimbaled

or strapped-down IMU's. In the discussion of this section, the

14
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notation listed below is used. Later, whenever the meaning is

clear, a less complicated notation is adopted.

Referring to Figure 2., we let B(1) denote an object in the system

with orthogonal axes IN) at 1,2,3, centered at B.P.(j) a

point fixed in the object. The superscript j will be m for the

ve.hiclh, o for IMUo, s for NMUs, r for some generally non-

stationary reference point, and i for an inertially fixed reference

point. b( ,k) is the vector from B.P.(j) to B.P.(k), where as

above j, k =m, o, s, r, and i. Letting subscript o denote a

nominal, or assumed position, we define eb•(i' as the error

vector in the nominal position of the slaved IMU, and eb( as
-0

the error vector in the nominal position of the master IMU. For

compactness, we shall use a dot in the superscripts to indicate

situations where j can either be s or o.

The position and velocity of IMU(.), with all vectors expressed in

vehicle coordinates X(m), are given respectively by

b_," = _(oi,") + r('

b, 0 + + +wxr)

where the dot over a vector denotes a derivative with respect to
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inertial space and the small circle over a vector denotes a dere.

vative with respect to vehicle coordinates, Xm). Thus the

acceleration is

b 0) b + Rf(t)(-) + xtt)' +sWxr + + wxxr(.+

so that the acceleration of the points p and p' (Flgure2.1) with

respect to inertial space are

2Wxik(t)(')+Lwxi!x+ 6x)ebO n(t)(+ )

where the subscript (.) denotes either p or p'. The acceleration

of IMUs with respect IMUo, 4a(os), is

4ao, s). bk'P s)+_f(t)(OP s)+ 2wxfi (tJO, S)+ (wxwx +6,x)A(tJO, 8)
l--

Eqjuation (2.1) gives the accelerations between the master and slave

J I's due to random vehicle vibrations n(t), and the errors in

knowledge of the nominal locations of the IMU's. We can rewrite

( 2.1) as Equation (2.2) using the following notation:

H r0 -W3:0 4
A 13 -

• 17



= [' !
n $ JmI) = ["2 M A(I !I]

12(t) =

s)Z wn).j(t) + sIm £~'S) + (2.2)

Thus the difference in accelerationi; between the master and slave

TIU's is composed of a term due to randomn vibrations of the

vehicle, (n] n(t) ; a term due to an error in knowing the true

static locations of the IMU's, i S21 Cb40t S). and a term due to

gravity and the angular velocity of the vehicle b(o, s) which is
0

known as a function of time. Next the term A_4o, Is considered

in the context of the measured acceleration errors.

The acceleration of IMU(.) with respect to inertial space a

may be Tnrt•ten as , + A0 where •-) is the-s
gravitational acceleration acting on IMU(.), and _ is the-S
thrust accelp2ation acting at IMU(.). Fu~r herriore, al(s) may

be written aS = am.easured so we can write the

difference in acceleiation between ihe two IMU's as

• .~(0,Z Y ) (,S') 0)) ., .(S) _( e)a Led
-measured " Re - neasured -aln'asured)

S._.(t) ts + )

18



Henceforth, we shall use the subscript m for the word measured.

We note that the vector a~oý a) is the quantity which may be

physically observed, although perhaps indirectly, through the

integral of a(°' s. We can now write the differential equation for-In
the measured accelerations.

The motion of the vehicle is described by the equation

S(- 9g(R,) + L(),R,is)

where R, R, i, represent the position, velocity and acceleration

of the vehicle relative to an inertiat reference frame, g(R, .g) is

the acceleration due to gravity, 1(.R i, gs) is the true sensed

acceleration, .g is a vector of gravity error parameters, and

is a vector of sensed acceleration error parameters.

i R_ is the true position of the geometrical center of IMU( then
(S))

r - Rs - R(O) satisfies the differential equation

d r/ dt: (OS) - + fS) f(o)

and, neglecting the effect of the error parameters ,

d2r/dt2 = is) - g(o)) + a( 0 ) + ('J s - aa(o))

or

d 2r/dt 2 = 2i.(t) + [n'l Sb(O's) + -olS) (2.3)

0 -0ii 19



fR()' is the computed or meured position of IMU() and

r' =ROY) -. 4(0)', then Equation (2.3) may be rewritten in terms

of r' as

d 2rYdt 2  (o aS) + g(Os)l

that is

d t2- 1kt+ s) _ md s)t (o,s)' _W Ios)

(2.4)

if ), the nominal or reference distance from IMUo to

IMUs, the term 1 (o, s) can be written as

ýb .g(R(s)) - (R(,O))I + w~xxr.

It is reasonable to assume that g(](&)W R(O)) -- (R(s)- R(o)),

so that Equation (2.4) becomes

a(mOP ) In) i l(t) + fll|rt.or + nj 'r + a(O°S) (2.5)
-m -0 -0 -A

Further we can define the observable quantities V(O' s) and p(O, s)

iby v(, s) fa(O, s) and .O, P)f(,), so we can write Equation

, (2.5) a

:1 -... . . [ .. . .

e-------a---- ---- +--- -----------------------------

(2.6)

4 20



Next it is shown that the measurement errors can be written as
linear combination of constants: Aa() = B(t)("K(', where

-M

is a matrix relating the error coefficients KO of IMU(.) to trajectory

variables (acceleration, angular velocities, and time-varyIng co-

ordinate transformations).

Let T(i') denote the transformation from an inertial coordinate

system to a moving (or body) coordinate system. The inverse

transformation is written as T('' i) where the dot as before, in-

dicates a particular object in the system. The coordinate systems

specified earlier, ') are related to one another by the transformation

SX(3) = ~(J'k)]6k), wherea,p= 1,2,3 andj,k=n,o,s,r~i.

The e" k) are elements of the usual transformation matrix, which

is implicitly defined in Figure 2.2 in terms of vehicle body angles.

Figure 2.3 is included to provide a set of accelerometer and gyro

coordinates. In addition, two transformations, , and wt() are

defined to express the transformations of the master ItU and the

slave EMU, respectively, relative to some fixed inertial coordinate

systems, and are constant transformations relating the initial

orientations of two IMU's to some inertially fixed coordinate system.

It is next necessary to define the time-varying transformation syste

relating the slaved IMU's present position relative to its original

21
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position as specified by AO). (This is due to the assumption of a

strapped-down system). Similarly, if the master IMU is not
[ inertially fixed, a time-varying transformation, M(4kt), is

specified in terms of the bodyangles 9( t), a 1,2,3, the

rotations of the master IMU's relative orientations, as specified

by M(o°). Then, T(',')= M(o)M(t)('), and a vector in L-ertial

cc-ordinates, VI, can be expressed as a vector in moving (or body)

coordinates v, by the transformation vB) P ) Thus, we

may write the thrust acceleration as _aB - -A-B = (T - AT)(.a -_ai)

where the superscripts have been temporarily dropped for ease of

notation, aB is the true thrust acceleration in body coordinates,

AaB is the error in measuring the thrust acceleration, expressed

in body coordinates, and AT is the error in knowing the true traits-

formation T.

Expanding the above equation and then neglecting the second-order

1 terms gives

+a T-.S• " -•B Ta* T TA
or

AI-I = T -.T ATaI (2.7)

Noting that the term ATT can be written as an antisymmetric

matrix of misalignnrent angles expressed in body coordinates,

23
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i
i

-o -,• •,i"

ATT" 1  = 'z ,B =tx ty-•Z]I

-,y xP

we have from Equation (2.7)

4 =a T (aB - t%]

Now the transformation T is computed by integrating the equation

d(T-AT)/dt = ((c0-[•) (T - AT) (2.8)

where

if 0 -COt WaY

z= W 0 -wox and -B [='Wx 'wyjZJ*

-Wy Ox 0

is the nominal angular velocity of the body, and where

r 0 - :Y

= z 0* Ex ,CB =[-x, yVz is a vector of
!H

C Ey 0x

gyro drift rates expressed in body coordinates. Expanding (2.8)

and neglecting second-order terms gives
411

II
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d(AT)/dt [E)B T - P91 &T

but from the definition of ATT we can write

(dT/dt) [*•' + T (d[tIJ /dt) = !MBj T - [coB T [,1'I] -

Next, we note that (dT/dt) f, 1J = -[WB). T f *I I which implies

-1
T(dr4 1)/dt) = feBI T or drIQ /dt T BT =I T

Using vector notation, this latter equation becomes

dk/dt-T T B

whose solution is

*B(t) = T(t) ±(tdl + T T()1 E•(d() do, (2.9)
fto0

This means Equation (2.7) may be written as

-.1 -1
T (4aBB- T[*II T a.)

or, by defining an antisymmetric matrix f[a] whose elements are

the components of aI, we can write

=a T AB + F.4 (2.10)

Substituting (2.9) into (2.10) gives

-1 [ t I
=g T A.a+ fall (to), + Ial (a)T%(o r 8 ~) da (2. 11)

25
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From equations (2.22) and (2.23), infra, we have

A B (t)K- and -B =B(t)K
-~ a --a 9B g -9

where K is a constant vector of accelerometer errors and K is a

constant vector of gyro errors.

By defining a vector K = [i_(to)i, Ka, KgI* and a matrix

B(t) 1 ]TltBa( t _ait T(af)I Bg(a-) dr

0

we can write (2.11) as ai= B(t)K.. Thus, for the two IMU's

_0''t)' (2.12)

where J_;) is a vector of errors in thrust acceleration due to the

IMU(.) instrument errors.

2.3 IMU Instrument Errors

th
4 The accelerometer measurement error for the I accelerometer may

be written as

Aam vi+[1K ,a, a+ a* [M~ IT (2.13)

ci

and the gyro dr t rate for the i gyro may be written as

26



+~ a oJ3LL a IKs, a (ý 4

-T g1 -T(2 )

In these equations, aT is the thrust acceleration in the ith

accelerometer (gyro) coordinates; vi is the bias error for the

I ith accelerometer; Kai is the scale factor in the ith accelerometer;

iN. is the misalignment of the ith accelerometer's input axis in the
i

plane of the input and normal axes; aCi is the misalignment of the

ith accelerometer's input axis in the plane of the input and cross

axes; w is the angular velocity in the t gyro coordinates (for ideal

gimbaled systems this term will be the zero vector); co is the itd

gyro's constant drift rate; Ki is the scale factor of the ith gyro;

I Ii

SSi (0o) is the misalignment of the it gyro's input axis in the plane

defined by the input and spin (output) axes; K, (Ks) is the ith

gyro's error coefficient due to mass unbalance along the input (spn)

axis; is a symmetric matrix where the elements KW are the

Ith accelerometers non-linearity for accelerations 2long the ith axis
-• i and the elements KMjk are the cross-axis sensitivity of the ith acceler-

ometer in the j -k plane; [K. is a symmetric matrix where K
_. J jk

. are the error coefficients sensitive to the angular velocity com-

ponents w w k ftr the ith gyro; and [Kgi1 is a symmetric matrix

whose components K" , are the error coefficients sensitive to theI gjk
acceleration components aj ak (anisolastic effect) for the ith gyro.

27



It is certain that many of the elements in the above matrices will

be so small that they may be neglected. If the gyros are used on

a gimbaled platform, the terms proportional to wo and w2 would

be neglected. By inserting the superscripts o and s in (2. 13)

and (2..14) the corresponding equations are obtained for the master

and slave IMU's, respectively.

In the above error equations, the input accelerations and angular

velocities are assumed to have been transformed into the co-

ordinates of the particutlar instrument in question. Thus assuming

a vector _ ") is expressed in some inertial frame, it mayr be

expressed in accelerometer coordinates by
SI"

vi =A" PTi" -W
I -acc

or in gyro coordin ates by replacing A(I') by G(te so that

S~~VH) G(i'Ti,)- ) Pt v('V(i')

I4

gyro

aiApplying these transformations to (2.13) and (2.14) gives

and

Inth above-error (2.16) a lt a nu

•. +•°()*•')*[K()"(' I)+.(T*_,wi +1 ')[Kg'(, -'•TI)

veoiie rsssmdt haebe rnfrmdit;h o

9,t

8
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when aT is the thrust acceleration in some inertial reference

frame and _(I) is the ankv'lar velocity in the same inertial reference

frame.

To express the acceleration measurement errors and gyro drift 1
errors in platform coordinates, the cormponents Aami and Ei are

amultiplied by the transformation A_ and % I respectively, thus

Sa A am A2_ A (217)
Am 1A l'2 - 3 j am ' 2 '-

I L
and

"CO = C., (2.18)

where the bar under A, G ind~lcates that only the appropriate elements

of A and are included here.

1I

If (2.15) is exIL.ded, it could be written as the scalar product of a

I, vector, b) which depends only on the nominal trajectory pa.ameters=ai

and a vector of the ith accelerometer error parameters . 1. e.,

4a'' <'' (2.19)

Similarly,

0 0 (2,20)

i29
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Thus (2.17) and (2.18) may be writtan, respectively, as

N(= aB( )(t)K(") (2.21)

and

. B9 (t)J Kg (2.22)

Letting

Ka g~ 1~K~ ()=r( K~> where
-a -( K~l~a = g ,() K(-)1  2  ~

It2 i293
[v.oKo(-) ()s) .1 (2.ý23)

'•~ [('') 0 'K 0  . . . • (2.24)

and the maatrices [(t)), (B )(t)] are defined by equations (2.17),

(2.18), (2.19), and(2.20).

In any realistic problem, a good many ,i the components in (2.13)

and (2.14) would be zero, especially for the master DIU and for

quadratic error terms. Equations (2.21) and (2.22) are a useful

form of the instrument error terms for use in the minimum-
variance estimator since the vectors K_ ( are constant

vectors depending only on the error parameters c: the accelerometers

and gyros.

30
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2.4 Structure of the Minimum-Variaice Estimator

It is necessary to assumco that a statistical description of random

inputs due to-vehicle induced, random acceleration is avaitAble, and

that these inputs can be represented by white noise passing through

a linear dynamical syStem. Such a linear filtering operation is

performed by what is usually called a shaping filter (Appendix "A"

presents the method '-j which the random vibrations, ._ (t), can be

represented by a linear dynamical system along with Illustrative

examples). Thus, it is assumed that the vehicle induced, random

accelerations may be represented by

dY'/dt AP(t)j' + BP(t)tWt)1 (2.25)

where AP(t) and BP(t) are, in general, time varying matrices

which are related to the covariance matrix of ', and w(t) is a

white noise vector process. The prime on n_ is to indicate that

n' may be composed of !j and other additional suitably defined

vectors arranged one upon the other. We shall write n - [f1iy

to indicate that only the components n are used from n'. We now

combine equations (2.6), (2.12), and (2.25) and get

t°

"• ~31
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The observations, or measurements, are assumed to be (o° s)
Rmeas

and v(°as) (Actually one might also include the vehicle's-meas

angular velocity as an observation, but one can show that the

angular velocity equation can be uncoupled from the rest; thus,

it can be studied independantly.) These observations are assumed

to have errors, and it is assumed that the error in the observa-

tiens, because of observation error parameters, may be written
II -

as

mz Bi(t)km  (2.27)

where Az is a vector denoting the error in the observation vector,

z, due to the observation error parameters, km which are

assumed to be constants over a particular observation period, and

Bm(t) is a matrix relating the observation error parameters to

the nominal (or known) variables in the observation and dynamical

equations. The vector km would include such things as biases and

scale factor errors in the various IMU integrators.

Next the observations are assl:med to be contaminated by a random

noise v. To be general, it is assumed that this noise could be

correlated, so it is expressed as

V= . Yw (2.28)

where Y- is a vector of correlated noise components and vw is a

33
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vector of white noise components. As above (2.25), it is assumed

the correlated noise may be represented in the Markovian form

dI /'dt = A(t. + Bm(t)l._ (2.29)

where the prime carries the same connotation as above. The

observations are thus

1!meas + Bm(t) km +(ItV.' +w

Defining the state vector as

_I k(s) Ik(o) jkmp _dt

Equations (2.26) and (2.30) may be written in canonical form as

"= AX + BW + f

Z=HX+ v (+.31)

where
I I , g

O 0il , 0 , 0 a 0 ,0O 0 0 0

"-:-o-:x(•T'Bso :1on , 0 0I S S S S I I

S0:'0AP: 0 0 0 0 0 Bw'BP:', - 0

010, 0 ,Am 0 , 0 0, 0 0 IBM--- I -| a I "'--------------- -- " -- I.-

0 0' 0 0Am 0 1 0 '0' 0 0 0B
I I I I .I .

O,,00, i0 ,0, O 0 0010

H [I, 0 1' 0 0 Bi, O, (w- 4)*

I.-(,[wjb(0os), •, n, •, n, fl, ,v _•,

f or
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Equations (2.31) have the discrete form (k+ 1) = (k+ 1,k)X(k) + W(k)

and Z(k+I) =H(k+1l)X(k+1) +V(k+1). We next show how the ais-

rI crete equation set is formulated in terms of a specific problem.

2.5 Specialized Calibration and Alignment Problem

In this concluding section a discrete form of (2.31) is developed

k in a manner to give concrete meaning to the ideas presented above,

and to indicate the approach used in the next chapters where further

examples and numerical results are presented. Ii the problem

considered here, IMITo is well calibrated aMd aligned prior to

vehicle operation so that IMUs could be considered adequately

calibrated and aligned when compared witC IMTUo as a standard.

Thus, the vector of IMUo error parameters, k(o), may be taken

to be the zero vector.

Next it is assumed nonlinear error terms and fixed misalignment

angles on the accelerometers and gyros are negligible and that

these instruments are nominally located so that the instruments'

sensitive axes form orthogonal triads.. Under these assumptions

the matrix B(s)(t) becomes

B(S)(t) =fai.M()t)MS . 1 [alJ d M(s). M(S)8]
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a 3 x 21 matrix where

[1 0 0 ax 0 0]
0 1 0 0 ay 0

10 0 1 0 0 aj

1 00 0 x 0 0 a. ay 0 0 0 01

0= 1 0 0 wy 0 0 0 ay az 0 0

0 0 1 0 0 o z 0000 a x]

Sand k(s) is given by the 21-vector

In the matrix B(s)(t), ax, ay az, 'x, Y y, ' z are nominal

acceleration and angular velocity ammponents in the IMUs co-

ordinates. Assuming the random angular acceleration of the

vehicle is negligible, S small or nearly constant, means the

"angular velocity matrix" is defined by En'] =t[I12 [j, and by

ddining a vehicle vibration vector as n (tr = f[lhJ, then

(2.6) becomes

'1 [. "m1+oi, 1

dt L0 L 0O L JLa+! ia j

Next it is assumed n_ is suitably approximated by

dn/dt = . 1 A. n +Bf(t)
IA21
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where n* =[.!2,.3) where n!2 and r13 are 3-vectors and the Aij are

3x3 time varying matrices, U2 = i, = , =fAn2 dt. B'(t) is a

6 x 6 time varying matrix and w is a 6-white noise vector. Thus

we can write .' = AP(t) it + Bs(t) x where 2 f*= , [j , nl3)=f-)-%

and

'Pt 0 l,'1 BP(t) - Ir)=[oll'
AP~t)-- 0 :.All_:

0 ,A21, A22

where [I] is a 6 x 6 identity matrix, w is uncorrelated, and k(m) =0.

