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PREFACE

The contact problem is one of the basic problems in the theory
of elasticity. Calculation of the many important parts, structures
and machines is based on the theory of the compression of elastic
bodies. However, this theory presents considerable mathematical
gifficulties. The first correct solutlion of the basic case of the
contact problem was given by Hertz! as long ago as in 1882, and the
mathematical development of the problem set on this solution for
approximately 60 years. During this period efforts of engineers
and theoreticians were directed mainly at the experimental checking
of the theory and the development of its applications in englneering
(works of academicians, A. N. Dinnik, N. M. Belyayev and others).

In the 1920's and especially 1930's and 1940's, the mathematical
base for the solution of the contact problem became quite different
from what it was in the second half of the last century. Hertz
used in his investigation only formulas from the theory of potential
of a uniform ellipsold, which represents the simplest prototype
of solutions of problems of the theory of potential and theory of
integral equations; whereas, starting approximately from the 1930's
we had available the powerful, developed by us in the Soviet Union,
apparatus of the resolution of problems of the theory of elasticity,

'Hertz H., Gesammelte Werke, t. 1 Leipzig, 1895, str. 155.
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and the other one - in his monograph, "Singular integral equations™
and in articles preceding it. In these books extensive bibliographic
data capn be found. Let us note that in sclence, to & certain degree
of the related theory of elasticity, namely, in hydfo~ and aero-
dynamics, for a lbng time in resolution of problems about two-dimen-
gional motion of liquid and about the 1lift of a wing functions of the
complex variable and singular integral equations were used.

It is quite natural that in the Soviet Union a number of works
have appeared in which the contact problem of the theory of elasticity
has received substantial improvement and development.

For the first time solutions of new contact;problems, which are
a gensralization of the basic case, were given by me!. In subsequent
articles? I obtained the solution of a number of other problems,

using partly the mathematical apparatus created by Academician A.
M. Lyapunov®.

Very valuable solutions were obtained by a number of authors,
especially in the school of N. I. Muskhelishvili®, and also by
L. A. Galin®, &. I. Lur'ye®, G. N. Savin’ and others. Thus, at
present the theory of the contact problem has attained such great
development that 1t can be examined as a large independent branch
of the theory of elasticity, which has an important practical value
for a calculation of parts of structures and machines.

'Shtayerman I. Ya., K teorii Gertsa mestnykh deformatsiy pri
szhatii uprugikh tel (On the theory of Hertz of local deformations
with the compression of elastlc bodies). Doklady AN SSSR, t. XXV,
No- 5, 1939’

2Shtayerman I. Ya., Obobshcheniye teorii Gertsa mestnykh
deformatsiy pri szhatii uprugikh tel (Generalization of the theory
of Hertz of local deformations with the compression of elastic bodies)
{Doklady AN SSSH, t. XXIX, No. 3, 1S40). Mestnyye deformatsii pri
szhatii uprugikh krugovykh tsilindrov, radiusy kotorykh pochtl ravny
(Local deformations with the compression of elastic circular cylinders,
the radii of which are almost equal) (Doklady AN SSSR, t. XXIX,
No. 3, 1940). K voprosu o mestnykh deformatsiyakh pri szhatiil
uprugikh tel (On the question of local deformations with the

FTD=MT-24-61-70 vi
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One of the neceassary prerequisites for this 13 the bringing of

the mathematical theory of the contact probiem to the theoretical
engineers.

The account of our book haz been given in such a manner so that
it with a few exceptions is accessible to the engineer familiar with
a course of higher mathematics of a technical college and having
eertain experience in the reading of mathematical literature.

4.2

- _ The entdre first chapter cfxeuékbook is devoted to methads of

the solution of fundamental equations of the contact problem., We

try to combine the simplicity of the account with proper fullness
of the mathematical scope. "

The second part contains, together with the classical investiga-
tiongs, an account of certain works of Scoviet mathematiclans on the
two-dimentional contact problem of the theory of elasticity, including
my works, part of which has been published for the first time?tghese
include: a new formulation of the problem on the pressure of afstamp

[ FOOTNOTE CONT'D FROM PRECEDING PAGE].

compression of elastic bodies) (Doklady AN SSSR, t. XXXI, No. 8, 1941).

Nekotoryye osobyye sluchal kontaktnoy zadachi (Certaln specilal cases
of contact problem) (Doklady AN SSSR, t. XXXVIII, No. 7, 1943).

Ob odnem obobshchenii zadachi Gertsa (On one generalization of the
problem of Hertz) (Zhurnal "Prikladnaya matematika i mekhanika",

t. 7, vyp. 3, 1941).

3Liapounoff A., Sur les figures d'equilibre, III chast',
St. Petersbourg, 1912.

*See Muskhelishvili N. I., Singulyarnyye integral'nyye uravneniya
(Singular integral equations), Gostekhizdat, 1946

5Galin L. A., Issledovaniyye smeshannykh zadach teoril uprugostm
(Investigation of mixed problems of the theory of elasticity)

(Doktorskaya dissertatsiya, (Doctoral Dissertation) Institut
mekhanilki AN}, Moskva, 1946,

'Lur'ye A. I., Nekotoryye kontaktnyye zadachi teorii uprugosti.
Zhurnal {Certain contact problems of the theory of elasticity.
Journal) "Prikladnaya mekhanika i matematika®™, t. V, vyp. 3, 1941.

’DAN URSP No. 6, 1939; No. 7, 1940; Soobshcheniya Gruzinskogo
Filiala AN SSSR, t. I. No. 10, 1940 g.
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en an elastic half-plane, étscusged iIn § 3 of--Chapter-I¥, and the
pericdic contact protlem, which comprises content of § 5 of Chapter
iI. /

In § 8 of Chapter II §n attempt is made to calculate surface
deformations, which up £t111 now were not calculated "in the theory
of the contact problen.

p % I .
{

Chapter III givesdé.number of new selutiongxef an axisymmetric
contact problem of the theory of elasticity. -

In Chapter IV, together with the clasaical solutions, a number
of new selutions belonging to the authors is gilven.
2o LB
~ The book should beéexam&neﬂ as a division of the mathematical
theory of elasticity, since it is devoted to the solution of basic
contact problems of the theory of elasticity.?*ﬂ
AN
Basic information on the theory of the contact problem can be
found in courses of Academician L. S. Leybenzeon® and S. P. Timoshenko?.

‘Leybenzon L. S., Kurs teorii uprugosgl,(Course of the theory
of elasticity), Gostekhizdat, 1947.

27imoshenko S, P., Teoriya uprugesti (Theory of elasticity),
ONTI, 1937.
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CHAPTER I

MATHEMATICAL INTRODUCTION?

§ 1. Reduction of the Pundamental Equation of
the Two~Dlmensional Contact Problem to
the Dirichiet ¥robiem for & Lircie

Let us gein from the consideration of the fundamental equation
of the two~dimenstionsl contact problem of the theory of elasticity:

é;‘/(l)laﬁ-?_-?{d:n[(:),. -a<f.<,a, -

where f(z) is function assigned inside the interval {—e6, ¢}, {8 is the
unknown function, which must be determined, inside interval (-a, a)
in such a manner so that equation (1) is satisfied. Relative to

the assigned function f(x) we will assume that it is continuous,

and a derivative of it f'(x) can have points of discontinuity inside
the interval (-a, a).

Let us consider the function of twoc varisgble

Vizp=r0nga, (2)
where . o . -
R'&V (3“‘)“'{"50, ) (3)

When y = 0 R' turns into |z—¢| and function V(z, y) turns into the
left site of equation (1). Thus, equation (1) 1s equivalent to the

In this chapter we give in detail and as elementary as possible
the discussed solutions of certain equations on which the theory of
the contact problems, placed in Chapter II is based.

PTD-MT~24-61~70 1



condition
Vis, O)=fle), ~06<L2<y (uy

imposed on function ¥(z, y). Function V(z, y), defined by relation
(2}, 18 called the logarithmic potential of the simple layer on the
segment of the G2 ~e<3<s with density p(¢). Solution of the
"initial equation (1) is equivalent to the detecting of the density
of the simple layer, the logarithmic potential of which ¥(x, y) turns
into the assigned function f(x) on the segment of —~a<z<a. Before
turning to the solution of this problem, let us investigate in
greater detall properties of the potential of tne simple layer

V(z, y). If the point with coordinates xz, y does not lie on the
segment of 02 —s<z<0a, partial derivatives of function V(z, y) can
be calculated by direct differentiation under the integral sign in
the right side of relation (2).

Consecutively we find:

ln% %lull’--'-m[(#"‘)'*ﬂ»

-a_‘ﬂ ‘ [ z= iﬂ o . y a
HERT Ta=pes’ o W D
By 8 (getPPyt $ _~(a—04yt, -
SRR &"‘W“T(a-d%??‘

Hence

V(z. p(t)(x-:i)" éf(z.v) géwi
S (s=8)*+y* ’ S(a-l 4

37 (e 5) _ § p (a1t =yt .
T2 B (R0 TD S (5)

Ving) € p(0){tz—1)' =yl
1(:-;)'“3' ©

From relation (5) it is obvious that function V(z, y) satisfies
the partial differential equation

v , v 0

Fr g (6)

PTD-MT-24-61~70 2
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Differential equation {6) is called the Laplace equation: any
function satisfying the Lapiace equation is called the harmonic
function. Thus, function V{z, y)} everywhere in plane z0y, with the
exception of points of the segment of =e<g<z2<q, of the 0z axis is
of a harmonic function.

Let us investigate now the behavior of the partial derivative

%7 ¢ith the approach of the point with cocordinates z, y to the

3y
segment of the Oz exis —a<z<e When =638 the definite integral,

which determines the derivative'%%'in formulas (5), can be divided in-
to three integrals:

e
_’S 2{8)pdr -
G-y
.e -
0 pya T ooma . % a”
- - p — pleyde
v { oy | &0y (i -
. -2 . £=0 4

The second of the definite integrals of the right side of formula
(7) in turn can be represented in the form of the sum of two integrals:

-g

ks ° 40 " a4s
_ ppdr “d . ()= p (1)}
y'S (7207 L el W(‘)‘. S.m-l-s:}‘ P(:l,; f: ) (8)

if function p(t) is continuous at point ¢ = =z.

Thus,

"_Y_%ﬁ)-],(z, W+ (3, y)+:f.(£. y)+'x‘§3' y?' (9)

where

a- : ]

sind N 1)de

T3, 3)""‘?% (mt-t)‘:-:;“ Ju(z, v)m'-y.iog;-f—_(,—;.w. (10)
-3 . i .

FTD-MT~24-61-70 3



¥

Ms, y)m-—w(z) S(a’:m (11)

n-p(méz -
" “'ﬂ"“ffﬁ E&W (12)
Assuming in (10) y = 0, we will find
5i(5 Q= Ty (5, 0=, (13)

since in definite integrals

Coowa ? pyde
st( 2 3;5 and ) G-ty (14
-3 b8 ..

integrands are limited, and, consequently, the very definite integrals
(14) are limited. Assuming

tez—|y|tgs (-—% £8< -;i),

we will find:

S(ﬂﬂ =Ty Sdl'ivt ' (15)
where
e, -arctglw (0<c.<.§). (16)
Substituting (15) into (11), we will find
il gy = =~ 11 20,p(2),

or




t
|

b R AN YA TGN

- —

Folz, g} —23,p(z) when >0, }

Ji(z, gie=22,p(s) when y<0G (17
As can dbe seen froem (16), !
e =2 When y=0 . (18)

Thus, 1f coordinate y tends to zero, remaining positive, function
J3(x, y) tends to the limiting value --=p(3); if coordinate y approaches
zero, remaining negative, function J3(z, y) approaches the value =p(z).
Function J3(x, ¥) undergoes discontinuity when y = 0,

Jo(z, +0) = —np(z), Jy(z, ~0)msup(z); (19)

here J3(x, + 0) and J3(x, -0) denote the limiting values of function
J3(x, y) on various sides of the point of discontinuity.

Using relations (13) and (19), from formulas (9) we will find

-~

37(:-’"’_?.0 -}-RP(Z)“J‘(zp +0), }

(20
.‘3.’;_(;-_“'_"). —up(z)=t, (z, ~0). )
¥
From (12) we find
. 249 s |
ni<alyl § s (21) ;
z-¢

where n is the maximum absolute value of the difference p(f)=p(3) when
3-i<tgz+e. Since function p(t) by assumption is contlinuous at
point ¢t = z, then n will be as small as desired at sufficiently small

€. Substituting (15) into (21) and taking into account (16), we will
find

”.(3:!/)!<2’.’2<mz. (22)



SR

T

On the basis (22) from (20) it follows that

A popta|com, )
(23)

[FE=2 —ptal| g

Since inequalities (23) are accurate at any e as small as desired,
and n approaches zero tagether with €, then

v ‘;&,"'._..o) = w—up {Z), } ( 4 )
2

v (2, ~0
"_‘(;'fy‘"") = 2p (2},
if at point t = z functlon p(z), does not undergo discontinulty.

Let us investigate now the behavior of function V(x, y) with
removal at infinity of the point with coordinates x, y. Assuming

in (3)

Z=rcosy, y=roing,

we will find

' Rn]/r'-2rtcos?+z'r ‘/1-—-2-:-'«»9-}-%, K
In %mln%-—ln ‘/i-—-z-}cos?-}-g. (25)

Substituting (25) into (2), we will find

[d . L)

V(z,y)-ln-‘,-g Pl)diem

..-S ()1 l/i-'-zu:-cosY-{»gdt. (26)
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where the right side of equality (26) approaches zero when » + «,
Introducing the designation

]
§ rosas,
§, () dtem (27)
we will find
Vb p)=Platos0, s roos  ru [/ FEF. (28)

Thus, the solution of the initial equation (1) is reduced by us
to the construction cf function V{z, y)}, harmonic in the whole plane
z, y, except points of the segment of the axis 0z -a<z<4 and
satisfying conditions (4) and (28)'. Having constructed function
v(z, y), we will find the unknown function p(z) according to one of
the formulas (24).

Before turning to the construction of function v(z, y), let us
show one important property which the Laplace equation (6) possesses.
Let us produce in this equation the change in variables x, y by
variables €, n, having assumed that

3”’(‘0”%
} (29)

Hmy(im)-

Consecutively we find

!The problem of construction of the harmonic function according
to boundary values assigned to it in the theory of potential is
called the Dirichlet problem. The existence and uniqueness of the
solution of this problem are probem with very general assumptions.
In our book these investigations are not discussed.



B TR R = e -

=TT g 7 e

P oV 3z aV&y - )

F=m &ty T (30)
oF OV 03, OV By o _- o °
aa"dﬁ@q 5y Co ' N (31) '
*V 838{1 v ay @z | Y oW .
a;ﬁ d.s’( ) +2e:dydsé 'a"ay ( ) +am T PH ’i"%'a'%?' (32)
. s

atr 3V fox oV 3zdy. 8?8’: a/mg

=% G) e e (B) +E 5t o (33)

whence
Fri -GG+ ()12 G52

S DTG o

Let us now connect function y(&, n) with function x(Z, n) by relations

by, 35 ) ' ’
di o’ ] 4
y_o= (35)

P ) i

The necessary and sufficient condition of the existence of
function y(§, n), which satisfies relations (35), is the condition

#(-&)=z ().

i.e., condition

b T R e N S DR A,

3
Tt 0. (36)
If condition (36) is fulfilled, then function y(£, n) can be v 3
found by function z(g, n) from relation (35) by means of quadratures. f

Here function y(&, n) will be determined with an accuracy of the 1
arbitrary constant term. From relations (35) it follows that the ;
thus found y(&, n) will satisfy equation f

Py , Ay
430 (37)
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Thus, if two functions z(£, n) and y(i, n) satisfy conditions {35),
they must be harmonic functions, as one can see from (36) and (37).

If harmonic functiol x(&, n) is assigned, then harmonic function

y(€, n), connected with it by conditions (35) can be found by means

of quadratures with an accuracy up to the arbitrary constant component.
Under conditions (35) the harmonic function y(§, n) is called the
function conjugate with the harmonic function z(Z, n).

Substituting (35) into (34) and taking into account (36) and (37),
we will find that under conditions (35) the relation will take place

-G (G +&)- (50

This relation shows that if function V(x, y) satisfies the Laplace

equation (6), then after a change in varlables (29) this function
will satisfy equation

N oW
53 Yo =0, (39)

i.e., the Laplace equation retains its form with a change in variables
(6) if conditions (35) are fulfilled. In other words, if in the
expression for the harmonic function V(x, y) a change in variables

z, y is produced by variables §, n, then we will again obtaln the
harmonic function of new variables &, n under conditions (35). This
property of harmonic functions is widely used in the solution of the
boundary value problems. Actually, if it is required to construct
function V(x, y), which is harmonic in a certain region g and satisfies
the assigned boundary conditions on the boundary of this region, then
by producing a change in variables x, y by variables £, n, we will
arrive at the problem of construction of the harmonic function of

new variables &, n according tc boundary conditions assigned already
on the boundary of the new g#®, into which region g passes as a

result of the transformation of the variables. In particular, 1f

one were to find function xz(§, n) and y(§, n), which satisfy
conditions (35) and transfer region g in plane z0y into a circle
$+n'¢t in plane ECn, then it is possible to reduce the construction



of the harmonic function according to boundary conditions assigned
on the boundary of region g to the construction of the harmonic
function according to boundary conditions assigned on the circle.

By examining the scolution of the initial eguation (1), we
arrived at the constructicn of function V(z, y), harmonic in the
whole plane x0y with the exception of the segment of the 0z —ae<z<a,

according to the boundary condition (4) and subsidiary condition (28).

Let us show that the transformation of variables x, y into variables
£, n

=5 (t+ets 1,,)',}
v=9(1-pkp). o

satisfies conditions (35) and turns the whole plane xz0y, with the
exception of the segment of the Oxr axls ~~a<z<ea, Into the circle
P49<1i on plane £0n (solving (40) relative to £ and n, we will

obtain two real sclutions; from these solutions below we will take
for which & +7'<1):

Differentiating (40), we will find

we§ oz ..ok
7 ~i [ t+awir] f‘ CET } (81)
du  _ ab1__ a g
CETE il 1rdmy )
Thus, conditions (35) are satisfied. Assuming in (40)
twpcosd, nmpeind, (42)

i.e., passing to polar coordinates p,& on plane £0n, we will find

T (9-}» t)eos& }
-’/'7(’“‘;)“””

10
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whence
RS U S v i,
[3G+0)] [3(-)] (44)

Equation (44 shows that points of the plane £0n, lying on the circle
of radius p:

C+7'ems' (<Y, {45)

correspond the point of plane z0y lying on the ellipse (44) with
semiaxes ‘;“'('s"*'?)‘ and %(%-9). When the radius of the circle p
approaches zero, the semliaxes of the ellipse increase without 1limit,
point p = 0 in plane £0n corresponds® to the point at infinity of

plane z0y When p approaches unity, the semimajor axis of the ellipse
%(%+9) approaches a, the semiminor axis of the ellipse %(-;—-p)
approaches zero, and cirecle p = 1 on plane £0n corresponds to the
segment of the axis 0z —a<z<a. From (43) it is clear that

3{<0 whan 0«(%(9, }

y>0 wnen ®&0g 2. (46)

Thus, the upper semicircle p = 1 on plane £0n corresponds to the
lower side of the segment of the axis 0z —ae<z<4, and the lower

semicircumference -~ to the upper side of this segment. Assuming
p = 1 in the first of relations (43), we will obtain the dependence

T acosd, (47)

which connects the position of the point on the segment of the Ox

axis —-e<2<g with the position of the pcint -sorresponding to it
on the circle p = 1 in plane &0n.

Thus, If in the expression for the unknown function V(z, y),
harmonic outside tne segment of the Ox axls —-a<z<a, one replaces
variables z, y by variables £, n accerding to (40), then we will
obtain the function of variables §, n, harmonic inside the

™

s



circumference §'ty'=1, 1.e., satisfying inside this circumference the

Laplace equation (39) in variables £, n. Boundary condition (4},
according to (47), will take the form:

Vo flacosd) when pws i,

(u8)
From (39) we find
$ ] smﬁ_: _‘, ¢ : .....}.. *oin®
Pezidy ;[.(9-;» ) co*04 (p—~+ ) 'sin JE
a® as . 4N R
= (9'+2cauu§-;;)mf-’;(p‘-g-Zg'eostaH),
whence
L . S |
v oY/ FERios R+ (4%)
Taking the Logarithm of (49), we will find
Ia -:«-Rlngw-ln ‘5/9‘+29‘m23a§»ﬁ. (50)
Hence
),g;-‘-:--—lﬂ-?—-io ) when b0, 7~ . (51)

On the basis of (51) we find that condition (28) will now take
the form

V—Pl¥— 0 wenp—s0. (

N
N
~

Thus, the solution of the initial equation (1) was reduced to
the construction of function ¥V, which satisfies the Laplace equation
(39) inside the clrcumference p=1 (=Y i+ 1)

and conditions (48) and
(52) on the circumference p =

1 ana at the beginning of coordinates
p = 0. Using the relations (43), we will find:

oy _avas , av 3y
9z e Vdy o

u;}[g(i-—%) cw6+f£(l+:—,>sin8}, (53)
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whence

1';3‘ %)éasinagz (i’g)' (54)

sinee y + 0, when p » 1. But, as one can see from (46), when 0<L¥<x

y—-0.(1i.e., approaches zerc, remaining negative) when p > I, and
when <8< 2= y—» 40, when p + 1. Thus, according to (54)

‘(%!)M"“i““ (2‘5),_4 when 0<6 <,

(g).-a““i“'(%)wﬂ when =<3 <2 (55)

Substituting (24) into (55), we will find

v .
—~ s ] 8) when0<9<x,
(dp)m zasindplecosd) XX } (56)

av .
(5 )yo= —rosindp(scosd) when= <2 < 2s )

(we replaced argument z of function p(z) by acosd according to (47)).

Relations (56) can be given the form

(;i;’ | =malsind|p(acosd)  (0<D<n). (57)
Having constructed the unknown function ¥V, which satisfies when

p =~ 1 the Laplace equation (3§) and satisfies conditions (48) and

(52) when p = 1 and when p = 0, we will find the unknown function
p from the relation (57).

Let us turn in the Laplace equation (39) from rectangular
coordinates £, n to polar coordinates p0, assuming

Em=peosd, mespsind,

13
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Let us find

%u%mo-}gsin&
‘ggug "3+2
_
ad
j:ugzp sin* 9~ 2%p‘naéees6-§-sﬂ‘m‘e- .-

N
ayycoa&- ,-,ms'

m: Se0s b4 gﬁn'@,

-
.,

¢931n6+ 9ece§ _ e e

Hence

ay Ly a4 3’9’
dg‘+769+v‘55‘ ¢7€‘+3? (58)

A s

Thus, 1f in rectangular coordinates £, n function V satisfies the
differential equation (39), then in polar coordinates p, ¢ this function
¥V satisfies the differential equation

-,

AR LB Y. 4 :

FhyaT ‘;.-‘,-31 =, (59) :

)

Let us now examine function ’
W, 0)=V-Phl, (60)

Substituting V from (60) into (59), we will find

My ., 19l  {aWw
Tyt =0 (61)

3 i.e., function Wf{p,9), defined by relation (60), will also satisfy
the Laplace equation in polar coordinates. On the basis (48) and
(52) we will find

14




W {1, 8= f (acon8) = Plas o

(62)
‘?(&@}MQ a%. (63)
Substituting ¥ from (60) into {57), we will find
BB ) Pom maaind | placosd),
whence
p (L0
P(GCO&&’“'—"—‘;Q‘Q‘“’&,. (6}4)

Thus, having discovered functianiV{p,?}, which satisfies the
differential equation (61) when p < 1 conditions (62) and (63) when

p=1and o= 0, ve will find the unknown function p from the relation

(64). The construction of the function, harmonic inside the given

circumference and taking the rated values on this ecircumference, 1is
the subject of the following paragraph.

§ 2. Certain Methods of Resolution of
the Dirichlet problem for a Circle

Let us expand functionW(i, 8) of argument 3, defined by relation
(62), in Pourier series. Since function W{4,8), according to (62),

18 even, 1.e., W(i,—-0)=W(4,0), this series will contain only cosines
of angles multiple of 9, i.e., it will have the form

W (1,0)==f(acos D)= Pln e, + T, connd,

el

(65)

Coefficients of this PFourler serles ¢,4,,28,...

can, as is known, be
found by means of quadratures by formulas

15

o L




R
gw 1,853,

?P‘

. ]
.w.?.ﬁwu,s;cmm, LT R S
o

?

or

gimmws-éh

s
s dficatonta,  aota. (66)

Let us now show that function W{.9), which satisifes the

differentfal equation (61) when p < 1 and condition (65) when p = 1,

can be found in the form of the series

Wio)ma, Zc, ¢ eosnd.
Recf )

(67)
Let us find
awﬂzua?'.ﬁ"ﬁﬁsﬂ'h %’g-ga;u(n-i)p“mu&
net ~ wed -
f}gm~§a,n'p'c;}zn&. t (68)

Substituting (68) into (61), we will find

a;:?.g. : aa‘:""&% a;g-n E: [n(n—-i)-&-n-n’}y“coan&m().
nal
1.e., function Wi{»9), defined by series (67)

, indeed satisfles the
differential equation (61).

Assuming in (67) p = 1, we will be convinced in the fact that
condition (65) 1is fulfilled.

16
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Substituting (67) into (63), ve will find that equality should
take place

&=0. (69)

Condition (69) determines the constant P, which up till now has

remained indefinite, Actually, by assuming a; from (66) into (69),
we will find .

20 .

Po —ioc{ facasy
Eﬁh;—§l€¢w } (70)
Substituting (67) into (64), we will find
P%‘E‘ﬂgnmlb
Placosf)m :;"mﬁ . (71)

We will not touch upon the question about the convergence of series
formally obtained by us (71).

Substituting P 2, @s.: from (70) and (66) into (71) and replacing

in (71) acosd by x, we will find the unknown solution p(z) of the
initial equation (1).

Let us examine the examples.

1) /(z) =z ==const. (72)
As can be seen from (66), in this case

i, m,,; wl,
Prom (70) we find

Pex ..‘-,?. (73)

17
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Formula (71) gives:

g(ama)am‘{m.

Assuming ecotdw=z, we will find

eleinGjm}/ =-c'cor G w :p»’a"-:- 2,

P
S o _ (74)

Formulas (74) and (73) give for the given example the solution of
the initlial equation (1).

2) f(z) =4zt (75)

in this case

f(ecosd)ma— Aa*cos’d w» u--;-"'Ac* -—-—“‘;-Aa'ccsza,

whence, on the basis of (66) and (70),

G‘mo, c.;“ —%Ad', a'.';' ".moco“o.
p l-;oéc’ .
s (76)

From (71) we find

pl(acosd)=s ;;—’—:se;“—e-‘(P—A'c'cos 20)en
o =g (P Aa* —~ 240 cost ).