Assuming the angular velocity equation is treated separately, thle
observation equation becomes Z j im] ÷ v(t) where v(t) is a

6-vector of white measurement noise. If we define a 36-state

vector asm'* = _n V 1 3 , k(5 I and the matrices

0~

X = A(t) X B(t) w and Z =-HX v(t). The equations for the

discrete formulation are

Xk+l =*(k+l,k),Xk + _k and .Zk+1 =H(k+l)X(k+l)+y4j+l

(2.32)
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where O(k+ 1, k) is given by

,(k+ 1, k) a 0 * 4(k+1,k) 0 (2.33)

--------------------------- --- ---0 0 Il

The submatrices of (2.33) are given by

j(k+ 1, k) = [ ,at.I

ý1(k÷ ltk) -

-k+l1
04k + 1, k) =•4(crk)M(nka')UIl ![.]6d011

k
o3(k+l, k) =fk,-*(drk)B(S)(a)dcr

I is a 21x21 identity matrix and 04(k+ 1,k) is the solution of the

homogeneous equation d *4(t,T) /dt = AP(t) 04(t,r) where, as in-

dicated below, 04(t, t) = I. Qualitatively, *2 is a matrix which

gives the contributions to pm and V m due to vehicle vibrations !,

and 04 is the 9 x 9 transition matrix for the random vehicle

vibrations. The white noise sequence k is given by

= fk+].[ a4((, k)BP(a) _w( d" The white noise observation

sequence ykly, is similarly obtained from the whit& ioise

observation process, l(t). I1 = identity ind~icates that the error

38
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parameters k(s) remain constant. The transition matrices have

the following properties:

1) 0(t3 , t 2)(t 2 ,ti) =o(t3 ,t 1 ) for all t1 t2 , t3 '

2) 4ý(t 2 ,tiI t2)

3) 0(t, r) = X(t)X(T)-1 where X(t) is the solution
to the equation dX/dt = A(t)X(t), X(o) = I.

From the above properties it is seen that if td = 0, O(t1,0) X(o),

and it is not difficult to see that in general o(tk+l, tk) = X(k+l) (t1 )
-O(k+l)(tl,0) where X(k+ 1 ýtk) is the solution to the matrix

equation X(t) =A (t+ tk)X(t), X(o) =I. This means that it is

only necessary to solve for the matrix X(t,) for each time

interval, (tk, tk+1 ), with an updated A(t) matrix using the same

initial conditions X(o) = I. Thus the computer routine for

generating the transition matrix, O(tk+I, tk) is not changed for

each k, only the elements of A(t) need to be updated.
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CHAPTER M

FORMULATION OF SPECIFIC ERROR PARAMETER
IDENTIFICATION PROBLEMS

In Chapter I, a very general formulation of the IIU error parameters

was considered. This formulation is general in the sense that most

specific problems can be placed into this framework. When a specific

problem is considered the equations of Chapter U simplify considerably

and the dimensions of the various matrices are decreased accordingly.

For example, it could be assumed that all the error parameters are

known and that only the initial misalignment angles, *(t 0 ), need to be

estimsted. Another important simple example might be to eqthmat3

the random .motion only. This might occur when a vehicle is launched

from the wing of -an airplane or raother-ship.

In this chapter we discuss three important IMU error parameter con-

figurations which were considered in this study. They are as follows:

1. Initial misalignment angles, •, only.

2. Initial misalignment angles plus gyro mass-unbalance

terms, ks and k,

3. Initial misalignment angles plus gyro constant drift

rates, e.
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I777
Both time correlated and uncorrelated random accelerations are con-

sidered. The correlated model used is discussed in considerable dotail

in Appendix "A". The correlated random acceleration is assumed to

act along one axis of the vehicle (axis of major disturbance) and depends

upon specific parameters which cannot be readily varied for parametric

or analytic studies. For this reason extensive experimental results for

this model are not included - although they are available. The main

purpose of this study is to determi.&ne effects of state and observation

noise levels, and the trajectory parameters on the identification of the

errors, and the uncorrelated noise models are most convenient for these

purposes.

For these specific models, the master IMU is assumed to be perfect,

and the slaved IMU is assumed to be a gimballed system. The only

degree of freedom in the nominal trajectory specification is assumed

to be in the vehicle's pitch angle. That is, the vehicle is assumed to

have a fixed thrust program. The experimental results of this

chapter indicate that the quality of the identification depends very much

on the manner in which the particular error parameters enter the sys-

tem and on the power levels in the random disturbances. Thus a mean-

ingful optimization prublem can be formulated with respect to the nominal

trajectory variables, such as for example, the trajectory pitch angle.
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3. 1 Time Correlate' Random Vehicle Accelerations

For the present furposes it is asru-med that significant random

motion occurs along the vehicle's yaw axis only. Such a random

motion might occur if the thrust engine were to move randomly

about the pitch axis while controlling the vehicle's trajectory to lie

in a vertical plane. Furthermore, it is assumed that this random

motion is stationary and has a power spectrum of the form discussed

in Appendix "A", Section A. ,. In this section the assumption that

the given power spectrum may be suftable approximated by the fourth-

order r•tional power spectrum

S(W) = %b + - (3.1a)

(w - a) + 2 (W + a) + i,2

* is made. The corresponding autocorrelation function is

Rx(T) = 0o exp(-bITI) cos aT (3.Ib)

By Equation (A. 5) of AppendixA. a model of the process defined by

Equation (3. la) is given by

~~2_ ()_ w, (2 M (Nj -4+b2c (3.lIc)

The "noise", w(t), is such that Efw(t)] = EIw(t)w(Tý = 6(t - T).

For engineering purposes, Equation (3.1c) is usually discretized by
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approximating the white noise process w(t) by the white noise

sequence wk /V"/ where k denotes the number of the sample and

a denotes the sampling interval (see Sec':on A. 4). The discrete

form of (3.1c) is given by (A.20c) as

e-ia = e'i(cosaA sin a&) /xi-1) +

+ -sin ar cos Y 1 (3. ld)Ic s ab sin at+

Simplifying the notation, Equation (3.1d) may be written as

_xi =All xi- 1 + bII wi- 1 W3.1)

where the definition of xi, An, and bi is obvious from Equation

(3. ic). The "white noise" sequence wi _ 1 has the property

E Iwil = 0 and cov(wi, w1 = E f(wi ,r)j =ij (3.le)

Another discrete model of the process defined by Equation (3. la)

is given in Section A.4, Equation (A.21c), as

x i -2 1xi al

T o s i2 
) () ( W1 I ( 3 . 2 a )

SYi Y4i1 -a

To simplify the notation, Equation (3.2a) is written

Ai = Am x-1 + •iM wiI (3.2b)

The definitions of al , a2, bi, b2 are given in Section A.4.
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NXe: it is assuned that the random motion which is introduced

through the "angular velocity matrix-" f] is negligible. This is a

reasonable assumption if the nominz! angular velocity E is small

and nearly constant. In the present case,, w( = (0,62(0, t) D)*

where 92(°" m)is the vehicle pitch angle and e2(0 is zero

except at the transitions where it is a constant. This means that

the "angular velocity matrix" [9] is deffined by

1O 0, 0 -2c-ý 2w21
1In [1'2 MI ~0 1 0~ 2w3 0 -2ui

0 1 -2w2 2l 0 j

'3.3a)

[0 10 0 0 0

0 0

and the vehicle's random acceleration vector is

M.(t) = j0 0 Ii 0 0 (3.3b)

According to Equation (3. 1c), fi and H may be exprssed in the form

all a1 0 bll

n a 1 12 01
d' = ba2 1 a22 0 • + w (3.3c)
dt 0a 0

10 0 101

where •' is an additional variable which is required to take rare of

45,
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the correlation in 1. The elementi in the mratrix equation above are

obtaied from Equations (3, 1c) or (S.2a). Equation (3.3c) may be

"written in discrete form as

( )1 ( &] 12 0 Oil
"012r1 02 0 n + 021 wk (3.3d)

n An/ " 0 1 1

where the subscripts k + 1, k refer to the sampling interval, and the

elements in the matrices are obtained from Equtmion (3. 1d) or (3.2b).

The random motion of the vehicle, in vehicle coordinates, may thus

be written as

n(M M)- i •C [!rli 2A I 0110 0 fo 0 0 o 111

If we substitute into the above matrices, this becomes

21 0 0 2w\ /ý
n -2 = 0 w-21  (3.3e)

Equation (3o3e) may be written as

I n(M) (3.4a)
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where

L1  2 6(0 m)]11 0 0 0 , and • (,', (3.4b)

1 0 0

In 131 it is shown that under reasonable assumptions the effects of

(21 m) may be neglected; that is, random coriolis accelerations

can be neglected.

3.2 Uncorrelated Random Accelerations

For various reasons, it may be possible to assume that ihe discrete

form of the random acceleration due to vehicle vibrations may be

uncorrelated in time. Such would be the case, for example, if the

estimation interval a was required to be greater than, say 0. 1 sec.

Such a requirement would depend on how fast a digital computer

could process the data, i.e., the velocity differences between the two

IMU's. In the present study, it ha been found that, in order to

estirnate initial miaalignments and mass-unbalance drift rates,

would need to be greater than 0.1 sec. In the event that A > 0. 1

Figure 3. 1 illustrates how the correlated noise model assumed

in the previous section might generate essentially uncorrelated

velocity sequences. As a further example, a sensible candidate
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A. MEIEVAL

Figure 3. 1 Illustrations of the Band-Pass Correlated
Noise Model
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,C.V a suboptimal estimator would be one in which the random

accelerations are assumed uncorrelated in time. It is thus assumed

that the random acceleraion added to the IMU velocity differences

is of the form

frr~ 0n 00
Sk _ r2 ; whero E - 0 r 2 2 0 (3.5a)

rL 0 0 r 3 3 k

Further, it is assumed that -rl = r 22 = r33. This

assumption is made for computational convenience and is not con-

ceptual in nature. The random acceleration in IMU5 coordinates

is given by (with T= T(O, s) T(m° 0))

= T(° Tm'(t d k - (3. 5b)

The covexiance of this random acceleration is given by,

Cov(r(., r;) = E j(J T(t)r(t)d . + 1

Lk 5c)

R

due to the fact that T (t) is Ar. orthogonal transformation.

49



3.3 Initial Misalignment Angles, *i, i - 1 2, 3

If it is assumed that the accelerometer error parameters k(s) and
a

the gyre error parameters k_(s) are either zer-o or known (Chapter

11), then the difference in acceleration lk•ween the slave and master

DAU (expressed the IMUs coordinates) becomes

In this equation the terms are defined in Chapter 11I.

If the random cortolis acceleration is neglected (as described above)

then

In order to write Equation (3.3 b) in discrete form, let

""k -- f + aa(s,°) (-r) dT (3.60)

-- a

where k denotes the time t tk. Equation (3.6c) may then be

written as

(0- (08 k T*m +), Td~sf?~ ! 3.

Combining Equations (3.6d) and (3.2b) into one equation gives

the



I
- ... ir . .

0 AI I 0 4--1 + 4) kk-

(3.6e)

which is the state equation for the misalignment problem.

It is assumed that the velocity Increments between the two 1MU's

can be observed. Rk)wever, these observationa are contaminated

by IMU instrument quantization errors and digital computer round-

off errors. Further, it is assumed that these errors form an

uncorrelated random sequence. Thus Lhe observations made are

i •~(1s°) v(o°'") L-
If 4 ) + 1W2

where tV.e wi 1, 2, 3. are uncorrelated sequences of gaussian

random variables with

cov (wLi, w j) = I i ._ (3-- 7.'0

Next a state vector Xk is defined as

x -- k' k ] 1 * (3.8a)
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an observation v,!ctor

Yk s) ' 1 (

a state transition matrix

a k k

k-I MIS k-1

-------------------------------------- ---------------------
Ok, k-I -- 0 AI 0

LO 0 1

(3.8c)

a measurement matrix

M - [ 11 01; ZIa 3x3 and 0 is 3x5 (3.8d)

and a process noise vector

i vk , wk(3.8Be)

With these definitions, Equations (3. 6c) and (3. 7a) become

k Ok, k- k-1 k- 1 (3.9)

Y-k M M k + rk (3.10)

with the covw.riance matrices ofXk and rk given by Wk and Rk

respectively.
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In the discussion which ,ollows, it is convenient to define the

quantities

(k+ 1)A1

kV-i.m.(k + 1,/k) -kmtSfkA sX,-d (3.11d

and

(li.m. = E(S)(k-l8k))im kf(k" 1)(a(s4kr~d (3.l1b)

3.4 Initial Misalignment Angles and Mass-Unbalance Drift Rates

In this section we obtain ace equations for estimating initial. gyro

misalignment angles, 4i, and the gyro drift terms which are due

to gyro mass unbalances. The drift rate for the ith gyro is

,(9d = km.u. [kf1 %ik 0] a!g) (3.12a)

where the following notation is used:

The superscript gi refers to the ith gyro;

ki = the ith gyro's error coefficient due to mass-

unbalance along the gyro's input axis, in deg/hr/g

S i -= the ith gyro's error coefficient due to mass-

unbalance along the spin axis, in deg/hr/g

a 9g) = the sensed acceleration vector in ft/sec2 expressed

in the coordinates of the ith gyro
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km.u. = 0.15068493 x is the factor which

converts deg/hr/g to rad/sec/(ft/sec)

E(gi) = drift rate of the Ith gyro in rad/sec

The arrangement of the gyro coordinates on the IMUs is shown

in Figure 3.2.

G 3; GYRO 3 3

X(S)
2 2 G2 ; GYRO 2

X(S)
3 2
S1SLAVE IMU

2 OCOORDINATES

1 ~X(S)1

Figure 3.2 Orientation of Slaved IMU Gyros

After iniroducing the required coordinate transformations, the

acceleration error, in slaved IMU coordinates, due to mass un-

bWIance drifts is given by

SS) 0 0 (~ a 0 0

0 M. U
Sks

0 0 a •0 a( S

4 (312b)
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The total velocity error due to mass unbalance drifts betwee.n

samples is then given by:
,k+l)A

y•~.k ,k=k.Uk [a(,-* k t r •a(ss-r • td-rj dtlk- u

J..( + 1 k =u.

(3. 12c)
The matrix product in Equation (3.12c) is

-a0a a.as 0 -aa aa
55' 5 53 2s 1

-%a0 aa3 asa5  0 -a Sasl

a.2a5  as a
2 1 s12 02a2 1sa3 0

(3. 12d)

where the superscript s has been dropped. Thus each element in

the integrated 3 x6 matrix of Equation (3. 12c) will involve a term

of the form

""I "i~kl k•:l•?)IoI1'"ak+ ,k) (t a(tl)d' d ; i,j = 1,2,3 (3.12e)

It is convenient to define

[v(S)] = v(s()(k+ 1, k)] j(k+ I)A a

S [a( 8 )lr( d dt (3 12f
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so that Equation (3. 12c) may be written as

The estimator equations are then obtained by replacing

in Equation (3.6c) by

[km1  (s )'m km .u. ((s))\1u
mi s s s

In the case of this configuration, it is assumed that the random

accelerations are uncorrelated, so that Am = 0 in Equation (3. 6e).

Further, the vector bm in Equation (3.6c) is replaced by the

S3x3 matrix of Equation (2. 5b).

3.5 Initial Misalignment Angles and Constant Gyro Drifts

In this section we obtain the equations for estimating :he initial

gyro aiisailgnments, *j, and the constant gyro drift terms

Ei, i = 1,2,3. The constant drift of the ith gyro, Ci, is

expressed in deg/hr. The arrangement of the gyros is as

shown in Figure 3.2. The velocity error expressed in IMUs

coordinates between samples will thus be
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' k-d.r.(I, k) = kdr. l)A(aas)(t)) . f t' dt

(3. 13a)
Sk- (k+ 1A. t . [a(,)('t)] d t.-

d.r.j•L•

In this equation L4)(t is the matrix defined in Chapter I1I,

Section 2. 2, and kd.r. = 0.48481368 x 10" is the conversion;

factor from deg/hr to rad,/sec. Next we define

dV.J It [a-sS)(t)] dt (3. 12b)

so that

A dr.(k+Ilk)= kd.r, [v S]a d.r." (3.12c)

The estimrator equations are then obtained by replac~ig kmS 8s ,e .r.) ) For this
in Equation (3.6c) by [kmi (V s 'Fkd'r th

estimator It is assumed that the random accelerations are uncorrelated,

so that ln Equation (3.6e) AM - 0, and bm in replaced by

Equation (3.5b).

For convenience in the discussion of the experimental tesuas, the

following notation is used for the configurations of the various slaved

MIJU error models:
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Configuration IA: Identification of initial misalignment angles

j±, using correlated random acceleration.

Configuration IB: Identification of the initial misalignment

angles ±, using uncorrelated .tandom accel-

eration.

Configuration M: Identification of the initial misalignment

angles ±, and the constant gyro drifts F_.

Configuration 1II: Identification of the initial misalignment

angles *, and the mass-unbalance gyro

drifts, k

I
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CHAPTER IV

EXPERIMENTAL RESULTS

it is quite useful to obtain an idea of the type of results which are

possible for the trajectory optimization which is considered in

later chapters. In this chapter we give some experimental results

concerning the identification of the error parameters for config-

urations IA, IB, H and MI. The effects of state noise, measurement

noise, and the nominal trajectory are considered. The nominal

trajectory is reasonably assumed to be specified by the thrust

acceleration and by the trajectory pitch angle (which is assumed

very nearly equal the vehicle Is pitch angle). The vehicle ansidered

is assumed to have a iixed acceleration profile, so that the only degree

of fivedom in specifying the nominal trajectory is its pitch angle, P.

These functions, #(t), t E [t, to+ T], are also constrained in a

certain sense. Generally, the pitch angle is constrained to be ± 10

degrees from some reference value, and the pitch rate mieht be

•imfi•.y constrained. Typically, the nominal trajectories would be

as shown in Figure 4. 1. It should be noted that most of the simplify-

ing asstunptons are made in order to facilitate the parametric study,

and are not covceptual in nature.
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240.0 r 80.0
NOTE: TIME t 0.0 CORRV ONDS TO THE START OF THEESTIMATION

210.0 70.0 - -

•,o~o •o ~T "NJ EC;i•
TRAJECTORY PITCH ANGLE PROFILE

S1 2 0 .0 6 0 .0
U0

Im
#A

150.0 ACCELERAT'ION PROFILE ain)

0.0 2.0 4.0 6.0 8.0 10.0 12.0

Figure 4.i Reference Thrust Acceleiration Profileand Trajectory Pitch Angle Profile

A discussion of the various initial conditions (a priori estimates,

etc.) may be found in [31. The notation used below is essen-

tially as follows:

a = 9°' the correlated random acceler•,tion power

a.2 I the uncorrelated random ac-ieration covwriance matrix.

a.w the observation noise covariar.ce natrix,

&A the standard deviation in the estimated misalignment angles.

at, the standard deviation in the estimated constant gyro drift
rates.

the standard deviation in the estimated mass-unbalance
' 1ih gyro drift terms.
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The initial IMUs orientation angles, 0(o° s) do not seem to affect

• . However, the of the individual estimated *i, 4j, do

depend on this orientation. For this reason an orientation in which

the accelerometers each sense about the squme thrust acceleration

was chosen for most of the experimental work to minimize the maxi-

mum of the ao. The geometry is as shown below.

I )

3 3

^ m 0 -2 m B(o,m) 3 THRUST VECTOR

THRUST VECTOR 82 0 &
2(O X(S

22

X(0) (MASTER IMU COORDINATES) X(s) (SLAVED IMU COORDINATES)

The thrust vector in 1IUo0 coordinates is

a (0) = a 0 a 0

-S

(Co) ( 0 M)(
2 (20/

co, 0 (ooms

and it is necessary to pick the three fixed rotations e ,s) 2

e0o, s) such that the three direction cosines &P, a 2' a3 are equal.

Thus (s

_) T(' (o o8)^ (o,s )) 1o)
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S.. . .. .. . . -- m - =< =, • -= -= - - - " "••• •• • • •• • • ' ' • ••¸ - 2 - '• = '

If 0 m) = (TP -90°) = -250, and 62O, s) = TP -450, the solution to the

above equation gives 8(O010=48.' 90)8 s= 2 1f, and 9SO1s)=-22. 50.

4. 1 Experimental Results for Correlated Random Acceleration
(Configuration IA)

The correlated random acceleration model is studied in considerable

detail in [ 31 For this configuration the gyro drift rates are

assumed negligible so that only the initial misalignment angles

are estimated. The effects of the sampling rate (data processing

rate), A, are shown in Figure 4.2. The sampling time is varied

between 0.025 sec and 0. 100 sec to determine how much improve-

ment in the identification of the *, and the correlated noise com-

ponents is possible. The most suitable sampling rate depends on

the particular correlated noise model, in that it should be fast

enough to obtain a reasonable representation of the correlated

random ac4celer"ation. The effects of the random acceleration

rms power levels and measurement noise levels are shown in

Figure 4.3. It seems that it is of advantage to structure the

estimator for correlated random accelerations if it is only required

to estimate the initial misalignment angles and if the correlated

noise is of a sufficiently low "frequency" (say less than three

cycles/sec). It is also of advantage to consider the correlated
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model if it is of prime importance to estimate the random motion

vdth all error parameters known, as, for example, in launching

from a mother sbip. If errors in addition to the *, are also to be

estimated It does not seem possible to use the time correlation in

the random acceleration to advantage.

Since the results for the correlated noise model depend on many

parameters and on the specific noise model considered, further

discussion will not be made here. Considerable experimental

results for the correlated random acceleration model may 1

1.2 I . w

0.9 COVAIAIACE a 2.0.001

WITH KNOWN MISALIGNMENT ANGLES

0,6
0
z

0.4 L NOTE: 7HE STEADY-STATE VAWUES ARE REACHED
WITHIN A FRACTION OF A 'ECOND

0.2 . I I I J
0.025 0.050 0.075 0.100

SAMPLING TIME A(SEC)

Figure4.2 Steady-State Standard Deviation of the Estimate
of the Acceleration Noise, oGAn or Various
Sampling Times A
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found ir. [ 3 1. In this case a parametric study is not as readily

made, or as meaningful, as for the uncorrelated noise model

which is considered next. Since one of the main objects of this

study is to consider the maneuver which allows that the

identification of the errors be accomplished in an optimal

fashion (Chapter VI), the uncorrelated model is used because

it provides a better setting for this purpose.

0.6 x
I5

0.5-.

0 2 0~

0.4- 0: z 0.-,0.7

01.......

E a ano A r n

z 1

I



NOTE: IN ALL CASES &=0.025,, KEY:J

0* f- -01 2 $

1.12o ~=(450,0, 0) 4

x
xz

Its x ix

Z 0.80 4
x 0 .7

X 
x7

X (r~ FOR ALL a
0.48 $- n__

z BECAUSE ACCELERATION X n - 0.30
4A N0O!SE DOES NOT AFFECT
0 THIS COMPONENT

z

I-0

0 2 4 6 8 10
TIME (SEC)

NkFigure 4.3b a,$fo various ci.using the Nominal shown in Fig 4.1

65



4.2 Experimental Results for Initial Misalignment Angles

and Uncorrelated State Noise (Configuration IB)

In this case the data the data processing rate was fixed at A = 0. 10

seconds and the "equal acceleration" orientation discussed above

was used. The effect of the state noise, measurement noise, and

trajectory pitch profile are considered. Figure 4.5 illuictrates

the sigma *i for different values of measurement noise standard

deviation, aW. The random acceleration variance aR, for these

cases was fixed at aR = 10-, and Nominal Trajectory IB-7, Figure

4.4, was used. Figure 4.6 illustrates the sigma si for different
values of random acceleration variance, 2R" A pertinent discussion

of the effects of process noise (random acceleration) and measure-

ment noise on the covariance equation P, is given in Section 4.5.

The manner in which the IMUs is aligned relative to IMUo(through

the angles 0_(o, s) and the trajectory pitch profile enter the variance

equation are outlined in Chapter V. Since the object is to minimize

the trace of this equation, the angles _i(o°, s) and P could be con-

sidered as control variables in this minimization. Theoretical

Sconsiderations regarding the existence of a minimum with respect

to.9(°' s) and ,' are made in Chapter VI. Only experimental

results are presented here which might give some insight into this

optimization problem. The sigma ýi for the
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IMJUs initial misalignment angles, •!(o, ) listed below were

considered first.

0(os) =(48.9,20,-22. 5, (o, o,45), (o,45, of, (45,0,0r

To make a comparison a - a 2 ]1/2 was plotted for the four

different initial IMKU alignment angles, 0(0, s) In the four
S -0

cases presented, a did not depend on the initial alignment angles,

0 indicag that a minimum of the sum of the variances of

the a 2 does not exist as a function of 0(o° s). It was clear from
$i Z-0

the results that the individual 4i do depend on 0(0, s) so that

more realistic performance criteria might be to minimize the

maximum i as a function of 0(°l s) Tbeoretical difficulties

will arise with such a criterion because the maximum principle

cannot be used to obtain necessary conditions for optimality.

However, it does seem that the equal acceleration orientation

satisfies the above criterion. For the remainder cf this study,

the IMUs orientation is such that 60Y°s) = (48.9 , 20 , -22.5 )*

(equal acceleration orientation) was chosen because the three a.

are about the same, and there is no reason to have them other-

wise at this point. It should be noted that the random accelera-

tion and the measurement noise were assumed to be such that

the variances on each component were equal, i.e., each com-

ponent of velocity difference. In the case in which these
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variances are different for each component of velocity difference,

the initial IMU orientation, 0_(° s) would surely affect •.

The sigma $i for four different P profiles arc- shown in Figure

4.7. The four different nominal trajectories used are shovn in

Figure 4.4, and are essentially such that A approaches its

lower value of 55 deg stepwise, but at different rates. In all

cases the steady-state *i for each constant portion of p

(for each of the four trajectories) is the same. Only the rate

at which these steady-state values of ai are approached is

different. If larger aR and a were used, it is possible that

the steady-state values would not be reached, and that the aA

time histories for the four nominal, trajectories would be different.

Actually, the size of the step determines how much larger the

error due to *i in the velocity differences, ý (o, s), is than that

due to random acceleration and measurement noise. The larger

this difference, the more confidence the estimator has in

choosing the " The corresponding minimum variance

estimates, 4t , for two cases are shown in Figure 4.8. Further

discussion of the nominal trajectories are given in the next

section.
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4.3 Experimental Results for Initial Misalignment Angles

and Constant Gyro Drift Rates (Conflguration II)

Effect of Random Acceleration and Measurement Noise
on Configuration II

Figures 4.9 and 4. 10 show the effects that the measurement

noise, •W' and the random acceleration, aR. have on the esti-

mates of the constant gyro drifts, Ei, and the initial misalign-

ment angles. iii. The value of aW does not affect the too

much (Figure 4.9a), except a6 decreases faster for smaller oW.

The steady-state values of the 4i are independent of rW, as is

discussed in Section 4.5. The effect of aW on the ai is stronger

than for the •t especially between aW = 10-3 and 10-4 ft/sec

(Figure 4.9b). No conclusions about the steady-state values of

the app as a function of aW can be deduced, since the are
ix

still decreasing at t = 24 sec.

The effect of the random acceleration (OR) on the estimation of

the 4,i and ei is illustrated in Fig, res 4. 10a and 4. 10b respectively.

For R = 10 ft/sec2 , there is an appreciable steady-state value

(-0.05 arc min) in the oi' that is, appreciable when compared to

the error due to the constant gyro drifts, ci. As shown in Figure

4.10b, the effect of the random acceleration noise levels on the
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estimation of the ci is considerably more pronounced. For

OR = 10"5 and 10-6 ft/sec2 , the o,. are about the same values,"*1

decreasing significantly to about 0.0125 deg/hr at t = 24.0 sec.

These results indicate that it would be desirable to keep the

measurement noise levels such that 10-5 < aw s 10-4 ft/sec and

the random acceleration noise levels such that 10-5< aR s 10-4

ft/sec2

1.2

NOTE: IN ALL CASES, A-0.1, .R ."'0 4
V
V NOMINAL TRAJECTORY I'-5C WAS USED.

1.01

"3

S0.6

Z 0.4 -. it.

W .0

> -/W
S0.2 W _ TO _-3

0, 3 6 9 1 2 15 Is 21 24

FigureTIA~ (SEC)

Figure 4.9a Effects of Measurement Noise, oW, on the

Estimates of the Initial Misalignment Angles
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Figure 4. 10b Effect of the Random Acceleration.•at' on
the Estimates of the Constant Gyro Drifts

Effect of the Nominal Trajectory on Configuration II

The trajectory pitch profile, p , is varied to study its effect on

the estimation. The variations are such that the effects of the

rate of change of u, total amount of change ip. M, and direction

of the change in ;j on the estimates can be observed. It shoad

be noted that the constant drift rates, Ei, do not appi eciably

V: affect the estimates of the initial misalignment angles, *1,
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because the errors due to iare much smaller than those due to

the 4,i for short estimation times. For this reason the conclu-

sions regarding the ti deduced from this section can be used in

the previous section.

Figure 4.11 shows six trajectory pitch profiles in which they

change as ramp functions. The corresponding standard deviations

in the i, at., and the standard deviations in the i, ati, are

shown in Figures 4.12a and 4.12b respectively. It is seen from

Figures 4.12a and 4.12b tha. the higher rate of changes In TP

result in faster decreasing a and qi However, the steady

,values in the ai' that is at t = 24.0 sec, are about the same

(about 0.025 arc mrin). The o. are still rapidly decreasing at

t = 24.0 and the rate of decrease of the q is proportional to the
i

rate of change of the pitch angle. For TP-2f, the agi have

decreased from 0.15 deg/hr to about 0.040 degihr.
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Figure 4.12b Standard Deviations in the Estimated Constant Gyro
Drifts, -A , for Nominal Trajectories II-Za to UI-2f

Next, the effect of the total change in TP on the estimates is

considered. The pitch profile is changed discretely at t = 10 sec,

as shown in Figure 4.13a, These nominal trajectories are

referred to as Cases 1I-3a to H-3g. The corresponding -A and

cA are shown in Figures 4. 13b and 4.13c, d respectively. The

rate of decrease of the sigmas for and 9i for the various

"step" pitch profiles is proportional to the larger changes in TP.

This is reasonable because the larger the change in the pitch

profile, the larger the contribution of the *i and e. to the
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I
velocity differences, v(o, s) as compared to the contribution due

to the random acceleration and measurement noises. From

Figure 4.14a it is noticed that ap and a improve when TP
1 2

increases (11-3e and 11-3g) and it is relatively insensitive to down-

ward changes. On the other nand, Figure 4.14b shows that ap

3

improves as TP decreases (11-3d and 11-3) and does not change

much when TP increases (II-3g and H-3e). This indicates that

a combination of an upward and a downward maneuver would be

better for extracting the constant gyro drift E . This is further in-

dicated by the results shown in figure 4. 15b using nominal 11-5c.

280 75 TP I-39I-
240 -70 TP 11-3a

9-- TP 1-3c. 2 2

Z 200 u* 65 P113

0A Z
UZ

z

-,6 U 0 3 9 2 518212

11WME SC)

Figlur-4.13a Nominal T.-aiectoriEts IT-3a throuah II-3g
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Figure 4.13d Standard Deviations in the Estimated Constant Gyro
Drifts, a73 , for Nominals 11-3a Through U-Sag

The trajectory is next varied in such a way that the step of 10 deg

(trajectory TP I1-3f) is approached at different rates. This type of

variation gives the tradeoff in performance of Configuration H as a

function as less abrupt changes in the pitch angle. The trajectory

pitch angles are shown in Figure 4.14a. The corresponding o$ and

(rTi are shown in Figures 4.14b, 4.14c and 4.14d, respectively. As

would be expected, the trajectory profile with the most abrupt

changes produces better results, for 4i as the oTji steady out

within one second and the most abrupt changes in the trajectory con-

(o,s)tribute a larger amount to v for a longer period of time. For

the ei the slower ramps produce better results because the c61

take longer to steady out, and better results would be obtained if

the changes are made later.
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It should be noted that if the estimation time is long enough, it

doesn't seem to matter how the trajectory changes - as long as

it does change. This is true for the ýi' at least, because the

M. all seem to steady out to the same values. This could be

explained in terms of aW and aR and the discussion of Section 4.5
R

Note that the slower the ramp decreases, the better the E arei

estimated (contrary to the situation for the This is clear

A Afrom Figure 4.14c and 4.14a. Also, c3 is better than f and 62

because the trajectory pitch angle is decreased from 65 deg.

This behavior was observed for the step profile of Nominal

Trajectories 11-3a to H-3g.

Figures 4.13 and 4.14 indicate that aAis better than at and CTA

2 2 3
if 1 changes downwardly from 65 deg, and vice-versa. Figure

4. 15b shows the oi for a combination of a downward and an

upward maneuver. The specific trajectories used are II-5a,

b, and c shown in Figure 4.15a with aW = aR = 10". It is

clear from Figure 4.15b that the Ei can be equally well estimated,

and ap Is less than 0.055 deg/hr after 24 sec of estimation.

If the trajectory pitch profile were varied in an optimal manner,

better estimates would surely result.
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4.4 Experimental Results for Initial Misalignment Angles

and Mass Unbalance Drift Rates (Configuration HI)

The effect of the nominal trajectory and the initial orientation of

IMU on the estimates has been discussed in Sections 4.2 and 4.3.s!

These effects on Configuration HI are not studied here, but it is

expected that the results obtained in the previous sections would

generally apply, at least for the estimation of i." The estimation

of the k iand kI errors would possibly require more trajectory1 1

maneuvering.

The first set of standard deviation curves (Figures 4. 17 and 4. 19)

show the effects of the random acceleration on the estimates. The

sigma &. are shown in Figure 4. 17, and it iv clear from these

curves that the trajectory pitch angle could have been changed

earlier, since the steady-state values of about 0.67 are reached

rather quickly. Estimates of the 4i such that 4lki < 0. 1 arc min

are obtained in all cases, except for 7R = 10 ft/sec2 . The

spin-axis mass-unbalance standard deviations, a.Si I for the

different aR are shown in Figure 4.19a. Except for the case

where aR = 10-3, g could also have been changed earlier. The

input-axis mass-unbalance standard deviations, akl $ are shown

in Figure 4.19. These estimates are somewhat better than

those for the spin-axis terms. Again the pitch angle could *iave
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been changed earlier, say at t = 5.0 sec . These results show

that if a W . 10-4 ft/sec and aR 510-4 ft/sec (except the ksi terms

need aR < 10-4) and estimating times ate in excess of 20 sec,

excellent estimates of ,I, ks., and kIi would be obtained. Based

on these results it is conjectured that a well chosen maneuver

would improve the estimates, especially th3 estimates of the spin-

axis terms, kSi.

Next the effect of the measurernent noise on the estimates is con-

sidered. The nominal trajectory is TxP-M-3 in Figure 4. 16.

This is essentially the same as Nominal Trajectory E[I-2, except

that TP is changed from 65 deg at 5 sec instead of at 10 sec. The

corresponding estimation sigmas are shown in Figures 4.18 and

4. 2. Typical minimum variance estimates (for aW = 10"5 and

aR = 10-4) are shown in Figure 4.21. Generally, the measure-

ment noise does not affect the estimates as in the case of the

random acceleration aR. Figures 4.18 and 4.20 show that there

is nct -much difference in the sigmas for o-= 16- and oW 10

iu65

z

60 10 2$
Z 5 1;;UE I'm) 2

Figure 4.16 Nominal Trajectories 1I-2 and TP M-0-3
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4. 5 Discupaion of the Steady State Estimates

The knowledge of the steady state estimates and of the error bounds

on the estimation covariances is not required directly in the maneu-

ver optimization problem. However, this type of discussion could

help to answer certain problems of controllability which might arize.

For example, the final error covariances which need to be speci-

fied for certain trajectory optimization problems (Section 5.4)

could not be less than the steady state results given below. For

this reason some results which might be applied to the asymptotic

estimator of the covariances are included [ 4 1. To present the

main results of this section, the general state and measurement

equations are written

&k = Ok, k-1 Ap, k-1 -<k-•1
I zEk = MAk + V k

Cov (w) -Q and Cov(v) R

We write M instead of Mk in the last equation because M = (I 0),

a constant matrix in the present problem.