Assuming in this relation acosé=z, we will find

P4 Aat—=243® (77

g -
LY A

P(2)=

18
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Formulas (77) and (76) give the solution of the initial equat

(1) for the case when the right side of this equation f(zx) has the
form of (75).

In general the formula (71) established by us gives the solution
of the initial equation (1) in the form of an infinite series.

Let us now show anothep procedure of resolution of the problem,

which made possible In general to obtain the solution of the initial

equation (1) in the form of a definite integral. Let us prove that
function Wip0), which satisfies the Laplace equation (61) with

p < 1 and takes rated values with o = 1

W(1,0)=F &), (78)

can be represented by formula

1 F s d.
W0y = § St (79)

The right side of formula {79) is called the Polsson integral. With
p < 1 partial derivatives of this integral with respect to p and &

can be found by direct differentiation-under the sign of the integral
Let us find

o 1 TR ) eos (-0~} dp .
a" :5 —HaosG-0+&)* ' . .
% F(p) 12 cost{y=0)—p (342 cos’(s--8)~% 4394 .
§ [i-ipccs (3= +F) . '
% by 2 p cos? (3-0) + (1 +¢') cas ~4¢p]d :'
e § %-’icwﬂrihgj' ) - .

-l
»

Hence: - ’a » .
g*%%?*'ﬁ%"aim‘é%‘w fidp=2p (L9~

: —2p(1—¢")]cos’ (9-'-0)4-
+{-2p'@ ’-9')+(i+9*)’+4?°-(1-9‘)(1 +p)jcos(e—-2) +
(=143 =1+ + 4% (1=p" ) do =T,

19
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i.e., function W(9), defined by relation (79), indeed satisfies
differential equatfon (61) when p < 1. Let us now find the limit
to which the integral of Polsson approaches when p approaches Its
limit value — unity. Having divided this integral into a sum of
four integrals, we will give to formula (79) the form

W(?»@}'st(;y“)"i--’-(ma)-f‘f (?.0)%"@(5.0)»
where (79')

s
Ty
$iip, W)= gy §1 ZTpcos - H-O

’

(80)

T Fmo-me

=97 ép
-’-"-""’r» ) oot (81)

F(a) ($~#'}de
(30 0) o5 SWLT—W' (82)

L=k s CEm-r o=
*3 ! 2?”(1 N+ " (83)
Assuming in (80) and (81) p = 1, let us find

Ji(4,0)=J,(1,0)=0, (84)

since when p = 1 the integrands in definite integrals J,(p,0) and
4,{»? turn into zerc everywhere in the region of integration.

Assuming further

-t
w15 =3 t8e (""?"’“‘?)
let us find

f-tg?  dgld .
H - (1+p)corte (i—p)'lin'cn
‘+tg' 4 "'0 (i+p)® cos® '+(""). tics

R TIET.E I ’
TP+ cosds ? .
2 b b2
,1~29c°8(9-9)+¢’=-1+?—- A
(- '
£+29m1 !
»1-8 -9 dy f-35 i
(i+tg H_’m ads, <
- ? sectads 2(8~-p%) du
dy 21+P,#(3~P) tgts “+?)’°°s'l+(‘-ﬂ’““'¢

(1 -9 ds
l+zrom-=-t?

cos (9=0)m
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and thus,

{ ms"?é?a%'?pm“v

wmseis}Eld (senet):

where

As can be seen from ¢85, and (86),

q(% whonp(’, a‘n% vhm@-ﬂ.

) § - de
S?:s‘é%ﬁ?tm"‘" mong s

=) dw
S TR TE - e et

Substituting (88) into (82), let us find

Jo (1, 0)=F (B},

Substituting (84) and (89) into (79'), let us find

wt, 0)-_-?(9);1‘«.63.

From (83) we find

‘Je(?n 0)[‘%”c (t=e)ds

-g

on the basis (87) and (88).

I=Hos(-orp <1 "o p<d,

(85)

(86)

(87)

(88)

(89}

(90)

(91)

Here n is the maximum absolute value of
the difference F(9)~F()) when 0—~e<ogd4e. Since by assumption function

F(7) 1s continuous at point ¢=J, then n will be as small as desired

when sufficiently small €.
inequality

W, 0—~F @) <n

But since inequality (92) is accurate at

21

From (90) and (91) there follows the

(92)

t any ¢ as small as desired,

e,

s




and n approaches zero together with e, from {(92) it follpws that

W1, 8= P[5}, (93)

i.e., function W(s 8}, determined by formula (79) when p = 1 indeed
turns into the assigned function F{). Assuming in (79)

a,
we will obtain function W, 9), which satisfies the differential

equation (61) when p < 1 and-boundary cépdihiyh:(62) when p = 1.
Substituting (94) into (79), we will find

0"[/(00039) Plu--}(i ™
w (% G)n T i 1= 2yens (p~—0) 4¢° dg. (95)

Acguming in (86) and (85) € = 7, we will find

=
Ry = 7T when 8am %,

2n
(1—~67)dp
§S-~29ws(:;—&)+—;‘m2" (96)

Thus, formula (95) can be given the form

Ihmnu-ﬂh .
Wip, O g \ T=iren =1 47 P‘ﬂ'” (97)

Substituting (97) into (63), we will find

pu—a——-gl(acos:,a)dt;. - (98)

2:)0-—

Formulas (97) and (98) determine the unknown function (5,9, which

‘satisfies the Laplace equation (61) when p < 1 and conditions (62)

22
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and (63) when p = 1 and when p = 0. In order to find the unknown

function p{z), it remains to substitute (97) and (98) into (64).

¥hen p < 1, by fulfilling differentlation under the sign of the
integral, from formula (97) we will find

b1

8W(n 8 10 laentn)iftemeosip-0~2yldy
% “‘s§ zt-»zrm(p‘a‘)"rb‘i""‘w ’ (99)

Using identity

2 ptali=t) Y. eno- '
INT-Fes(p=B)+p) H—Zs(p—H+ )

and fulfilling in (99) partial integration, lIet us give to formula
(90) the form

2
ﬁﬂ.&mi Flecoso)slnpein{p—~8)dyp
% B I=Ben(G=0)tp (100)

(according tc the condition function f(x) is continuous and has a
plecewise continuous derivative).

Formally assuring in (100) p = 1 and taking into account the
identity

. -8 -3
np—p) 3Ty e le

2 -
1—coa{r~8) ol 1=0 =g iz,
= .

we will {ind

i
QW (r.8) &\, i =0
_..,;'_.‘_?ma ~\,f {acoag)ein ?6‘81-,-'??' (101)

or

™ '
W (p, 0) - 4 -
(.0, 1 (dlteconn) o0ty (102)
' L
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Rot dwelling now on the question about the existence of the

obtained definite integral (102) and substituting (102) into {54),
we will find

p{aoosa)ue P«--?- Sg—-(%;——i}czgi—-dey}

(103)

Substituting P from (98) intc (103) and replacing in (103) ecosd and

x#, let us find the unknown solution p(x) of the initial equation (1).

Thus, for the desired function p we obtained two formulas (71)
and (103). Let us discuss briefly their comparisons.

By differentiation with respect to @

, from formula (65) we will
find

df {e cos d) miuusizm%
26 = nw}i " ' (lGu)

If function @4} 1is presented by the Fourler series

B(0) g, + 3, (dn 5080 1By s n6), (105)

then the series

\
;2{ {6, tin nd - b, cos nd)

is called the series conjugate with series (105), ard the sum of this
series, 1f it converges, is designated by &(d):

)= E‘ (a,5in nd = b, coa nd).

(106)
Using this designation, from (104) we will find
m ZﬂaﬁCMﬂe (107)
U d
24
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On the basiz of (107), formula (71) can be given the form

1 d[(cmg) -
placad) e % |40 B} ['P in“ “’g!”d?] (108)

In the thoery of trigonometric series it is proved that the sum

of conjugate series ®(0} and ¢#{0) are connected with each other by
the dependence!

. s
R, % -
T =~ § o) ctg 27205
[

(109)
Hence .
3Nc§os5) _'_2_; dl(a::n) ctg 152 ,'d,.
. ¢ (110)

By substituting (110) into (108), we will obtain the formula

placosd)=s P-}»-—wﬂf-?«!)—].

1
na | sind | [ d

which c¢oincides with formula (103).

Thus, if in the general formula
(108) function 4/ (ddcos %)

is represented in the form of a trigonometric

series (107), conjugate with the PFourier series (104) for function
df{s cosd)

o5 We will obtain formula (71), which determlnes function p in

the form of an infinite series. If, however, we use the integral

formula (110), we will obtain from the general formula (108) formula
(103), which represents function p in the form of a definite integral.
With derivation of formulas (71) and (103) we arrived at the series
of (107) and the definite integral (110), formally assuming p = 1

in the first of formulas (68) and in formula (100). The question
" about the convergence of series (107) and the equivalent question
about the existence of the definite integral (110), the integrand

of which turns into infinity with ¢=V, has remained open here. In

—-—

'See Mikhiin, S. G., Applications of integral equations to certain
problems of mechanics, mathematical physics and technology, State
United Publishing Houses, 1947, p. 91.
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the region of the theory of the trigonometric series, these questions
have been the subject of a large gquantity of investigaticns. Not
dwelling on these extensive investigations, let us note only the
following. We assume function f'(z) to be piecewise-continuous.

I1 this case series (104) will always be convergent (in particular,
for points of discontinuity of function f'(xz) this series will give

§ an arithmetic mean from limiting values of derivative 4/ (e cos 8) with

48
an approach to the polnt of discontinuity on the right and on the

left).

However, the convergence of series (104) does not yet entall the

i convergence of conjugate series (107). In particulsr, for points
¢ of discontinuity of function f'{x), this series diverges, and,

accordingly, the definite integral (110) does not have meaning.

The solution p(x) of the initial equation (1) infinitely increases
with an approach to the point of discontinulty of function f'(x).
Later in § 3, we indicate certain sufficient conditions with which
function f'(x) should satisfy so that function p(z) remains limited,
and indicate the procedure of calculation of the definite integral,
which determines the solution p(x) of the initial equation (1).

In conclusion of this paragraph, let us indicate one more

[ conversion of formula (103) obtained by us for function p. Assuming

?-'2’: ?I' . -
let us find df(ecosy)
—

v w —asineg f' (acos ) en .

= asin¢’f (acos¢’) -_-‘-1—’—%?—!2 ¢ 0

ctg-—-—-u ctg(:—-——-—- ctg’+.,"

Al 4 d © s ( dl(“:mvl)ﬂo ',+°rl? .

&y 8T (111)

Hence

d d
S (e cose) tgg-i- ”?:”) (ctg +ctg'+ )dqa
[

ii

-

df (s cosy) sing
2§ ety Ll (112)

since




Substituting (112) into (103), we will find

2 (8¢048) 2 mmer “W [p_.__§d’(§€95” slag 'd?}. (123)

" ap €08 Jem 03 9
Assuming

we will find ro ame,u' acose=t, : (11h)

alsiddw )/ dF—a'cas V=Y 3 =2,

‘41(43?”!'%--aainqil'(dm?)*‘-?f B=2f () wmen 07,

Pl s [P~ | LOYEET),

» tez (115)
Formula (98) can be given the form
N ®
Pt §I(¢m?)d¢.
ala —-
. a
or, assuming acosg=4,
t §;cz)a
sln%-.},"—'s (116)

Formulas (115) and (116) determine the solution of the initial
equation (1).

§ 3. Solution of the Fundamental Equation of
the Two~Dimensional Contact Problem by Means
" of Function of a Complex Variable

In this section we give one more derivation of formula (115), which
gives the solution to equation (1). This derivative is based on
elementary concepts about functions of the complex variable.
Subsequently, the method of the solution of equation (1), given in
this chapter, will give to us the possibility of obtaining the
solution of more general egquations.
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If in the expression for function FP(zx) argument z is replaced by
the complex number = + iy, then we will obtain in general the complex
number F(x + iy), the real and imaginary part of which we will
designate by u and v:

8 4ives F{z4iy). (117)

If one were to change the real and imaginary part of the complex
number x + Zy, then in this case the real and imaginary part of the
complex number u + Zv will be changed. In other words, u and v will
be functions of two variables x and y:

unu(Z. y)' vﬂb(z’y), (118)
Thus, for example, if F(z)=z" then {7(z-i-ig{)—(z_-g-iy)’nz‘—-y’+2izy. and in
this case um=z'~y', v=lzy. Let us investigate properties of functions

u(z, y) and v(x, y) definable by relation (117).

Differentiating (117), we will find

du , 90 7} .
;_;4'&;;‘;";" (z4iy), } , |
a&d -aﬂ vy 3 4 119
Ftia=F &t |

whence .
. f0u , . v du , .00
i 3",‘1"5)’&“"6;: (120)

~

By comparing the real and imaginary parts of the right and left
sides of relation (120), we will find

v du’

LR
Iz ay’ }
i

(121)

As we already know from § 1, relation (121) indicate that
function v{x, y) will be the harmonic function of variables =z, y,
which is conjugate with thne harmonic function u(x, y). Thus,
dependence (117) of every function F(x) places in correspondence
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to the pair of conjugate harmonic functions u(x, y) and oz, y),

which we wiil find by, separating the real and imaginary parts in
expression F(x + fy)}. Having designated by 2 the complex number

z + iy, we will call F{z) the funection of the complex variable z.
The real and imaginary parts of F(s) will be designated by Rer(z)
and ImF(s) respectively:

alz; Y)=RePB), iz yl=inF (). (122)

Thus, the real and imaginary parts ReF(s) and ImpP(2) of the

function of the complex variable P(s) are conjugate harmonic functions
of variables z and y.

Let us consider now the function of the complex variable z:

° .
- g(suf .
e .Sg SN (123)

Let us find o .

[ 3 L3 )
(¢yds (2~ )
P(s)-_ﬂ,’.’.,-.,,-_f%."..;tf,’ - (124)

By separating the real and imaginary parts in (124), we will find

o
p(Yt ~2)d8

ReFle)= \ Wmapv !
-a .

(125)

[}

¢ pityyds
@)= § P
-t

By comparing (125) and (5), we will find

ReF(I)&—-———-Wg:’ 3) v . (126)
ImF(2)= ---9%(54-!-).

Thus, function F(s), determined by the relation (123), 1is
connected with the logarithmic potential of the simple layer V(x, y),
determined by fermula (2), and relations (126), whence
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Fis)m g 5. (127)

Condition (4) for function V(=z, y), according to (126}, gives

ReF(s)em f'(z). when ywm0, |zi<a. (128)
The second of relations (125) directly gives

kP (5)m0 when ywm0, }3]> a. (129}

Finally, from (24) and (126) it follows that

ImF{sj= * when yw 40, |2]<a,
mF{zjwrp(z) ° wien ¥ | ; (130)

ImF (t)es ~np(s} when ym ~0, [3{<a

The expansion of function F(z), determined by relation (123), in
gseries in powers of 1/a3, or, so to speak, expansion in the neighbor-
hood of the point at infinity of plane 20y, gives

'y

e
Fl2) == Sp(:)(-}-s-;‘;« +7 +...)dt-“-:+f‘%+§-:-+ oo
-g

(131)
where a,, G, G o0 are real numbers, where
[ 4
Gyom ~ SP("“'
. -8
or
fom =¥ (232)

according to designation (27). Thus, in the neighborhood of the
point at infinity of plane x0y function F(z) should have the expansion

Folm—fpfipay. ., (133)
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Thus, the solution of equation (1) 1is reduced by us tc the
consiruction of the function of the complex variable F(z), which
satisfies conditions (128) and (129) on axis 0z and condition (133)
in the point at infinity. Having constructed function F(s), we will
be able to find solution p{z) of equation (1) according to one of
formulas {130).

-

Let us consider at first the simplest case in which

}{g)mamconat. when |Z]<a. (134)

Designation by Fo(z) the function of the complex varlable z, which
solve 1in this case the stated problem, let us find for it, according
to (128) and (129), these conditions:

RoF, (z) w0 when ymo,'izl < a,

Iy () =0 ‘when y=0, [z]>e. (135)
Let us examine function
s—3, (136)
where z, is the real constant. Let us find
3T, mz—z, iy,
Considering
Z—z,e=Pe08p, Yywroineg
(Fig. 1), let us find
Z=Z,cnr(C08 @4 £ 8in ¢) wmrefe,
Hence . -
‘e FPP
Vizz,=mlre i, (137)
¥

Fig. 1.
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For definiteness we will consider that

70 wen Y0, 3>5 (138)
and further (Filg. 1): .
Q=% when yum «+0, £ 2y }

9w~ vhen you =0, 235, (139)

At the same time

res|z—~z,} when ym0, (140)

From relations (137), (139) and (140) it follows that

—a—ranasuein

ivzmYz=z, v y=0, z>z, |

Vg, =iy z,~z when y= +0, £<3,

Vi=z,m =i} z,~z won y=~0, 2K 3,

(141)

since

N
) - .
{ L . e W . n s, e B -
Cf-iWS‘i'*'lllngj-nl,' € tmcody—~iBin g om i,

Pssuming in (141) z,™4 and z,= ~06, we will find

Vi—a= }Vz—g,'2>0 *

Vita= Vita 2>~a,y=0,
t=a=miya—z, 3<a,

]/.-g.aua}/—-a—-x, 1L —ay= +°

)f;-..u-c)/a-z, z<ag,

Vitam —i} =a—3 z<—a, y= —0,

whence

Vi—a=il a2z, ~8<z<a, y= 40,
V&' —a'e -—i)/a'-z', —-8<z<a y=—0, j
Vz’--o'u-—}/z'-a’, 1 ~a, y=O,

~~
[
P
o
N t”

Vi—am=})s-a, >4, y‘;"oo 1

= g e S MWW
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L.et us now show that function

ycéaai (143)

Pulsy= —

satisflies ali the set conditions.
Actually,
-% . .
P 2 2g!
F.(g)w--;(i-_:?) _~Ci+zﬂ+'ﬁ'+"')"

P Pt 3Ppat
TS T e (144)

i.e., condition (133) is fulfilled. Substituting (142) into (143),
we will find )

i;ayn..vﬁﬁg;. z:;él. l }
B e s (145)

4

F (8)-:#0’ . ﬁ” _}_0;
F(‘)‘——ﬁ yo= —0, ta((c. (146)

Relations (145) and (146) show that condition (135) is fulfilled.

By comparing (130) and (146), we will find

P -
PEY= == (147)
which coincides with the earlier found solution (74).

Passing to the general case, we will look for function F(z),
which satisfies conditions (128), (129) and (133), in the form

F(g)=F, (3)P (), (148)
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bringing the determination of function F{z) ta the finding to the
finding of function ®{}- As one can see from (146), when |z|{<e, yoo 0
function Fo(z) is pure imaginary. Consequently.

RoF (5} =iF, (5} Im®(z) won |3|<6o, yoo i O, .

(149)
Substituting into (149), (128) and (146), we will find
FE)m =l tn0G), 40, (o<,
f =i 0, y= =0, z|<s,
whence
i Py . ) Y= 0!
!m@(z)-—--‘-,-)/a 2 (), 1si<e ¥ '*°_ (150)

Im(b(z)u%ya‘-siz'(z).’ o lzl<e, p= =0 %

As can be seen from (145), when|zi> 8, y=0 function Py(2) is real.
Consequently,

InF(z)mF, () Im®(z) when |2{>0, y.;.o,

(151}
Substituting (129) and (145) into (151), we will find
Imd(s)m0 when [2[>a, y=0. (152)
We will look for @), in the form
P
vt § 525+ (153)

where o — real constant. Using formulas (123), {(129) and (130), we
will find
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In®(2)e —~ag(z) when [2|<a g =0,

Im@i)=0C when |2{> e, y=0.

Imd(s)emng(z) hen lz{<a, ym= 40,
} (154)

Comparing (150) and (152) with (154), we will arrive at the conclusion
that function @(3) determined by the relation (153), will satisfy the
set conditions (150) and (1%2) 1f one were to assume

g(z)m =V T=2 1 (3). (155)

Substituting (155) into (153), we will find

q e
1 (e yei-std
@(z)n-;? A +c. (156)

-8

Substituting (143) and (156) into (148), we will find

Flm—p ] (LOYETRE o] (157)

sys-af J

Thus, function F(z), determined by relation (157), satisfies

conditions (129) and (130). Expanding this function in series in
powers of 1/3, we will find

F(s a-;f—;(’:-4_-7':;-+...)(f;-+-':'7+...-s:pc)-

Pc b,
-y, (158)

where §,, b, &, ... certain real coefficients. Comparing (133) and
(158), we will arrive at conclusion that condition (133) will he
fulfilled if one were to assume

com i, (159)
Substituting (159) in (157), we will find

F(t)em [§L‘_‘L_______ V4 ‘-"“..,p]‘ (160)

L
aY v at t~3

35



In order to find the unknown p(z), it remains tc substitute (160)
into (130). According to (142) funection V=3 yhen [z]<a, y= £0
is pure imaginary. Consequently,

¢ .
- b 7 {1} ¥ a®~—1t3dt
Im F (l} ;""'y‘-———-—-t_.a‘ [R@ g l..__...‘_., = ,......... mﬂp}

(161)
-e
\"henlzi'(ao Y= +0. .
Taking into account the relation
a SO L]
£ Vol =1ids P YTtz dly)dt
Re§ HET e | LTt
g -G e
» a Py
C /(Y= (t—-2)d8,
”_3. DL
and relation (142), we will find
Inf(z)e o)
a
1 . Py Yed— it (t—-x)dt
:ﬂ"‘“ycg_—z";[vi:’io §° (=P 44 -oﬂp]
upn lz‘<d, Y= "l"ov\
InP(g) = : . (162)

e [xm °rmvv—na-aa*ﬁq
" !/a“-:s‘ goo=20 2, (=2 4 ¢ .

up | 2[ < g, y= —0,

Formally passing to the limit in formulas (162), i.e., considering

in definite integrals entering into this formula y = 0 and comparing
(130) and (162), we will find

pEm i [P L (LOVEST )],

VeamaltTw) T (163)

which completely coincides with formula (115) obtained in ; 2.

Let us dwell at this time more specifically on the last passage
to the limit, which leads us to formula (163).
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Let us divide the definite integral

. [ .
-y .
into four comp.aents:

J(z, yye=dy(m Ntz Yirdils p)+7.86, y;.l (1641}

where

Y ~(E g _ oy g
Ji(z, g} Sf' Y E=F(—a)de

(Y ' - (165)
Jolz y)= S"mu::):;(;:'m' - | (166)
2y(z g} S [l‘(t)}"_"a'-c 5 ‘_";;2!;.""5“.”"“ (167)
fo(zv l’)'f(z)l[;c’? S(‘-%)&:%.. (168)

In definite integrals (165} when y = 9, the integrands remain
limited in the whole region of integration. Thus,

1 O § LOYEER G, J(s.m-i LOVe=Tar

2 (169)
Further . oo
[t prucronze
Lb("+s’i-h(' +y"}l=-0.
whence

Fi(s y)=0, g>0am y<0. ' (170)

On the basis (169) and (170), from formula (164') we will find

Iz, £0)- T’—z—-—-—-“ LTy d:-—-j LOVE-Cy
' t~x [
3 . (171)

”Jo(zv ﬁ;U}.




It remains to investigate the limiting values J,(z, +0 and J,(z, ~0)
of the definite integral % (% ¥} It is said that function ¢{f) at point
t = x satisfies conditions of Lipschitz, if in a sufficiently small
g interval{z—s, zd-¢) it is possible to select such two positive
g constants ¥ and 4 {0<e<f), so that inequality is fulfilled

[P ()= (DKSMt—z[ e T—0<ILT+0; (172)

If the two functions @) and ¢,(f) satisfy the condition of Lipschitz

! at point ¢ = =z, Z.e.,

il =n @I <M=z, |o (0= (D<Ml G=2),
. 0<n 4, 0<a.<1,_z—_sg<:<z+e.

(173)

iithen the product of them

¢{t)=gult) 0. (1) (174)
mwlll also satisfy the condition of Lipschitz. Actually,

9(8) =9 (2) m9s (1) 90 ()~9, ()0s (2} = T

[?x(‘)""?1(3)}%(3)'!"!?.(3)"91(3)]?:(‘)'
whence on the basis of (173)
1 l?(t) 9(=)l<M,lt-=l"lv.(z)i+H.l¢-=i"m.<ﬂlt—zl‘

Z—a L D46, (175)
where my - maximum absolute value of function 9:{t in the interval
(z—¢, 240}, MenM,|0,(2)} +Mm, a— 15 the smaller of numbers a; and a

2
(i (175) we assume that € in any case 13 less than unity).

Thus, let us axsume that fua:tl  f'(r) satisfles at point ¢=zx

(~o<z<a) the condltiun Jf Lipscr.tz. Then function f )Y =7

will satisfy the condltion ¢ Lipsahitz at this pelnt, since when

i
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—e<z<8 Y@=

satisfies the condition of Lipschitz with o equal
5o undty:

We—d-yoe-Flamlt-z], z-eZtgzte.

were m — the largest absolute value of the derivative with respect

to t of V&*=T in the interval (z—e, s-a) Thus, the ineguality will
take place

WY o=f—p @y =2 <N s—3],

0<agd,
s—eLiG3te, (176)
On the basis (176) from (167) we find:
A y)l<3182:::),'+, v 0<agl. (177)

When y = 0 the Integrand in (177) turns into li—z2-t and remains
integrable, since 0<agt, Thus,

a+h
(s 20 <t §(e=zp-1dien

3~8
240

w2t § = ay-diem T g2 K e

fws . (178)
On the basis (178) from (171) we find
ru)v’m xmﬁ"“-z'd
O e

From (179) it 1s clear that J(z p) remains limited when y approaches
zero, where

J (2 & 0= lim (S/ B Vm“*,&”" oL ). (180)
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The expression standing in the right side of equality (180) is called
the maln value of the integral

S ') P’c°-—z
ez

(181)

nd we use for it the standard designation of the definite integral,
stipulating the fact that the written integral should be understoocd
as its principal value, i.e., the 1limit of the sum of two parts
of this integral standing in the right side of equality (180).

Thus, on the basis of (180) from (164) we find

im (£ Vasfig—ndt ¢ ru - =84
wl-:t:n §. (=2 4 b b S co.u (182)

1f functicn f'(t) satisfles the condition of Lipschitz at point
tmz (—~a< 2<a), where the defirite integ-al standing 1n the right
side of relation {182) should be understood as its principal value

1.e., the limit shown in the right side of formula (180).