Definition: The above system i6 said to be q-stage observable

(1 !c q ! N) on an interval to g tk ! tN if and only if the matrix

Mk, k-q+ 1 (which is defined below) is positive definite for arbitrary

tk and q such that ti • tk.q+ 1 and tk tN.
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[

Mk, = i, k* M* Rj M0i, k

In the present problem

*M*, '1M =1 w"2 j i*0iiei*q]S;21; to-2; °21

which can be made positive definite for the three configurations

considered here.

Result 1: If the process noise is zero and if the system is q-stage

observable, then the error covariance matrix of the estimates Pk

vanishes as k -- if I(MkM )'lii--O more rapidly than INk,0I 2

increases, where

Ck
Mk 1, 0* M* R M i, 0

Result 2: If the process noise is zero and the system is q-stage

observable, then Pk becomes essentially independent (that is, for

k large enough) of the a priori statistics Po.

Result 3: If the measurement noise is zero, then Pk satisflea

(a) MPk = 0 and PkM-* = O for each k,

(b) Pk is nonnegative definite, but never positive

definite

(c) if P k-i ' + is positive definite,

and m<n (where M is mxn), then Pkcan never vanish.
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SA
Further, the error in the estimate - -k is any element of

the null space of M, L e., M& =.o for arbitrary k.

R-sult 4: The error bounds for P for the q-stage observable

system are given by

"kk,[ 0 +N l] 0* + PkP

•Pk0k, 0 ol + MkJ Ok,0 +WkS

where PP is any nonn.-gative-definite matrix (never positive defi-

nite and generally nonzero) and

Wk, 1 --- k, i i-I Ck,i

It would be useful to compute the above error bounds as a function

of the various system paramaters.

If it is assumed that estimator 1B is q-stage observable, then the

above results may be used to interpret Figures 4.4 and 4.5. Figure

4.4 illustrates that all of the curves seem to be going to the same

steady-state values for aR fixed and varying aW. This observation

is implied by Result 1 above. Result 2 implies that the estimation

k covariance will become essentially independent of the initial statis-

tic P although no experimental results are presented as verification.
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Figure 4.5 indicates that the will reach steady-state values

which are proportional to aR. This is implied from Result 3(c)

above. Figure 4.4 indicates that the estimates are not improved

for decreasing aW if the estimation time is sufficiently long. These

results are not used to discuss Figures 4.9, 4. 10 and Figures 4. 17,

4. 18P 4. 19, 4.20, because steady-state values were not reached

for these configurations. It should be noted that the bounds on

the covariance equation which are given in f 4 ] for the discrete case

are similar to those given in Section 15 and 16 of [ 5 1 for the con-

tinuouIs case.

Remark 4. 1 The experimental results of this chapter indicate

that significant improvements in the identification of the specific

error parameters considered can be obtained by changing the

nominal trajectory. F'urthermore, certain changes result in

estimation variances which decrease quicker than for other changes.

The best time to make a trajectory change for a particular error

parameter seems to be when the o for this error is approaching a

steady state value. Seetion 4.5 indicates that if the system satis-

fies certain properties the steady values (that is, c--.o) can be

estimated independently of the nominal trajectory. In section 5.1

it will be seen that some of these properties are related to the

"no-noise" situation.
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CHAPTER V

ii

ANALYSIS OF TRAJECTORY MANEUVER AND FORMULATION

OF THE OPTIMAL CONTROL PROBLEM

5. 1 Identification of errors uxder ideal conditions

For the purposes of determining the minimum number of trajectory

chants for the uniqueness of the solutions, we consider the mini-

mum number of trajectory maneuvers which are required to

identify the IMU error parameters under ideal conditions, that is,

under the a)nditions of no random disturbances (aR = a = 0). To

make the discu3sion as uncomplicated as possible, the simplest

configuration (Configuration IB) is considered first. For the

no-noise situation we have

If all subscripts are dropped and k takes on two different values,

the above equation gives

F Al±=vI and A2* = (5.1b)

where the subscripts I and 2 correspond to kl+ 1 and k2 + +

respectively.
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Property 5. 1 For the no-noise situation, at least one trajec-

tory maneuver must be made in order that the misalignment angles

*i be determined uniquely.

Demonstration The matrix Ai is of the skew symmetric form

S0 -a3 a2

Ai = a3  0 -aj

a2 al 0

for which the eigenvalues are A1 = 0, t 2 = +j I!Al1 and IX3 = -j I[a !'I

whPre Hall is the magnitude of the sensed acceleration. This

means the three dimensional space in which _± is defined, Z3 , can

be spanned by the set{~j xý , X4 where 4i~s the eigenvector

corresponding to the eigenvalue Xi and any vector x in E3 can be

represented by

A= a.+•x 2+1 2 3  1 -X2÷c2x2 +%X 2

so that

A±= XG _x',,2 a2'5 2 +y~ 3gj2 = ,2v2E 2 a3: 2

(5.1d)

If _ has a component in the null space of A, = 0, No (i.e., No

{(_ in E3 I Ax = 0} ), then _' cannot be solved for. On the other

hand, if ' does not have a component in NO, then any multiple of

a vector In NO can be added to ± and this will also satisfy the

_0
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equation kAi = .

For convenience, the common factor which takes care of the thrust

acceleration can be factored from the A matrix, so thp.t we have

Ai- = -(5, 2a)

where

0 -t3  t2 3
Ai t3  0 I and t =1 (5.2b)

•-t 2  
tI 0

The eigenvalues of A 1 and A 2 are thrn the same, namely,

A I1 = 0, X2 = J--l andX 2 = 4.g1

If the estimation were performed at the same time, then the

problem is the following: find the vector . such that

-- _*= (S.2c)

A2 I-

If the matrix [A A2 ] has rank 3, then a unique k may be

obtained by multiplying Equation (5. 2c) and then computing !

by the equation

(E-f -jv-- -----()- (5. 2d)A2 A2 I A2 Y2
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When the estimation is performed recursively, A,, - Yl must be

solved for *k first, and then A2 1 = _Y2 is solved. The vector ,

may be represented by the eigenvectors

1 1 1 2 T 2 iI1 a + 2 +-I- a Z 5.3a)
_ j=1_1+'°2_'1+ 3_!.I ='xl+I '•2I 2 2Xl

The vector y! is then given by

Y_ [7 1X2 r'I xj 2 Ina oIx2)1 (5. 3b)(CY -1 2 -1,
1 2

The coefficients a2 may be solved for in terms of y1 and X1, which

are both known. This corresponds to the solution of minimum norm

(pseudo-inverse). If this solution is denoted by -j, then

+1 ÷ ClXj where c1 is az unknown constant and xj is the eigen-

vector oi A 1 corresponding to the zero eigenvalue. Next the

Equation A 2 , = Y2 is solved for a corresponding -'2, and , is then

giveen by , = :k2 + c2 x3. These Equations can be solved for cl and

c2 , and thus give I, uniquely.

Remark 5.1 When random distrubances are added, a

similar discussion goes through with the reasoning that the change

in a(and therefore the change in the matrix A) must be large enough

so that the error due to *' can be detected over the errors due to

the random disturbances.
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Remark 5.2 The problem of uniqueness of the estimates

for Configuration II can be considered as in the above discussion.

In this case the matrices Ai are 3x C instead of 3x3, and it is re-

quired that [A*t, - A]* *have rank 6. The matrix Ai isI n]

the 3 x 6 matrix corresponding to the ith observation, a•.d is of the

form

to•3 0 -t 0 t 0 -t
L t2 tl Lt2 tl two

where a, 0. and the ti change with time. With no trajectory

maneuvers, the matrix A*A, where A* =[A A] hast

va:ues which are essentially zero and one which is close to zero,

even though the factors a, 3 change at different rates. With one

maneuver, the matrix A*A still has the same zero eigenvalue

properties, and with two trajectory maneuvers, the matrix A*A,

where A* = [A* I A* ], has no zero eigenvalues. Thus it is

sufficient for configuration II to have two trajectory maneuvers in

order ýhat !k and _ be identifiable under ideal conditions.

Remark 5.3 The uniqueness property for Configuratir Im

is again discussed as above, where the matrix Ai is now of the

form
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0t 3 - t2. ' -t3, t23 0 t33 t l

0 3 0tl 8 3 1  0 -t131 t32  0 -t11
L-t2 tl 1t2-1 t12 0 422 t13

where a, at ti, tij, change with time. In this case it is required
[A*-- -' *

that [ ,A A*J* be of rank 9. For this configuration A A has

zero eigenvalues when no maneuver is executed, and no zero eigen-

values when three maneuvers are executed,

From Property 5.1 and the above remarks, the following conjecture

is made

Conjecture 5.11 In order that the parameters of a particular

parameter identification problem be identifiable under ideal con-

ditions it is sufficient that a minimum number of trajectory man-

euvers be executed. The number of trajectory variations can,

be obtained from the transition matrix of the system. In the

presence of randcm disturbances it is plausible that a similar

situation prevails, wirh the maneuvers being large enough to detect

the changes in the errors due I- the error parameters over that

dNe to the random disturbances.

Remark 5.4 The lower bounds of the minimum number of

trajectory maneuvers could be useful in determining the "optimal
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controls" discussed below and in Chapters VI and VII. In Chapter

VI it is shown that the optimal controls are often bang-bang. A

lower limit on the number of switches in the controls reduces the

search procedure which might be used to obtain good initial guesses

for the computation of the optimal controls as discussed in Chapter

VII.

Figures 5.1 and 5.2 illustrate the standard deviations in the esti-

mated misalignment angles and the corresponding estimates, *i ,

respectively, for a = o-W = 0. The trajectory pitch angle profiles,

g, for these two cases were such that M = constant (IB-1) and iL

changed discretely downward by 5 degrees at 0.2 seconds (IB-2).

The "squares" in Figure 5. lb indicate the estimates for the second

trajectory, where the actual values for t are (0.5, 0. 1, -0.3).

The variances and the estimates for Configuration H are shown in

Figures 5. 2a through 5. 2b. With no process and measurement

noise, the standard deviations in the estimated misalignments,

do not drop immediately to zero, but seem to steady out

at approximately 0.67. At t = 0.4 sec the pitch profile changes

discretely by 5 deg, and these •igmas then go essentially to zero.

The estimated misalignment angles, ýi, are estimated perfectly

after t = 0.4 sec. The reason that these angles are not given cor-

rectly before t 0.4 sec is that the estimated misalignments need
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Co *w\ 1"- I ---1 ...1.0

-• IB-! ! 1
1--

0.2- IW

0 0.2 "1.A 0.6 0.8 i .0
TIMIE (SEC)'

Figure 5.1la Initial Misalignment Sigmas, q for the
No-Noise Situation aIR -= aW 0 ~

0. 2o- -- -

b I I

11'

•• -! ***_*I **1

0 0.20 0.40 0.60 0.80 1.00 120

TIMIE (SEC)
Figure 5. lb Estimates of the Misalment angles, tfor

the No-Noise Situation aR =W 0 (aca 4 values
are 0.5, 0.1, and--0. 3).

S~104



1.2--

1.0

0.8---

i 0.6

0.2 - a - -

-.4

0 0.2 0.4 0.6 0.8 1.0
T:M (SEC)

Figure 5.2a Misalignment Sigmas, c', fora

0a10m..
0I

S0.105[.---- L-----

0.2 0.4 0.6 0.8 1.0
TIME (SEC)

Figure 5.2b Constant Gyro Drift Slgmas, •, for cR aW 0.
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0.4

Z 0.2 -

U 0

-0.2 - -

-0.4Y 0.2 0. 0.6 0. 0

TIME (SEC)

Figure 5.2c Estimates for the case 0 =
(Actual Values were 0. 1, 0.2 an 2.

00.20--

0.10_

-0.10-

0 0.2 0.4 0.6 0.8 1.0

TIME (SEC)

Figure 5.2d Estimates P, for the ease • =0
(Actual Values were 0.15, 05 d -0. 15)
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not be unique. With the estimation of the constant drift rates, ci,

there is some difficulty at first. At 0.7 sec it seems that there

is a "numerical instability" in the .i" However, the sigmas

settle down to essentially zero at t = 1.0, and the estimated ti

come out perfectly.

Using the nominal trajectories shown in Figare 5.3 below (Nominals

HI-la and IlI-ib), the sigmas for the misalignment angles, , and

the sigmas for the mass-unbalance gyro drift rates, akSi and aji

for the no-noise conditions ( aR = aW = 0) are shown in Figures 5.4

and 5.5 respectively. The corresponding estimates $i, is and

A
AkIi, are shown in Figure 5.6. It is noted in Figures 5.4 and 5.5

that the sigiias do not go to zero for the constant pitch profile

(TP 11-la). When the pitch profile is varied (TP It-lb), the

sigmas go down to zero. For this particular case perfect esti-

mates of *i are obtained for both nominal trajectories (Figure 5.6 ).

70

TP III -la

< 6o .TP I-lb

'-, _ _ _ _ , .. . ,

0 0.2 0.Q4 0.6 0.8 1.0
! ~TIME (SEC)

Figure 5.3 Nominal Pitch Profiles rn-la and Il-lb
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1'.2 NOTE:

" NAMIANDC'M ACCELERATION STANDARD DEVIATION -0

MEASUREMENT NOISE STANDARD DEVIATION -w 0
1.0- - I

III 10.8 6

_4-

b 0.6 - 11,

_"- I~ -l

0.2 I
0 0.2 C.4 0.6 3.8 1.0

TIME (SEC)

Figure 5.4 Misalignment Sigmas, a 4i, Using Nominals
If-la and -lM b vwth oR a• 0.

0.2

S0. 1

n.o i . l11-2-

a. SPIN AXIS DRIFT RATE SIGMAS

0.2

l ; 0.1

0.0 _ _ _ _ _-l_ __
0 0.2 0.A 0.6 0.8 1.0

TIME (SEC)
b. INP•JT AXIS DRIFT RATW SIGMAS

Figure 5.5 Mass-Unbalance Drift Rate Sigmas, a

and aii using Nominals MI-la and a-lb with
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II-la and I'll-lb
0.20-

-0.20-

a. MISALIGNMENT ANGLE ESTIMATES, ~.(ACTUAL VALUES 0.3, 0, -0.3)

- - - I I III

b. SI N AXIS DRIFT RATE ESTIMATES, fK S (ACTUAL VALUES 0. 15, 0,10, and -0.05)

0.10 j _______________Ill-lb

AA

c. INPUT AXIS DRIFT RATE ESTIMATES, K 1 (ACTUAL VALUES 0.05, 0, -0. 10)

Figure 5.6 Parameter Estimates k i and kjiUsing Nomhtals rn- Ia
and Ul-lh withR r.. = aw
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5.2 Formulation of the Optimal Control Problem

In this section the manner in which the control (trajectory pitch

angle) enLers the covariance equation for the error parameters

is indicated, and the pertinent optimization equations are formu-

lated. Under the assumptions for Configurations IB, II and III,

the state and observation equations are, respectively

: =Ax+ Bw

and

z = Mx + v

where x = (v(Os), )*, a (3+N) x I vector, where N indicates the

number of components in a, aI =, (Configuration I), ai =,

(Cofiguration 11), am = (__S,ki)* (Configuration MI), w is a 3x 1

vector of random (uncorrelated) vehicle accelerations, and v is a

3 x 1 vector of uncorrelated observation disturbances. The

respective covariances of these random vectors are

Q = cov(w)=q-I and R = cov(v)=r"I

The more convenient notation q and r are used from here on instead

of 12 and The matrix B is defined by B = (TSO ) O T(m' 0

( (3+ N) x 3), where T(O, s) is the 3 x3 coordinate transformation

from the master to the slaved IMU. This transformation involves

the angles which orient the slaved IMU, eý° s), 1 1, 2,3, which
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are now assumed to be fixed for the "equal acceleration" orienta-

tion and T(m, o) Is the 3 x3 coerdinate transformation from the

vehicle to the master IMU coordinates. This transformation

involves the trajectory pitch profile, 0• m), wt[ich we write as

2(t°Im) (t) + M(t)

to denote a nominal profile uo (t) and an off-nominal control in the

profile p(t). The observation matrix M is given by

M = ,o] (3x(3+N))

The matrix A is given by
k1

A ----- ,i=IIIHI,

0 0

where

"AI = k*Ea(s)1 (3x3)

A,, = [k4as)] ,kd.r. t[a(11 (3x 6)I s ],

AM [ki[a( lkml u [a(s)]JP[a(s)] d (

It is recalled that the matrix [a5 is defined by



33

a, 41o - ) ()
L. 3

where a.i! 11, 2, 3 are the components of the nominal acceleration

in the NI 8 coorcrates, ais) The superscript and subscript s

on the acceleration will be dropped, unless the meaning is not clear.

In particular, each component is given by
ai(t) =Timt a(sm)(t)

where

T • = T(°'s) 'Im'°)" 0

LT3 0

For the equal acceleration orientation and 0(2°1m)= -. 250,

--TO = 1,1). The thrust acceleration a(m)(t) is of the

forra ct/( - t), which approximates a vehicle with a constant pro-

pellant burning rate.

The matrix is defined by

a~ 0 0 a2 0 0I I,,
Ia''I 0 a2  0 0 a3  0

0O 0 a3 0 e aI_
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E .. ...

when multiplied out,

0 -a2 a23 o "a0 3 a2 1

[ats - J s 0 -a 13  a3 2  0 -- Ll
-a 21  a12  0 -a 22  a 13  0

where

aij(t) Ti (t) as )(t fTj(.r) (i)is123

If we make a small angle approximation for u(t), we obtain
o )+uot) ,fl-a•(t)- • {ksn~o\csi 

0

For Po (t) = -250 and the equal acceleration orientation,

As M 0)(t - t .9

Thus the control p(t) enters linearly into Ap, A,, and in a compli-

cated bilinear fashion in AM. That is,

aij(t) = (Cl(t) + di(t).u(t (fO(cj(T) + dj(7) p(T) d)

Remark It is noted that vehicles with variable thrust engines (for

example, airplanes and ships) can be considered in this framework

as well. In this case, the term a(sm) becomes a control variable,

and is of the form
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a(s) ul(t)cS1 (t)+ c 2 (t)u 1 (t)u•2 (t),

where cl(t), c2(t) are known 3xl vectors, ul(t) is the thrust ac-

celeration, and u2(t) is the trajectory pitch angle.