Substituting (182) into (162), we will find

Im P (3) m -—‘7.=_—_..._“ ( S"(‘) 7’;‘:"_-7_‘ ,p) 1
when [2](0, y=+0, ; (183)
ImF(z)u ‘Y'...." (Sl'f‘)}:" WP)
wncrl:l<a: y"""'oc J
where, according to (130),
S S ST CroyaTe
Pix) Yales [P " 5'_“—7:?;; d‘]' (180)

Thus, for the case when at point !(ez(—a<z<d] function f'(t)

satisfies the condition of Lipschitz, we Justified the derivation

of formula (163}, obtalned by us earllier as a result of the formal

Lo




passage to the limit, and proved that function p(x) defined by
formula (163) will be in this case limited, and the definite integral
entering into formula (163) can be understood as its principal value,
and it must be calculated, as the Ximit of the sum

§C39}&§:214h. e .
-e

IS
e

e (TRl { ngf-;?.l‘a)'.:

[T ] (_185)
Let us examine as an example the case when
]{3)“0-—1‘[3[&“ (0‘5‘1), (186)
i.e., '
[(@)=smAz®® wion 220 2 f(2)mz—A(~z}??
when 2 <0, : €187)
Differentiating (187), we will find
FlEym AR 405" wns>0, f{z)mAk4)(—2P (188)
Substituting (188) into (184), we will find
-—t po L PV
)= Sy \(Pran- | AL “dt), (189)

where under the integral sign in (18%) the plus sign can be taken

when ¢t > 0 and minus sign when ¢t < 0, and this integral should be

understood as 1its principal value. As can be seen from (188),

when z # 0 function f'(x) has a continuous derivative and satisfies

the condition of Lipschitz with the index o = 1. When x = 0

function f'(x) satisifes the condition of Lipschitz with index

a =k if 0<k<i, and does not satisfy the condition of Lipschitz if

k = 0. In particular, when k = 0 function f'(z) at point z = 0
undergoes discontinuity:

4
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I'(z)m —4 when 258, ' (z)o= A vhon 20,

Thus, if 0<k<1, then function p(z), determined by fermula (189),

wlll be limited everywhere inside the interval {~4.¢) When k = 0 we

can only affirm that function p(z) will be limited when -6<z<0

and 0<z2<a.

Let us conduct computation to the end for the maxlmum case k =

In this case formula (189) takes the form

=g ~.

plz)m —-—-—-(P«y 4( EVT=R. 4;),
-
Let us find

¢ :l’et‘—'—-l" - 3 R E i e A - .
S rral 3‘7—:‘: md‘

a"'-" + 3
* -Soilh'"'”(“-l) St;&‘-ﬂ '.

Assuming further

t= ¥ 2= (e R, h’%lg‘i)

we will find diw 21—t dr
a+op

P o 2P &a'\a at{t = .::)x a(1~1%)

" V q? “ +'$? ‘(’ +“)§ ’+“ ?

_a; - z(!«{-(*) S‘I— ()(Se--dz (-0 ('—T)
s =i cu+v) =

tthence

dt

Vm(-——«-i) (1—-{)(1---)

2% 3
""l.( { \d‘ﬂ
7-)
2v g"“
dlo .
- ‘.‘i i..g.

3

sivdh‘~

b2

(190)

(191)

(192)

(193)

0.




¥ finding the principal value of the definite integral

[ ‘ «
he 0<x<:a
-Se:h Ve o (% - 4) e .’
2 will obtain

\or=ie

.2 .
=Sty
** dt
i S,,ym(_:.-z) é.m({,-s)'.

{194)

aking into account (193) and (192), we find

SR "‘_:“"’ -
u-rg?[m{;*!‘ +lim (m%::: +1o 3¢ )'l..
i - ) : T ke ?-‘z-q J

W+0zE-w -0+ -4)

Iy rerly

ol ety

te "?‘? a:oa (g

(195)
here

e S YAz 1P 6 — Ve —(z o)t
% Py ¢ Tam Y : (196)

ccording to (192) and (196) we find

b3



lioi in o Ci , n)

b {F=n) -0

[a-l’e’-:’_.a—]/c‘—(z-z)'l
mlimin < z Wodnd.
P [ z _t_z_-}/c'-(s-c)‘]

6= Yolazt Tt

T a~l/533?33?]

[4-)/;’7:-—:‘— z4¢ -

{a_:-_}fc‘-(:-{-q"__atVa'—z‘}
z4€ P

- ot (r=-)WeimBtz Y (zme)

In lgon —zV e =(z+ t) c)‘-ac+(z+e) )’a‘-?n

. m‘n -‘+V°"’3' Vﬁ-&
~ad Y P =D

Va'-s‘ .

(197)

Substituting (197) into (195) and replacing after that £ by x according
to (192), let us find

1 at 4
;1nt=
j-ﬁ}/m(::--i) Ti-¢
- ) -d 4-1/3-“:3 ":‘—.‘3 X
S
2z 4o-}/o'-z-' N
gat———Liar a2 (198)

By conducting analogous calculatlons for the case —a<3<9, find

2 a-}/c'-:‘
e In . ~3L2K0, '
j‘ Va'-z*(—--x) TVe-s - (199)
Formulas (198) zand (199) can be united into one:
a 2% V Vd
a=-yY -2
S;, —-;-; _,_,,) —Jen e 9<izl<a. (200)

by
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Further,

c ) ] ] .
tz)di tlﬂ__ 28 en
S 4 Ver=tt o S &V’e”""*'z S ey
Y . - =g
O |
gde T e
-zg.—ﬁ_ 3y =1 L 2. (201

Substituting (200) and (201) into (191) and (150), we will find

P(’b‘)ﬂ' (P-.-.".‘....?.:.“/"‘""il o- m) ,
O<izl<e. (202)

As can be seen from (202), the found solution of equation (1)
approaches infinity when x approaches zero. When {z|{—a, the found

function p(x) also approaches infinity, with the exception of che
case when

(203)
In this speclal case
2 -> .-A;
pi=~SA 0TI, 0<isice, (204)
and turns into zero when |z|=a,
Substituting (187) into (116), we will find
P 1 + tdi
- -ln-‘-‘( SV:‘-F. S'ia'.-v) (205)
Further, a .
._.__.3-=-arcam--' =,
L = L '
-3
+ tdt tde
| ke pitgmaya=one

b5
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Substituting (206) into (205), we will find

Pn-—-g-- -—zﬁ °
mz;< o (207)

By comparing (263) and (207), we will find that conditi-n (203)
under which the initial equation (1) has solution (204" will be
fulfilled in the case when equality will take place ?

2.5.9(1.;.13%)@3. (208)

Pormulas {202) and (207) solve the examined problem in general when
arbitrary value of constants a, o and A; if, however, condition (208)

is fulfiiled, formulas (202) and (207) pass, respectively, into
formulas (204) and (203).

§ 4, Case of Several Sections of Integration in the

Basic Equation of the Contact Problem

Let us now examlne the solution of an equation more general than
equation (1):

v be
t .

where f(x) — function assigned in » intervals of argument

2,8, <3<bp (m=1,2,...,n), and p(x) — unknown function, subject to

the determination in these n intervals of the argument. In the

special case when n=1,a,=~g, §y=a, equation (209) turns into
equation (1).

Let us consider the function of a complex varlable

?(Z)wz’i"n(x). (210)
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here

g
Poi=§ £ PO ety @ .
ccording to (127) T o N
0y W . y - .
m(z)ﬂﬁ—y-lad;. s
here : MR
b ) )
Vn(zoy)“'s plt ﬂn‘}'}"(?“‘“""‘dt’ (m“’szo.:unn)-

quation (209) is equivalent to condition

zva;(zio)"’l(z)’ am<3<ba; {nei, 2, -.uon)'
v , .

mposed on function Vi{z, y), Vits, ), ..., Vofz, 4}, Or to condition

‘ReP()e= 3 RoFy ()= 3} 245, 0= 'i2)
Ml Mawi

hen y“o, am<z<bm (m'“‘.z,.-.,n),
.nposed on function F(z).

Relation (219) and (130) will correspond to relation

ImP,(z) =0 von y=0, 3< 0y 8 22> b,

w i, 20 2 30y
I F,, (3) = 4 2p(z) wren ymj:o,a..<z<b, }( ")

vhence

-

al

ImP@w 3 ImFz)=0 v.-y=0,
mei
56, ba< 3K 8u, (mef,2,...,8-1). b3,

]mF(&)-‘i‘RP(I)” .. y_xg’ ﬂ.,(“«lbw med,2,. .,0)

(211)

(212)

(213)

(21%)

(215)

1o

e g

P O

A
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since when ¥y=%0,

0, <2<y ImFit)»0 when Akm and ImF{s)m s np(a)
when &=m,

According to (133) the expansion of function F_ (=) 1n the
surrounding point at infinity will have the ‘form

. bm ’
F, (,,,..._.»J:»- vees 1m0 P (0,
. . .w

whence
Plz)= 21’,,(:)a-«-—+‘,+..., . (218)
cees AMef ":.. .
where ) no n P
2 SP(‘H:-'
metCm .

Thus, having constructed function F(z), which satisfies conditions

(215) and {216) on the axis Oz and condition (218) in the neighborhood
of the point at infinity, we will find the unknown function p(z) by
formula (217). For simplicity we will limit ourselves to the
consideration of function F(z) in the upper half-plane y > 0, and

we will determine function p(x) according to (217) by the formula

T (mﬂi.z' ooa.n). (‘:19)

Just as in § 3, we will examine first the special case of the problem
in which f(x) = const, and accordingly

F(2)=0 wmon g, <zLb, (m=14,2,...,n).

(220)
Let us show that in this case function
Py (2)
F ()= s
o) V(z"‘n)c"“x)---(3‘“n)(3"b3)(“"b:)“'(3"’0)' (221)

where P,,(s)— polynomial of power n - 1 in z with real coefficlients
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Poms (#“‘fe"ﬁ’-eag'z‘?éf‘f‘vf- 808", (222)

satisflez conditions (215) and {(216), i.e., let us show

aﬁpcéﬁ)ma Hhsn %{3{5 {}Rmf, ’-uo,.ﬁ),ym%@pi

o lmF;,{:}wG vioh e By
[RCTETII S L R W PRI Y (223)
According to (141}
y&‘"‘ﬁa !V&n ‘hﬂbs}aab 3
¢
yl’m"‘m e L
pREyEn wes>h [ OTO0N (224)
1 1
Fren= "vES < .

Asguming in (221) ye 40 and taking into account (224), we will find

g se8ig) oco (£ Gp) (B~} (£=8p) o
when 28, pm 40,

P (2) o == ‘Pn-t {=)
e Y W R T R TF P ”“m?i?}
when 8, < 5 < &, Y= +9,
P Red (=) . .

A = et e T T ey e e SR
' wn b, <5< q, yoo +0,

Fo(gh e o e

——

!

véhen Gpuy <3<ba~30 Y- +0,

etc., i.e.,

P, (s)ae{~ )n—nu 8Py (8}

Vl T (s~emd e~ *a)l

(225)

]
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when &, < s€bime=d,2..,8), g4

LACEICE ol (226}

when 3,<2<05.,(m=0,2,3,...,8),y= 40, 1f one were to take b,w —w, G =wm.

Formulas (225) and (226) show that relations (223} indeed take
place.

Let us find, further, according to (221)

¥

*

m%{ﬁ’,«}"ﬁ;ii:..; & o™ H (i-i"% %% c%»e'..')ﬁt
ool

2+ e P e )oPr g (227)

where 6,6, ...~ certain real coefficients., Comparing (227) and

(218), we will find that function Fo(g) will satisfy condition (218)
if one wers to assume

® 8
"‘“”‘"P “"éf,.i’ (Ms‘_ (228)

According to (219), {(225) and (228) we find

P(S)m (!)Md c.e a v,

P RN AN o e et | o S

" lflu--«-m-»

MNef ¢

%(z('ba(mﬂﬂg&u..&}. (229)

Formula (229) gives the solution to equation (209) for the specilal
case when /'(9)=0 yhen 6, <¥<bs (m=1,2,...,8) W¥hen n = 1, (229) turns
into formula (147) found earlier for this case,
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Fagsing to the general case, we will look for function F(z), which
satisfies conditions (215), (218) and (218), in the form

; Palz} -
Pl o (230)

reducing the determination of function F(z) to the finding of function
&), : - : B

As ecan be seen from {225), when a; “2<bs{nwi, 3, ...onjgye 35
function ?o(z) is pure imaginary, polyanocmial P,,{s} vhen y= %0 ocbtains
real values. Congequently,

ReF (s} w gt i 0 (s)
when €3 lmmt, & cooaB): goo 04

€231)

Substituting (225) and (215} into (231), we will find that condltien
{215} for function P(s) will correspond to condition

fls)em W’é’;‘;mm Imi@{@s

'g/; 17 e L.an.-&...\%

gz:

i.e., condition

!a@wﬂt-'ﬁ”g/\ I s—ad—b|r'@® (232)
T

when exda<iimat 2,...,.4), ye 40 for function @fs).

As can be seen from (2267, when ba<3< e, (R0, 4,3,...,8) Yy 40
funiction Fo(a) obtaina real values. Consequently,

Fu(3)
vmm;u;—!?-,mow (233)

when ba <30, (e, $,% ..., &) yaw 'ﬁ'ﬁ

and condition (216) for function P(z) is reduced to the condition

InO(s) 20 opn by <2K 0 (M=0,4,3, c00in), ywo 40 (234)
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for function B4k We will look for function Ol in the fom

%3“'2 §":‘:‘:§"«@~P o (235)

mnlan

According to (216) and (217).&1& will have

In@{s)ef - o
%ihanb <5<6m. (@ae’pgy ¢o.qﬂby“ é‘a!
Ind ()= egla) . (236)

whon @, K2 Y, Qmmﬁ,&.,..n), gm«i—@

Comparing (236) with (232) and (234), we will find that function TR
defined by relation (235), will satisfy conditions {232} and (23%),
i one were to assume

g(s)ai:JLV‘ﬁfs—@aH%”%}xf . (237)
ﬁa<a<é (&mi,%. oy B

Substituting (237) into (235), we will £ind

@{g’uz “'“"’“S V n(ew-a,}# w}%ﬁf}%wm@. (238)

i

Substituting (221) and (238) into (230), we will find

Fig)o -
3 E(ui)wsylﬂ(‘-Um)(' ra |EES 4 2ua )

med

(239)

Vﬂ (s=em)(s=Du)

Thus, funetion F(s), defined by relation (239), will satisfy
conditions (215) and (216).

We find further
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i et S ek Dl L

SIS S0

A e e IR

F(s}m;gﬁ (H- +--g+...}(s+f§+g—;+...}x

x(?'-‘--%&«%-” +e,,+ez,s+.mm..=“)m

. SR
' . . §w+§+§.§,,,, (240)

< - !
< 2 TSR

Thus, under condition (228) function P(z)}, defined by relatlion (239),

will satiasfy condition (218‘: in the neighborhood of the point st
infinity. :

From (225) we f£ing

w&tz’@@g ﬁw& nnagx yw"ﬁ'& { (2“11

Prom (239), according to (241) we find

10 P () @ i ezt { 4 z { = gyray

E/}ﬁ (3""@3)(9"5&3‘ =

- 1.1

X ga;sgezVlg‘(cnw«»wiiéf%?wwxw]

(242)
whan 04<8<b} “‘ivzo vouy B) y= ‘é’ev

But, as we already known from § 3, if fuaction F'(¢t) at point
toz {6, <E<h) satisfies the condition of Lipschitz, then

-

limRo gg/m o)t — m}ﬂ'ﬁ’

Mol

§Vlﬂ(c-a,,w b | LE2EE (mus;'z; )

(243)
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where when @ = 1 under the integral standing in the right side of
formula (243) should be understood as its primcipal valus.

{2843) into (242) and {242) into (219), we will find
piz)s= X
Vil 7
xiuzeasfﬂy{mﬁwzuw] 2 +9¢.4s)} (244)
: &<$<%Ga%&nu$g
where ] E
ngiz)‘sﬂa%’ﬁgg'sao-e‘}ngd"‘M. {2)’;‘5)
' P=3 ?Pi@é& . (216)
ol &y ..

»

Yhen 3=, g= —g, §;ma formula {244) coincides with formula (183) Pound

earlier by us for this special case.

Formula {244) for the unknown function p(z) is found by us from

relation (219). Punction F(z), which appears in (21%9), satisfies
the houndary condition (215):

RQF‘;)"(‘) whsn ym +C, ﬁ“<3< bﬂ (m‘ssggg XYY &),
where

RoF (i) zv (2, 0) = ZSN‘?‘"T‘“{"‘ ' (247)
smtcm

uhaa fo= S0

according to {(213).

Thus, the found function p(z) will satisfy the
relation

WE,SP“”“.: 8.4'-1’(”3’ (248)
<2< h, (m=1,2,...,a)
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e TR AV

Howsvsr, frou relaticne (288) 1% does not follow yot that the found
function pfz) wiil satiefy the initial equation (209). Integrating
{248) with respeet to z, we will find

e & - . *
3\ rerle Zpdtl G o
it

PP PR I TY SR

{249)

3

where 6 8, ... 8 constants, i.e., by gubs‘citufing the found function
pl{z) intc the left side of equation (209}, we will cbtain the function
of argument z, which on each of the intervals 8.<8<h, (m=1,2% .. 1)
can differ from the assignég functior £{z) by a certain constant

e . However, functicn p{z), determined by formula (24%), contains

n arbitrary constants € fu ... & &nd P, which are coefficients of
the polynomial Pr.ais) Thus, additional constant camponents S s +ver 8a
which we will obtain as a result of the substitution of function

p{z) from (244) into the initial equation (20%), will be funmctions

of constants fe @ »—: Seenr £ and in this case linear fusctlons, since
these constants enter linearly into the expression for function

p(z). Eaquating to zero these additional constant components

By B oo ®ae  wWe will obtain n linear eguations for the determination
of constents ®w fu ...0 6, 2and P, which enter into the expression (244)
found by us for functiocn p(z), Having_thus determined constants

€or £10 ++osSomy ANA P, we will obtain the solution of the initlal equation
(209).

In the contact problem of the theory of elasticity we wlll
encounter later the case in which function f(x), which stands in the
right side of equation (209), is assigned only to within the arbitrary
constant component, common for all intervals m€2<d: (M=1,2,....8),
but then quantity directly is assigned

i
P=3 \ sinar
el O

In this case for resolution of the problem it is sufficlent to
express constants € € -+o fmn. which enters into formula (244), in
terms of the given quantity P. Below we write out the equations,
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ghich in thig case determine coOnSLAnts €w € -« 8opr Prom (247) we find

amer :
iReF (fyweeds=

dm . S

wl‘?l SN‘N’*':::;;"T&"E S”“’”r“"?

el om

=f o)~ m=l,3 .81 (250}

according to (209). If function f(x) Is assigned to with in the
constant component, common for all intervals 6,€3<%, (me$,32,...,8),

the differences standing in right sides of relations (250) will be
fully defined.

2 -

In aecordance with relations (226) from (239) we find

*
¢

mﬁf{iﬁv«we’;"
: Ee-»z)wg V I] t-eaite- 2 LB 4 Py @
* W{"’ﬁ” e $m ;
23 }
. Viitp-es (25 |
‘ ‘358’5” <.2<$¢,& (&mgg %g oy ﬁ""ﬁ)'
» Substituting (251) into (250 and taking into account designation
q (245) "
P )=tz ... 0y 30 P23, ]
g:: 3
%we will obtain a—1 equation '
: ';
° n=3 ’noﬁ . . k)
4 Ja y= g =-€-f)”"‘li(aa..)-l(b.aﬁ+9 Sf l,,,_....w S e v o
: e thH (S“Gn)(ﬂ“'wg ’ . ol 7 ln(:-an)(a-ﬁ.d{ !
3 maf .. g
f, o0 ' ) ;
I [Ze-iwiyma—wa b.al’;“_’:’]és, !
= V] | (YR e
'\Yé " med (252)
56
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for the determination of coefficlents &, Cu ceer Cpopo

in the gontact of the theory of elastlclty we will alsec encounter

the case in which the function f{x) standing in the right side of
equation (209) is assigned in cach of intervals 6,€2€b, (B=1,3, ..., 1)

only to within its arbitrary additive constant for each interval, but

then »n of quentity &y By ...,P, is assigned:

3’@‘”5{?“3& (w=t,3 .000m). (253)
&z ' .

-
*-
z
+ M ]

In this case . . -
el .

and we will find coefficients %w €n ..cr € according to (244) from
equations

zc‘ 2ds . o . ' . ' i
Gthﬁeﬁ”‘s)‘S”&s)i : IR
53 N
a(-.srmzp,-w aa

“"yl I (3"“&:)(8-5@){:.
1] et

i ) ‘“Vlﬂ (8—'055)(3;&”)!—

Mmel

"[2"""”5 Y Te-ea- "“".ma}“ (255)

m'az 3' svep BBy

which are obtained by direct substitution of function p(x) from (24i)

into the first n—1  from relations (253).

In copclusion of this sectlion let us examine examples.
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a3 oemwb bw—80ma bmd f(¥ws yhon b LBL~6 JEi@5
when #<x<$,£- jis an arbitrary conatant.

In this case formula (244) takes the form

. i‘“o“‘PJ') i -
Pl e o<iEi<h (256)

where the pius sign should prevail when z < O, and the n.nus sign
when & > 0. Equations (2.52) form m = 1 give

& * Y
d= PN S QL I -
L S y ‘5’2=-'=m8?):=.:{2 g;_==::§} g4 2 _So ?, MW { 2 5 7 )

-t

Assuming = » at and designating by k the ratio 3, we will find

3

] L o
R
AVE=HiE=m & )VE-ma-rn .

F oo * . ‘
27 a8 = 2 -
- =% ) yGTHasED sEG, (258)
where
[ 1
K{kyes é
® §J’<‘-—"w-&'ﬁ (259)

is the so~called complete elliptic integral of the first kind, for
the calculation of which there are tables.

Further,

[ 8‘8 ..
Svame=nmo (260)

since in this definite integral the integrand is odd.

P eind =

P R



Substituting (258} and (260) into (257}, we will find

i3
Gy s wm, km-g-._ (261)
Formulas (256) and (261) give a solution to the problen.

2) ’3‘“2- e, = -, éx""“s g, bemd, f(z)"“z when -b<z<--a, i(z)-a,
when <3<, o, and a4~ are arbitrary constants,

?P(l)fftal’.; § (tydi=d,,
- -

In this case for p(r) formula (256) 1s retained, but the constant
o will be determined this time by the first of equations (255), which
gives

» N . [ ]
dx ) zdy
[ 2 - .
‘§'7<=*-amv-z*> =Pk P §?f=e"=?’?ffz~eu = (262)

. . o
Considering znv’b‘w(b’na‘)ti and designating by k quantity V”"‘Ev
We will fing

- - 4

St oty
x'--°)¢b'-a') 31/0-&’)«-&‘6"3 ¥ (263)

’MV

Assuning swyf <X =+ ng, we will find

s
3

13
Ve (264)

e rea
S
©
|
eof 8

Substituting (263) and (264) into (262), we will obtain
e —ePyt§ P 3 (P=B)),

since
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FmbtPo (265)

. —t
{a”a;'&m(p;-‘pg), kmyi“"%so (266)

Thus,

Substituting (265) and {266) into (256), we finally will find

© 8
m(l’x“?a)“(?r} PQS

YV o N (267)
kw15, a<izi<d,

(3= %

where the plus sign prevaills when x < 0 and the minus sign when = >

-

§ 5. Equation of the Feriodic Contact Problem

Let us now examine the solution of equation

5 fm
) gp(e)an-‘-l;-:—_-g—dgut@).a..<s<ﬁ. (268)
LT3 T T

(m==1,2, ...,8),

where f(d)= function assigned in n intervals of the argument

ey, <9<Pn(m=1,2,..,,n), and p{0)- 1s unknown function subject to
determination in these n intervals of the argument.! We will subse-
guently assume that .

0<e,<B<a,<l<...€<c, <P 2%, (269)

Let us examine inside the circle of the unit radius &®+9'=i of
two variables ¢ and n:

R O

Y& =3 (pte)in} g,

mel orn

h dhine mt G W s wa et S ek Gacamu e cae v il

'Keldysh, M. V. and Sedov, L. I., Effective solution to certain
boundary value problems for harmonic functions.
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where R -~ distance between point @ with coordinates £, n and point
@'-on the circle of the unit radius with vectorial angle ¢ (Fig. 23:

Bel (i-cag)f L {3~an gy,

Function V{E, n) coenatitutes the logarithmic potentisl of the
. simple layer with density p, vwhich 1s located on ares (8 B (81 Bodoee s (8285
of the unit eircle. Just as in § 1, by direct differentiation we
} will be easily convinced in the fact that function v(g, n) inside
: the cirele '+ 7'={satisfies the Laplace equation %’%4—%;0, it is
a harmonic function of variables §, n. Passing to polar coordinates
59, 1.e., assuming Ewmpeosd, qupeind,: we will find

< o e
V»2 ?p (N8 ey A0 (270)

el oge

Assuming in (270) p = 1 and taking into account identity we will find

2—2eos(p—0)e (20ia 232)" -

e o . (271}
' 22 v !_;0{&9 whon peed,

By comparing (271) and (268), we will arrive at the conclusion that
. equation (268) is equivalent to condition

Veo f(0) whon pea?, 0, I8 Bp (W 1,3,..0,0), (272)

imposed on harmonic function V.

61




e ——— ————

e i ——
ol o

Fulfilling in (270) differentiation with respect to p, we will
find

v - v
Fo2 §P<?"s=*%‘fs%?§%mé?- (273}
. wmefen . . .
Using the identity .
cosfp =B} —¢p 1 bl ., :
TR arr B remearr-i )
Wwe will be able to give to formula (273) the form.
B . . .
Zo2[LT Crtmpaitertr-L] (27
& el I w33 Co8 (3 0hbpe 7 dn )s 274)
sl Oy » .
where
% ¥a
P=3 §atace (275)
ﬂlﬁl{gﬂu .
a % ..'
But expression %2 }P(@}ms’? constitutes the Polsson
integral et '
X $eg® .
57=§ PO —paa-ner i

in which F(g)=p(z) when s <o<B, (m=4,3,...,s) and F{z)=0 when

ba<9¢<pu(m=0,1,2,...,8) G, =0,s,,,m2x), and approaches p({¥) when
8, <0< Pa{m=4,2,...,8) and to 0 when 3, <V<a,, (m=0,14,2,

..., n), when p
approaches unity. Thus, from (274) it follows that

:;;—'wv@)—-; when pnt.ﬁn<é<£!..(mmi,2,.'..,u), (276)

(277)

- LR amb sw

o 5 wenpeei, §, <0<y, (M=0,1,2,...,5)
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Thus, having constructed function V, which is harmonic inside the
circle p = 1 and satisfies on this circle the dboundary conditions
(272) and (277), we will find from (276) the unknown function p(é).

The solution of equatién (268) is equivdlent, thus, to the
construction of the function harmonic inside the circle according to
mixed boundary conditions assigned on this circle.* Just in preceding
chapters, we wil.l reduce this boundary value problem to the problem
of construction of ﬁhe functicn of the complex variable according to
boundary conditions assigned for it. Let us consider the function
of the complex variable {miiw’

% fm

@(:)mxz V(o) éf?« ' (278)

L.TY LN

Here under the integral sign iwé+inwpcusdipsind— 18 the complex
number ‘depicted in Fig. 2 by point @ #?=etse4d imag¢—~ 1s the complex
number deplcted on the same figure by point Q'. Let us find

{ = gcos Db iptind
= ccsri-mn;-,coso-—luin& '
(o cos &4 tpsind) {cos 9~ pcos D18 (2in g~ §2in 0)]
* ey~ 'mb-tol(slu?«-pshbzgw?-pmabv-d(sfnp psla?)]
o fe0s(3 w0}~ tysiniy—~0) T ) _
S=dpoos(p=ti+pP > o (279)

Substituting (279) into (278), we will find

: a
# sin (2—0) & (v} {ees (yp—0) =gl de
°=3 § Sr-‘%mmw"“ﬁﬁ SL""T‘L"LJ:-zm oo (280)

LI X

By differentiating with respect to & from (270) we find

» fm
4 P pgin (3~ B)dp
09'2 S t=3Fcor(g—B1ay” (281)

Mol *m

According to (281) and (273), formula (280) can be given the form

P()=- +=t:d, (282)
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Thue, the real and imaginary partas of the function of the complex 9(r)
introduced by us are connected with the harmonic function ¥ by rela-
tions

Re‘l’(’)“ ' fm@(C}”’P (283)

and conditions (272), (277) and (276) which are satisfied by function
Vv on the unit circle o = 1, correspond to conditions

Ro®@)=f'8) wen p=1, a0 <O < By (1224, 3, .., 1), (281)
M@=~ whon p= 1,8, <O < by b0, 1,3, ..., 1), (285)
Im @ (Yo npll) — L whonpmt, a0 <O <Bpalmed, 2, ..., 0, (286)

which will be satisfied on the unit circle by the function of the
complex variable ¢(z). Thus, having constructed function ¢(z), which
satisfies conditions (284) and (285), from (286) we will find the
unknown function p(9). ‘

By means of consecutive transformations we find

“-c ‘(!c“:-i-“c ) ‘(u- '54'-“ -d)u»..-.'

u.}{ cos-—»-Hsin-.)-w(cos-—-uin...)‘ ‘]w ‘
L ced +nin---(wc--ula-)( ,' \

. ln-—(l'-n)-}-tcos -?-(!-H’) ) i ‘C‘E““"%‘ . :
-7 cos-(% +ul 1 i Loy ‘I
-‘) l‘: (+€) -c‘?,- “—?"' .
t+eotgrd - ‘ ’
L) 3 s
n?(m_*cw% -‘). - ) . . (287)
A R T A S

Substituting (287) into (278), we will obtaln

o topn (see )l

*..»‘.S,, T (288)
where
. n Im ¢
1= 3 {r@ sl (289)
m-‘ﬂa
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and P 1ls determined by relation (275). Assuming further in {[288)

. . ' 17 ' * com lm

, we obtain b S Sl R . (290)

f o Bu 0és P ' '

i °@=3 § ST b1-i5. (291)

i« where L A

{ . .

: o =g, bow—ctg? (awmi, 2.8 (292)
® {8} e gl Zang (293)

? &ccording to (269) \F” 4 34 .. ‘

i ~ <8 KB <8 <h Lo Oy < B <. (29%)

¥

%g By introducing designation

;

’ 53+e

i e (295)

i we give to formula (291) the form

; , SQ=FE+y—il, (296)

% where ,

: o Oy *

g s) 2

; F{z}_uz S%. (297)

e; ‘ nul@a.

Formula (295) determines the complex number s, the real and imaglnary
part of which are changed when a change in the real and imaginary
parts of the complex number 7. Deslgnating by = and y the real and

, imaginary parts of the complex number z and assuming in (295)
) Cmpeoslpdpaind, we will fing

. t(84pcosd4fyaln d) *
P YY1 Ty

lRanB 4y coa 0 v peosd fiostnd)  ~Zputn B e(s—
B=pcabr i=nonbsy !

whence

~2sind t e
FEIThwbep ' I ToBasbip” (298)

From (298) it is clear that y > O when p < 1 and y = 0 when p = 1,
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i.e., point P with coordinates =z, y, ¥hieh depicts the complex number

2= 2+ iy, is in the upper half-plane z0y, when poipnt 9 with polar
coordinates p, o, which depicts the complex number (=g, is inside

the unit circle p.= 1 {Fig. 3), and point F emerges on axis Oz when
point @ gets into the circle p = 1. ¥When p = 1 formula (298) gives:

sind 2
S vy il 4 (299)
Relation (299) shows that when point 4§ describes the circle p = 1,

point P passes axis Oz, where z changes from -« to 4+« when 0 changes
from 0 to 2 =.

Sz e Fig. 3.

From (296) we find

ReF(s) mRe® )1, }

Im F () s Im b Q) oo (300)

From (300) it follows that conditions (284) and (285) for function

9(Z) correspond to the condition

[RoP(Dyass=f (@) —~7 when e l< O <P (1 =1,2, cey 1)y
{Im P (2)]yeso =0 vhen B < 0)< Gres (M =0, 4,2,...,R)

for function F(z), which according to (299) and (292) can be given
the form
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PPN

PR

A Pt g e

BoB (g {~3 arccig}my : (301) |
”‘mgm W:%{sg%g&@ig&oa»qﬂﬁ, . N

loP(5 =0
&‘:«% 5”4’60 é‘sg(s‘(%a%ﬁ@eingnq&!,, (302)
Bym e Dy Gpgamed)y

From (300) and (286) it follows that

mg(gzmgpgumreetgz}mw‘{*}mnW +olnda<h, (303)
O (ﬁ?mgoz’%ﬂa%}a -

i1f one were to use designation (293).

Relations (302) and (303) directly ensue alsc from formulas (216)
and (217}, if one uwere to compare (297) with (210) anu (211).

As showed in § 4, function F(z), determined by formula (239),
satisfies conditions (215) and (216). Thus, functicn

£ :.(3) o

,,z(-m-»x SV [T e-smo-snff =220 45

| (304)

V [f o= amits=te)

T2 )

will satisfy econditions

ReF,(s)m f t—~2arcelga) -
when Y e +0, ¢ \$’<& (m==1t,2, . No“ * ‘
b X (305)

when ¥ = 40, §,<2<an., (ran. i.z, cees i)
We will look for function F(z) in the form of the sum
E(z)mFy(2) 4 7, (3). (306)

Then according to (301), (302) and (305) function F,(z) should
satisfy the conditions
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RQF:(;JM "‘7 when yﬂﬁ +Q' am<z<b'a(mmg, 2‘ ...g,&,,}

lnFo{yemQmhen yo 40, <2< 8, =04, ..., 8 (207)

FPurthermore, as can be seen from (297) and (304), F(®)}=F, (=)=l
consequently, function F(z) should also satisfy the condition

Fo{ojm@, (308)

Let us examine function

- B,
ﬂ:-e:'

Mof

According to (224)

l/n"”* Vs -

when yv-+0 6 <z<a,,,,t,mao $ocnerm)y | (309)

V 1zte-a/ 1)

when g~ +0 a,a<s<b,, (n=1,3,...,8)

and

- . .
VH::::-»-*—L whan Z-> @, (310)

i

According to relations (309) and (310) function

) = . ':.2.’;’ -—
Fi) T[B/m“_,.“ 1 (311)

satisfies both conditions (307) and conditfion (308).

Substituting (304) and (311) into (306), we will find

sz)-w . .
-z (-—s)MS k/! [fte=em (:~a,yi'.75.:?.££9___“.)43w' )

el

1

: 'l/ﬁ(a-a.)q;-bao : . (312)
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N s i KN

where #°(8) is a polynomial in a2 of the power n:

M -‘ﬂ 2 ® * es0 p i f’

Using identity

sl - )
7!_' H +.§e{4’+95(ﬁ)3+ vos "‘5’?!3-&(‘;5‘*‘

where 9elth @1{th ... %z{l)— fPunctions of argument ¢, the evident

expression of which we do not write out, it is possible to give (312)
formula the form

“ » . .
IR G I R L
P(g)= T X . L.

}/ IL(s«-was—aa SRR -ﬂ

ol

-+%M“?¢. * .
WV oo v,

. . -
. v . .
[ .

x Sg/ H(“‘%) (0--5.,)[ H ﬂ«-éa,'guwmm

or
Fm-»--i/ ::3:251/ ““l"‘"":“f—”m
b oy P 68) -
37 14
[ c-on) s=0,) (314)
e d ,
since

Tte-t~(~1 )M"ma-u[

vhen g, <t <Y, (m=1,3,...,2)
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{5 15 a poiynomial in z of n power, the ccefflcients cf which

Here &
with the exception of the latter are different from coefficients of

the polynamial Pi{3).

Using, further, the identity

i-n 11-33 . &
t=3 (l-{-&‘)(&-—z)?t«l—s’ ’

let us give to formula (314) the final form

=
z-a,, r{-2areate){t4s0 5., .
RE, g’ H;«bﬂ. eIy 4"‘?

(-2 ] ea

v £at2) ~% (315)

} {3" Oxj (88}

! B-i

where .
&(s)wﬁesz-:»l..ma' (316)

is a polynomial with certaln new coefficients f: fueeesr & Substituting

(315) into (303), let us find in accordance with {309) and (224)

* y(-zmctgz)n—-—v !n::z:[ . | ,

(Y T°% , ( 2arc Ct" 3) (‘4‘.8)
x#%cil//ln' l (Hwt')(t.-g) d’ﬁz.
o+ ("‘)"ﬂﬂp.(z’ (317)

X oo . [ﬁ.(s-c.)(s-&-)[

when an<2<bﬂ (m"!;z,o-.;ﬂf.

Substituting into (317) a,  and b, from (292) and assuming in

(317)

to —cig 3, 2 _wc&g%,
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we will obtain

" slg LR EWNE P"‘

() -3

O—am

m,g qin

“ ’ﬂ ' “ Bin ' |
- f (?)cezudw -
“_“m m sin 9 =

2 - (*i)”""y/Hsln “,T“siag}'CSm --) Pu(-cig-.)

R i
. g/lnﬂabw%mi-ﬂml .‘ "?;

Meang
since -
. 6-% s
R ..
-.z&g-;i-{-ctg"-éﬂm 2 e i
: alg -2t lm-» Tt
b~ B 8 -
h—" . J "‘- .n
gy teaglpa— 2 T3 m@@%«
sty B T sla—- -clg---&-ete
or finally
. - =
== i/h-"‘ i X
2t !m-l Sb‘c-‘“ .
L ’n » sln-?;.‘.'.‘ ‘
x 3\ ~— o H?)cts-—-69+ '
M eg Mmeg §
X'{.ﬁb""%m“%. .
' +(-—i)‘“‘ s (318}
VI o5t
"hen“m<&<pa (mhi,g,..., n)'_ .
or finally

-;wu-}(—!)’“V/H slaifsin s—;—‘c‘a {m =0, 1,3,...,18) (319)
Tt} -
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Let us now turn to the determination of coefficlients Ye Ties»es Tn» which

enter into formula (318) for the unknown function #(0). From (278) it
is clear that ¢(0) = 0. Further from (295) it follows that z = ¢
when £ = 0. On the basis of thils, formula (296) gives

Fi)drmi g (320)

Substituting (292) into (315), assuming in (315) fes~ctgd; swi. and
taking into account the identity

g .

‘ . cost.'!'ws!..f-:-;’! e‘?,’;”' ﬂ 30
'5+Ctg°'m =3 £+ct 0Eiﬁa—on——
gia 2B T &ta 1"‘14.- . 85 Eﬁ "
. tid (o- :efz'><-«z-+‘>
’ ,.; - ._.-‘ . . ,‘, . -~
“34 i +t
we will find
i LY W R A
. < o Ummog) ® fm *nmlJb
3 PO <\ E
Pl —gie ™ DI it e i‘(?)a’w
. . M!G@ mmt ‘i

ot tem
s

Substituting (321) into (320) and taking into account (319), we will
obtain equation

wz&-a*rnm-—[w Zea,.+m+mn ‘S‘(a.,+u]+

’
i

, +,_,(coa zﬁ,+um Zﬁa)x

[T 1

.
"y g

":*:’J ' L
' , XZ‘\V( ”.,-mlrw?.
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[ L

whence

-7«+1e-°n+n-mm £ sip E(%-!'M«%-

a-ﬁ

m(m;zs; é?g/ t :::

Dy Ao o

rde |

.
T

(322)
ﬂ-w.wa-xaﬂ.-»-unhm . 3 (ot Pad

s T T |

[-T0 3

Purther from (283) and (272) 1t follows that

% 0n

é [Re0 Qs B Vpoy = (Vios = ond—1 B, ¢323)

&mip 2’ o,‘ R"'i‘ )

If function F®) 1s assigned to within the arbitrary constant component

common for all intervals (®. B (2. fi)s+.., (2., 5) the right sides of
equations (323) will have fully defined values. From {(296) we find

[Re F (Ylyms = [ReF (2)]yunot 1. (324)

Substituting (315) into (324), let us find in accordance with (309)

and (224)
wm.‘-_L;/ =2 x
nat
—emlf (—20rcetg?) (34
SV [ izcimsans o,

o3 Oge’

SRR Gk} sind P»k)

!,/l [}(s-c,,)ga-i,,)l

'men-&&<3<d..; (kﬂ‘ 2, .”B—i).

(325)

Substituting (292) 4into (325), assuming in (325) fﬂ'-cls-}.x—.-ctg%
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and taking into account (319), we will find

| & ggi 9..
iﬂﬁﬁﬂbﬂm - I V& n ?:E

a iz " aia F";“m \
% ;’SSS B =g r waetifues
5 o

. af—~ ﬁ?”z 2¢“B"a-i~% %
y + Mmel)

- ; gffen-jgﬁﬁg.nﬁﬁg

: wen g‘<§<;¢h.; (émi B,oovp a"'z)o

Substituting (326) into (323), we will obtain the equation

ey P _:_ oo™ ,2_ a3

Y s

=e0 "i.;[ﬁ““tf"““‘“g’:i&i S

- ‘ 43 =
R 4 =
TS . ] -8
<GV | B rwesae)
‘k"'i’ ?: veey &-i,,

(326)

(327)

which jointly with equations (322) will form the system of n + 1

equation for the determination of n + 1 coefficient Yor¥Tww <evsTne

If function /() is assigned only to within the arbitrary
component, its own for each of the intervals (3.8 (& b)) ..., {z,, Bs), but

then all n quantities are assigned

\ .
Py Sp(@)d& (b4, 2,...,8),
e . *

T4

(328)

e s e e



and not just their sum P, then, -substituting (318) into (328), we
will obtain equations

2 aiu"""’?mﬁgdg " 0, .- .
EY* S e X
'k V}H aln 6 am'soa-' Sm‘ . .0, .

. a-i
m(-i)"-m{P +3,. g// l e — !x'
. el B0 ~meB ‘
» 5 afy L |
x@i? L.. 2in m!f "’“gw"?)‘”] (329)

(&uib LYY n""i).

which together with equations (322) will form for this case the system
of n + 1 equation for the determination of n + 1 coefficient Yo Tus .o

. ‘no

After coefficlents Yo Yieseeo Yar are calculated, formula (318) gives
the solution of the initial equation (268).

In the special case when n = 1, &=m%8-—a, j=nta,

formulas
{318) and (322) take the form
cos 9—,}3 b dd f €03 pte
PB)m—~ - | g/ — s /" () ctg T3 dp-
€08 3~ m>e T
Y sia i"“!‘hmg . . .
B2z AR (330)
' z 3 T
. .. S ————— 3
[ ye ,COS,+. ‘,
P t -3, N
q : T'\"“f:'*'m““'; S }/“w,,.l'(?)d?'.
' w=e Sl :
e 3
- T . (331)
' —fym —isin < S 2T ey, |
H e (]
n 2‘_‘ c“g_;.—.. ‘ J

since when s=a<d<r4a, <z wWe have
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L g

L R=2 e, 8D fa <3< 3,

and consequently,

4

cosg%f'-?->0. 0059..‘_*".5(0 (332)
Substituting (331) into (330), we will obtain the formula
) wte . wﬁg
4 - T -
p(O)m-m—-—-————_.._-—_~_.._..--«-——==-..r - — 3
2 ‘;/-cosg-'-;-feose;" Lag-e 09,'-7"52 )
X' (2 (cos ctg-----~m——-—) d?-..Pem 2]
or, if one were to consider the identity
P~a
a -b B~a_ cos Ty
£09 e ctg-—--mn 3 =P
oln ==
we will obtain
1
28t ;/,-cos-—§-f cos?i;— : N
Pr R
p/ - cos 152 r @y -
2 EN . b
[S N ”"”"““’a’]} (333)

r~a<0<n+a

Assuming in (333) 7 + ¢ instead of ¢ and =+0 instead of a, and
taking into account the identity
GP atd

8in ——sin T =3 k1 (eoso-coac.;.

it is possible to give to formula (333) a somewhat different form
¥2 X .-.' .

24t Y cot U ~coaa )

P40 ~

$

st Y cosy—cosaf (x+yidp ' .& ‘
"[7’;& RNEL ap.m.,.]t (334)
—a<<i<a,
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PO = L 14
e L R ot ot N

B e A e ST RBWA e e T A ST L

In the maximum case when & = =, formula (333) gives

- [-'du Trmd 2P ,]
: TD e - I
o= Mu’f § mecmaiet] (335)

Using the identity

sind
2 * ﬁ -—3 9
;;;;:'-saslﬂ fs'czs!'é-":i‘m%’
3 . . <5

4

it 1is possible to give to formula (335) the form

é(e)w-gagf'(v)gss-’-—;-’%;»4&%1;?5@;3%+5-° (336)
In particular, if
l@»)“l(ofﬂo
P} = dﬂdcts'—-’dv-:-, :
or, according to (109),
roe=2 [F@+3] (337
where F(3) is a function conjugate with function £ (e).

In conclusion of this section let us examine examples,

{)newsi,a,mee—g, §, =+, f{g)=const. teng—a < g<x+0.

In this case formula (334) directly glves

Ps"wa%

N . co;&—ma
3) ’3'”’ §y=mn—a, hﬂ‘l’-}-ﬁ, f(e}— --Acoa'-—- - conet.
B2 24 TN

(338)

7



In thisg case

fE+g)=—~Soing ha ~8<p<a (339)

Substituting (339) into (334), we will find

n? 3/ cosd—~cosa

ST
p{a+a)-=, L2

V'eosq-co’s: clnpéy _6; .
(zs/zs L tebeny), (310)
-—-z(&(ﬂ.

Assuming

tg %“tg ;"‘i.n [

we will find

v———;:_—-—- V (cos’ coa’z) - Lo e, ':.-
as:.-L-g . slr-z-cos--coz-sing o

Vzcos—- y,see < —soot {- ¥V 7ale :ws d
o 5 9 .
g t=ig= 2 sioc-ig--
A C=h R o)
. . 2%57«»: Mg-!3—-cou
oinqunsin? dt e dem
. sec°~;- scc‘-
2
. _ Mg’%ainwcu
L o - ¥ ds,
roe . (t-{-lg‘-—a-sln’t) B
and
Vi . o
AR = e

. a
M“ﬂ?g@' '5

¢ sin g cos®ds
b4 py +-elPeos —
cos-% é;_ (tz-gsiat-!g-:-)(t:,g'-;-ﬂa!? ] (341)
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The Integrand in

(341) can be presented in the form

E

ciaccmﬂs m - .
CTLIE )/wggs“et ) o
) . . " eyde,tint ety sins.
[ == 3 2 » “%' 4
g 5 eint—tg 1445 - slate (i-i—-!g'-;-lln's)” (342)

where ¢, ¢n &, & and cs do not depend on t and must satisfy equations

) ' «-c,tg-'»c.,tg -;o, ]
c.eg-—--c.tg +cetg«~--c. g--:-i. R
2‘}‘_‘%"5"'” tgztg «§-+c.tg E-&-e,tg-z-mo, ¢ (343)
' | algti-nigpgtie—1,
- . & ag‘%-ﬁ-cstg‘-%'mp. :

Substituting (342) into (341), we will find

.

.

P(ﬂ+8’;nz‘*?wa_m. X ) . ‘ .“.. - * g

X ["“‘"“"3"—" f‘s};+¢m’a+CJ,+c. ot s 3+ wPcos «;—},

where

Mliﬂ-z-‘;‘-- v
(344)

“3

t

2 A '
1 . z -
A U T . = .
WG ene-tzs ettt geia®
N : .. N
T insde T dc°
fo= S s+: '3 siot o S’(a-m" m—.'s)
J —
3 SARAE
- .
7 i sia s de . . .y
S AP U
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Let us find

Sy =0,

since in these definite integrals of the integrands are odd.

Assuming further
tgi= 03 2 187,
we will find ' .

. .

w-ﬁ-scc%dq

R —

]

' . (Bcost = 1%y

tgﬂ-;.tg': 1+scc'-§ 1g%s

R+t 2 aln*somt 4 = aocte
129 4
2 1% N
- .
T _—
J, = g cos%dguscaa%, L. ) A - '.
S
T
b
T . . SIS
Jym S cos-;-col'qv(i-{-?os’i-tg‘g)d;n . CooL
n . -
T

[1+ 0025+ cont fHlmtosdp) [ dpem * -

scise
[
2
sl
[ ]
njg 32

Assuming

we will find

’ 2dg
die 73 ,
: : 217 = (- ) (1 - E9)
s -] @ (4 4
tg 7 sint—tg inztgi(r—m .-.‘*")m T e R

t . . ceee 7
: a I'{ c ..

J,-sctg -3-(1-}-2')5 M"E)\i" ;m . -

. . . -t *

r3 [ Y 8 ‘:

' 3 Z s .
—anitan (§ {5,
. _ e Sit-<

t ) . . M .

1<z

80
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By calculating the principal value of the definite integral, we will
cbtain

]

¢ & d .
{s-mGae sy
uhmﬂn(z-—i)j +xn(z-s)1w)mum1n :,‘ls)gmm g..; (348)
/ .

Further,

»

m*n(-*--ﬂz, h::: "

1 ‘M)O‘
ﬂ%\
“l

(349)

Substituting (348) and (349) into (347), we will find

2,=0. (350)

Substituting (350), (346), and (345) into (344), we will find

vi
Ay —— ]
2a Vmsb~ee-,e

pr4d)es

f/mn -—t - 5
,uxi—-—-—-—-s-f- [2c.+(1+coa «-) ]+Pcos } .

\

(351)

Excluding from equations (361), ¢)s €3 and g, We will obtain equations

c,m'%+c,tg'%a~ctg‘ 3 }

e »
—esec’ T 4-¢, uctg-;-+2ctg'-;- ,
whence '

c,--clg’—:-cos'-g#(1+scc'-;-5in‘~g-), (352)

.32 16 o8
=g -_:800 -5603 Je

Substituting (352) into (351), we will obtain the unknown solution

¥ Zcos ¢

plrt8)= -——75;5-—-_“‘[ (cos&--cos’-})-&-?}. (353)

~g<d< e
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As we see, when 0 approaches -a or to +a, r approaches infinity.
Cnly in the special case when

PmAsin’-g—,

(354)
do we obtain according to (353) the solution
p(::-{-&)m";i"‘ cos%]/ccs{)—»ccsu, (355) 2‘
limited In the whole interval —c<g£3gs.
§ 6. Equation of the Contact Problem in the Presence
of Friction between Compressible Bodies
Let us now examine the equation
] . Y . ) )
§p<e)d:+v§pa)znT.—,-_—,szmi(z).. |2<e, (356)

where v — certain ccnstant.

Just as earlier, let us introduce into the consideration the
logarithmic potential of the simple layer,

E

V(z, y)uS pWntd, rey =ty . (357)

As we already know, function V(xz, y) satisfies relations
oV oy
(5 D= 2@ wenizi<a (55),.,,=0 melsl>e (358)
Equation (356), according to (357) can be given the form

§ pidat+W (s, 0)=f(z), |[21<a,

or, 1f one were to differentiate this relation with respect to =z,
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v ’
p@A+2(3) =@ 1sl<a (359)
Taking into account (358), we can give to condition (359) the form

av v ’
.d.g—gv-‘-’-;m--tl (X’ when !$]<G, y“‘i'o'

~
(6]
(4,0
(o]

~—r

Let us examine in the upper half-plane y > 0 the function of the
complex variable z:

o .
p(dt ¥ .ov

F) §e TRt PR (361)

According to (358) and (360) function F(z) will satisfy boundary

conditions

yROF () +ImP () mzf (2) when [2] < q, g .;.o,}

ImF(z)=0 whan [Z] > @, ye +0, (362)

In the neighborhood of the point at infinity function F(z) will
have the expansion

F(:):.—. -

o-]v

Foens Fuip(t)d’& (363)

By knowing function F(z), we will find the solution of the initial
equation (356) p(xz) by formula

Pt [ImP(Desor  |2l<a, (364)
as follows from {353) and (361).
Thus, the solution of equation (356) is reduced to the construction
of the function of the complex variable F{z) in the upper half-plane
y > 0 according to boundary conditions (36 ) [slc) and condition

(363).

We wilX look for function F(z) in the form
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4 ] .
Fjmista) T a—a)5 00, —3<y<s, (365)
thus, reducing the detecting of function F(z) tc the detecting of %

function &(z). Let us deduce the condition which should be satisfied
by function ¢(z). The difference z — a can be presented in the form

3"¢8n93“, (366) .

where

~

;.n)/(;-a)‘-f-y‘, Ouarctg;{';- (367)

(Figure 4). In this case we consider that 0 changes within limits

of 0 to m when point z is in the upper half-plane. From (366) we
find

1 1
(2— a)-%-l'f wp gt t‘ (“’54’1)3 o
) 1 1 -
(3
c. ’
-—-unn(-;z-ﬂ;)01~ (368)
As can be seen from relation (367),

pom|Z=38| wheny= 40, 8=0 menz>q, y= &0,
wmw when 2<a, Yy +0. {369)

Fig. 4.

o
[-3
1

Assuming in (363) y = +0, let us find on the basis of (369)

¢

3
(Z*a)-;-'?nx;_sl-i'” w.en 3> 4, Yy +°,l
! ' ( (370)

-4, . .
m|x—a 3 (sincy—icoaxy)

vean €L 8, y= 0. J

1
(3= a)—iﬂ
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Changing in (370} the sign at a and y, we will find

3 .1 .
(z4a)3 ’mzs-}a]? ¥ oshen 23> =g, g= +0, 1

' (3+e) e ml=+¢i.§‘ (»unwﬁ-sm:ﬂ I
when 2 & ~8, y= +0.