The estimation covariance equation, P = E x- X-) is

specified by

P = AP + PA* - PM*R-"MP + Q

If P is partitioned in the obvious way

Pxa
P =~

r• x P00 j

there results

Pox= sA] + Ai - rF1 Px Pxx+ q- I

yx ;P' A4 - r - 1 Pox p-=
-•, • .- y#x Pak*•

Remark If the column vectors of pCx are written P ° p then

- Pxn•x k= - :P,

.• Thus

- Trace PC~t) f P,,tPd
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so Uzt minimizing Trace PO't) is the same as maximizing

The maximization is performed with respect to changes in the

trajectory pitch angle, ;;(t).

5.3 Trajectory Constraints

The constraints on the vehicle's trajectory will determine con-

straints on the pitch angle JA. In the simplest forms, the trajectory

constraints might be specified in several different ways as listed

below.

11(t)( _< MI (C-i)

14(t)j 1 M2  (C-2)

fo0 A(t) dt<5M3 

(C-3)

If u(t)dl45M 4  (C-4)

and various combinatiwis of the above ns-traints. The constraint

(C-4) is the most difficult to treat >-ialytcally, and will not be

discussed furiber here. Constraint (C-2) cnr. be. conaidered by

defining 4 as the control, and u as a state vlziable. If constraint

(C-i) is also in force, then the problem becwaes one with bounded

state variables. In this case the specification o( the necessary
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cond 'Ions which the optimal 6ontrol A must satisfy become quite

complicated. However, with some of the cost functionals in the

next section it can be shown (Chapter VI) that with (C-1) in force,

we require Ip(t)l = M1 and with (C-2) in force we reqUire !A(t)l = M2,

that is, P and p are bang-bang contro!. Thus with (C-I) and

(C-2) in force, then it is plausible that A(t) = 4M2 until u(t) = ±M1

and then A is switched to ; M2 . The constraint (C-3) gives a

measure of the amount of trajectory maneuvering allowed, or

required, in order that tMe vehicl :'s plxsition and velocity fall within

some specified region at time t = T.

Pointwise constraints of the form• (C-1),(C-2) specify the control

functions to belong to a set of U for each t c I, whereas global con-

straints of the form (C-3),(C-4) specify the controls as subsets of

certain function spaces. In general, the control functions are

considered to be bounded, measurable functions and the control

set UJ. (considered as a subset of a function space) is as follows:

U=-{u: uis bddmble, u(t)tU(t) forts I}

where

U = {u(t):(C-1) or (C-2) hold)

or else

U. = u: u iB bdO, mble, (C-3) or (C-4) hold}
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For analytical purpores, (C-3), with no polntwlse constraints

woulid be the easiest to hancle. However, the cost function should

then be such that mear!igful expressions for u are obtained when

the Htumiltonian Is minimized. For example, if it is only required

to minimize Trace P* (t) with the constraint tC-3), then the ontrol

iu is eliminated completely when the hamiltonlan is .rWnimized.

5.4 Cost Funictionals

Choosing the appropriate cost function is an important aspect of the

design problem. When it is only required to obtain good estimates

of the error parameters in some fixed interval of time, then a

reasonable cost functional would be

Jl(g) = Trace [Wa 'P(T;M)}, (J-1)

where WO le a positive cefinite weighting matrix. More generally,

all of the members of P (T) could be considered in the minimization

by considering the cost functional

J2 (1) Trace WP(T;k , (J-21

where W Is a w-afghting matrix. Ci, the other hand, It may only

be required that the diagonal elements of m fall within a given

region in the least possible time. This coidld be written as
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J3 (w) dt and P(T*;As)CG (J-3)

where P (T*;,u) denotes the elements of the covariance matrix P

which ire to lie within the region G. The region G le assumed to

have a smooth boundary. With this cost umction, the question of

coistivUabtlity must be considered. For the minimization to make

seuge, it must be verified that controls exist which can drive the

states P into the region G.

It is possible that it is disadvantageous to perform too much maneu-

vering for the purpose of identifying the error parameters. In

this case a term of the form 1T(t)l dt, which is proportional to
T•

the fuel used, or else a term At) dt, which ia proportional toJ to

the energy used for the maneuvering, could be added to the above

cost functionals,, Thus we could have

J4 (A) =Trace PIT; + C Ju(t)Pdt p=1,2 (J-4)

So3L) dt+Cpj I(t)Ip dt p=1,2  (3-5)

The weighting factor C p might be chosen large enough so that

pointwise constraints on ji are not required. In this case the iUn-

earizaLton which Is made for ii In section 5.2 would still be valid.
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In the next chapter, a particular optimization problem will be

specified by referring to the various constraints (C-i) and the cost

functionals (J-i).

We can now make the general definition:

The optimization problem is to find a control i such that

Sis a member of the aduaissible class of U, and

J(i) <.J(j) for allU IJ"

5.5 The Simplest Examples

In this section we consider the example

k=px+w, y=mx+v;cov(w).q, cov(w)=r,

to get an idea of the minimization procedure. In this ase the

covariance equation satisfies the scalar equation

p = 2lp - r-lm2 p2 +q, p(o) = po given.

Problem I Jl(/t) = p(T), Iu(t)IcM 1 ; T, M1 given.

Minimizing the Hamiltonian gives u =-M, sign (xp), where x

satisfies the adjoint equation

=-aWap=(-2v + 2r m2p)A ; x(T)= 1
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i

If q > 0, then p(t) > 0 and p= -M 1 sgn A1 . 't is not difficult to

see that X(t) > 0, and therefore ugtl =- -M 1 .

Problem II J 2 (p) d at, p(r) a 5, and jp(t)i - M,

Minimizing H = A p + Ao. 1 gives u(t) = -MI sgn (Ap). At t = T*,

the minimum time, p(T*) = a, H(T*) = 0, and therefore

X(T) (-2Mjsgn x(T)-r 1 m 2 a 2 +q)+ I = 0

Assu~ning X(T) < 0, means that 2:Aj * - 2r•1 m2 a2 + q > 0,

which implies p(T*) is increasing. This contradiction implies

S0 in [0,-rl, and thus u(t) = -MI, as above.

For i = a, a constant, the solution to the covariance equation can

be written as

I Tan h-I _ = T
T' q7 nIr~l + a2 (ý PO

"For the first problem T is given, and is required to minimize

p(T). In the second problem p(T) = a is given, and it is neces-

sary to minimize T. From this expression it is clear that we

choose a= -MI

1
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CHAPTER VI

Existence ofl Optimal Controls rmd Necessary_ Conditions
for Optimal Control

In this chapter the existence of the optimal controls and the necessary

conditions which the optimal controls must satisfy for the optimization

problems formulated in Chapter V, and for generalizations of these

problems, are considered. It is of practical importance to insure

the existence of the optimal controls, since the maximum principle

of Pontryagin is used to obtain the necessary conditions. Matkj x

notation is used to specify the Hamiltonian, the adjoint equation, and

the equation w~hich gives the optimal control in terms of the covariance

matrix and the matrix of adjoint variables.

Although the equations which must be batisfied along the optimal

trajectories are quite difficult to solve, and the resulting controls

are open loop in nature, the results are still of practical interest.

This is due to the fact that in the present application to parameter

identification, it is entirely acceptable to devote considerable effort

to obtaining optimal trajectory maneuvers before any experimental

work or "flight testing" is performed.
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6. 1 Existence of Uptimal Controls for Problem I

For Problem I we convider a cost function of the form

Jl(m) = Trace WP(T;iu) (6.1)

where W is a non-negative weighting matrix, T is the specified

time of opera tion for the identification procedure, and u is a

control vector. The manner in which u enters the covari-

ance equation

P = A(_4) P+ PA*() - PM*R'-MP+ Q (6.2)

is assumed to be such that the elements of A which involve .u

can only be linear combinations of the components of

u = (u•,.G. ,um)*. Further, it is assumed that for each

t 4 I t[to,TJ, u(t)E U(t), a compact, convex set inEm, and

It is assumed that u satisfies the constraint (6.3), where c is

a constant vector,

ji (t) dt = c (6.3)

The control set U is thus defined by the set of functions

11U-i{u: mu(t)c U(t) for teI, f u(t) = c

The existence of an optimal control _c is next assured by the

Property 6.1 For the non linear system (6.2), with point-

wise constralnts u(t) E U(t) for te I, and U(t), a compact,
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convex set in Erm, and the integral constraint (6. 3), there

exists an optimal control _ c U such that the cost functional

(6.1) achieves a global minimum.

Demonstration It is first shown that there is a urdform bound

for the elements of P, considered as a vector P. That is, it

shall be proven that

11 P 112 -< • < - (6.4a)

where the norm I1 • 112 is defined by

I P 112 70 Pij TracePP , (6.4b)

and the pij are the elements of the matrix P. Indeed, since

B M* R"1 M and Q are non-negative,

Pý A ) P + P A*(.) + Q (6.4c)

Let P' be a solution of the equation

= A P'+ P'A* + , P' (to) = Po (6.4c

This solution can be written as (see Property 7. 1, Chapter VII)

* ftP P(t) = 0(t, to)PO 0*(t, to) +!•¢ (t,s)Q(s)4,*(t,s)ds, (6.4e)

where t (t, s) is a fundamental solution of the system

ao(t,s) =A(t)4(ts), 20(t) s= -{(t,s)A(s); 4,(t,t0 = I
at as

(6.41)

By hypothesis, the elements of A will be integrable functions on

the interval I, so that the solutions to (6.4f) will be unique.

Further, it can be concluded that P'(t) is symmetric and
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non-negative for t E I. since Po and Q possess this property.

By taking into consideration the problem from which P (t)

arizes, it can be assumed that P (t) is non-negative. Thus

05<<x, PMtx> _ <x,,P'(t)x>< . (6. 4g)

For non-negative symmetric matrices

-up x, Px> = SUP I/P x!!2  • IlP.,
"xII=l I~x~l1

x Ii=1

where Al is the greatest eigenvalue of P. However,

i;P:12  _p 2 =ic enH5-2 <

which implies that

_. P12_ý 11ip < IIP I 12

Since J j(u) is obviously finitely bounded from below, we can

seiect a sequence {fk}cU such that J(W1g) decreases mono-

tonically to inf J(u), where uEZ/. We let {Pk,}denote the

solutions to the Riccati equation (6.2) which correspond to

the control sequence { Uk,}. For convenience, Equation(6.2)

is written in the vector form

F= (P, t) (6. 5a)

where the deftnition of the vector function F is derived from
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Equation (6,2). Since the set U is compact and convex,

will be weakly sequentially compact for the cormpact interval

I = 2to, TI. Thus a subsequence {Uk} can be selected such

that Rik(t) M i(t) for t f I. The solutions to (6. 5a) for each

control ui are given by

N -P(t) =-20 +/ --F (Pi(T), 3!uT(,) d-, (6. 5b)

Since IFli_ alPI +/s, and IPI is uniformly bounded, the sequence

20P} forms a uniformly bounded and equicontinuous family of

functions. The theorem of Ascoli then assures us that a sub-

sequence PEk(t)} converges uniformly to some function T(t),

where

Similarly, since J1 is continuous in Pk,

lim J 1 (•) = lim trace WPk(T ;)---TraceWP(T)

(6.5 d)

It is still required to show that f is the response to Z and that

1 c ?./. This is accomplished by the techniques which are

used in existence theoý:y. In particular, by the assumptions on

the way u enters the covariance equation, F can be written asI' _F) (_,t) + H(_P,t)u (6.5e)
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and weak limits are taken to show that P is the response to i,

as in page 40 (6]. In this case Lebesgue's dominated conver-

gence theorem and a theorem on almost uniform convergence

and the continuity of G, H and of the partial derivatives of G,' H

with respect to the p1 j are used to show the weak convergence

of H(Pk(t),t) to H(P(t),t) where Pk is the response touk andOfI k() )t ^ _k
A A -

P is the response to i, and P - P. The compactness and the

convexity of the restraint set U(t) are used to show that

u(t) c U(t) for a.e. t e I. Then fi (t) is redefined on this null

set so that U(t)E U(t) for all tc 1.

This implies that J (C) = mif J (u), and ii is the required opti-

mal control.

6.2 Existence of Time Optimal Controls

The time optimal problem is formulated as follows. For the

Riccati equation (6.2), find a control u, where. u belongs to

some admissible set 21, such that certain elements of P are

less than some prescribed values in minimum time, In partic-

ular, we shall require that the diagonal elements of P. pjj, be

less than crj. To be specific, Z is defined by (6.6), as in the

previous section.
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Z=I':u(t) c U( T u(t) dt = c (6.6)

Property 6.2 If U(t) is a compact, convex set, then there

exists a control _EZ/ such that pjj ;g oij , j = 1,-", n. in mini-

mum time, where the pj1 are the diagoinal elements of the

covariance matrix P which satisfies the differential equation

(6.2).

Demonstration First it is assured that there exist controls in

Swhich transfer the matrix P from Po to PT in finite time

intervals [to, T I by appropriate'y choosbig the positive numbers

Ct. This assumption can be madE Aid by solving (6.2) for

arbitrary ue V! and then observing the Ptj Is until such time that

they reach satisfactory levels aj. The target set for PT, call

it X(T), will be compact since the vector P was shown to be

uniformly bounded in the previous demonstration. We let /'

denote the set of all controls in 27 whici transfer Po to PT in the

time T-to, and let T-to be the infimum. Thus the eristence of

a control iIE -W which corresponds to the time T-to must be

demonstrated.

The proof of this result is similar to that required in Property

6.1. Let {Uk'} be a minimizing sequence of controls from Z/,
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which are defined on intervas f to, Tk'] U) such a way that

the sequence {Tk'} approaches T monotonically from above.

The controls defined in this way define a sphe2o, in L 2 (to, TI

Thus a weakly convergent subsequence {UW} exists siuch that

3!k (t)-- u(t) weakly in L 2 ([to, TI ). Thus we must show that

uEZ'I, which means that f(t) must be in U(t) for tE[to, TIp i

transfers Po to X(T) in a time T- to. As in the proof of the

preceeding property it can be shown (page 40 [6j ) that i CU (t),

the equibounded and equicontinuous responses Pk(tj to the con-

trols 3!k(t) contain a subsequence which converges uniformly to

L (t), which is the response to the limiting control ti(t). It is

then shown thatP(T)EX(T), and that inf j(u) =-to, so
uttI

that i is the required optimal control.

6.3 Some Baic Properties of the Riccati Equation

In order to discuss the existence and uniqueness properties of

the Riccati equation (6.7a), it is convenient to write it in the

form (6.7b) or (6. 7c), where the definition of F(Pu,t) and

F (P, u, t) IS clear from (6.7a).

P A(u)P +,PA(u)*- PM*"MP +Q, P(to)-Po (6.7a)

P F(P,u,t) (6.7b)

iPij= Fij(P, u ,t).. i j I, -,...n (6. 7c)
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Since the matrix A involves the controls u, it can usually only be

assumed that the Fi j are integrable in the time interval [to, TI.

The basic existence and uniqueness results for the above systems

may be found in (61 , [71 , the Appendix of [81 , and (91 . The

following result can be applied directly to the above problem.

Theorem Assume that the functions Fij in (6. 7c) and the

partial derivative 3Fij /a pkj are continuous in P, u, t, that is,

in the space Eri.+m+i1 Then given an initial point PO =P(to),

where to c Ic EI, and a measurable control u, with u(t)E U(t),

a set in Em, for t E I, there exists a unique absolutely continuous

solution of (6. 7c) on some subinterval I' of I, such that P(t )-PO.

If there exist integrable functions M(t) and K(t) on [to,TT

such that

IFij(P,u,t)1 - M(t) and I F1 j (P, u, t)/,3pk I K(t)
(6.7d)

for i,j,k, = I ,. and the solution P(t) with P(to) =Po is

uniformly bounded, that is, 11P(t)!Ig 'Y< - for t Ctog T then

this is sufficient to insure that the absolutely continuous solu-

tion P( ) of (6.7) is unique for the kiterval .•,T .

End of Theorem
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The continuity of the functions Fij and ,3Fij/a pki in (6.7c)

with respect to the variables P, u, and t is clear. They are

continuous with respect to P oecause the right side of (6. 7c)

is quadratic in P, they are continuous in u because u enters

the elements of A linearly. They are continuous in t because

M, R, and Q are assumed continuous In t. In order to demon-

strate the condition (6. 7d) it is clear that it will be sufficient

to show that the elements of P (t) are uniformly bounded for

tc [to,T], that is, [pip(t)k- v< for ij = 1,.--,n, and

t•E to,T]. In the case that U(t) is a compact set, a bound of

the form used in the proof of Property 6.1 can be used.

Sharper bounds can be obtained by considering the equation

(S 7d) below [10] instead of (6.4c) where S is a symmetric

matrix which can be chosen to lower the bound P '(t) of P (r).

The solution of (6.7d) is given by (6.4e).

"_ (A-SB)P'+P'(A *-BS)+(Q +SBS) (6. 7d)

Kalman [5 1 has derived upper and lower bounds for P (t) ushig

obser•ability and controllability properties of the linear esti-

mation problem. T'ese prop.3rties, which are defined next,

are for the linear eatimation problem, and are not. to be con-

fused with similar notions which m4ht be introduced for the

control problem.
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Definitions: The system

jy=Ay+w ; cov(w) =Q (6.8a)

z=My+ v ; cov(v) =R

is said to be completely observable on [to, T ] I if

M(to, T) 4*(t,T)M*(t)RI(t)M (t)4 (t,T)dt (6.8b)

is positive definite on I. The system is said to be completely_

controllable on I il

W (toT)--fI t (tT) Q (t) ,I-* (t,r) dt (6.8c)

is positive definite on I. The system is said to be uniformly

completely observable (u. c. o. ) if there exists fixed positive

constants a,, a1, /01, such that

0 < alI <M(t-clr t)<SOJI Vt (6.8d)

The system is uniformly completely controllable (u. c. c.) if

there exists constants a2. 2 , 12'1 such that

0< &2 I1W(t- U21 tk_3 2I Vt (6.8e)

For the parameter identification problem

* = Ax+C + wX, cov(WX) = Q ;

Swa, cov(wt) Qa ; (6.9a)

z x+v, cov(v) = R
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we obtain

, = [xM [ (1 01

4 I

4,*M*R-IM = * (6.9b)

O xQ xox*+ OaQ4,OQ* 0 QQI
+Q'+= rQ 4 (6.9c)

Qa[ * Q a

It is thus required that the integrals of the above two matrices

be positive definite, and a small random disturbance V,,w must

be added to the unknown parameters a to insure controllability.

Assuming that R, QX and Qc' are positive definite, the positive

definiteness of the integrals of (6. 9b) and (6. 9c) will depend on

the amount of "maneuvering" in the ,xand 4P matrices, as was

observed for the spec.al cases which were considered in

Section 5.1.