(371)

. From (370) and (371) we find

R R = Ry
G+e) T (3ma) N m(zqa) 3 (z—a) BT
. when > 8, Yo 40, |-

‘ Y , . 3

uiu

(s+c)T7 (a2~}

m!w
)

o—2) 2 T(sinmy—i cossy) (372)
wien -—a<z<a. y=+0,

m(a-r ﬂ)

{s46) -3t (3~0q) 3 @ —(—g—z) 5= (s~ z) 5"‘" ‘
when 3 —q, yo 4§, .{

Assuming in (365) y = 40, we will find according tc (372)

RoFis)4ilmF(2)en . :
1 1
w(z+a) i (2-0)"3 [Ro®(z)+ilmP(3)] -
when 2> @, g +0,
ReF () 4ilmP(z)== .
!__ _! )
mfat2) i (@ m2) T o ry—icorm)x (373)
x(Bo*b(z)+slm0(z)}. vhen —a <L T 0, y= .g,o
ReF(s) +i lanF(z)-s

m..(--a—z) 3 T(a ;)..54. [Re®{z)+ilmD(z)]
wher £ < ~a, yw 0. J .

The first and thirc of relations (373) directly glive:

’ 1 . 1
@)= (@ +af (5—e)i " ImF(s)
whan 2> &, yn +0,

L
lm‘z’(z)ﬂ--(—va-—g)f"(a z)‘ :mp(l) (374)
shen T ~48, y= 0.

Multiplying both sides of tue second of relatlons (373) by

8¢




sinsyfiemsny, ywe will find

T 1‘. . N '.U ‘
!.m O (z}m{c+ z)"“ (a—z)t "{cessr; Re £ {z) 4 sin ay i F (2)) (
wn —-8K3<8 y= 49, | ' 375)

The constant vy up till now has remained indefinite for us. Let us
nov¥ put

g, ~3 <T<g- (376)

Using relation (376), it is possible to give t» conditior (375)
the form

] ' T .
I @ (3) » 22T (64 2)3" (g = 1) [xv Re F (3) + I £ (3)]
whern —va<3‘<e‘ Y= + 0, (377)

Substituting (362) into (374) and (377), we will obtain for function
$(a) the boundary conditions

vhen 2] < 6, y== 4 0, (378)

I &)= B (o455 (om it 0) |
o b (5)=0 when {2]> 6, ya 0. }

Let us clarify further the behavior of function ¢(z) in the
neighborhood of the point at infinity. From (365) we find

B(z)=(z +a)%"(z-—v a)%-7 F(z)=z (1 + -:-)g‘" (t -»%)5"’ R ). (379)

But, according to (363), we should have

From (379) and (380) it follows that

We will look for function ¢(s) in the form
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()= S %‘-2%3 S8,

(382)
- ,
where ¢ — real constant.
As we already know,
Ind()=eg(z) wheniszi<a, ye=+0,
ImdP()=0 when | 2] > €, ge= $0° (383)
(see, for example, formulas (361) and (358)).
By comparing (383) and (378), we will find that boundary
conditions (378) will be satisfied if one were to assume that
08 vy 3—?7 3--?
¢(z)="t (a4 27 (a—~2P [ (2). (384)

Further, as can be seen from (381) and (382), condition (381) will be
carried out if one were to assume that

€3 - P, (385)

Substituting (384) and (385) into (382), we will find

¢ +z)§”( ‘c;"" £i0)de
cosw 2 a - .
*(:)= mpr S t—-3 -2, (386)
-8

The second of relations (373) gives

‘ .
ImFP{z)=(a$ z)“;-’ (a— z)-ﬁ” (sinwy Im @ (2)—~cos =y Re @ (3)]
wen 2| < a, yﬂ+0- (387)

From (364) and (387) we find

sha wy{im B (3)] . ;o —COS =Y [RoO(s) 0

p(z)e= nhen )3!{@. (388)

} 1.
sletaf (omsP |
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Substituting (384) into (383), we will find

(m® (2)]ympa= 22T (64 T (m 2P (5] mian 13] < 0.

(389)
From (386) it follows directly that
[Re @ (2))yuy0=
. cosny ¢ (e 03 (o x)%“‘ Pitds :
) S@ b=z ~P when (:sl(e. (390)

Substituting (389) and (390) into (388), we will find the unknown
solution of equation (356):

;;(z)a““ aLtos ay I' (z)-- ','. | — . :
g e Ry Ger a e
‘-'-0:“"1 SGG-H) (0‘:: £'{s)dt « P cos ny -
- —— Hz<e (391)
a(c-i—z)a (n-:)", .

where

. 'y . N .
, p=sp(¢)J:, ga-t-‘arctg;;' *%<1<'§) (392)
-3 !

according to (363) and (3756).

§ 7. Equation of the Problem About the Compression
of Elastic Bodies Bounded by Cylindrical Surfaces

Let us now examine the equation! to which the problem about

the compression of two elastic bodies bounded by circular cylindrical
surfaces leads:

x

v@g@+ ( 9% =), —a<z<a, (393)

lFor a numberical solution of equation (393) the method of finite
differences is very convenient — see Appendix II.
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where A{z) and f(x) are assinged functions (we will assume below that
M) 0 when —a<z<g J{~s)=}(z)), and gz}~ 1is the function subject

to determination. Giving rise to eguation (411) is also the theory
of the airfoil of finite span, developed by Prandtl, in conseguence
of which this equation is called the Prandtl equation,

Ve give below
the sclution of this equation for the case when funection A(z) hasz
the form

: O S R T .2 MR T " png
M= S s Ve,

(394)

where both polynomials entering into (394) do not have real roots
in the interval —-e<gz<a,

In general for the assigned function A(x) it is possible to

construct a quite similar approximate expression of the form (394),
having taken the number n sufficiently large.

We adhere below to the method of the solution of equation (393)
proposed I. Vekual.

By means of this method the solution of equation

(41) is reduced to the integration of the differential second-order
equation.

In § 2 we showed that equation

- . ’
1 e 4
S‘P(‘““m"“'""' me<z<e (395)
has the solution o

a & . '.
T
pa)m e [ P & ( LOVEE “ &)

n}/a‘—z' o ‘—’.

(see formula (115)), or, if one were to use identiy

'See I. N. Vekua, on the integro-differential Prandtl equation.
Applied mathematlcs and mechanics, Vol. 9, No. 2, 1945,
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V‘a'-l‘ at =zt 2 T RO

t—z ; a‘&‘}_s) ?AI_"’ '.‘.. . ‘ ';.

s s 5
f(z.)s.n sV {P+ S 1/0'-:' ~ A
. ....._".f' v b P -
o . “(a? 3‘)5‘ 53:7’(:-.-:)']°
Since ' L e s
- a 1)
oo
ey T Y . "

»

if f(x) i3 the even function.

This solution will be limited in points 2z = -¢ and & = a then
and only when '

reyeat
Po s S Varoa®

In this case the solution of equation (395) takes the form

-

p(fz)a—'-:-,)/o’-z’s Lt -a<z<a. ) (396)

-3 y‘“" 3 (22 ’

The same solution, limited in points z = -a and « = a, will be
had by the equation which we will obtain by diffeventiating with
respect to x both sides of equation (395). When t > z we find '

4 1 b3 t
d.}l”)t—-xl ﬁ}nl-—snl«n’
when t < z:
] et
Zt n =3B i--a"'

Thus, .
d 1 L)
&z lu‘l-——'"z‘w.;::'; .

Differentiating with respect to x both sides of equation (395),
we will obtain the equation

p(l)dt __"' z .
.S. -3 ”” 9gs<a (397)
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which has the solution {396).

Let us present now eguation (333} in the form

Pl

iﬂ?lm}@)mkizfg(z), -85 <a

(398)

we will temporarily examine the right side of this equation as the
known function. Then, according to formula (396) for the solution
of equation (397), we will be able to find from (398) derivative

g'(x), which stands under the integral sign:

. ) .
', -1 - [ =-A() gD - .
g (z)m ,.I/“‘ z 5“{/‘.;:":&«-:)“’ .°<£<a'

Substituting (394), into (399), we will find

. . _ .
’ LY g ey W (LTS TAL DTS P00
§ @)= ﬁVf' . _S.,(c-s)(b.-u'v,'x-;-..,-p-:,u“)d""p (=)

- ... :., =e8<sz<aq, -
where ) [ ~

S RY g~ ey J(n)ds
F(a)='~ Va‘ Sw'__““_‘)

Relation (400) can be presented in form

Cl)=F(s) 0,40,z ... +0,2 ¢ gDl
WO T et { 2R+ Ve R a,
. - . .

-8 9

where

1 QG+, 4, 43,8 g, bo@t.... a,2"
‘ {1 L n i (4 3 »
Ak z)m [b.+b,z+...+b,t° R T Y Wy ]'
or R(l z) e l’.(l)+l‘!(l)x+ ""Pn—x(‘)z"'

-~enweoe

{399)

(400)

(401)

(402)

(403)

(40h)

where £,(1), Py(1),...,P,. ()=~ polynomials in t, the coefficlents of which
are easily calculated. Actually, by comparing (403) and (404), we

will find
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(2B ()4 Py ()24 oo +Ppoi ()™ ) om .
o (0 + Gt oo F0a8) (b H 0T F oo B 0T
(gt Oz F oo +a,2") (8 + 0t + ...+b‘,x“)

(405)

By comparing components containing identical powers of » in the left
and right sides of relation (405), we will obtain the equations

2P, () =b, (go+ et +.o0 + Cat")— ]
BN NERE 1% BE

xP,(:) P.(:s" by (9,4 @t + o oo + 8" —
--a,(b F bt eeet bt

c ® 6 6 6 8 6 8 % e B O s QY * o % o » .

e QLI N F-N0 R 5 a“‘n)__,
) —an(b.‘i'b“'*' tt'+bﬂ‘n)' ’

which determine polynomials P,(1) Pi(¢),...
equations (406) we will successively find

Py ()= by (e, + at+ oo F8,8" )= : \
=y (b Byt oo+ 55,

Pg(l)a(b $6¢) (8, F a4 oo F8, %) —
""’(ao""ax‘)(b e NE TN ot b, "),
P, (l)n(b +b‘l‘+bt)(a.+a‘:+ g Y)— }
“(a‘+¢-¢+a.t')(b +b t+...+b =),

a 6 8 8 & v 8 ® 4 0 0 0 0 o & 0,0 e o o s 6 0 o o

000000000000000 ¢ o ¢ 0 0 & ¥

1”..,3(‘) = (b, b4 .. +bpat™” )an *
. —(a,+a.x+...;;-a,-,c" ) bas

and the last of equations (406) is a co ollary of the others.

Substituting (404) into (402), we will find

x° "(3) F tx) ‘o+‘7x’+ +4n3' gi)de

i S ke T Re L
Voo bo +02F coe ot bus® d, $=a

b.+b.:+oon+ba:. .7

where

‘ .
! 2(t) Ppts)de
“= S Sihro g k=04,...,n-4
-a
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(408)
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Relation (409) connect the unknown as yet constants o) @prvee) s
with the unknown function g{z).

Let us represent (408) in the form

plbthsd b @-FE) L
et ot .. chas) YW= - - e

.;' ST e Sg(l)d¢+a,+¢,x+...+7.,a“‘
§=3z »

gt oBpecet

or, according to (394),

]
2 & (2)= 7 () ey | o
il 1) “_‘ T—g T 3L, (410)

where R(xz) — rational function:

R(x)m":_;’:: ++_:_“;:§3 (411)

Integrating by parts, we will find

S Mn iﬂ(‘)d(lﬂ zl)m , , - ‘ '.'

-

-»Ss (‘)lnl, g,d:+gcann(a-z>-g(-o)tn(a+s> (412)

Differentiating both sides of the obtained relationship with respect
to z, we will have

d g(t)dt (tyds {a) Q(-.e}
&) 13 (t-s 5:; ode ° (413)

Substituting (398) into (413), we will obtain
"Sﬂ‘-’J fa) - elae) = ORUEN (414)

Differentiating with respect to x both sides of relation (410) and
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taking inte account (414), we will find

S g b I(a)-—h(x)s(z)+8‘(z> -84 (415)

Thus, the solution of the initial equestion (393) 1s reduced by us

to integration of the differential equation {415). This differential

equation is integrated in quadratures. A&ctuvally, assuming

< )
t
z)=>— \ L{) 2t
e LS (426)
we will have (( sods @
da L2 JR L4 Z 98
A (z)e a3 2(:} il Y Tl A

2l 4 [e(z) dg dz _d%
I"(?)&[T@] &G

Thus, dividing both sides of equation (#415) by A(x), we will obtain
the equation

dty F ’ -~
ate= ;—(;, {R’ [r(‘:))] +/{z)+R (3) . ‘m: !3‘1.:)}
” gm0, - ’
where . . (i
1 d ¢ -
P@)e i (75 [FR]+ @R @ -2 -2 ) (418)

Following the metheod of variation of arbitrary constants, we will
look for the solution of equation (417) in the form

g=],(p) cosp+ fi{p)sing, (419)

having subordinated unknown functions fl(u) and fz(u) to condition

fi(u) cosp 4 £, (n)sinp = 0, (420)

Differentiating (419) and taking into account (420), we will find
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dg

Zﬁami‘(?)ﬁnl“"fa(l‘)m?n
¢ : . : . (421)
Ga = = fi{p)siapt f(p)cosp— ], {p) cosp— f, () sin ¢
Substituting (419) and (421) into (#17), we will find
=fi(p)einn+ f; (1) cospmm & (2). (422)
From (420) and (422) we will find
fi()e= — O (2)sinp, fi(p)==D(z)cosp.
Hence o e RS (423)
fo == D@psinge dpo e -
o, ¢ .t
. : p.' : L .’r‘....
)= \ O () cosn® dp® 46y,
I § '(.);cosp 9+c. - (2l

>

where variavles ¢t and u¥* according to (416) are connected by relation

(]
“(ams S rnyas ,
B =2 }".({?"" (425)
and ¢y and e, are arbitrary constants,
Putting (424) in (419), we will find:
L% ‘L B o o .. -
g 3_0(:)(cow°sinp-:in ¢ coap)du® e, cosp4cy6inp,
or ) o K Co o -
& Lo S Pt
3=.§ ®(t)sin (p—p°)du® +¢, cosg-l-c,linp. : (426)

Passing in (426) from variable u* to variable ¢, we will find in
accordance with relations (416) and (425)

e()=2 {otsaly (-r @O be ol asmrE (4o

Substituting (436) into (445), we will obtain
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‘(,';fm.*;gg [« f{,‘,’wm lenfa(a-pOld
. [

| -é—-‘,-,§ {/m “"’ e (@ —=p O dce
R .o . : +c.cmp(.)+cga.np(z). (428)

Integrating by parts and taking into account (416), we will find

S;;i[ f(‘,R())sintux)—»(zndz——s

=V [ RO coslr@ = @ @ dt= -

2 cwu

g

=[+3

5

S+ R(O) ] sins (2 -=-—-§1-'F(c)+: (R B)x

aFO
iwy

X cos [w(z)—p (1)) dt— { +R(0)] sin u (z). (429)

F '
Substituting (447) into (446) and including constant —7 =2 R(0).

into the arbitrary constant cys WE will obtain the following final
expressiocn for the unknown function g(x):

B =3 § (9F ()4 1 () R cos 1 () = O] dz+

+5 [iw — £ el gin [ (1) — »(t)}de«»

+ ¢, cosp (&) + ¢y sinp{z), (430)

[ ]

where functions F(z), R(x) and u(x) are determined by formulas (401)
(411) and (416).

Assuming in (430) z = @ and = = —a, we will obtain the equations

for the determination of constants ¢y and e, appearing in formula
(430):

é.cosp<a>+c.ssns(a>g(a>+,i.§[=*F<o+w)n<z)1x

oo . j a R
~xcos{»(a)-p(:)1da-é§ [160-45 -4 ] x (431)

x sin [ (a) - (O] &1,

crcosp(—a) + eyinp(—a)mg(—a)+ 33 X
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—

§ (=9 (1) 4 () R (1)} cos (=), ~s*(‘)l ds—

o :
IS[,(‘) ‘(3) ‘(“'0)] 550(9(""6) P(&)}d‘ (431 cont'ad)

_o“ ‘+.

-’

Substituting (U430) into (409), we will obtain the system of n linear
equations for the determination of constants % %u ..o %-» which
appear in the expression for R(z).

Boundary values of the unknown function g(a) and g(-a) appearing
in formula (430) are determined by supplementary conditions, which
result from the formulation of a certaln problem leading to equation
(393).

The same procedure by which we obtained the solution of equation
(393) can be used to obtain the solution of equation

. .
Y g(t\d’ta
t—x

. —8<z<g, (432)
if in this equation A(x) has the form (394).

Having presented equation (432) in the form

S (t)di [(x)—)(z)g (3)), —a<z<a (433)

-t

and temporarily examining the right side of this equatlon as the
known function, we will find

- — 3 1)~ l(ng ()
g(z) "il/" SV“‘-“(' z)d! -Tc<3<0: (434)

in accordance with formula (396) for the solution of equation (397).

Substituting (394) into (434), we will find
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.;1 S et S {8 ay +a,8 4 .00 o™ ‘
sle)m )= S(t-—z)&.+3a+...-.:b.?‘;d‘""p =), (435)

\~0
.

C —-—a<zLa, e,
where T . -

A. . . ';.__i -'-‘-::-;a' 1(8)dt .
R —L YT ,zim., (436)

Relation (l35) can be presented in the form

'slfz)-'f?(z) ’
M7 g
. e Py
ettt tend {208 4§ pRE, 34,
. - - .

. (437)
¢
where R(t, z) is the function determined by formula (403) or its

equivalent formula (U404). Substituting (404) into (437), we will
find

18(7) - F(2)
S

- b0zt ... tans® ¢ FOX:{] §,+b,z+...+§,,-,s:‘:l_'
f’o+b,8+...+5;;ﬁ..>‘ s=5 b.‘*b‘x'*’ooo'*’bux‘ ¢ (u38)

'
where .. _ . .

o | L Q1P
k ] DETNFSseyw L i _ (439)

k&o, 1' [TYY) n-iy

and &,(). P @®),..., P, {t) are polynomials determined by formulas (407).

Differentiating both sides of equation (433) with respect to zx,
we will find according to formula (413)

VLD o)l (g N+ L 4 D) (440)

Substituting (440) into (438), we will find
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bot-bowef o). bps® L{_r_-?l:)
a8 3 ..o F 2,30 y“!_zi_
=g @ e )+ EE

‘ iv‘ Bt g;‘ +...4 FMS“"
aan}-c,z-t-... +e,z'° v

or, according to (394), :2 N
wi@-PE Ll . A
@ . ay
- f <zz~-,—,-mz>s ()] + £k :i"; + ‘j;:’x_yscz;. , (441)
where . . SR
S(z) 904'3334' -+3a-z‘"‘°‘ ) - ". (1442)

@ s oiibagt® °

Thus, the solution of equation (432) is reduced by us to the
integration of the differential equation (441). Assuning

v(z)mcgﬁ%. (443)

we will have
x(z)-«%—”— A )= T L

—) ____ dx dip
(92 A (2) & (2] ( -,
Thus, multiplying both sides of equatioen (44l) by ;:#.-l(z), we will
obtain equation

G~z a+3

,..+sug-,.» (z)[:' (z)+s(z)+ €0 4 £l=0) 2] +P),
or ' ‘

L] a 0
M 1

. 3‘;3‘%'3-‘?(:), (4Ll)

where

=5 1 (z>+s<z)+““’ +2=9) g, (h45)

As we already showed above, the differential equation (417) has
the solution (427). Consequently, the solution of the differential
equation (L44) wfll have the form

gu§\I’(t).ni'n(v‘-—v')dv'-&-c.soa;-i.-c,sinv; (446)

99



—

where variables ¢t and v*® according to (443) are connected by the
relation

SR
.-(:;ME.;I;T. (447)

Passing in (446) [rom variable v#* to variable ¢, we will find in
accordance with relations (U43) and (U447)

gz = § W sin[v(z) - (1) ;(-‘-” + 6,08y (2) ey it v 1), (148)
6 - ot R
Substituting (463) into (466), we will obtain finally

[ 'f{;’+/ (z)+su)+“"’+ ““”]_x-.,__

. 1
?‘z)”? e

OGN

X sin {v'x)-—v(l)]dbrc‘cosv(:z)-i»c, smv(t), (449)

where functions F(z), S(x) and v(x) are determined by formulas (446),

(442) and (443).

Assuming in (449) z = a and z = —a we will obtain two equations
for the determination of constants eq and eyt N

¢, o3 v (a) ¢, sin v (@) = o 1
=5 @=L [#F0 450 +ES 452 x
u .
xein [2(a) = v(1)] d¢, 4
¢, cosv(~—a)te,sinv(—~a)s= (450)

~s-a=4{ - §{:}+/(:>+S<z>+§ﬁ". o2 x

Xsin[v(—a)=—v(2)ldt. |

Equations (439) by means of pariial integration can be given the form

e

4 Pt Py (s)
S g(‘)'df [—2,’4.5':.}. o lpth ]d‘ g(e) b, +b,¢+...+b,,a' -
-3

Py (~a)

xd'f'---'f‘l'"(-a). "’3“, k"o. " teeg n"”o

--g(—-a) b,~5

100

T h me N A o, et opdeme 5 S o S T

AR T e < =

SO B Ao Ve W

o

W e e



s el MR IE AT S o e e

P L

Substituting (449) into (450), we will obtain » equations for the
determination of constants Fo B ..., Basy which appear in the
expression for the rational function S(z).

Boundary values of the unknown function g(a) and g(-a), which
appear in formula (449), are determined by supplemenatry conditions
resulting from the statement of a certain problem, which leads to
equation (432).
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CHAPTER II
TWO~DIMENSIONAL CONTACT PROBLEM

§ 1. Derivation of Fundamental Equation of the
Two-Dimensional Contact FProblem

Let us assume that two touching elastic bodies (I and II on

Pig. 5) before comprecsion are bounded in the sectlion on plane x0y
by curves

y=/i(2) and y= ~£,(2). (1)

Prior to the compression between the elastic bodies there willl be

the clearance [, {2)+/(z). Contact of the bodles will take place for
those points of the axis Ox, where

1 (2} + fs (2) =0,

The set of points of the axis Ox for which contact of the bodies
takes place before compression will be designated by SO. With
compression by forces parallel to the axis Oy, between these elastic
bodies generally contact even along certain additional sections of
the axis 0s will appear. The set of points of axis Ox for which
there 1s contact between the compressed bodies will be designated

by S. In the process of compression the elastic bodies will obtain
forward displacement in the direction of axis 0Oy, which will be
designated by =04 and . Thus, between the compressible bodies an
apprcach o equal to ay + a, will occur. Let us assume that two
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Fig. 5.

points of elastic bodies, which occuplied before compression position
Al and Az, touched as a result of compression at point A (see Fig. 6
where the dashed line shows the outlines of compressible bodies prior
to compression and solid line, after compression). Displacements of
these points AIA and AQA willl consist of forward displacements AiA
and AéA equal respectively to -al and 62 and elastlc displacements
Aldi and AZA" Let us deslgnate by Uys Uy and “Uys "V, elastic
displacements of points Al and A2 in the direction of axes Ox and Oy.
If point 4 has the abscissa x, then abscissas of points Al and A2
will be respectively equal to z - uy and z + Uy, and ordinates equal
to fl(z - ul) and -fz(x + u2) according to (1). By examining the
displacement AlA of point Al’ we will find for the ordinate of point
A the expression

fr (Bt 4y

by examining the displacement A2A of point 4,, we will obtain for
the ordinate of point 4 the value

~h(z4u)—0,+a,
Thus, the equality
hE=uw) 0,3, = ~ [y (24 8) =0+,
or

Oyt =2 fy (z=1t,) = f, (24 a,), * (2)

should take place where o = oy + a5 is the approach cf elastic bodies
with compression. By examining only small elastic displacements, we

103 |



Fig. 6.
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can replace in (2) fl(:c - ul) and f2(x + u2) by fl(x) and fz(a:).
Let us obtain then for points of contact the condition

v+ g 2= f, {z) = f,(x) On S. (3)

We will further assume that the friction between the compressible
bodies 1s absent. Then at the points of contact each of the compressed
bodies will undergo on the side of the other body only normal

pressure, which we will designate by p(x). Assuming that the whole
region of contact is small in comparison with dimensions of the
compressible bodies, we will conslder that elastic displacements vy

and v, at the point with the abscissa x willl be the same as those at
boundary points of two elastic half-planes (upper and lower), which

are under the impact of the same normal pressure p(xz) as that of the
examined compressible bodies.

Let us examine the lower elastic half-plane to boundary of
which is applied no.smal pressure p(z) on sections of the axis Ox,
which correspond to sections of contact of the compressible bodles
(Fig. Ta). Let us separate on any of these sectlons the segment of
the axis Ox from point x = ¢ (Fig. 7b) up to an infinitely close
point = = t + dt. On this section force p(t)dt will act. Since
| section dt, on which thls force acts, is infinitesimal, the action
\ of this force on the elastic half-plane will be the same as 1if to
' the elastic half-plane an infinitesimal concentrated force p(t)dt
' were applied at point = = ¢. The problem about the action of
. a normal concentrated force on the boundary of the elastic half-plane

] is well-known in the theory of elasticity!. If at point x = ¢ to

| !See Timoshenko, S. P. Theory of elasticity, ONTI 1937, p. 101.
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the boundary of the elastic half-plane a normal concentrated force P
is applied, then the end point of the elastic medium with abscissa =z
obtalns displacement v in the direction of axis 0Oy equal to

pw —~3Pn -;--}-002183., (4)
where
reft—~zi (5)

i1s the distance between points of the axis Ox with abscissas ¢ and z;
5'__?...(1... Y, (6)
=SB Bh

where F 1s the elastic modulus, u — Poilsson's ratio.

Thus, force p(t)dt, applied to the boundary of the elastic
half-plane at point ¢ = =, will eause at the point of the boundary
with absclssa x displacement in the direction of the 0Oy axis:

a~~wmmﬁéﬁa+mmu

and the action of the whole lcac p, applied (Fig. 7a) to the boundary

of the elastic half-plane, will create at the point with the abscissa
x the dlsplacement
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Ve ; P (f)'ln -[—‘-_—‘_—ﬁd{—f const.’ (7)

If the same normal pressure p will act on the boundary of the upper
elastic half-plane, then the end point with the abscissa z will
obtain displacement v in the direction of the 0z axls equal to

omagp(t)lnn—_%-l-dt%const. (8)
- 8 .

Thus under the made assumptions displacements vy and vs in Fig. 6
will respectively equal

c,no,gp(t)ln-‘-‘-_-’_—;‘-a’t-i-comt. (9)
;
accerding to the formula (8) for the upper half-plane and

—t, = -, Sp(z) In - 8:+conss (10)

according to the formula (7) for the lower half-plane. In formulas
(9) and (10)

=g (fmid By= (e, (11)

where E’l and My~ elastic constants of the first body, and 5'2 and My
elastic constants of the second boedy.

Substituting vy and v, from (9) and (10) into (3), we will
obtain for pressure p(xz) the integral equation

w,-{-n,))p(z)la dl-ac-[,(z) Li(z) on S, (12)

The problem of the action of the concentrated force on the
elastic medium should be examined as an abstraction not reflecting
practically possible conditions of the problem of the theory of
of elasticity. However, in using this formal solution of equations of
the theory of elasticity, it is easy to turn to the solution of the

real problem about the action of the continuously distributed load
on the elastic medium.
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or

§y(l)ln-i-‘-£-;-‘-dij(x) on S, (13)
where
[(z)uiﬂ%i.g.'a"___’!(’)_' (14)

e 1s a certain constant. Equation (13) 1s the basic integral equation
of a two-dimensional contact problem of the theory of elasticity anad
it 1s examined in detall in Chapter I.

§ 2. The Case of One Section of Compression of
Elastic Bodies

Let us examine first the case when the 1nitial contact of
compressible bodies in plane xz0y occurs at one point. Let us take
this point as the origin of the coordinates (Fig. 8). We will first
assume that functions fi(x) and f2(x), which determine the configura-
tion of the compressible bodies, have continuous first and second
derivatives in the neighborhood of point = = 0. Directing axis Ox

along a common tangent to the curves limlting elastic bodies in
plane z0y, we wiil nave

L) =f(0) =0, (15)
The sum of the second derivatives
fO)+ £,(0)

will at first be assumed to be different from zero. In view of
smallness of the elastic displacements, the region of contact §

1f~er compression of the elastie bodies will be small, and in this

reg! nothe sum of functions f,(z}+ f(z) will be approximately possible
. o 3nt in the form

1D 2 ()= 17O+ £ ()} =", (16)
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With respect to forces compressing body, we will consider that their
resultants, perpendicular Oz axis, are directed to the point of
initial contact of compressible bodies, i.e., to the origin of the
coordinates. Since we assume the initial opening between compressible
bodies fl(x) + fz(x) according to (16) to be symmetric with respect

to the Oy axis, pressure p on surfaces of compressed bodies will also
be symmetric with respect to the Oy axis. The region of eontact
between compressed bodies S will constitute a certain segment of the
Oz —a<z<e¢ axis. The integral equation (13) will have the form

{ plrnis; dtj(a)- when —a <3<, (17)
3, :

where according to (14) and (16)

¢= 02O+ O]

l(z)' %+ - N
or
f (2) =a— 4z, (18)
where
£00) + 73 €0)
ATty ! (19)

and a — certain constant.

The integral equation (17) coincides with equation (1), examined
by us in detail in §§ 1, 2 and 3 of Chapter I. For the case when the
right side of this equation f(z) has the form (18), the soclution
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{z).a“"**’“‘ = (20)
a5t

was found by us (formula (77) of Chapter I), where
[ ]
P p(2)ds. (21)
-8

Relation (21) shows that constant P, which enters into formula (20),
determines the resultant of the compressing forces applied to each
of the compressed bodies and balanced by the pressure acting on
surface of pressure. We wlll consider force P assigned. It remains
to determine half-width of the section of contact a, which enters
into formula (20). It is determined by the condition that pressure
p(x) should be limited everywhere, including the edge of the section
of contact. This is possible only when

P=z Ad, (22)
and formula (20) takes the form
PE)= LY T (23)
Substituting (19) into (22), we will find

2P {0y 4
am ) FTIL (24)

Formulas (23) and (24) completely solve the problem by determining
according to the compressing force P the half-width of the section

of contact a and pressure in the reglon of convact p(z).

Let us examine now that special case when the sum of the second
derivatives 1s determined by the relation

fi{0)+ £, (0) = 0. (25)

For generality we will assume that not only the second derivative
of' the sum fl(x) + fz(x) but also all subsequent derivatives up to
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the (2n -~ 1)-th, 1inclusively, turn into zero when =z = 0, and
derivative

£ (z)+ £ (2)

is different from zero when z = 0, being continuocus in this point.
In this case, considering the smallness of the section of contact,
when —agzL£d we can approximately substitute

() 12 () = g U ) + £ (O)] =% (26)
Substituting (26) into (14), we will find that in this case
[(z) == a = 432", (27)
where

£ (0) + £0)
A=t (28)

and ¢ — certaln constant.

In order to solve the integral equation (17) for the case when
the right side of this equation has the form of (27), let us use
the general formula for the solution of equation (17):

1 (Y YVad~e dl]

p(é)-;—y;’r:. ["“;S LEES (29)

(s2e formula (115) of Chapter I).

In order that function p(z), determined by formula (29), remains
iimited when x = a, condition

:SM“ (30)

a—~§
-8

should be fulfilled. Substituting (30) into (29) and using identity

i 1 -z? e—g
Py i O Y (i
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we will obtain

— 8
J{de 1 e~z F(8)d8
P(=)~~1V @'~ g V“ 1 B/m ms. (31)
-

-3t —a)

So that function p(x), determined by formula (31), remains limited
when z = -a, condition

3 {d
J{()ds -,

\ yoe (32)

should be fulfilled. If condition (32) is fulfilled, then, using
identity

Vei=ts "' e+t

3t atmph ™

formula (30) can be given the form

ey
vasg_%m.;np, (33)

and formula (31) will in this case have the form

RV ...JLLQL 4
P)m =LV =7 W (34)

For the case when function f(x) bhas the form (27), condition (32)
is fulfilled, since in this case in the definite integral (32) the
integrand will be odd. Substituting (27) into (34), we will find

- 4

)’a'-l'(¢-—x) (35)

-3

2 N
=R A moT et
-g

Using identity

[t}

;——;n% g B e, 020 2,

formula (35) can be given the form

—




(z)n A I/a‘-:c X . ..

2n=2

x[ 37 a"’z‘"‘”""-}-z"‘"g V‘"‘“—%‘fﬂ (36)
-g

mel

where

1 3 ~d
J,,.msﬁif,ic.-f‘-;. (37)

Integrating by parts, we will find

1 - teta -
=) yam o w VTR S‘""V Pdtm

lw~g

aQ a
me{ "™3dg m-lS tmde

}/at_;l

whence, using designation (37), we will find
JM=T—;;—EJ"‘_3; (38)
When m 1s even, from formula (38) it follows that

me{ (m—i)(m 3) (m—-i)(m-—ﬁ)...al
Jﬂ'm—}'n—', n(m-=12) migm = m(me=2)...4:3 Jo=

a

1.3...(m=3)(m—1) da__ 1.3...(m=3)(m-1)

76 (A=)m S,an e m=a)m S (39
-a

When m is odd, J, = 0, since in this case the integrand in (37) is
odd.

In Chapter I we showed that equation

S p()la g lalt==:z. ~-1<2<a, (40)

a
where a — constant, has the solution

R i W s A s e
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{see formula (74) of Chapter I). Substituting (41) into (40), we
will fingd

SVﬁ’:’iﬁ""T&ﬁd‘“W" when =8 L3<4.
e’y

(L2}
Hence, differentiating with respect to z, we will find
dg
lmw.c when fﬂ(’(‘o (1‘3)
Substituting (39) and (43) into (36), we will obtain
{2
’(’)”“A‘V“‘“’a{ T ) + .
. ‘}ﬁ.—_w—-}Ma‘“z’-&-.“+—§a’z"“&z““’} (4k)
Substituting (27) into (33), we will find
s
i § i,
or, using designation (37),
A 6™ uaﬂtp'.
Hence, according te (39)
13...02%~ 3)(2 = 1) .
T (b () dee” = P (45)
Substituting 4, from (45) in (44), we will fina
Crne o
’(3)-"‘ V'ﬁ -3t [3!-5*(&6 (283 )'1'&'
nm=2...
+"'(’.’u-—!)(:a-3) T xm] (46)

Substituting (28) into (4%), we will find

ot/ Sk R CA= DRI G L
Jd3..(28 - 3) (2 =) UP O+ £y’




29
amddo. 2322 Y umﬁ;gﬁ'"@n' (57)

o okt S o 2o s ¥ 2 e e PR

Formulas (46) and (U47) d=termine the half-width of the section of
contact a and pressure in the region of contact p(xz). When n = 1
formulas (46) and (47) turn into formulas (23) ant (24). Figure

9 shows! graphs of function p(z) for different n, which correspond ‘

to the ldentical half-width of the section of contért q and identical 7
compressing force PI.

RPig. 9.
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Thus far we assumed that the second derivative of the sum of ’?
functions f,(z)+j,{z) 1s continuous in the neiz‘nbo'rhood ~f point x = 0,
Let us conslder now the speclal case when point x = 0 1s the point -
of discontinuity for the second derivative of the sum of functions ’
Hi(z2)+1(2). In this case the indicated second Qerivative can, elther

by remaining limited, have a Jump at point 2 = 0, or turn into
infinity at this point.

!See also my article in Reports of the Academy of Sciences of
the USSR, Vol. 25, No. 5, 1936.

2In calculations £ = 2-106 kg/cm2 and ¢ = 0.3 are accepted.



Let us start from the first of these two cases. Thus, let us
assume that

f(0) 4 /{0) =24, when zes +0, } 18)
A0} +£0)=24. vhen zm ~0. j,

Then, considering the smallness of the section of contact,
1t 1s possible approximately to substitute

i( ¥ h(zi=Az when £>0, } (49)
H{2)+ jo(z)= A3 when 2<0.

We will first consider, 1n accordance with initial assumptions of

§ 1 of this chapter, that compressible bodies can have only forward
displacements parallel to the Oy axis. In this case we can use for
the determination of pressure p(z) equation (13), the right side

of which f(z) is determined by relation (14). The region of contact
of compressed bodies S will not now be symmetric relative to the
origin of the coordinates. Let us deslgnate the abscissas of the
beginning and end of the section of contact by -a + 6 and a + §.
Then equation (13) will have the form

a4d

§ powty =i, —oticzcars. (50)
~-a43 .

Assuming in (50)

temtpl, Tmidd, (51)
we will cobtaln equation
¢ 5
S Pty a i dr= &+, —a<i<o, (52)

which accoraing to the formuls (34) will have the solution

[

pE+Y= — Sy Foe | LIS (53)

yvaseE-o’
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where conditions (32) and (33) should be fulfillied, which in this
cage will have the form

f(s-H)ae (z+8):d¢
) Vim0 5[:7“-‘:?‘ (54)
Substituting (49) into (14), we will find

l"(“)"'."‘lf%r” when _é)O,

(55)
! (= u~.§.+9 ~=—g When z'<0. ;
Substituting (55) into (b3), we will obtain
n/;"i-"i _(z4dde (c-{»l)&c
A 2 (B, 4 0p) ;)[ S VT"?(c-o % ¢ e (t-o}
LAV
s‘(9,+5 {A"S V"""" ”"A 5‘
*“*"HSW‘"« 4 Siﬁ:‘f"'- = e«-o]} )
Assuming
2 20 2 :
“'"i"-?%' !-.H‘;,, 3es t+::x’ _ (57)

(lzej<4 and jvj< i when |1|<s and |tl<a),
we will find

-8

S d= ml-}-tr' S du -
aﬁT:‘?i(_,..o a 3 (u-v)(i-an)
.i+ % -
“c(x-po‘)( S ¥—d L4 S __“ ) (58)

0° by calculating the principal value of the
definlte integral, we wlll find
+

e -up
du du H
S .;:;.nhﬂg( j‘ U~ D +,§, 4= )u?ﬁ [h(c-a) Umef
UL dad ]
. 8{~u,~0) Ll
N
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When § > -6, v > =y, WE fingd directly

=g s
du oD
5 "‘”‘”"“)r =l

P43 T .

Formulas (59) and (60) can be united into one:

du gu'otao[
Sﬁ e BN

<

¥We find further

Ye . e . i
§rtem e (o) n s

S -y ¢ o e

Substituting (61) and (62) into (58), we will find

— ._‘_e - l"b“‘ ,“o'i’i” .
P e e i e

Considering further
c-té(—}--}),u.-aig(%’--—i—) (O<§lé:, 0<.?.<1r),
we will find according to (57) |
Emaoosp, 3= ~—~acosq,

and formula (63) will take in this case the form

- . N Ll )
S. az - 3 sia 2
RUCECET I PR o
According to (43)
- g4 ¢
§ = - — ' de - b In sio 2.'
Ve—t(z-0 Vet "o~ ssing =9 |°
-8 -g lh%---r
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(67)




Assuming <=acos¢ and taking into account (65), we will find

8 de 'Oo - ‘ f (68)
V== dr=o

- R G
Ki]‘?%"ps;d?m“:"?n

4

Substituting (65), (66), (67) and (68) into {56), we will fing

. % . ) . .
Py |ielAat A -0l

.
-

. : stu ?'5’7.
. +(c089 6089 (4, - Ay n | T } (69)
3 ] S
) : 0<o< =
According to (51) and (65)
Tw=g(cos9— o3 Q) (70)

Formulas (69) and (70) determine function p(z) in the interval
~e+3<z<a+s.

Substituting (55) into (54), we will obtain the equation

' -y
(z+8) dz (=4 3)de
‘A,Sya,_é + 4, S =0,

‘ ) (71)
(e (Gheds _w .
A. S A, 8_7_1__;._;_ 3P(°ljf‘°')'j

Assuming in (71) tmacoso, tm —acosg, we will find

] b J
Al S (cosg —cosg,)dy + A, S (cosg—cos¢,)dp=0,
*% e .

L LX)
a [A. S (cong=co33,) cos pdp p A,S (cos p—cos9,) cos g d\?] -
» 3

- 2P (8,43,)
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or, fulfilling integration

Ao (ei09y=g, 0037} = A (8.9, ~~9, c03 9, Fucos ) =0,
. “Mo'(?a”“d“?am?a)"'ﬁa(%'-s&?ae%g,uxnm (72)
““P@;‘i’a&
The first of equations (72);gives
29 G0 Z (73)

z =1

Multipiying the first of equations (72) by &% and adding 1t to
the second, we willl find

'
™~

aeli®e, b5, (A, — A) P (B, +0),

whence

4 o5 8ok
“”m?’ —AGn (74)

Having determined g from equation (73), from formula (74) we will
find the half-width of the section of contact a, by the second of
formulas {65) — the displacement of the seciion of contact with
respect to the origin of coordingtes §, and further, by formulas (69)

and (70), we will be able to determine pressure p(z) in the region
of contact -g + § <z < q + §.

Figure 10 shows the graph of  pressure p(xz) for the case q,=120%
Let us note that pressure p(z)' in the éxamined case  is reduced not
only to force P, applied at the origin of the cooréinates, but also
to a certain moment ¥ wlth respect to the point =z = 0. Let us
calculate this moment ¥. We find

el . e .
Me § p(tdie pist8)(s4E)dem

add
' .uaPz:Q-Sp'(t-j:&)xde, (75)
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since

5

g pla4d) Sem ? 2{dim B,

<638

Differentiating (52) with respect ¢o £, multiplying by V=& and
integrating then with respect to £ fiom ~a to a, we will find

‘g ‘g’ Py ’ . .

{pee+t] {EEE a)am {1 6atiyo=Bar (76)

-f -g wg

*

I.et us find further

&ﬂn’, ]

= ' &
K&f#“@"’*‘? § Tf:i—'fza’i:'as 5#‘3@?"?
. ‘ti!’ ) ‘
+§‘?m-ﬂ*§a7m %y n

if one were to consider (43). Substitﬁting (77) into (76), we will
obtain ' ¥

§ plstd)cdrat | FREHYT-TR (78)
=8 . -0

Substituting (78) into (75) anc cﬁanging the designation of the
argument according to which integration is conducted, we will find

,;;.,p'z.g..%..sj'(waymd{ (79)
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L S

Substituting (55) inte {79), we will obtain

" SN . .
e e TR
+&S(e+ézﬁﬁéc}.

or, 1f one were to substitute tmgeony, S —acoogs

HaPRemeonoes (A, i sintg (e g cosg,)dp
>4, ?gaia'q; (ctl:s Q= st 9,?&9} o P "7%%55' {‘-’;&3’2:“-:5;&'9;....
T, [~ a0 trmdn gy e int. ] }ami-. L
«--35‘;35 { 7 S Y 0l A3 (0,8 904
| soal)mmpthpiiomn (a0)

on the basis of (T3). Substituting intc (80) &’sin%, from (T74), we
will find

ymﬁ+&¢%&93%ﬁo (81)
since acosg,wm =8,

Thus, in order that the compressed bodies are in equilibrium,
it is necessary that the resultants of compressing fordes be
displaced with respect to the point of initial contact of the bodies
and cross the 0z axis at point zm%a.' If according to conditions set
by us above, resultants of compressing forces are directed tc the
origin of the coordinates, but at the same time compressible bodies
can accomplish only forward displacements, then the connectlon
preventing the turn of the bodies with compression will take the
moment N determined by relation (Bi).
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Let us assume now that resultants of the compressing forces,
Just as eariier, avre directed $o the origin of the coordinates, but
the sonnecticn hindering turns of the compressibie bodles 1s asbsent.
Let us solve the c¢(ntact problem under these conditioms.

The relation (3), which connects elastic displacements of end
points of compressible bodies vy and Yy is derived by us in the
assumption that with compression the elastic bodies accomplish enly

- forward displacements =ty and a, in the direction of the Oy axis, and

between them besides the approach a = Gy + @, occurs. Let us assume
now that with compression the elastic body, located in the upper
half-plane, besides accomplishing forward displacement accomplishes
8t111 a turn relative to the origin of the coordinates by angle -el,
and the elastic body turns relative to the origin of coordinates

at angle 8, (we will consider the turns counterclockwise). ‘Then
between end points of compressible bodies having the abscissa z an
additional approach equal to 8z will oceur, where 6 = 61 + 62, In
order to obtain in this case the connection between elastic displace-
encns 2 and Vg it is necessary to replace the constant approach ¢

in formula (3) by a variable approach a + €xz. Let us obtain the
relation

Oy bty matbr—j, (2] =1 (3) On S. (82)

Substituting into (3) v, and v, from {9} and (10}, we will arrive,

moreover, at equation (13), but for function f{z) instead of (14) we
will obtain expression

03— = [a{
Je) = EEFB=AS, (83)

Substituting (83) into (53), we will find

FIE DT
'“4@[ Sv'a <e-a"si%i%'{£_’?“] (8%)
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But the first integwal in formula (84) is equpl %o zero. Thus, the
expregsion for pressurs p will remain the send yus that in the
shsanee of the relstive turn of compressibleis®ies 8, and as befove

far pressure p we will have formula (59). Subst¥tuting (83) into
(58), we will obtailn equations - . 2

oAttt

- [i(e;;-&)-rié(evbg §ou g,{
> @ r-t’ d m%‘ dum ﬁ’

2 (338} file S - o
8 §am ~ 1 i@ ﬂ?ﬁn'%’ %33’

v Q""“

(85)

wwwﬂ

Substituting (49) inte (85), assuming 286289, §m-»aeasy, and fulfilling

integration, we will obtaim this time, Iinstead of equation (72},
eqqg%ion

Afoi g, g'c08 7}~ A{5ER 9,0, €08 7+ weRp) e 3, }

. (86)
4, gy~ aiB Y, c03 g}~ A.(py—sin ¢, ‘@%“"9}“&2‘%%29’
Substituting (83) into (79), we will find
’*’““*WSV“‘”“‘” )
© -ngeq-a)w:gwmfm& (87)

Substituting (49) into (87) and producing the same computations as
in the derivation of formula (80C), we will obtain

U --Paccsq.' -é';-@%e:;"@ {ﬁ"‘%‘{""ms?e'? )
D[4, A) (ra=tg 9 5 A} + i (88)

But since compressible bodies can freely revolve about the origin of
the coordinates, moment M, which will form pressure p(r) with respect

to point.z = 0, should be equal to zero. According to (88) we
obtaln the equation
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m%}@ Pesigyom g : 89)

By edding the first of equatieﬁf»%ﬂﬁ);?ﬁ*h equatiég*(sgaqzae will
find

NS Mx;z;

Hh—a)sit g “"“%“EQWS?&' (90)

-
“3?,. —xﬂ,&""v R

Dividing (99) by cos éo and submeting from the second of equations

(86), we will obtain equat;ion

L?"\{ b \‘M?Q ’a:.‘-( ' M:(
yi&w&m&néﬁa%w% agn g«tz?&sw« \
g T Nt R . - o
oy oo 4 T . ¥
T T fas
* &
o BRrERleynipimar—, L. @
TR
From (90} we find "“3“"{,;',‘[';;“ +

(g2}

Multiplying the second of equatiens (88} by cos ¢, and adding 1t to
the first ¢f these equationa, we #1111 find

‘a . 2
(4= Adsiss g, w20 B ecsq 4 52, @3]
Excluding 4, - A_ from equations {90) and (93), we will find

frn ECE N o, (94)

Equation (91) determines the angle ¢y after which formulas (92),
(94) and relation dw—gensy, determine the half-width of the section
of contact q, the displacement of this section relative to the origin
of coordinates § and the relative turn of compressible bodies 6

and formulas (69) and (70) determine the pressure p(z) in the region
of contact ~eHd<zadd;
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Thus, for the case when the second derivative of the zum of
functions fi(sikfifs) has a Jump at polnt 2 = 0, the eontact problenm is
completely sclved by us both when the condition of only one forward

displacemsnt of the bodies and according ¢o the conditlon of forward
displacement and their relative turn.

Let us turn now to the case when the second derivative of the
sum of functions AH{2)+/{s) turns into Infinlty at point 2 = 0. We

will assume that in the region of contact the indicated sum of func~
tions can be represented in the form

Llathi=dlal  (<ES (95)

Substituting (95) into {(i4), we will have

fam AL,

f{z)en ‘-%‘,-;’f%-‘ when 2>, | (96)

292 Akl "
i isie ‘5;23.‘? when £<0, 5

Substituting (96) into formula (34) for pressure p(z), we will find

BV 18i3de 1822t
Pig)e= r{ NI N} [ S ; ag—c‘(c-s gV &t (eng) (97

Replacing ¢ by -t, we will obtain

iei>=sde
"“S Veat(t=s ™ dVe=i G+s) (98)

Substituting (98) into (97), we will find

ryou 2 o2
pio = BT el (99

Condition (32) in this case is fulfilled, since function f'(z),

determined by relationship (96), 1s odd. Substituting (96) into
(33), we will find
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39!" 4 %ﬁﬁ i3 Q; 4.99
3 - § & 4"3

33;;:?5 ﬁ%iﬁ‘? (160)

’

. Assuming in (99) and (100) ¢ = at, we will find

P(ﬂm%{% Vi-5 g;ﬁ%ﬁ' (101)

24 :
“‘ S ¢4 QP;Q '{'5 o (102)

Substituting & from (1062) into (101}, we will obtain formula

ya'ﬁg .
L pors J @I
v)::"- ‘V;k ( _‘) (103)
e
From (102) we will find
-
o R e } (104)
1\ s

Pormula {10l4) determines the half-width of the sectlon of contact a,

and formula (103) — pressure p(x). Definite integrals entering into
formulas (103) and (104), when 1 < k¥ < 2, are not expressed in

terms of elementary functions. When k = 3/2 these definite integrals
fz1liptic), after reduction to canonical form, can be calculated from
tables®! available for elliptic integrals. Figure 11 shows the graph

l1See Appendix 1, p. 5.
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of pressurse pio) caleviaved Irem formuia (102) for the czme ¥ = 370,

Pressurc p(.} 4s limived in wre wheie rezica of contact —sxz w4,

viscontetiiley at point 2z = O,

and the curve denicting fungtion plz)} has vwnen x = (0 a corner polint.

however, <derivative p'{z, unaergoes

In conclusion of thir parvagrapn, iel us note the maximum case of

the examined poiblem wnen k = 1, according tc the formula (96)

ey St (105)

In Chapter I we showed that for ‘the c¢ase when the right side
of integeal equation (17) HMe) has the form

J{r)ma=disni ' (106}

this eqQuatlon has the solution

ple)w = H1a 2l (107)

X3

which becomes zero when |[xims. I1f

Lis 08
2.2 (108)

(formulas (203) and (204) of Chapter I).

Replacing in (107) and (108) 4 by ‘““"r we will obtain the 7%

solutlon to the prcblem for the case wnen function f(z) has the forn
(105). We find
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when .
BN A
£
0, o )
RRE VA S ! 2Ffe .(210)
:";f‘iw?r, ‘ pw“i ‘be )

Suhstivuting 4 from (230) inte (109), we will obtain formuls

i . 4 - - 3-‘-—;‘
f_(ﬂé_‘cn .,:%ga*..j.;s?:";.m ‘ {111)
2 UL I
Fﬁgﬁ:{llﬂ') we ™nd
;',c‘é-',.;_ .
O RR-AL L {112)
=

wo£§§§a (112) detemzines the half-xidth of the secltion of comtact a,
anéf%ﬁ?mnla {111) - pressure p(z;. PFigure 128 showz the graph of
funtign plz) determined by formula (111). At point = = Q the
preéﬁgﬁ%'p(x) ecomes Infinity. 3As can be seen from (95}, for the
exaﬁiheéiease (k = 1) the or~ri-z tetween compressible bodies prior

" o compression is determined by formule

Co | LB L= Al (113)

and the configuration of compressible bodles in the nelghborhocd of
the point of their initial contact has the form shown in Fig. 12b.
Thus, the examined maximum case k = 1 corr sponds to the compression
of tggfuedges or the pressure of a wedge on the rectilinear boundary
of the elastic medium. In this maximum case at point z = 0 it is
not the second derivative of the sum of functions J,{z}+ /. (z), that
mdergoes discontinuity but the first derivatilve:

his)+ ()= —4 uhen sz=—y, } (114)

j;{z) + f; (S)auﬁ when so -’-Q,
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§ 3. The Problem of Pressure of a Rigid Stamp on an
Eilagtic Half-Plane

In the preceding section we examined in detail the case of the
contact problem in which the initial contact of compressible bodies
in plane z0y is carried out at one point. Let us now consider the
case when the initial contact of compressible bodies in plane x0y is
carried out not at the point but along a certain segmenf of the Oz
axis. If the length of this segment 1s designated by 2a and the
origin of the coordinates is located in the middle of this segment,
then the set of points SO’ in which the initial contact between the

compressible bodies 1s carried out, will constitute the segment of
the Ox axis —ae<z<a.