Kalman(Lemma 16.9 and Lemma 16.10 151 ) has obtained the

following bounds ior P (t), under the assumption that the linear

estimation problem is uniformly completely observable and

uniformly completely controllable. The upper bound require§

that P0 be non-negative definite, and the lower bound requires

that PO be positive definite. For t i to a 0,

I
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W(t-c, t)+M(t- lc P(t) • M-(t-a, t)+W(t-a, t) (6.10)

Property 6.3 The solution P(t) t [t,T], of the Riccati

equation (6.7a) is symmetric and non-negative definite.

Demonstration Since R and Q are symmetric, P (t) and its

transpose P*(t) satisfy the same differential eqm.tion and,

since Po is symmetric, P (to) and P*(to) both satisfy the same

initial conditions. Assuming that suitable bounds as in (6.7d)

are obtainable, the uniqueness of the solution to (6.7a) implies

that P(t) = P*(t) for t e [to, TI. The non-negative de-Nniteness

of P (t) is plausible if it is noted that the variance in the esti-

mate of a costate y* (see - .,eorem 1, 111 ) is given by

[(Y*,y(t)_A(tl)]= <y*, 0(t)y*>? 0

6,4 The Necessary Conditions for the Optimization Problem

In this section the necessary conditions which the optimal con-

trol must satisfy are specified. The matrix fojim of the

Hamiltonian and the adjoint equations have been prevAously

stated in [111. The proofs which require only straightforward

matrix manipulations are included. To be specific, the problem

formulated in section 6.1 (Problem I) is considered.
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Property 6.4 If AO is an m x I adjoint vector which corres-

ponds to the integral constraintfi u(t)dt=c, and A is a matrix

of adjoint variables with elements x;.j which correspond to the

elements Pij of the covariance matrix P, I j. = 1, .-. . , n, then the

Hamiltonian for this problem is given by

H = &o , 0+ TraceI (AP +PA* - PM*Il-IMP + Q A*VI (6.11)

Demonstration As in section 6.2, the matrix Riccati equation

can be expanded as

jj%(t) = Fij (P, u, t), ij = 1,'",n (6.12a)

and we define a further state vector by

io (t) =u(t) (6. 12b)

Applying the Maximum Principle of Pontryagin, there results

n n

i&K=1J 1 J<A >+rfrace]rbil
" Pnn. Xm" nn-

Q_0 ,U> + Trace [t P)AI

and (6. 11) follows when the right side of (6. 2) is substituted for

d P.
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Remark 6.1 If the assumptions of section 5.3 are made,

then (6.11) may be written as equation(6.13c) below, where

A Ax ,ace (6.13a)

and

XcX XC xa~
(px = CaIpIX+ pa C* F -1 e'Pxx pX q" I

(Pxa = capcaarI pXX PXa

x =aa (6.13b)

P =-F'P P
I H ~=A oP+ Trace [TXXAXX-+(PxO AeX ]+Tracef e WpXX••aex]

(6.13c)

Property 6.. 5 Along the optimal trajectory, the adjoint vari-

ables satisfy the differential equations

i.o= o,(6.14a)

A = -A*A - AA+M*RIMPA+AP(M*R7 M) (6.14b)

with the end condition

A(T) -- lTtrace[WP(T)I = W (6.14c)aP(T)

Demonstration Applying the maximum principle of Pontryagin,

along the optimal trajectory gives

135



d 0H --

TT--0 F -
-0

and

d X

The terms in the definitiLin of H are considered one at a time.

X-4J Xj ... Epli Xaj

+ a21 EP1 j 1E + • . + a2 n P.jX•j +

a : V 13 +** +a EP~ kfl +
+ •a.2 F-Plj i + • •' nE Pný2j +

Thus the matrix of partial derivatives

~(tr [AP A B*)) E[AP
ap 8

I-j

a~Xa ]..+sX1 ...ank~ +..+ a

aX +'"+ a n . a" "" + "'+a X (6.15a)
ln"u nnni nn nn
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Next we consider the term

T[,ace[PA A*]=Trace P aa 1 X]

a ii X . + p,,Fa XI~ +

Jn

+ p.1y a+ nF

+ ~ n + in. +

Thus the matrix of partial derivatives becomes

LEa.~ .. . aj X,

B~tr[AYI) AA.

Next

Trace IPM R 'MPA) I Trace £F14?PA*

Trace M

-[EPnjXlj 
EnjXI
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The matrix of partial derivatives becomes

11 F-, 1ijX 1 J +**mn~pnjXlj * njFl.1 P1J A1J+'*+mnnFPjX. 1

11F-~j'j XnF-Pn'jl AlinPl M A+...+k n.PJm'L

=AP * Mf* + Mt*P*A.- (6. 15c)

Using the results of (6. 15a), (6. 15b), (6. 15c) and setting up the

matrix qf. adjoint variables

yields equation (6. 14b).-
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Since the "state" variables pij are free at t T, the correspond-

ing adjoint variables satisfy

X.(T) =4-~~ (race [WP (T)]kij() (pi T•

along the optimal trajectory. This may be written as

A(T) pi =fP(T)(I Wii Pij + *+Ewnj Pj n)]~W

Property 6.6 There exists a solution of the adjoint equation

(6. 14b) which is unique and symmetric for t E I•[ to, T ].

Furthermore, if the weighting matrix W is positive definite,

then this solutio. is positive definite for t E I.

Demonstration The uniqueness result follows from the fact that

A(t) satisfies a linear homogeneous equation in A . Thus (6.14b)

can be written as an n2x 1 vector equation

L =G(t) L, _A(T) =W.

The elements of the n2 x n2 matrix G (t), which involve the

optimal covariance elements Pij (t) and the control u(t), are

integrable on [ to, T 1. Therefore Theorem 5. 1, Appendix 18]

implies that the solution A(t), such that A(T) = W, exists and

is unique. To show that the solution is symmetic, we let

B =M* R I M, and take the transpose of both sides of (6.14b).

This gives
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dtA * -- A* = -A*A-A*, + A*PB.+ BPA*,

and A*(T) =W*- W. Thus A*(t) and A(t) satisfy the same

differential equation. Since the solution to this equation is

unique, it follows that A*(t) =A(t), for t c I. The positive

definiteness of A(t) is given by Property 7. 1, Chapter VII

Remark 6.2 For the system specified in section 5.3,

equations (6.14b) and (6.14c) become
4t AXX = r'XXAXXXX +A X• •X0CX+ AXOX); AXX(T)=0 (6.i•a)

a-.=r (P A +A P +P"A '-AýV )2()( A61a

d AXa=..AXXA+ r(pXXAXr Px•A); A,(T) 0 (6.16b)

dA p= -(A Agxo+AaxA) ;1caT)W 6.16c)

Property 6.7 For the cost functional

J(u) = Trace WP(T;u), (6.17a)

an optimal control . satisfies the condition

+ Trace [ A (f)PA*+ PA*(fi)A*]<LoD (6. 17b)

S<o3,U> + Trace[ A(u) PA*+ PA*(u)A*]

for all u c 271, where V is specified by

ZI={u:u(t)CU(t), tC I, fludt=c}. (6.17c)

In particular, if U(t) is a "cube", that is

U(t) = {u(t): Iuj(t)k_• Mi for tE I, i= 1,--.,m} (6.17d)
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then the optimal controls are "bang-bang". that is,

Uii(t) = £ Mi for t r I (6. l7e)

This result, of course, assumes that singular controls do not

arize.

Demonstration Equation (6. 17b) is a direct result of the defi-

nition of the Hamiltonian H and the maximum principle since

the control u enters the matrix A only. To obtain the "bang-

bang" result (6. l7d), it is recalled that u enters the matrix A in

a iinear fashion. Thus that portion of the left sides of (6. 17b)

which involve u can be written as

m i

IE 6ii (o + lI (PA , t)) (6. 17f)

Thus to minimize the Hamiltonian in the case U is defined by

(6. 17d), we choose

fii = -Mi sign (Ai + hi (P, A)) (6.17g)

Tnis implies iii(t) =MjM, provided that A"i+hi(P,A) i 0. If

the latter condition results for a finite time interval, then ii(t)

is indeterminate.

Remark 6.3 In the case of Configurations I and 11,
If0 AirP xx P xaiP= P•A OI xlF0 xx Aex•

APA!+PAtK=I A[P:PI4P:PIL 0J)1 AOX A:: ]

which results in a control law
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r~)=-M sign~ 0 ' Trace (A~xP"*)?+rc( P'c+ Al:A'
(6.18)

where i = I for Configuration I and 11 for Configuration II.

Remark 6.4 By considering certahi monotone properties of

the elements of A and P, it is possible to obtain upper bounds

on the number of switches the optimal control will have. In

particular, it is clear that the diagonal elements of P are

non-bicreasing. If certain assumptions about the noise covari-

ance matrices Q and R can be made as, for example, they are

also non-increasing, then it is plausible that PXa and pxx

have similar monotone properties.

6.5 Unconstrained Controls

If it is assumed that the controls do not have pointwise con-

straints and the cost functional is of the form (6. 19c), with the

integral constraint f u(t) dt = c, then the optimal control is

specified by (6.19b), where the components of h, and hi, are

determined by (6. 19c). In order to obtain such smooth controls

and at the same time insure that the control components ui(t)

are not too large, it might be possible to adjust the weighting

matrix C(t).
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i

2(u)= u(t)i2 + Trace f WP(T ;u)I (6.19a)

_(t) = -c (t) [ X + h (P,A, t)] (6.19b)

aiTrace LAPA+ PA*A (6.19c)
uiI

In particular, for Configurations I and 11 the optimal control is

ipecifled by

°a

F ;(-t),;o+ tr[.AiP'x+Px2Ae)/x+ (AiPaUA +P"XA*lý) ' (6. 19d)

If pointwise constraints are also included for these special con-

figurations then the optimal control is specified by (6.19e) where

Pmin is the right side of (6.19d). This result follows from the

fact that a2 H(u)/au2 = c > 0.

-M1 if P min Mt ;5 -M 1

=(t) = nln(t) if min (t) - MI (6. 19e)

+MI if Pmin Mt !' MI

Property 6.8 For the unconstrained control problem formu-

lated above with cost functional (6.19a) and with no integral

constraint and with W positive definite, there exists an admis-

sible optimal control _i such that J 2 ((u) achieves a global

minimum.

Demonstration Choosing the control u(t) =_ 0, the corresponding

response is P(t;o) and the cost is J(o) = Trace [WP(T ;o)I.

A finite bound for !IP (toY, SP Pij(t) ca-n always bee
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obtained as discussed in section 6.3 or in the proof of Property

6. 1. It is next asserted that all other controls ui which yield a

cost such that

J(.j) -•J(o)

will satisfy IP(t; ui)!!.l1P(t; o)jI, for t t I. This is due to

the fact that at each instant of time t' le I there is the same

amount of control available when either u(t) =ui(t) or u(t) =o

were used for t to, t' I . Thus if the trace P (t ; ui) >

trace P(t; o) at t=-t', the control

M o to ; t 5 t'
u(t) -

uii(t) t'_-5t 4T

would yield a smaller cost than u since W> 0. Since the

norms in En are topologically equivalent, the assertion follows.

It is remarked that this result is not necessarily true if the

integral constraint on u is in force, or if W ý 0. Further,

since all the controls ui yield a finite cost, we have

2 2$
J(ui)fJllui(t)IlIdticfJ1 lui(t)II dt, 0< c <0 (6.20a)

If there is only a fix~ite number of controls with the above

property, then the existence of an optimal control is immediate.

Otherwise, a subsequence {_u,} of these controls can be selec-

ted such that J{ui,} tends monotonically towards the infimum j

of J. Further, since the unit sphere in L2 is weakly
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sequentially compact, a further subsequence can be selected

such that

u,(t) M _iit) vih ie L2 (Ito,T])

The responaes { Pi, } to the controls { u,} will be equibounded,

and we can show that they are also equicontinuous. Indeed, for

two times to 1 t', t" -<_ T, we have
ti"

I~t') -_P,(t"'�9 00 f f,{l G(Pi,(t), t)Lijo+IIH (Pi,(t), t)ui,(t)!Io~dt

Since the partial derivatives E bi/apki are continuous for

i,j,k,A = 1,'",n, P E En and uEEm, the above inequality

becomes

.cl I t -t'I + c2 ft Iji,(t)lldt

Sc I t"-t'l + c2 t"t (ftt'' I22 (6.20b)

However, (6.20a) implies that for i' sufficiently large.

c A~u,() 122 dt ;5 j+ e, 0;9 < 0.(6. 20c)

Inequalities (6.20b) and (6.20c) give the required result

IIPi,(t") - 2P,4(t')11. ;g c1 I rt"-t' + ct I t",-t'v (6.20d)

Since the sequence {_.Pi.) is equibounded and equicontinuous,

Ascoli's Theorem insures the existence of a subsequence {Pit }

such that

Pi,,(t) --- (t) uniformt y for each t e I.

The fact that the i, enter the dynamical equations linearly is
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then used to take weak limits and show that P is the response to

u, the weak limit of {u}i,. The convexity of Ilu(t)IlI will imply
_ C

that the cost functional is weakly lower semicontinuous. Thus

J (_5) =- j, and E is the required optimal control.

6.6 An Example

At this point it is instructive to consider the system below as a

simple illustration of the above ideas.

- ax+ ua+ wx, cov (wx) = qX

na o+wa cov (w) = q";

y x+v, cov(v) =r

Thus

Fa u [qX o
A= [a 0J Q= [ ], R=r, M=[1,0],

and the matrix Riccati equation

P =AP+PA* - PM*R-IMP+Q

yields the state equations

= 2(apl+up21 ) -r- p +q , pll(O) given;

h2= aP12+uP22 -rP1p 1 P 12  P12(O) =0;

P -+ , 22(0) given.

Assuming the integral constraint u(t) dt 0, we define the

additional state equation
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o=u, X0 (0) =xo(T) =0

The necessary conditions specified by

ý = -A*A -AA+M*R'IMPA + AP*(M*R1M)*

yields the adjoint equations

i-= 2(r- 1 -a)X 1 1  p12A 12

i12 -uX 1 1+(r2 + rl rP 12 A2 2

= -2ux 1222 1
,io = 0

Next the constraint lul -i Ml, and the two cost functionals

J l (u) = caP2 2(T; u) + cXppl(T; u)

J 2 (u) = caP22 (T; u) + cu0T u 2 (t) dt

are assumed. For J land J 2 the boundary conditions for Xij

are, respectively

x 1(T) =cx x11(T) 0

X12(T) = 0 and A12(T) = 0

X22(T) = cc X22(T) =c

and the initial value, of the Xii are unknown. For J the

Hamiltonian is

H (u) = Xou + Trace I (AP+PA PM RIMP + Q)A*1

A= ,o+ X1l(2(ap11 +up2 1)-l p2 +qX)+

12 (aP12 +uP2 2 - 1 P1 1P1 2)+ 22 (q- rp 12 )

which means that the optimal control is specified by
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u(t) Mlsign (,x\+2x 1 1p 21 +2 k1 2P 2 2 )

Since H1(t)=HIT) -ft (all/at) dt, and aH/at = 0 ,we can set

H (0) = H(T) to obtain

-Ml1AoI + ca(-rlp122(T)+qa=-Mj•o+21xj 2(0)P 2 2(0)i +
++ •1(0)(2aP11(o)-r-1pj10 +)+ 22(0) + q".

This equation can be used to eliminate one of the unknown

boundary values by considering the various possibilities &or the

signs of xo and xo2A12(0)P22(0).

Numerical results show that the optimal control is constant if

there is no integral constraint, and switches once if the integral

constraint is in force. For the cost functional J 2, minimizing

Ote Hamiltonian implies that it is necessary to minimize

h(u) - (xc+ 2A11P21+ 2x12P22 ) + cu u2

Since a2h~u)/au2 = cu > 0, we set

Umin - -(xo+ 2A11 P2 1 + X12 P2 2 )/cu,

and the optimal cortrol is specified by

u(t) =-M1 if Umin <S-M1

u(t) = Umin if Iu mini < M1

u(t) = +M 1 if Umin M1

If u is unbounded, then u(t) = umin(t),
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CHAPTER VII

COMPUTATIONAL ASPECTS FOR COMPUTING THE

OPTIMAL COCNTROLS

In order to compute the optimal controls using the necessary conditi'bns

of the previous chapter, it is necessary to solve the two-point boundary

rltie problem associated with the matrix Riccati equation and the

matrix adjoint equation. The hkitial condition for the covariance

matrix P is specified by Po, and, generally, the final values for the

matz ix of adjoint variables A is specified by AT, which depends on the

particular cost functional which is being minimized. Many people have

been concerned with the numerical solution of similar two point bound-

ary value problems. The success of a particular scheme depends on

having considerable insight about the solutions of the particular problem

being solved, since a fairly accurate guess of the unknown adjoint

variables A. is required. In fact, many published results which show

successful iteration schemes for choosing the unknown boundary con-

dition for reasonably complicated problems, start with initial guesses

"in which the cost functional is quite close to being a minimum. The

nature of the problem considered here is such that considerable compu-

tational effort can be justified for the numerical solution of a particular
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identification problem due to the practical interest in improved identifi-

cation. A particular example in which improved identification of IMU

error parameters is very profitable occurs in the flight testing of

inertial platforms for purposes of obtaining the instrument errors under

actual operating conditions. In t..,se cases it is necessary to "design

the experiment", that is, select a nominal trajectory for the flight test

vehi'le so as to obtain as much information about the error parameters

as possible for a particular flight. The material presented in the

previous chapters offers a systematic way to maximize this information.

The same remarks can be made in regards to inflight alignment and

calibration of inertial measurement units, and for the flight testing of

other devices in which it is desirable to identify error parameters.

Due to the complicated nature of the present optimization problem, we

are primarily interested in computation schemes in which it is possible

to observe certain iterations of the computation and then choose new

boundary values based on these observations. The possibility of using

algorithms which are based on a direct minimization of the cost func-

tionals involved are not considered, although such algorithms are

suitable topics for further investigations. In particular, the C-method

which has recently been studied for optimal control problems !16]

could be considered.
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7.1 Iteration on the Initial Adjoint Variables, A.