Let us examine first the case when one of the compressible
bodies has the form of a stamp with right angles in the section by
plane z0y. Usually in this problem this body can be considered as
rigid, and the problem 1is formulated as a problem about pressure
of the riglc stamp on an elastic half-plane. In this case and after
compression the contact between the compressible bodles will be
carried out along the segment of the Ox axis -q < # < g, and
according to general formulas (13) and (14) the pressure p(z) under
the stamp will be determined by the integral equation

\ p(t)lnﬁ-;_l;,-‘ dtms, —s<3<0, (115)
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where ¢ — certaln constant, since when -a < 2 < g the inlitial opening

between the compressible bodles [, (z)+/(s)=0. In Chapter I we showed
that equation (115) has the solution

P )= = (116)

[
where PnSp(z) dz— the compressing force (see formula (74) of
pr’y

Chapter I). Figure 13 shows a graph of pressure p(xz) under a stamp
plotted in accordance with formula (116). Pressure p(z) increases
without 1limit with the approach to boundaries of the section of
contact # = -g and x = +a. At the end of the preceding chspter we
already encountered the case of conversion into infinity of pressure
p(z) when we examined the pressure of the weige on an elastic half-
plane. In reality the real profile of the elastic body will never
have corner points, so that the wedge or stamp, which have right angles
in the section, are ahstractions, which lead with solution of the
contact problem to an unreal distribution of pressure in the region
of contact. Below we examine the problem about the pressure of a
stamp on an elastic half-plane, considering that the profile of the
stamp has a continuously revolving tangent. Thus, if

°y°f.<=)

is the equation of the curve limiting the stamp.(Fig. 14) in the
section by plane z0y, we will, as earlier, consider that

{.(z) =0 when ~aL2486 (117)

and in the neighborhood of points z = -q and & = aq when |z|>a we

will approximately represent funztion fl(x) by the first term of
its expansion in Taylor series:

(118)

LB =ifi(@+0) (=) vwhen z>eq,
fi(2)= 3 /i(=a=0)(a+2)° when z< —a,
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Fig. 14.

considering that with the approach to point x = g on the right and to

poeint & = ~-g2 on the left the second derivatiwve f{(z) approaches

finite values different from zero. These values will be considered

equal, assuming the stamp to be symmetric, and we will designate by 4

ha40)=fi(—a~0)mA4. (119)

For simplicity considering thcot the elastic btody on which the stamp

presses has a rectilinear limit, coinciding with the 0z axis, let us
take

} (z)=0. (120)

Substituting (117), (118) and (120) into (14) and taking into account
notation (119), we will find

[(z)un?m’%-m(a+:)‘+éon5t when z& —g,
f(2) = conut. = © when =~a&z<4a, (121}
: j(z)---z-zs;‘-‘;-’:’(s.-—a)‘-{-comt when zoa,
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whence

fla)m "m-"é‘f. (8+2) when sg =g,
f{z) =@ . when- -va«(s@e, (122)
! (5)““5-——- (z=¢) when 2>a, -

Designating by 2b the width of the region of contact after compression

(b > @), we will £ind the pressure p(x) according to the general

formuls (34), replacing in it the half-width of the secticn of
contact e by o:

Faotgen) *

. % ..
/s {8y ds
pla)m —5) =7 s (123)
VI=E | 7
Substituting (122) into (123), we will find
AVFTD © erne 8. f  (-ayde 7"
P {430 !i Voo i(t—g) +§ ? 35-43(3-8)] ¢

or

AYF=E '
p(x)= T XY [(a+ )S ;aiz-—a'(# a) +Sm+ '
)
+§,y’v-v + (= “)S Yi=¢ sé(s-a)] (124)
Let us find
ra dt ¢ de ‘.
), 7rm = Y 25)
where
e aresin g o (126)
Assuming

2. s’
tmd ra’ zesd Y] (127)
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where El and 52 gre connected with 4 and &q by relation

Z,mb 3‘%‘%3 ’ 3,&&-%

Let us find further:

when § <,
3' minte -ae;["'“. -in 2f,
3

when §> ¢,
§ el iont

when § <t

g""ga!.‘..a(S“" ‘§ = V

Rul=g =iy
uﬁ? {h(‘-‘)‘v-h z)L Na}
) £u€
-hm!n( ‘ h" o~

Pormulas (130), (131} and (132) can be united into one:

{ iz

=5

Analogously,

dz . -
§ f'"’l"l:"’*-c: .

L5 "'-"

133

(128)

(129)

(130)

(131)

(132)

(133)

(134)




Substituting (133) and (134) into (128), we will find

-
at 148 g HE=T) (38
.im(a-@"é(l-a (c-eﬁ)“"‘az%n- (135)
Taking into account (126), we will find from (129):

{136)

when z,= -3, s,m-a,:s,mui, se....gg%,
when 3= g, 8336’ &;’tggé'. tg.miw

Assuming further

Emig-f:‘ (137)
and substituting (136) and (137) into (135), we will find

i slug-iﬁ.?& )
Si? -z-(z-s) &cmi cos =R |’

3

dc . In
VE=d@-a) beny sinf=te|’

[ 15 T

From (127) and (137) it follows that

zwbsing. (139)

Substituting into {124), (125), (138) and (139), and assuming
according to (126),

ae=bsine,, (140)
we will find
+ .
pw Abcosy alup-}-zl_L Lz‘h )
S0, +0,) —ih d
3 '
+
+slﬁ9-shv,,blm°2""b‘
€05 ¢ l“ % ‘5"5“2?9)
134
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or

Srfad
F ;Fgg i(za-s?,) cesp +eingpin r._‘g;w;:}i 4

+fin9@§gg!%kgtgh!]; (141)

Substituting (122) into condition (33)! we will obtain equation

-a 3
a4 vyede , € {—a)edt  aP (0, b6y
g T + §’ Vhoa & ° (Qa2)

Assuming in (142) ¢ = b 8in ¢ and @ = b sin ¢gs according to (140),
we will find

w
o-‘

f(ain?,-}m?)m vd;-}- S (sio g-ain%)eimei;m—%ﬁ

o
-=men
]

L. ¢
or, fulfilling integration
-1 2 P (8, +5y)
e (143)

Substituting » from (140) into (139), (141) and (143), we will find

;ag-’-'- —otgge= EOEN, o (144)
\zua-’%?:'!;-, . (145)
Ae s l"*'n}
p"u‘ﬂii-i-ruﬁwo[("”&"")“'7"'““1”l:n(;—' i"'
+ci_n9.ln!tg?-fz-’1tg?;-§g’-l]. (146)

Substituting 4 from (144) into (146), we will find

!1Tn accordance with designation b, accepted in the examined
problem for the half-width cof the section of contact, it 1s necessary
here in (33) to replace a by b.
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1; 2?3199,'[(u-—'z?e)wﬁ-kaia!fﬂg?f:‘%{%!i% '

’ "0 {8 dfy~oib 3fg)
gttt L
%8 (R = 75 = $ 335% Rl £ <5 27 (147)

Formula (144) determines the angle 0 after which formulas (145)

and (147) determine the pressure p(z) in the region -% 494-‘%, which
£ - e

corresponds to the region of contact —bdgzgd (bwm), Plgure 15

shows graphs of pressure p(z) correspcading to different values of
angle ¢0, i.e.;, different ratios &”'}(%“ET?};;)‘ Graphs of pressure
p{z) shown in Fig. 15 correspond to the lgdentlcal half-width of

the base of the stamp a (see Fig. 14), identical compressing force
P and ldentical elastic constants, but different values of 4, l.e.,
different curvature of edges of the stamp, owing to which angle %

(see formula (14%)) and half-width of the section of contact ba-r,-‘:%
changes.

* . Pregsure groph
8] .
~A ' N . Fiay
-
< J p

. "'f -4

hE 2N

Ladlild

¥ 5
E | ‘ tem E Z 2
-a G 0 in .

Flg. 15.
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Thus, consldering the curvature of edges of the stamp tc be
limited and assuming thus the recl conditlions as a basis of the
problem about the pressure of the starp, we arrive at the real

pilecture of distribution of pressure under the stamp. As can be seen

from Fig. 15, an lncrease in curvature of edges of the stamp, other
things peilng equel, involves an ingrease in maximum pressure under

the stamp; however, this pressure remains limited, and as yet
the curvature of the stamp is limited.

Formulas (144), (145) and (147) given by us make it possible
to set the maximum pressure under the stamp, if the configuration
of the stamp (wldth of its base 2a and curvature of its edges, i.e.,
A), elastic constants and compressing force P are assigned. The
graph shown in Fig. 16 makes it possible immediately to detect from
these data the width of the area element of contact b, not solviug
equations (144), after which by formulas (145) and (147) it is
possible to calculate"the preséufe bcﬂ at any pecint of contact.

ucjl . ’ ,
Qeq
; Fig. 16.
e "
ta- o :
T z';f' - %.

§ 4. Case of Several Sections of Compression

Thus far we assumed that after compression the contact of the
compressed elastic bodies is carried out along one segment of the Ox
axis, 1.e., the set of points S in which there occurs contact of
compressed bodies constitutes one continuous line. Let us consider
now the case when the contact of the compressed elastic bodles is
carried out along several segments of the Ox axis: (al, bl)’

137

i St te di

icioun

——




(ay+ bz)’ teeg (“n’ bn) (Fig. 17). In this case the basic integral

equation of the contact problem (13) will have the form

"

! Sp,{t)luﬁé;‘-dluﬂz), 8a<z2lb(@=4,2,...8) - (148)

Fieltn .

where as before

flay=t=hBoh®), (149)

The integral equation (148) completely coincides with equation (209)

of Chapter I. As we showed in Chapter I, the solution of this
equation has the form

P(z)= . - .ot .
L] 3';5 » . .
(= oyt [ -1l E/[ fomomxe- 2| G021 p )]
Mmel G1n el : .
E-) = ¥ 1]
) V} H (s-»ag)(a-bg)! . (150)
mal
ay < 3 <.blo

- where P...{z)— polynomial of the power n - 1:

P.-.(x)ac,+e.z+c.z‘+;..-§-c'..,.z"'°-'l’a:=“", (151)

P — compressing force, i.e.,

" by
Pa) \pl)as _ (152)

(see formulas (244), (245) and (246) of Chapter I).

Fig. 17.
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Coefficlents @gs Cqs @os soes O o of pelynomial £, {3} are

determined from the system of linear equations:

2 c‘T L de ';

1ag i .E/l H(;..a,,,)(s-»ém)i

(41 o) B | TR
[stusais-w!

el

- V/[ 1l (wen)(s-aa)j

Mws

.Y ]

muiv 2) .';.,n-’ﬁ,

(see formula (252) of Chapter I).

Boundaries of” sections of contact, I.e., abscissas ay, by: 4,

b2, cecy @, bn’ will be determined in general from the condition
i that the pressure p(z) should remain limited in the whole reglon of
contact, including the boundaries of sections of contaet = = a.,

Ec ib""‘" \ !/[ [T (e~a e~ 2] G2C ] o,

x = bl, vesy @ =a , x=Db . AS cen be seen from formula {150),

this is possible only when the numerator in this feormula becomes

zero when g = a;s & = bZ (2 =1, 2,
equations

" = ry -
%—2’(-,»0“.3 l/m (:-c..)(f--balx

d
':(-?a;t + Pps (e J =0,

-—2(-9“‘3!/1

b} = (1=t %

lmQ, 2, ey B

which determine abscissas a, b, &, &,...,0,, b,
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x G+ P @) =0,

..y n). Hence we get 2n

! (154)

J

(153)




The formulas obtained by us completely solve the examined
preblem by determining the reglon of contact of compressed elastic
bodies and pressure p(z) in the region of contact. In the special
case when some of the boundaries of the sections of contact are
predetermined beforehand by the configuration of the compressible
bodies, as in the case of the pressure of the stamp with right angles
on the elastic half-plane, examined in the preceding paragraph, the
appropriate equations of (154) must be dropped.

Let us examine the simplest example in which the stamp, having

the configuration shown in Fig. 18, presses on the elastic half~plane.

We will assume clearance & to be so small that with compression the
contact of the stamp with the elastic half-plane 1s carried out along

two sections of the 0x axis: --5<z<-—-a and ¢<z<bd In this case

.

Rw2, 8w —b, bym g, g,o—a, bo=b,

h{x)=0 when ~d<z< —~a, },(z)=8 vhen e<z<}, (155)
hiz)=0, . - (156)

and according to (149)

j(2)me when —pLz<~a, -f{x)ma+te whena<z<d, (157)

where

.m_-m; ‘ (158)

(1f one were to consider the stamp to be absoluteIy rigid, then 9,=0),
a — certain indefinite constant.

Fig. 18.
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Solution of the integral equation (148) according to conditions
(155) and (157) was obtained by us in Chapter I and according to the

formulas (256) and (261) of Chapter I has the form

Cg"'pw
P(ﬁ‘“i"?‘?ﬁn T

a<izi<d, (159)

where the plus sign prevaills when # < 0 and minus sign vhen z > 0,

bs .
= TR
or, according to (158),
‘85 -
" T TR * (160)
where K(k) - complete elliptic integral of the first kind:
.‘ --.la.
E® “897&:-—“' FreT Y
the modulus of which k is equal to
ko, (161)

Figure 19 shows the graph of pressure p(z) for the case

ke gm04, Sm0,656(8,49,)2.

Fig. 19.
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On boundaries of sections of contact the pressure p(z) turns
into infinity, which is the corollary of the condition accepted by
us about the presence of right angles on the profile of the stamp.
Genersal formulas given in this chapter make 1t possible to solve the
contact problem in the case when we consider the curvature of the
edges of the stamp limited. )

In this case we will obtain the real plcture of the distribution
of pressure under the stamp, at which the pressure will be limited
everywhere in the reglon of contact. In view of cumbersomeness of
computations we will not discuss this in detall.

Let us now examine the case of. the contact problem when the
elagstic body, located in the lower half-plane, 1s pressed by several
separate bodies lying in the upper half-plane, and forces Pl’ P2, ooy
Pn’ pressing these bodies are assigned.

If in this case by function fl(w) we understand the function
determining in various intervals of the argument = the configuration
of each of the bodies lying in the upper half-plane, then the contact
problem will be solved by the same integral equation (148), the only
difference being that constant e, which enters into formula (149),
can have different values on each of the sections of contact, since

each of the compressible bodies can accomplish according to compression

its own forward displacement.

As we showed in Chapter I, pressure p(z), which is the soclution
to equation (148), will in this case be determined by the same
formula (150) with the only difference being that coefficients of
the polynomial L. ..(2)—¢. €, +¢er Cas Will this time be determined
no longer by equations (153) but by equations (255) of Chapter I:

\";a 2 2ds =

.t?:aq :\.]; !E‘(s-'am) (s-bn)l

on e {YNp 4 Pi{a - ™ dz -
: "“; [ ] = sed (23]
: LU
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x[?{ﬁ“‘?"gV!H‘(g"ﬁa)(t"bm)lﬁg(%gi]ig. (162)

b S mﬂi, 2) aocga""i.

where

Pﬂp;'%'Pg‘.f' on"*'Pa- (163)
Let us examine the simplest example in which the elastic half-

plane is pressed by two stamps pressed by forces P1 and P2 (Pig. 20).
In this case n = 2, a, = -b, bl 2 ~dy Ay B dy b2 = b,

f(z)-;o when ~bd< 2L 8
and a<z<& (164)

Fig. 20.

As we showed in Chapter T, the integral equation (148) according to
conditions (164) has the solution

wbd
m(f’a" Py—(P,+P)e

P(‘)t":i:—-"T- oy (165)

ke 1=55, a<lsi<h

(see formula (267) of Chapter I), where the plus sign prevalls

when r < 0, and minus sign when x > 0, and K{k) is the complete
elliptic integral of the first kind with modulus k,
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) 13
b= S p(x)dz and P.-aSp(z)_dz- compressing forces.
~d a

Formulas (159) and (165) differ only by the constant component in
the numerator of the fraction determining the pressure p(z). When

Pl > PZ the distribution of pressure under the stamps will have the
same character as that on Fig. 1%.

§ 5. Perlodic Contact Problem

Let us examine now the case of the contact problem when
functions fl(x) and fa(a:), which determine the configuration of
compressible bodies, are periodic with periocd I (Fig. 2la) s¢ that

the number of sections of the contact is infinitely great.

Let us
denote by (@, b}, (@ by)e oees (Bar Bahr

0<a,<b<a<h €< <<y (166)

sectlons of contact of compressed bodies in the interval 0¢z<!,
i.e., within 1imits of one period (we will consider that the origin

. of the coordinates lies at the point where the contact between the

compressed bodies 1s absent Pressure p(z) in the region of

contact will be a periodlic function with period 1. Let us consider

the action of the periodic normal pressure p(z) on the lower elastic
half-plane (Fig. 21b).
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i Let us assume that = = ¢ is{ some point of the interval 6< sl
in which on the boundary of the elastic medium pressure p(t)

acts. 'Then acting on the interval (53844t} will be the elementary
force p(t)dt, which in the end point of the elastic medium with

abscissa z will cause displacement dv in the direction of the oy
axis equal to

'

dow —3p () In r,—_%rm-com..

Gl T T
.

according to the formula (4).

Since function p(x) is periodic, at points 2 = ¢t + nl (n = ... =2,
-1, 1, 2, ...) pressure p(t) will also act on the boundary of the
elastic medium. Acting on interval {¢+nl ¢+ nl4di} will be the
elementary force p{t)dt, which in the end point of the elastic medium
¢ with absclssa z will cause the elementary displacement:

= v -

dowe —Up(1) 1 mdt-}eomz.m&p(z) Ia ll-}f—'—}—'!dt-g. function (t)

®

e

Having summed up the elementary displacements, which appear due to
the pressure acting on intervals

erer(t=, t=2+dt), (t=1, t=1+ds),. (z,x-;-g:),.
(¢4, tlddt), (e4+2], 8424 d0),

we will obtain the elementary displacement:

dunOpU)(...-Hnii-'-;-"il-i-ln;‘i-‘-'ﬁ"-‘-'l-{.-lnl_l-"zi*i-
o +10] 14455 410 14552 +... ) =0p(0 0] ¢ 2) {1~
—-‘-‘-%-’-)1] [ 1-—3-&;1} [ 1-%;’-2-] ...}dt-g- function () (167)

As is known, function sin u can be represented by the infinite
product

. : ainm-s(i-%)(i-—??;)(l-:-;,)... (168)
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where ¢ 18 a certaln constant, or

_
E‘Sp(mnz - ""“iﬁ& &Tni(s).
L

and ﬂm <s<éa (mu!,z, ..opn). Uhei'e

He)mt=bEs b
Assuming, in (174)
! ¢
gw‘i:?. 2“";‘:&,

ve will obtain equation

\ 4Ok O}
and 2, <4< By (m=4,2,...,n), Where

“m"‘-zl:am' pmﬂﬁ‘;‘-bu (mn" 2' ...,n)-

(173}

(174)

(175)

(176)

(177)

(178)

In Chapter I we showed that equation (268) has the solution
(318), where constants are determined by equations (319), (322) and

(327) and

L 7o
P= 3 \ p(9)ds.

ol om

Thus, equation (177) will have the solution
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(182)
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Assuming in

where

(181) gm3ts, we will find
Mt g

2 \rna=s,

Pm i ?ﬁ«)&

met 6

. (183)

(184)

is compressing force taken over interval 0<€s<l i.e., one periocd.

Substituting (183) in (180) and assuming in (179), (180) and (182)
9=, 0m 2z, we will find

where Yo Tire--

()=
. / A 'm'—(“"&a) E/ b mT“oCn’g
a-z ““ T (8-'6-0 unt sin -r(c«-t.)
Xl’(‘)“s-;(t-s)dzaﬁ-
2?.“5”:;006“:;-
ot St .
ela (8—0.) ain —(s-b,)
! T
i .

ag<z(5“(mni 2. coe ) R’py

»1a are determined by equations

-

~to T =Tt Yo eoe = ptin 3 g (Gatba)+

el

+‘;r(,“° B'T')E Sa/L W el lt’(t)dt.

e o -3 si T(’ -ba)

4
~fidfa=Tat = --,—eos 2 1{0atba)+

S 310 —p (8w
1 ab T
+3(m,§. ZIAV .n..ssu 3 6-ba)

I' (),

L
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and

" eka sig™m 32 cosn s da
3, o, | it e o
L0 T l n tla -(s--a.)llaT(c-’%.‘} l
L1 ]
. - ¥
| af—l,,?r”-[ite,.emim+ -
;‘. “#S“I/‘ ﬁdn -%-(z-b}a) n an A a!n-r(tua,,)
T 5% Py %(“’ﬁa) uuu. ml“’-\ T(""bu)
xi’(l)e!g-?(:—x)dt)d:]. " kem$,2,..., 81 (187)

So that pressure p(x), determined by formula (185), is limited
everyvhere in the region of contact, including points =z = a, and
s, (mm4,2,...,8), conditions

2 tmsia™= -"-2‘-:0:"' w0,
mal
2 Y 80 =gt cos®
31::» o (t—-2x)
. T
'..(--i)"-h : lnum-—-(a,- ,),2 S ....’fn-r(t—bm) X
x/(t)czg-—(:-a,)dz. k=4,2,...,n. (188)

must be fulfilled. Formulas (185), (186), (187) and (188) completely
solve the contact problem examined in this chgpter by determining
the region of contact and pressure p(z). Equations (186), (187) and
(188) determine the abscilssas of beginning and ends of sections of
contact a,, 8y, ...,0n, b, by, ..., 5 and constants Y., fu...» Yo after which
formula (185) determines pressure p(z) in the region of contact.

If pressing on the lower elastic half-plane in interval 0Lz<U,
i.e., within one period, are n separate bodies, and compressing
forces P, Py, ..., Pas which act on each of these bodies are assigned,
then instead of equations (187) we will have equations
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b))
o {1y B, ‘h/ ! i
[ ‘k:? m-;ﬁs-"(s""@ ©
X E ssr—-en)| ° _ '
(2 IV Ldm‘_‘ ool et z)dc)és] (189)

k-ﬁg 2: [ ¥ 3-—-3.

which express, according to (185), conditions

» . .
§p(3)d3ﬂp& (kn ’, 2..00". a""i)'
L7
and in equations (186) P must be in this case understood as the sum

P..P°+P‘+OO$+PQ' (190)

Let us also note that i1f some of the boundarles of sections of
contact are predetermined beforehand by the conflguration of the
compressible bodies, as in the case of the pressure of the stamp with

right angles on the elastic half-plane, then the appropriate
equations of (188) must be dropped.

In conclusion of this section let us examine the simplest
examples.

1) Let us examine the pressure on the lower elastic half-plane .
of the stamp having outlines shown in Fig. 22. 1In this case

nmip a,m-‘--

=6 dom-%*ﬁd.l(z)?wn&h when —8-‘--a<z<-§-+a. and equation (177)
takes the form

§° (“)}n—{——-——s—-f?mcomt. (191)
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In Chapter I we showed that equation

Sp(?)ln—r—-—g—l-devwm' s~c<8<e-3»a,

a-c

has the solution

Py Teon 2

p(.8+0)m-—~—-—-mzﬂyc?°-w’a ¢ —@<bLew

(see formula (338) of Chapter I). Thus, equation (191) has the
solutilon

(i 1 P“ﬁcos-:-
2

n:-]/cosb-—cmo ’ ~s<d<e (192)

Substituting (183) into (192) and assuming according to (176) and
(178) demils, cmdtq, we will find

PY7T
P(~+;)m - ———, —3<3<6. (193)

l/ .‘-’.f--m - I}

Figure 23 shows graphs"of pressure p under the stamp, which
are plotted in accordance with formula (193) for different values of
ratio %. When luZé(%a=Q5)- as one can see from Fig. 22, the bases
of the stamps merge, and we arrive at a pressure evenly distributed
under the stamp p-a--: When l~9ua( -»0) we arrive at the case of one

section of the contact examined in § 3, and we will obtain the same
graph of pressure p(xz) which 1s in rig. 13.
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Fig. 23.
2) Let us assume that now (Pig. 24)

fa(‘)m%m’%s” v Igés}mth

Y
odiim, P Fig. 24,

. ,
DAL Wee pteRs s reen 5 wmd‘&'&a}’mmfmn ‘2 _—

Let us note that in this case ﬂ(’;—)wA, i.e., constant 4

(194) determines the curvature at the point of contact.
(194) 1into (175), we find

Als 8 AT
I(Z)'ﬂ -—mcm -—‘-+comt.,

and equation (177) will for this case have the form

LA 4 fs o e At ' 8
Sp(”)h7~—-a? -q$ﬁ3w33+mmh
2

-

eI < nts, an-z;i,

153

(134)

in formula

Substituting

(195)

o,

Ao,

N prensaees



if by a we designate the half-width of the section of contact.

In Chapter I we showed that equation

has the golution

P(=€”Q)um cos & Vcosb-—ooga, " sim %-s V%

(see formulas (354) and (355) of Chapter I).

Thus, equation (195) will have the solution

,‘ e sa———— -
p(%-b-;% “3?-%%’253“‘% )/cosﬁ-coaa? —a<8<Ls, (196)
m-;-uy/r—’:-(;—“'-"-l-”'. (197)

Substituting (183) into (197) and assuming in (196) and (197) O-n-?f-z,

dm;".’;., according to (176) and (178), we will find

p(—é-'{-s) ﬁ-f(?:ba) cos — 1/ cos -2-‘-5-40: 3—%‘- , (198)
—a<z<g, . .
an-—-arcsxn—-V' P(e+") (199)

Formula (199) determines the half-width of the section of contact
a, and formula (198) - the pressure p in the region of contact.

As can be seen from formula (199), when

l=x }/'AP‘S;'{'OJ."I.' (200)
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eumg, i.e., complete contact of compressible bodies occurs along the
entire Oz axis. Using designation (200)

oy EEE .,

it is possible to give formulas (198) and (199) the form

p(,-i-:)-w;/z zcos-;—;/os-—-——-—ws-’-‘;-‘;{;p (201)

.—a<z<a, T""" atcsmT

Setting different values of the ratio a/l and calculating further

by formulas (201) at first ZO/Z, and then p, we obtain graphs of
pressure p in the region of contact depicted in Fig. 25. These
graphs show the dependence of pressure p in the region of contact

on the period 7 at fixed ZO’ i.e., according to (200) st fixed
elastic constants, compressing force P and at fixed constant 4, i.e.,
at fixed curvature at the point of initial contact. In the maximum
case when 1 = lo, a/l = 0.5 (complete contact of elastic bodies along
the entire Ox axis), the pressure p changes according to sinusoid.