For this scheme a cost functional involving AT and PT is specified,

for example, as
I

(Ao) = + (T-AT)7.1)

where the tilda denotes a final value of P or of A resulting from

an initial guess on the adjoint variables A0, and WP and W?" are

non-negative weighthig matrices. If an integral constraint on the

controls is included, say of the form flu(t) dt c, then we let

(=fTU(t) dt, and add a term of the form <_.E,(T)-c),wU.o(T) -_cD

to the functional (7. 1). Associated with this cost functional are

the differential equations

S=AP + PA* - PBP +Q, P(to) = Po given; (7.2)

A,=-A*A-AA+BPA+APB, A(T)=AT maybe given. (7.3)

and the control equation (which results from minimizing the Hamil-

tonian)

U(t) = h(P, A, t) (7.4)

The idea in the minimization is to choose a sequence (A(bo of initial

adjoint variables so that I(A0o) approaches zero after a reasonable

number of iterations4
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A straightforward method for choosing the successive iterations

is to form aI(Ao)/aAo and then proceed in the direction of steepest

descent. Since I(Ao) = I(PT(AO),AT(Ao)), we have

a' - WPrx -T) LPr+ 2W•rA T (7.5)

aAD ?T0o , MITMo a~o ._o

The partial derivatives can be approximated by APT/_AMO andAT/AAo

respectively, where -PT and AT denotes the changes in the

elements of IT and AT due to incremental changes in the initial

values of A. The approximate derivatives would be obtained by

solving (7.2), (7.3), (7.4) as initial value problems n(n+ 1)/2

times. If all the elements of PT are unspecified, then WP=- 0 and

the resulting computations are considerably reduced.

The main idea in the steepest descent approach is as follows:

(1) Make an initial guess A.1)

(2) Compute al/M- ) JA() -V&I/.A 1

0 -0

"(4) If I (A') < I (P)) return to step (1) and continue this
0'

process until I(A%()) is sufficiently close to zero.

There are several methods available for choosing the "gain" k.

The value of k should be small enough so that the minimization

proceeds in the right direction and yet k must be sufficiently
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large so that the minimization does not require too many

iterations. One method for choosing k -might be to specify

a fixed percent change in the cost for such iteration, so

that for v7 fixed, 6I(i) = -17(i- '1. This results in k(i) =
-vIII(i-1~ i "i-o4a) 12. Another method is to choose k such

that I(Ao + kAf) is minimized with respect to k where Af is a

prespecified matrix. This results in a k specified by

-Af:i2/<Af, grad I(Af)>. If it is aractical to be in the compu-

tation "loop", then it is prob.,bly more satisfactory to select k

by observing the resulting changes in I (). Thus if I (A(o+I))

I(Aol)), then k is too large, and if 4(i+1) is nearly equal to IM,

then k coui be increased.

7.2 Iteration on the Final Covariance Matrix, P(T)

For particular problems, it might be more efficient to iterate

on the fiial covariance matrix PT instead ol on the initial adjoint

v .riables A0 . The iteration procedure is cssentially as in the

previous section, except that thL adjoint and covariance equa-

tions are solved With the time variable reversed and the iteration

is with F. More specifically, the cost functional (7.1) becomes

I(PT) = !IP0o "oiwP + 1% - LA0JW (7.6)
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and we let T T - tin equations (7.2), (7.3) and (7.4). This

method has the advantage that the backwards covariance equation

might be less "unstable" than the forward adjoint equation.

7.3 Selection of Initial Values, A0 (or PT)

Since the adjoint equation is highly unstable it may be impossible

to obtain convergence in the above iteration schemes unless good

initial choices of Ao (or PT) can be made. Firstly, using results

of W.T. Reid [ 151 we show the

Property 7, 1 If the cost functional is of the form

trace CWP(T ;u)], then the solution A(t) of the adjoi-lt equation

will be positive definite if W is positive definite.

Demonstration: W.T. Reid (15i considered the matrix

differential equation

t = H(t) T + TK(t) (7.7)

and showed that the general solution is of the form T(t) = U(t)CV(t),

where U (t) is a fundamental solution of 0 = HU and V (t) is a fun-

damental solution of V = VK, and C is an arbitrary constant

matrix. The elements of H and K are assumed to be continuous

on the interval I = (to, T]. If the elements of these matrices

154



I-

are assumed only to be integrable, then the solution to (7.7) is

a matrix whose elements are absolutely continuous and (7.7) is

satisfied almost everywhere in I.

Under the assumption that H = K*, it is clear that if U(t) is a

fundamental solution of '( = KU, then U*(t) is a fundamental solu-

tion of V = VK*, and the solution of (7.2) under this assumption

will be T(t) = U(t) C U*(t). Now the adjoint equation can be

written as

A = K*A +AK, where K = -A+(?M*R-1M) (7.8)

Using the usual notation o(t, T) for the fundamental solution of

Vý = KV, the solution of (7.8) is A(t) =-•(t, T) C*(t, T). Since

A(T) = W, and W is positive definite by hypothesis, the solution

is A(t) = s(t, T) W,*(t, T). *This solution is positive definite

since *-l(t,T) always exists.

Remark This property could be of practical value in

the selection of the initial values A0 . If the solution fails to

remain positive definite for a particular positive definite choice

OfAo, then'a new choice can be made without necessarily com-

pleting the solution of the equations.
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Since the optimal control can be assumed bang-bang in most

instances, it is feasible to test the effect of various control

functions upon the covariance functions in an open loop manner.

If, for example, useful upper and lower bounds on the number

of switchings were available, the search procedure would be

greatly simplified. For the example introduced in Section 6.

the effect of the number of switchings is shown in figure 7, 1.

In this example at least one switch is required because of the

integral constraint f u(t) dt = 0. These results show that a

control which switches once at t = 0. 5 seconds seenis to be the

optimal. Once several controls have been tried, the one which

gives the best results could be used to solve the adjoint equation

backwards (or else give PT directly) to obtain a good initial

guess A 0̂o.

2.0 2.0 A=0.05 Po=2.0 qe= 0.001
a=-1.0 r=0.1 qX=6.OiH.0 1.0-

0.01 0.0
0 0.5 1.0 0 5 10

TIME ;SEC) NUMBER OF SWITCHES

Figure 7. 1 Effect of Switching on the Estimation of a
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7.4 Discrete Form of the Covariance and Adjoint Equations

For computational purposes it may be more efficient to work with

the discrete form of the covariance and adjoint equations.

Actually, in some applications it is necessary to work with dis-

crete state and observation equations. The discrete form of the

matrix Riccati equation is given by

Pk+ k+1 -P+ 1Mýk+l(Mk+1Pk 1Mk+1 +Rk+If Mk+lPk+(

(7.9a)

k+= 1 k+l,k Pk -k+l1,k + Qk (7.9b)

If Fk = Fk(Pk,uk) is defined by Pk+1 - Pk, then, with the integral

constraint on u the Hamiltonian becomes

H = %•o, k>+Trace [FkA*] (7.10)

and the adjoint variables will satisfy the equation

A _ (k(7.11)

along the optimal trajectory. The optimal control a is obtained

by minimizing H. When it is possible to evaluate the matr .-

-H/aPk, the adjoint equation will now be in discrete form. It is

noted that in minimizing Hk, a neat result for the optimal uk is
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not obtained as in the continuous case because of the inverse

matrix operations involved in equation (7.9). A good approxi-

mation which might be considered is to minimize the continuous

version of the Hamiltonian for the selection of _uk.

For the example presented in section 6.6, the covariance equation

satisfies

P k+I " P k = r ,-T -d7 rt(7. 12a)rn,• - rd qr' -d

and the adjoint equaion satisfies

h'. 2ab(ra1) 2 -2arnair' (na') 2

~+1 I - k ab~ (2 ~ '+r,'r2 -2) -2amWr'(+r-bn7) 6k[(rbir? 2rblr V'r+r-bi1) -bi~rr(2(r. +r)-byn~
(7. 12b)

In these equations the variables are defined as follows:

a =ea b = -fea•-1]uk

c t.S(k) d = PV2(k) e = P22(k) ;

1. = a(ca+ db) + b(da+ cb) + qX

S= ad+ be r'= 1/ + r.

For this example,with cost functional J 1 (u) of section 6. 6,the

iteration scheme is thus to choose the sequence { x(i)}
(;iio ? ,(0) o h (O) 2 2(O)} such that (\,(i)) tends to zero, where

O I1'12 '22 0
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For eac-h i, the vector of partial derivatives clI(P)A~)),/a M~ was
obtained by changing the initial adjoint %ector X() by 1,) as shown

in the table below, and then resolving equat-ons (7. 12a), (7. 12b)

and computing the optimal control from (7. 12e), four times.

ui(t) = -M sign (xi+2X p2 i.i 1+2; 1k 2 P). (7. 12e)

Case A ro A LX,1 .2 AX"2 &I/AXi

I X 0 00 *
2 O) X 0 0 *

3 0 0 X 0 *
4 0 0 0 X *

7.5 Future Problem Areas

The material presented in this study suggests ndmerous areas in

which both practical and theoretical problems can be found. A few

of the problems which the author fe'ls might lb. fruitful areas for

future research are mentioned in this section. This collection of

problems is by no means complete, and, depending on one's particu-

lar practical or theoretical interests, additional problem areas

would be formulated.

The techniques outlined in Chapter llmight be used to study gravity

errors and systems in which radar is used to obtain observation

data. In the case of strapped-down IMU's, the elements of the
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computed transformation matrix might be used to obtain

additional observational data. As mentioned in Chapter IH,

angular velocity observaticns could also be used to improve the

idc.n'Ufication of the error parameters. Additional work (both

experimental and analytical) must be directed towards obtaining

realistic probabilistic descriptions of the environmental and

observational random disturbances. To supplement the experi-

mental data presented in Chapter IV additional specific error

parameter configurations, such as configurations which would

include accelerometer bias, scale-factor, and misalignment

angles, should be considered to obtain additional insight into the

trajectory optimization problem. Additional wurk on the "no-

noise" properties presented in Chapter V would also be desirable.

A meaningful area of research in regards to control theory appli-

cations would be to study the properties of the two-point boundary-

value problem associated with the matrix Riccati equation and the

adjoint equation. Theorems on the number of switches the optimal

control makes, whether or not singular controls result, and

whether or not the optimal controls are unique, would be of great

value in computing the optimal controls. Numerical experimenta-

tion with direct and indirect methods for computing the optimal

controls should be made. Indirect methods (that is, in terms of
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the adjoint equations) have been presented in Chapter VII.

Although the resulting optimal controls are open-loop, these are

of practical interest because the maneuvering associated with the

parameter identification problems of flight-testing inertial

components, and inflight alignment and calibration of IMU's

can be precalculated.

Additional theoretical control problems arize when the control

functions enter the dynamical equations in the complicated

fashion Fuggested in section 5.2 for Configuration MI. In this

case (and in other cases in which mass-unbalance terms are

included) the product of the control and its integral appear in

the dynamical equations. Finally, there are systems in which

the identification problem requires that a linearized minimum

variance estimator be used. In this case a stochastic optimi-

zation problem must be considered, or else Monte Carlo

studies would need to be made to compare the covariance which

is assumed to be a solution of the Riccati equation with the true

covariance.
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APPENDIX "A"

Discussion of the Correlated Noise Model

We consider stationar-, correlated gaussiai random processes, with

band-pass power spectra of the form shown in Figure A.1. Such pro-

cesses are typical of many physical systems - in particular the vib-

rations of airplane wings and rocket vehicles. In this appendix we

shall be concerned with the selection of shaping filters for use in the

Minimum Variance Estimator equations, the step-size for faithful

numerical integration, ana the digital generation of the random pro-

cesses. This appendix is included because certain of the results

axe uked in previous chapters, and it provides practical information

which is not easily discerned from the literature.

ao -a a

Figure A. 1 Experimental Figure A. 2 Approximating
Spectrum Spectrum

A. 1 Shaping Filter

In order to determine a suitable shaping filter, the experimental

power spectrum shown in Figure A. 1 needs to be approximated

by an analytical function of the form shown in Figure A. 2.
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Power spectrums which might be used to represent the given power

spectrum Sx(o) are

S('(w) A' + exp 2 (A.1)

and

(2 A? AA2  A2

M (w-a)2 +b2 + (w+a)2 +b2  (A.2)

We next approximate the given power spectrum (based on assurrp-

tion and/or experimental data) by the fourth order rational function,

and then synthesize a shaping filter for this rational spectrum

using frequency domain techniques.

It should be remarked that the purpose of the shaping filters dis-

cussed here are not for generating random variables. They are

used to give our problem the required canonic structure, and thus

the approximations made here are not expected 0c be as critical as

in the case of th3 shaping filters used for generating the correlated

random process (Section A. 2).

Given the experimental data, S-(w), the fourth order approximating

spectrum, Sx(w), would be obtained by minimizing (A.3) using

standard approximating techniques,

* =iS - SI, (A. 3)
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where the norm 11. -1 might be of the form

O (SR(w) - Sx(w))p dw 15 p< (A.3a)

or

sup ISO() - S(w)I p= (A.3b)

0 W WO

Of course the minimization is with respect to the parameters

A, a, b, in Equation (A. 2). We next demonstrate several pro-

perties of the assumed shaping filter.

Property I A shaping filter for the spectrum (A. 2) is gi yen

by

Hx(S) 42A (s + c) (A.4)

Demonstration

S)2 .22+ b2+a2
x s4 + 2s2 (az •)+(aý + b,) 2

Letting

0 = Tan-i1  2ab and c2=a 2 + b2.(aie - bZ)

there results

2A(-s + c)(s + c)
8,Sx(s) (s2 + c e09) (s' + cl eCO)'
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whose pole-zero pattern is shown below

I'9/

Figure A. 3 Pole-Zero Pattern of Sr(,)

The transfer function of the shaping filter Hx(s) is obtained from

the left-half plane poles and zeros of Sx(s), since we may write

Sx(S) = tHx(S) 2 Sw(S)

where Sw(s) = 1 is the power density spectrum of the white noise

input to the filter, and H x(S)12 = Hx(s) Hx(o-). Thus there

results

Hx(S) T.A (s + c)

(s + ceJ0/2)(s+ ce-i8/2)

and (A. 4) follows by substituthig for c and e.

Y Equation (A. 4) is written in the time domain, we obtain

k + 2bx+ (a2+ b2) x- 4•-Aw+.r2_-A cw

SThus, the representation of x as given above is not Markovian.
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because it requires that the white noise w be differentiated. In

the following property a method for rearranging the transfer

function of Equation (A.4) is given so that a first-order Markovian

process results.

Property 2 By using the arrangement HA(s) shown below

in Figure A. 4 a first order Markovian form

results. Furthermore, this form may be

written as

d Y[ 4 Y + w (A. 5)"dt= Y2 -a• -b"2

where x -2y1, and A, a, b, c are as defined above.

Demonstration From Figure A. 4 we have

A
X = Xi + X2

where *j = - x1 + a w (A. 5a)

and *= ~X 2 + ! w

Figure A. 4 x2

S~~Rearrangement of ..

Fl- -s• • aI x i ..

Fthe Shaping Filter
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The random variable • has the Markovian property which we are

seeking, and the constants a-, bl, Cl, a2, b2 , and c2 are chosen

such that x has the same power spectrum as x. Now

a1  a2  -

HA(S) = as c, + - 2 =

Hi~s) b, s + C1 + 2 s + C2

s+ a- .s2 + a2 cl

b a b 2+ cl2al.62 I+JR 2 U

bl b2 bl b2

and equation (A. 4) can be wriiten as

HA= 2,•-A (s + c)

s + 2bs + (a + b)

Equating coefficients in the equations for H- and Hx gives

a b 2 +a 2 b ac 2 + ac 1

K -12 A, -2 2
bb 2  a 1-b 2  a2 b1 ,

2 Clb 2 +(c 2 b1 )

=a2 +b', b b2  = 2b,
b1 b2  b h2

From these relations there results

C1/b 1 =b+ja and c 2 b2 =b - ja

After further substitution there rA sutts

bl=b 2 , cl =2 • b(b+ja), and b, 1 +j (1*c/b)

(A. 5b)
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Equations (A. 5b) imply that (choosing the negative sign)
= K K = 2K s+c

H( s + c+ b2 s+c 2  lb•1  s+ 2bsT+ c

so that

K =A 1 -+ -. (b -c)2

This means that

sis'IfI

equivalent W 4 x

Summarizing, we now have x x + x2 , where

*1 = (b +j *) x, + K1 w

K (A. 5c)*2 -(b-ja) x2 + f W W

bI and K are constants specified above.

From the symmetry in equations (A. 5c) it is seen that x1="2 so that

xc = ii1+ *2 =-(b+ ja) x, -,ka- ja) x, + K [-b'.l + _l w

= -2Re (b+ja) xl] + aK ( xl+b.l)
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and

1= -(Yr b - ay 2 ) + A (A.5d)

where x, • Yl + i Y2 Equation(A. 5c)implies that

k2 = -(ayl + by 2 ) - S b (I - _-g)w (A.5e)

Equations (A. 5d) and (A. 5e) may be combined to give

d [1J a -b a'2J + A - I (A. 5)

where x = = 2y1 . This is tb,hz required Markov form for the

random process x which was to be demonstrated.

Remark: The process specified by Equation (A. 5) has the discrete

representation

x/2 os aa sin aa

y Y kl \sin a& cos Y!

-cosa -+
S(:.•- cos a + sin a )+(

(A.6)

where A= tk+ -tk, wk=w~t)for tk 9 t Stk+l

P.pertty 3 The equation (A.n) below may also be used as a

representation of the random process x.
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dt x [c2 -2bJx 2 + F2A Jc-2b

(A.7)

Demonstration Let

x= x (A.7a)

*1 = x2 + 4 A w (A.7b)

i2 = -2bx 2 -(a 2 + b2 ) x- +,r A (c-2b)w (A.7c)

Substituting (A. 7a) into (A. 7b) gives

x2 = k -12Aw

vyhich upon substitution into equation (A. ?f!) gives

R -,r2A •"=-2bk+ 2bF-2 A w - c2x+ #'2A (c - 2b) w

=-2bk - c2 x +,12 A c w (A. 7d)

This equation has the vector form of Equation (A. 7)

2 ThLq procedure is certainly shorter than the method

given in Property 2, however, the substitutions are

not obtained in a straightforward manner.
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A. 2 Digital Generation of a Correlated Random Proce.ss Specified

by an Arbitrary Band-Pass Power Spectrum

A method for generating random variables digitally is to take linear

combinations of outputs from some "standard" uncorrelated random

number generator. In this Section we discuss a method for com-

puting the coefficients in the linear -ombination of uncorrelated

random numbers. The coefficients are chosen so that the resulting

random variable has a power spectrum Which approximates the

given power spectrums in a mean square sense.

A white noise sequence sampled at unity time intervals has the

spectral representation

wj= eJ i dZw( ) 
(A.8)

where

E [dZw(w)] =OandEldZw(M)12  dw,

dZw(-W)= w ,

E dZw(') dZw(•i) = 0 if c 'd(independant increments).

In order to generate this correlated noise, we do not need a

physically realizable scheme, i.e., we can use future values of
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the random sequence, since these would be available in the

computer memory.

Property 4 Suppose we assume that xj can be approximated

sati3ilactorily by a polynomial of the form

xj -aN wj-.N + a N+1 wj-N+l +

.... +a w +a w a wJ +

-1+ aN-1 wj+N.' a+N wj+N

+N

=: ak wj -k (A.9)

k =-N

It is assumed that ak = ak (corresponding future and past values

are equally weighed), then the coefficients which approximate the

given power spectrum in a least squares sense are given by

ak = At'0 t Pcos kAtwa dwc k=O,1 1,...,N.

(A 10)

Demonstration Applying Equation (A. 8) to (A. 9) gives

7r r N "k1k i j d

(A. 10a)

+ 2ak cos ]eiJ dZw( i) ei:J dZx(.J)

175



I

Thus
N

E IdZx w1 2  Ia ja+ E acos kw1 2 ElI dzwMw~
k=l

or

Sx(w) do o= +a 2+ ak cos kul 2 dw,
k=l

and

N

Sx(M) =jao+ 2 ak cos kw (A.10b)
k=1

where S,(w) is the given power spectrum of the correlated noise x.

The quantity in the brackets of (A. 1Ob) is real, so that we can write

Sx()) (ao + 2N al cos k (A. 10c)
k=1

We shalU pick a mean-square error criterion for evaluating the co-

efficients ak. However, in order to obtain simplified expressions

for these coefficients, we approximatel instead of Sx(c).

We then obtain the mean-square error over the interval 1-r, 70 as

•: 2L al, cos dw

k=O

(Note: The prime on the summation indicates ao is dvidced by, two).

(S,(cI) dw +4 a a jcos kwdw -
k=0
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- 4 1: ak cos kwo dwd. + 4L akaj os kw cos jw do
k=0 k=0 j=0

kej

Now in actual fact, the power spectrum Sx (w) will be zero after

some sufficiently large angular frequency w = n, and the sampling

frequency would not be unity, but 1/At, where At is the time (in

seconds) between samples. Thus, instead of cos k,,, we have

coskAtw. If we choose the interval !-7r/At, 1r/At] and the sampling

period At such that 7r/At >2 and At is compatible with hitegration

requirements (next section) then

lr/At

coskAtw cosjAtw dw = N jk
r/t 0 j k

The error c is then

S--IS•,) dw + - ak -4f ak4.f •Iij•) cos katwdw
"In k=0 k = -Arlt

Since we are minimizing E with respect to the ak, which are

differentiable and unconstrained, we obtain

X/At
at ak - 4f/-ix(HT CoskAtwdw = 0 k= 0, 1,...,N.

-VAt

or

At jr/A t
ak =If¶ ;7-x(7cos~c twdw, k=0,1,...,N (A. 10d)

007
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We are sure that this is a minimum since the second derivatives

with respect to ak are > 0. Since the integrand in equation (A. lOd)

is an even function, we obtain (A. 10) as required.

Property 5 The per.zent error in the representation specified

by Property 4 is given by

P~t + ak I(.!
P-1t [!22!i

where P is the power in the given random process.

Demonstration Since 4 is an even function, it has a

Fourier Series expansion

where

fk = rfOF COSx- cos---wdw, k = 0, 1.. (A.1l1b)

If we compare equations (A. lib) and(A. i0) with. T/At = r, we see

that ak= ak/ 2 . Thus *x (w) = a.+2L2 akcos Mtcj, and the

power in the random process is

ia 2P= Sx (w) dw = 2fSx(w) dw =f' (ao+ 27 ak cos katw) dw

a6+4T 2frAt& co-wdw + 21 a

=7A aratj~ (A. ilc)
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Letting N

P A -J _+ ak(AI d
At L 2 k=l J(.ld

the error in total power between the given random variable x, and

the synthesized random variable ?. is

AP= jP -j- 12j Sx(w) dw- [_ 1 (A.Ile)

This error is a function of the number of coefficients used, N, and

the error is inversely proportional to N. This monotonicity of

the truncated Fourier series approximation is due to the orthflgon-

ality of the cosine functions. As a percentage, Equation (A. lie)

becomes

APP + ± k2]I (A. 11f)

the required result (A. 11).

Remark: Suppose it is required that the coefficients ak and N are

chosen so that the total power of 3R be within a of the power in x,

that is,

F< -i5 a (A. Ilg)

This cculd be a good criterion for determining the number of co-

efficients N.
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Computational Results

The two power spectrums specified below by Equations (A. i2a) and

(A. 12b) were considered.

A2  -w- (W+a

and

S 2 )(w) -a) 2 +b+ (+• 2a--b (A.13a)

The corresponding autocorrelation functions are, respectively,

R (1)(_) 2A1e-r2 a 2/2
= cos ar (A.12b)

aad

R( 2 )(T) A.eb cos a,- (A.13b)

Computational results for S( 1)(w) with a = 24.0 radians, a = 10.0,

and S( 1 )(a) = 1.0, and for S(2)(w), with a=24.0 radians, b = 5.0,

and S( 2 )(a) = 1.0, are sh3wn below. In these tables

k--'I
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TABLE 1 SAMPLING TIME At = Ir/ = /75 = .0427 sec

N- akj ak

0 .455257* .387541*

1 .196292 .14930 .113449 .18522

2 -. 11.3420 .07231 -. 066344 .14067

3 -. 106863 .00398 -. 095744 .04768

4 -. 025387 .00012 -. 045514 .02683

5 -. 002S64 .00007 -. 016735 .02399
6 -. 002264 .00604 .037336 .00988

7 -. 001855 .00002 .021766 .00513
8 -. 001288 .00001 -. 004489 .00487

* This cofficient has not beem divided by two.

The two setz of curves on the following pages show S(1)(w) and

S) mad the approximating power spectrums

x (•) =(a ak cos kAtw , i 2=

for N = 10 and 15, and at = 0.02 seconds (That is, the curves

corresponding to the coefficients of Table 2).
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From these cur..es we see that the exponential power spectrum,

(w), is reasonably well approximated as a function of :oby N= 10,

and very well by N = 15. On the other hand, the rational power

spectrum, S(2)(o) is not well approximated, even by N = 15. Thus

N depends on t and on the shape of the given power spectrum.

TABME 2 SAMPLING TIME At= 0.02 sec

N ak a ak

0 .217369* .175520*

1 .184170 .27880 .139382 .26105

2 .102510 .14710 .061514 .18285

3 . o1i3242 . 14490 -. 002265 . 18066

4 -. 047379 .11677 -. 029463 .16222

5 -. 067106 .06033 -. 037714 .13207

6 -. 056730 .01999 -. 044446 .09016

7 -. 035391 .00430 -. 044527 .04810

8 -. 170496 .00065 -. 029811 .02924

9 -. 006412 .00014 -. 008780 .02761

10 -. 002095 .00008 .004843 .02711

11 -,001062 .0000"0 .010375 .02482

12 -. 001053 .015116 .01998

13 -. 001071 .018987 .01233

14 -. 000968 .016050 .00686

15 - 100845 .007177 .00577 I
* Coefficient has not been divided by two.
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Correlated Random Process

We Pnsider a zero-viean staf.Aonary, gausslaw random process

with power spectrum 3 av-d autocovarlance ftction.Rr) given by!

where it is noted that here the one-slded specteum 5(w) is tisedý

A gcod indication of the step aizes can be obtained if the number of

zero-crossings per Unit time the number of maximmm and minimumn-

per unit time and the r. mn. s. value of the derivative are known.

For stationary, gussian, random processes the ezpected values of

these quantities can be calculated relatively easily in terms of the

power spedrums or autocovariante functions. Since t•e random

process is assumed zero-mean and gaussian, the probflIfty dls-

tribution is completely specified by R(O)I/2. That is, the

probability that x(t) lies between x .di -x+ is

• •dx e 2p- 2%0)''.'••

4 exp-x2()
%72 r R(O)

Thus the probability distribuations of such proL.'-c:sea are completely

specified by their variance.

•i10
411
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'-he e•Tpected aumber rt zeros per second e x',• is Oven by

(Eq-wjon(3. 3-D1~) of 1121)

or S/- /2

0.14)

The expected number of maxima and minima is given by (Equation

(3.6-6 of

14 E of max. and t in per by

(A. 15)
_ 1 s(w)dwa

L"2S(W)dw

i

The r. m.)s. vainlte of x n(ti gb 0ven by

STee [RV(oi jSOn d (A.16)

wher~e

i Remark In the above- expressions it is assumed that the nocossary

derivatives of R(r) in the neighborhood of -r0 exlist. According to

+ Theorems VII and XI in section 20. 5 of A. B. Taylor Is Advanced
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Calculus, the necessary derivatives of R(r) exist ir. the neighbor-

hood of T= 0 provided that the integrals in equatlons (A. 14), (A. 15),

(A. 16) converge. This is a useful result as we do not need to have

R(r) explicitly. For ex nple, in equations (A. 13a) and (A. 13b)

above, R2(T) does not have the necessary derivaives at .=0. If

we truncate S2(w) all of the necessary integrals in equations (A. 14),

(A. 15) and (A. 16) converge, thus we are sare by this result that

the necessary derivades of RJr) corresponding to this truncated

S2(w) exist. It would be fairly tedious to obtain the R2(r) corres-

ponding to this trurcated Si(w), and then to verify that the necessary

derivatives exist.

Generally, the relations (A. 14), (A. 15) and (A. 16) cannot be

calculated readily. Hiowever, for the evpnential power spectrum

(A. 12a) we may calculate the quantities given by (A. 14), (A. 15)

and ,. 16) in terms of the derivatives oý Rl(r) evaluated at T=0.

In particular we have

Property 6 For the exponential spectrum, the asymptotic

values (a -- i) mny be calculated frcim

2 2
E o.ofzeros/se _ -( -+ a (A. 18a)

jNo. o max and mm/se 1 (A. i8b)
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and

= [R- [ ()1 2A(a(A.18c)

Demcnstratdon Letting

2 2
R(.)i•, = e-T a /2 cos aT f1(.•)• f2(a)

there results

R(0) f1(0)f 2 (0) = 1

1(O)f2(O) +2fl(0)(')f2(0) (+fll0) 1(f2(0) =

R()(O) = fl(O)% 1fooý +46 '1 (3 (-2) 2)

(a) (1) f 20 +64A 220 4
+4fl)) a )+ 6a2a2 3a4

Substituting these results into (A. 14), (A. 15) and (A. 16) yields

equations (A. 18a), (A. 18b),(A. 18c), as required.

Experimental Results

Values of expressions (A.14), (A.15), and(A.16) for the two power

spectrums (A.12a) and(A.13a), and for various values of the con-

stants a, b, cr, and n are shown in the curves below. The asymptotic

values for the exponential spectrum (Figure A.6)agree exactly with

the values cahculated from Equations (A.18a) and (A.18b) (that is,

when the asymptotic values are reached in Figure A. 6.
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To give some physical Zleling for the above discussion and

results, a white noise sequence having a flat power spectrum to

100 cycles/second was generated (white noise was sampled 100

times/iscond). This sequence was t13n passed through the

low-pass filter (0 to 70 radians/second). By actually counting

the number of zero crossings and the number of maximum and

minimum on the time histories the experimental results are com-

pared below with those obtalned from the integral equations

(A. 14) and (A. 15).

Time-Interval No. of Zeros No. of Max & Min

0-1 11 1L

1-2 14 18

2-3 14 20

3-4 17 17

4-5 14 19

5-6 15 22

6-7 13 14

7-8 13 17

8-9 14 17

10-10 13 17

TOTAL 138 179

These results show good correspondence between values calcu-

lated from Equations (A. 14) and (A. 15). In partidular, the
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average number of experimental zero crossings is 13.8, and

the expected number of zero crossings from Equation (A. 14) Is

14.0. The average number of experimental maxima and minima

is 17.9, and the expected number of maxima and minima from

Equation (A. 15) is 18.4.

It is important to note that the observed values of zero-crossings

and maxima and minima do not vary drastically from the

average values. This may be readily observed by comparing

the columns of values above with the average values, 13. 8 and

17. 5, respectively.
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A.4 Comparison of Three Methods for Generating

Digitally Stationary Correlated Random Processes

In this section we compare the two models for generating the cor-

related random processes specified above by Equations (A. 6) and

(A. 9), along with a third set of equations to be specified below.

It is instructive to make such a comparison because each of the

three shaping filters considered here has been formulated using

different assumptions and approximations. Furthermore, each

of the shaping filters would have advantages over the other two in

the application of the minimum variance techniques.

The first filter, Filter I (Equation A. 9)), is useful because arbit-

rary power spectra may be approximated without altering the filter

design. Essentially this filter uses a moving average of uncorre-

lated random numbers to generate correlated noise. This method

has the disadvantages that a digital subroutine is required to

generate its coefficients, and that the filter is not in canonic form

for use in the error-analysis equation of the minimum-variance

estimator. However, it is useful for generating observations.

Th i second and third filters, Filter n (Equation (A. 6)) and Filter

I, both require that the given power spectra be first approximated

I 1_94



by a fourth order rational spectra. These filters use feedback to

generate the desired correlated noise in terms of uncorrelated

random numbers. Filters U and mI generally would not represent

the given power spectra as faithfully as Filter I. However, these

filters are ir the -anonic form for use in the error-analysis

equation. The third filter probably gives a more faithful represen-

tation of the specific rational spectrum considered than does

Filter H, since the coefficients of Filter M have been adjusted to

improve the approximation in going from a continuous random

process to a discrete random process.

Filter U is used for the same purpose as Filter MI and the deriva-

tion of Filter II is obtained in a straightforward fashion. The

derivation of Filters I and U is given above, and the specification

of Filter I31 is given in [14] . Combinations of the three above-

mentioned shaping filters could be useful in studying the sensitivity

of the minimum-variance estimates of the state vector due to

variations in the state noise power spectra.

We give only a brief description of the three shaping filters

considered. Additional details of these filters may be found above.

4i
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IdI
Filter I (Section A. 2)

We are given a stationary, gaussian. random process, x, with a

power spectrum S,.•). We assume that x(jat) xj may be

approximated by

N
S> k- akwJ k (A. 19)

rehere wi is a white noise sequence and is obtained from a "standard"

uncorrelated random number generator, and the coefficients ak are

constants which can be computed from the power spectrum Sx(W) of

xj. Specifically, the ak are given by Equation (A. 10) and N is

chosen to satisfy (A. 1ig).

Filter H (Section A. 1)

I We make the assumption that the given power spectrum may be

F suitably approximated by the fourth order rational power spectrum

Sx(w) = (A.20a)

where B is chosen so that Sx(± a) = A2. A model for this process

is specified by Equation (A. 5). If it is assumed that

the noise w(t) is constant over the relatively short computation

interval A, (in Section A. 3 quantitative procedures are given

• 1-96
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which insure that this assumption is realistic; the distinction

between a white noise process and a white noise sequence Will be

discussed below), then the solution of (A. 20b) may be written as*

+~ •cos aA sin a)

+ wi-1

(A.20b)

Simplifying the notation, (A. 20) may be written as

-= A, 3i 1 + b.I wi 1  (A. 20)

where the definition of xi, A11, and In is obvious from (A. 20.

The "white noise" sequence wj _ 1 has the property

E[wi]=0 and Cov(wi,wj )= E[wi wj] =ij,

where

1 for i = j

i {for i j

*Wong and Zakai, [13] , have shown that one generally can't
replace a stochastic differential equation with the limit of solu-
tions of an ordinary dlfferential equation, as the solutions of
the latter usually do not converge to the solution of the former.
However, the solution (A. 20b) would converge to that of (A. 6)
due to linearity of the equation.
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Filter III

A discrete model of i'he process deiited by (A. 2'0z Is g~ven in [14)

as

xi bl xil- b2 xi- 2 + al wi-1 + a2 wt- 2  (Ao21a)

where wi is as above, and where

bI= 2ebcos aA b2 =e-2b

a, 1= /2(lb) -41Pb 2'Kj

a2 = V/24(- 2  +41 +bib (A.21b)
= sampling interval o= A2B

b

Next let, Yi I - (a2/b 2 ) Wp. so that i = bXj.. 1 -b2yijl+alw1 .. 1.
These equations may be written in matrix form as

(Xi (b -2 i- a(
+ Wi-1 (A.21c)

Again, to simplify the notation, we write (A. 21c) as

X-. =AM 2q-1 + -bMl wi- (A. 21)

-R•emark if a white noise process, w(t) has covariance R(t) i(t-T),

then tim corresponding white noise sequence is

wj =w(t= jA)/ and Cov (wj) =R(t= JA)/4
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The covaria ces for Filter I and 11 were assumed to be for a white

noise process, and that for Filter IM was for a white noise sequence.

Thus suitable normalizing factors must be introduced into each.

Specific Parameters Used for the Numeric al Comparison

In order to make a quantitive comparison of the three shaping

filters discussed above, we took a = 24, b = 5 and A = 5. For

these values of a and b, a sampling rate of a =.02 seconds was

selected. This value of A was chosen according to the criteria

given in Section A. 3. For these values of a, b, A, and a, the

coefficients in Equation(A.19) are given In Table H, Section A. 2,

and the matrices in Equations (A. 20) and (A. 21) become

.,, 802586 .417835) 2j .724374)
S= \- ++ +bn - .jso s

-0.417835 .802,586/ 1.305003

AM (1.605172 -. 8187l3\ (M= 3.286653
1.0 0 6.6866'70

Simuletion Results

By actually counting the numbei of zero crossings and the number

of maxima and minima on the time histories of simulated filters

1 i.
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the results of the three filters can be wmm-a•red with those estab-

lished in Section A.3. The observed values for a 5 second sample

are sh•wn below

Numerical Results (a=24, b=5, A= .02)

Number of Zeros Number of Maxima &
in 5 Seconds Minima in 5 Seconds

White Noise 129 170

Filter I 50 Iil

Filter II 51 87

Filter MI 47 96

From Section A. 3, the expected number of zeros in 5 seconds is

k• approximately 51, and the expected number of maxima and minima

in 5 seconds is approximately 115 when sampled 50 times/second.

For white noise sampled every. 02 seconds, these numbers are

- 28.9/second and 33.6./second, respectively.

Since we are assuming gaussian raadom variables, it is of interest

to count the number of points outside of ± 1 sigma:

White Filter Filter Filter
Noise I 11 3

Percent of Total points
- outside of ± I sigra S2

200
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