In the other maximum case when /—se,a/l—0, we arrive at the initial
contact of the compressitle bodlies at one point and obtain the
distribution of pressure in the region'of contact along the ellipse,
already obtained earlier by us in § 2. Curves in Fig. 25 also give

a clear representation about the mutual effect of pressure on the
neighboring sections. '

45
zl.:z Fig. 25.




§ 6. Contact Problem in the Prezence of
Frictional Forces

Thus far we assumed that friction between compressible bodies
is absent, and that in the region of contact only normal pressure
p(z) acts on the compressed bodies. Let us consider now the case
when between the compressible bodies friction® takes place. Let us '
assume that compressible bodies are found on the threshold of

equilibrium and in the region of contact between normal and tangential
stresses there is the relation

ey = ke, (202)

where k — coefficient of friction. Thus, at the point of contact
with the abscissa x in the presence of normal pressure p(z) the
tangential stress t(xz) = kp(z) will also act. Due to the presence
of these tangential stresses, end points of compressible bodies with
the abscissa x will accomplish additional elastic displacements in
the direction of the 0y axis, which we will designate by v{ and vg.
As 18 known from the theory ~f elasticity, these displacements will

be connected with the tangential stress t(z) = kp(x) by relation

doy _¢ doy  8(z)
%O‘é—:}, Flﬂ-—o—;, . (203)
or
L d - &
%“%P(z)' ?}'”a‘.?(‘w’). (204)

vhere Gl and 02 are shear moduli of compressible materials. ¢
Integrating (204) with respect to x, we will find

'This problem was solved bty N. I. Muskhelishvili, L. A. Galin
and in part by N. I. Glagolev. See Academician N. I. Muskhelishvili,
Singular integral equations; L. A. Galin, Mixed problems of the
theory of elasticity with frictional forces for a half-plane, Reports
of the Academy of Sclences of the USSR, Vol. XXIX, No. 3, 1943;

N. I. Glagolev, Elastic stresses along bases of a dam, Reports of the
Academy of Sciences of the USSR, Vel. XXXIV, No. 7, 1942.
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8 8
Bimg;gﬂwdt-f-como, n:wg-‘Sp(z?dem. (205)

&

In order to obtain the integral equation of the probliem, into
condition (3) instead of displacements vl angd Uy determined by
formulas (9) and (10), it 1s necessary to substitute displacements

2 + v{ and vy + p3, Instead of the integral equation (12) let us
obtain equation

b%%}e § leydt 4 (0,08 g;(t).h T o

[\

=¢=fi{2)=1,(8) on s, (206)
or
SP(:M&-H S;p'(.t)‘linr&-ﬁds'nvi(z) on S, (207)
where

+06.0; .
M Tzl (208)
¢ -‘6'- .‘)",g t )
j(z) 5, . (209)
For simplicity we will subsequently assume that the region of
contact S is composed of one sectlion. If by 2a we deslignate the
length of this section and dispose the origin of the coordinates

in the center of the sectlon of contact, then equation (206) will
have the form

Sp(t)éx«i»vSp(t)lnl—r:-;-'dlsv[(.z), ~0z2< 0. (210)

Using formulas (391) and (392) of Chapter I for the solution of the

integral equation (356) of Chapter I, we w.ll obtain the following
snlution to equation (210):
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P} = ELEL £ ()

cos? “TS (mﬁ (e»a)* f(t)dt
”

- P eogey
——t S , (211)
a(wsii 'g«i-a)'f"
- L << 8
where

-]

PnSp(!)dt, (212)
APE

i.e., constitutes the compressing force, and

ymlartg L, (213)

Substituting (208) into (213), we will find

1 5{G, 40y
15:-;8?3!@ TN aﬁ;o (21“)

So that the pressure p(z), determined by formula (211), was limited
everywhere in the region of contact, including points = = -q and
x = g, there must be fulfilled these conditions

¢ a4 7:-'“’
cassy § (30)7 f gt —op (215)
and
§(%:)é* “)‘"“"'S("'} l(t)dc. (216)

Condition (216) can be given the form

§ () (P TR r o= (321) §mo,

or
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Using the relation (216), condition {215) ecan be given the form

eoa sy S(--s) (Y& - V:;:)i(cm-mw.

or

Y E ) @)

Using relations (217) and (218}, we will find

sl g s

a
a4t rina r(s)dc
-(at-..xs)s (...3 o “-8)-3 V;.T.:‘
v ti'(t)dc . £ =P ,
S (l" ) =( z’) S (Gﬂ‘ Yet-} (t-s)&%‘ﬂf (219)

Substituting (219) into (211), we will find

1
P(Z)nm_._l_:&g. I' (3)...j‘°_:'._ﬂ(a+z)5 Y(a__x)}*‘ x
x{ (H‘i)’y;.l}:l.f:__:). —a<z<a. (220)

Condition (217) predetermines the selection of the origin of the

coordinates, i.e., determines the position of the section of contact,

equation (218) determines the half-width of the section of contact a,
and formula (220) determines pressure p(x) in the region of contact.
Thus, formulas (214), (217), (218) and (220) completely solve the
problem by determining the region of contact and pressure p(z).

When k = 0, i.e., with the absence of friction y = 0 according to
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(214). Assuming y = 0 in (217), (218) and (220), we will obtain

formulas (32), (33) and (34), derived by us eariier on the assumption
of the absence of friction.

If the regioh of contact 18 predetermined beforehand by the
configuration of the compressible bodies, conditions (215) and (216)
are dropped, and pressure p(x) 1s determined directly by formule
{(211). Thus, for example, if a stamp with right angles, which 1is
under the action of the normal force P and tangent force 7T, presses
on the elastic half-plane (Fig. 26a), then f(x) = const when
-a < z < g, and formula (211) gives

plz)m= Pa"’”“’ =, =o<s<a (221)
nia+ s)i'w(a -z)i-'

- Pilgure 26b shows the distribution of pressure p{z) under the stamp

for vy = 0.05. In the absence of friction, i.e., when vy = 0, formula
(221) passes into formula (116) derived by us earlier for this case.

N

Fig. 26a.
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§ 7. Compression of Elastic Bodles Limited by
Cylindrical Surfaces the Radii of
Which Are Almost Egual

Let us now examine the problem about the compression of twe
elastic bodlies, one of which has the form of a circular cylinder,
and the other has & circular cylindrical cut (Fig. 27). Let us
designate by " and r, radii of cylindrical surfaces l1limiting the
compressible bodles. If these radii are minutely different from one
another, then with the compression of elastic bodies the contact
between thelr surfaces can spread over a considerable part of these
surfaces, and thus, the theory of compression, discussed by us in
§ 1 of this chapter, will already be inapplicable. Below we derive

the equation determining in this case the distribution of pressure
over the surface of compression.

Fig. 27.

Let us assume that Al and A2 are two points of elastlic bodiles,
touching with compression (Fig. 27 and Fig. 28), 4 is the point of
initial contact of the compressible bodles, and ¢ 1s the angle of

Aol‘l‘ Let us assume that further AlAi and A2A' are elastlic displace~-

2
ments of points Al and A2. Then the segment AiAé will constitute

the approach of the elastic bodies with compression, due to which

contact between points Al and A2 is carried out. We
that resultants

initial contact

assume here
of compressing forces pass through the point of

of compressible bodies 4 and centers 01 and 02 so
that a relative turn of the compressible bodles does not occur, and
only relative forward displacement of the bodies with compression

appears. Let us designate further by Uy, and U, the normal elastic

displacements of points Al and A2 (segments AlAf and 4245 in Fig. 28)
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Fig. 28.

and by a ~ the approach of the bodies with compression In view of
the smallness of the elastic displacements, it 1s possible to take

segment BC in Fig. 28 equal to segment 4,A7. Then from Fig. 28 we
will find

 ~A,B. (222)

S—cmre

Let us calculate now segment AlB. Since point Al lies on the

internal and point B on the external cylindrical surface, 01A1 = Ty
0,8 = r, (Fig. 29). As can be seen from Fig. 29, 1t is possible
to assume approximately
0,6-0.8=
since the difference in radii ry, -2 = 016 on assumption is minute.

The relation (223) can be given the form

ri=(r+AB)=(r,~r)cor g,
whence

AD o= (py 1) (§—cong). (224)
Substituting (224) into (222), we will cobtain the relation

Uy + Uy, = a c05 p —(r, —7,) (1 —con g), (225)
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Fig. 29.

which should take place in the reglon of contact.

assume that surfaces of compressible bodies are pearfectly smooth.

Then acting on the surface of contact will be only normal pressure,

which we designate by p(¢). Let us express now displacements U1,

and Usns which enter into the relation {(225), in terms of the unknown

pressure p(¢). Let us consider for this purpose the action of the

concentrated pressure on the elastic body limlited by clrcular

cylindrical surface (Fig. 30). As 1s known, in this case of forces

P, shown in Fig. 30, cause in the elastic body simple radial dis=-

tributions of stresses and uniform expansion! f-;. Under the impact of

these forces, point 4 accomplishes radial elastic displacement 1n the
direction of center 0O:

u,-nP[a29(1:§»t0&9ht¢-‘{—'}+:dhlﬂ] , (226)

where

. A42
TRl

s
!ﬂ-—T-—“ ey »

A and y — elastic constants of the compressible body. Analogously,
point A of the infinite elastic body with a circular cylindrical
cut under the impact of forces P shown in Fig. 31, accomplishes a
radial elastic displacement in a direction from the center 0:

u,mP(—-20co_s?lntg”—’-'+uinlﬂ). (227)

!See Timoshenko S. P., Theory of elasticity, 1937, p. 118.
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Fig. 30. Flg. 31.

Let us now calculate the displacement U5 which enters into the
relation (225). If p(¢) is the normal pressure on the surface of
contact, then on the element XL of the internal cylinder (Fig. 32)
force p(¥'inde’ will act. Jolntly with the same force applled to the
diametrically opposite point of the c¢ylinder, this force will cause

at point 4’ a radial displacement d“lr’ which according to (226) will
equal

du,, = p(3) r, {""203 [1""
+eosip—) latg L )4
+utinfg—¢'} d7'. (228)

Let us assume that further, as is shown in Flg. 32, that region of
contact corresponds to a change in angle ¢ within limits of ~¢0 to
¢0. Then we will find the complete radial displacement of point 4’
by integrating the expression for the elementary displacement dulr
with respect to ¢’ within limits of -¢0 to ¢0:

B, = 'S. FICHTN {-—30; [ﬂ +cos(9—9‘)lntg!l:;fa_‘-]+
~t :

+xsinfp—g'l} de" (229)

With derivation of formula (229) we assumed that the external compres-
sing forces, which act on the internal cylinder, are distributed

along its surface symmet{rical to the pressure which thLey cause 1in the
region of contact. This assumption is permissible due to the fact
that the pressure in the region of contact depends 1little on how
external compressing forces are applied, and with solution of the

164

A ot

P

P e

Re S
T o



s ..

FMig. 32.

contact problem it 1s possible to be distracted from the distribution

of external compressing forces similar to the way we did this in

§ 1 of this chapter with the derivation of the fundamental equation of

the contact problem.

Literally repeating the reasonings conducted by us in the
derivation of formula (229), we will find in conformity with (227)
the followlng expression for the displacement Up,®

¢
Vg we § ﬁ(?')rg[-%,cca(?-;@lntg L!:"é!'l‘*”

-i-a,sinw--?’i]dg’. (230)

Substituting (229) and (230) into (225), we will obtain the equation’

G ,
~2(0r+ 0, | (e coly— ¢ lotg T e+
-3y - .
e

o .
+{nr, + %,7,) S pi7')sin]g =o' dy’ —20,n, S P(¢')do’ =
- . =3 \
= 5C08 7~ (ry = 7,) {1 —c0s ),
~ 2% L9 < For (231)

where

!For the numerical solution of equation (231) the method of
finite differences is very convenient (see Appendix 2).
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5 —5'-‘}’—*-; _ixi’_va
Lk vy ppry ”*"'m.(z.-t- ’

®; & ! %, o3 i
‘(15"“’5)' ¢ 5(534‘#;)'

J\l, ¥y and A?’ By — elastic constants of the compressiblie bodles,.
Let us now consider the function of angle é:

"
F(g) = 2(0,7, 4 0yrg) S ple’)sin{p~—¢')lntg '—':5!3 '+
-%e
4
+ (w38 o+ 2y75) [ S P(7’) cos(p—¢') dgp' ~—
-

%0
= ple)cor(e™=9" d?']'- (232)
? .

Let us calculate the derivative J'(¢). Since when ¢ > o'

d i3=91 ¢ -9 1
e e R M Ty ey

and when 9 < ¢

L1 N R
latg =g = ma—y

e

we wilill have

d 9l & ]

Taking into account formula (230), from (232) we will find

73 ,
r@=20mtte | pE)es—7) g 257 a5 ¢
. -3

4 °§ P(?;)d?'] = (x,ry 4 %37) [ § p(7)sin (o~ )"+ .
~%e . -3¢ - . R

' +{ phrio s —aidy =20 ]

?
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wnence

% , .
—2@wi+ e | pe)costo—p lnrg 5Tl d'
] . - . . ,

] . . ” ., .
L ) {pE)sinls— g’ idy’ w
. . ‘ -% .

A .
30t POV B b =S e (230)

ot 2 )
Substituting (234) into (231), we will find
[+ . . .
D, P19 +20nFund b =S @)=

" =089 —{ry—r) (1=-co0 9);

whence

]'(9)"3(“1":+‘a"x)ﬁ(?)+’a‘°h+.. Lo

L1 L sy,
A+, {1 == 4 ) cang. (235)
-“ . . .

Integrating both sides of equality (235) with respect to ¢, we will
find

®°

}(?)”3.(”3":'?‘*:.":) S P(9')69'+

S ee .

+ {r.-»r',+20,r,§ p(\;')dq]{-'(r.-r,ei-c)sin o423, (236)
-~ -¥ .
where 8 — arbitrary constant.

Differentiating both sides of relation (231) with respect to ¢
and taking into account (233), we will obtain

167




v ~
20,7, 0,75 { S p(y’)sin(p—¢') Intg '-1:23-’- dg° ~

-

. . .
{26t (?-9'] dyot {xrytaeri) ;‘;[ § p(¥)sin (p—g)de’+
-% =% ’

+{ ploiainie' ~4)dp | = (s tri~rising, °
¥ .

whence

b g ’
20m+00m0 { peYsinp—9t g Lt dere . .-
. Jpee A

+n 4w § pte)cos (o e 5" - P )oos(p—g)dy’ | =
-3 1 . .
»

Al

?
=30 | () g (p— 915" (3 + re—rsing. (237)

-3s

Substituting (237) into (232), we will find

11

J @ =200+ § 2() et (o =91 e’ = (347, =rain g (238)

bt/

~ Substituting (238) into (236), we will obtain the equation

113

Bt § 2F)07(0—9)de —(artard X

bt /] L

?
X S () =B 13, =9, <9 < Q0 (239)
[ .
where
. L/ . . )
To=dir,y g P{7)de’+ 3 (n—ry). (240)
bt (]

Let us produce in equation (239) the change in variables, having set

tgom=s, tgome, (241)
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Let us find

thlrolay 4442 D
6‘8(?——9’)” Qgpmlzp' mx-—c $ d?'wm,

and, thus, equation (239) will take the form

a
(fi,r. + é.rs)g P (m_‘g ) D +’a§(:- ) =

- (%1, +u.r,)SP(::tf”dt-ﬁ-i-x.an%g‘s, ~8<3<a,

where
Gt Py
Using the identity

t 4tz 8
GO0+ z-nt + 1+

it is possible to glve to equation 242 (form)

-]
Barsd-Ber) § plarcte ) dim oy b ) 5 B0 gt

-

= f— (0,7, +0,7,) S 2 (‘;'ff,m de-y arctgs, -—a<s<e.
Assuming further

§ L g, (1)

44t

we will find

plarcig z) @ (i 4 2% cf(zi-

Substituting (246) into (244), we will have
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(0rs 4 3y7;) 58-:2‘ 3*(3)&"(“:’3 %y7s) &, (&) = )

-
w?-;-(oar.w.r,)Xmotdew.mtss. —e<sge (247)
Using identity

G4 ga

S8 8=t =i

let us give to equation (247) the form
O+ 0} (§ 4 3Y) g ﬁ(‘} = {7y - %ePs) BofZ) =

m B (01 84r) 2 S gi(Ndtty,orotgz, -~c<z<e. (248)

Assuming further in equation (248}

el =g (8) = (249)

we will have

(%r, +8lrt)(i+z‘) S "(‘)d’ "(xl"l'!“"n’l)‘(z)". '

o (0,7, + 8,7,) z[g (6) — g {—a)] -H. arctg &,

or
l"(!)dt 0P+ kP -
[ X +( P+ ;‘rl)([.*.:&) g(z)
-‘ .
o foog@: RS, —s<2<e, (250)
where
Y
e el (251)
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Sutstituting (249, into (246), we will find

plarctg 3)we (14374 (2), (252)

Hence

s(ei=g (~e)={ ¢’ (et Sl‘-‘-‘-'{-‘,%?ﬁ‘-

or, assuming sestge’,

L .
gl —g(—a)a §p(9’)¢g‘. (253)
-r“

Substituting (240) into (251), we will find
(TR "
AR LA et 254)
-gp . ]
Introducing designation

ts
\ 2(¢)5" =g, (255)
R { ]

we willl be able to give formula (254) the form

Heteg 49y~
Liale e o (256)

Substituting (252) in (250) and using designation (256), we wiil
have

g {1)de S0 ug 2+yarcie o
_S)T-g;‘+am%m,’+,98(x)~ _—’—-,—7;,%-, - a<z<a. (257)

Assuming in (252) z=tg¢, we will find

P(g)=s00'9g’ (12 o). (258)
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Thus, Getecting from equation (257) function g(z), by the formula
(258) we will find the unknown pressure p(¢). Equation (257)
contains two unknown constants ¢ and @ = tg ¢0. Thus, the expression
for pressure p{¢) found by formula (258) will contain unknown
constants ¢ and ¢0. Designating the resultant of the external
compressing forces by P we will, as one can see from Fig. 28, have

L1 ]

r, S pl7')cosg dy’ = P, (259)

Lod o \

Substituting the expression found for p(¢) inte (256) and (259),

we will obtain two eguations from which we will find the unknown
constants ¢ and @0.

Thus, the contact problem examined in thls section 1s reduced

by us to the solution of equatlion {257). By introducing designations

I OR
l(s)-m W. (260)
()= —EELILEE, (261)
ve will be able to write equation {257) in the form

)(z}a (=) + %f—f—;-’-m!{ﬂ; -¢<,:<-.' (262)

-

Equation (262) coincides with equation (411) in § 7 of Chapter I.

As we showed in Chapter I, by replacing A(xz} by the approximate
expression of the form

eI AR 2.1 Y o ypnur
h(z) b,+5:x+.-.+&:z“ Va2,

(263)

we will obtain the equation for which it 1s possible to indicate the
exact solution
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gz} -»,-3 g (=F ()4 1 (1) A ()] cos s (2) =1 ()} o -

;‘-S[im 219 2D ] sin [ (2) ~p (0] e -

tercoap (3} 6 sinp ) (264)
where
i’(z)n-;"ﬂ/a'— S Z’fé%i:«z) (265)
R(z)mBEaitee "’j;:::‘, | (266)
b (2) = Sk(t)d:. B (267)

The method of determination of constants &, ¢, e, &,..
into the indicated solution, was also shown in Chapter I.

Let us note that in our case

g(—a)= —g(a). (268)

Indeed, in virtue of the symmetry function p(¢) should be even,

and, consequently, function g'(z), according to (252), should also
be even. Consequently, '

§g_m,o,~ (269)
-8 ¢
Further, as one can see from (261),

1(0)#=0. (270)

Assuming in (262) x = 0 and taking intoc account (269) and (270), we
will find

£(0)==0. (271)
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Thus

g(-c-la35“(2)&’—Se‘(?)c'!z“‘-g(a).
which was required to prove; |
From relation (253), (255) and (268) it follows that
gla)=1<, f’(-a)u-'-%. (272)
Substituting (272) into (264), we Qill find
¢{s)= F- § ww+Aamancmwz)-»(:»d:-n- §[w)-—
- ap ,. 5m[?(3)-“(‘)]£1!+tnc%lﬂ(z)-i-t-'nﬁlﬂv(z} (273)
Further from formula (267) it follows that
p(0)=0. (274)

Assuming in (273) z = 0 and taking into account (271) and (274), we
will find

e,=0. (275)

Assuming in (273) z = a and taking into account (275) and (272), we
will find

vcosp (@)= 4 5 [P O +A R W] conli (a)— b 0] b=

MO

(10— 525] sinls (@)= (1) e (276)

~3
w

Oe 0

Substituting (273) into equation (427) of § 7 of Chapter I and
taking into account (275), we will obtain n equatiors
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2y o0 ._.‘.‘;., S {§x:*p{c)-g-:.(:)R(z)}eoslviz)w(e)}éw '

-ag[lw 5!:74}mimz)-P(I)Idlwa'f.dw(zﬁX

Y R

where

PRV R PR TORE T L ey B

-(@.+Q;3+ sen "{'G&K’) (bkoa'*'bﬁo!z'* voe +5n’“.kq)9
ke, 4, .00 R=14

according to the formulas (425) of § 7 of Chapter I.

Thus, we obtained the system of n + lst equation (276) and (277)

(277)

(278)

for the determination of constants a, €,.... &..w Which enter into

expression (266) of function R(x), and constant epe

Differentiating (273) with respect to x and taking into account

(267) and (275), we will find

¢ el= =F(#= "G Rz + 25 Sh'F(¢)+l(t)R(¢)lun[P(t2-

—p () de 252 § [/w ;s%f-,z]m(v(z)-v(t)'dl-&

+2L4z) ap(a).

By introducing designation
L x,7, b agp
o A

vwe will find according to (260) and (267)

M) =
p(z)=barctg s
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Substituting (279) intc (258) and taking into account (281), we will
obtain the following expression for the unknown function p(¢):

Pl5)= —sec'sF (18 5)— L R(tgv)+
120 v
A g [:’F(l)-!-—'—:-g-(:;z]ei&&(?ma&:ztgt)dlé-

[ .
+§-'§ [101= 555 ] con k(o—antg )i+ ek eos by, (282)
. ]

Substituting (282) into (255) and (259}, we will find constants ¢ and
a = tg ¢3, which enter into the expression obtained for p{¢), and

we complete the solution of the contact problem examined in this
section.

In conclusion of this section we will give graphs of the
pressure’? p(¢) for three values of angle $gs namely, for ¢0 = 30°,
% = 50° and ¢O = 60° (Fig. 33), calculated by author for the case
when the elastic constants of both compressible bodies are identical
and Poisson's ratio 1s equal to 0.3. The dashed line on these

graphs shows the distribution of pressure found with respect to
known approximate formula?

P
- ozo
Py {30 94 €O Fot Vo)c e

P(g) o

which provides contact of the compressible bodies aleng the
cylindrical surface of radius ry in the region of values of angle ¢:

-’?u<9<?..

Figure 34 shows the dependence between angle ¢0 and applied force P
(in Fig. 33 and Fig. 34 F — elastic modulus e = ry - rl). The dashed

'!For the calculation of them see Appendix 2.

2pathon, Ye. O. and Gorbunov, B. N. Steel bridges, Vol. II,
Editlion 3, Kiev, 1931, p. 23.
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line shows the dependence between these values, which 1s calculated
in accordance with the theory of Hertz discussed by us in § 1 of
this chapter. Thils comparison clearly demonstrates unacceptability
of the theory of Hertz in the contact problem examined by us in this
section.

§ 8. Solution to the Problem about the Pressure of a
Rigid Stamp on an Elastic Half-Plane on the
Basls of a New Hypothesis

The problem about the compression of two elastlc bodies was
first solved on the assumption that both bodlies have an ideally
smocth surface. In a number of contemporary investigations the
compression of elastic bodies in the presence of friction between
them is examined. It would be more correct, meanwhile, in the solution
of the contact problem to consider the microstructure of the surface
of the compressible bodies. Contemporary physics does not give any
completed theory of the surface structure of a solid. In view of
this in this section we proceed in the solution of the contact
probiem from the following assumptions. If acting on the surface
of an elastic body 1s a certain normal pressure, then this pressure
causes lastic displacements in the body, which appear due to the
deformation of the whole elastic body on the whole and which are
determined by differential equations of the theory of elasticity.
Thus, for example, if acting or the boundary of the elastic half-plane
i~ the normal pressure p{z) in region —a<z<a, then the point
iying on the boundary of the elastic half-plane having the absclssa
r icceomplishes a normal elastic displacement equal to (see formula

sf Chapter IT)

o {pin e, dUtconst., 0= (-, (283)

« o o, ++ 1{ics the indiczted displacements, ti.e normal wressure
.+ 1 given point of the surface of the elastlc body should cause
*+* st111 a certain additional normal dlisplacement,
1. to rne purely local surface strains predetermined
+vaucture c¢f the given elastic body. In thls secticn




1T Gt 2

we will assume that this displacement 18 proportional to the normal
pr =sure acting at a given point of the surface of the elastic body.
Thus, if acting on the boundary of the elastic half-plane is the
normal pressure p(z) in region ~a < 2 < a, then this additional
displacement will be equal to zerc when jz|»a and will equal

kp{s} (284)

when isj<e, where k is a certain coefficlent dependent on the

surface structure of the elastic body. The complete normal displace-
ment of the end point of the elastic half-space caused by the normal
pressure p{z) will be equal to the sum of displacements determined
by formulas (283) and (284), i.e., will equal

. .
kpi{z)40 S p(l)lnT‘-é-‘-Tdt-}coun.‘ ~a <2< (28%)

Let us now return to the problem about the pressure of a rigid
stamp on the elastic half-plane examined by us in § 3 of this
chapter. If the stamp has a flat base with width 2a, then when
~-g < 2 < a the normal displacement of end points of the elastie
half-plane should remain constant. Thus, according to expression
(285), for this normal displacement to determine the pressure p(x)
under the stamp we will have equation?

kp(z)+9 { p(0)10 37ty drmconst, —a <3< (286)
- ,

instead of equation (115).

Differentiating with respect to x both sides of equation (286),
we will obtain equation

et us note that the hypothesis advanced ty us in this section
represents a unique combination of Hertz's theory with Winkler's
hypothesis. When k = 0 we arrive at Hertz's theory, and when %.s
we arrive at Winkler's theory.

2See Appendix 2, Section 4, for a numerical solution of equation
(286).
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i+ | H25-=0  —e<i<a, (287)
-

where am%.

This equation for function p(x) coincides with equation (450)
in § 7 of Chapter I for function g(z) when

$(z)=0, L(s)=const,

According to formula {(467) in § 7 of Chapter I, we will £ind 4in this
case

p{z)eL § [s+ 2 +2z Yeia 3 (e et

s~1 et
+ecos T e sin T, (288)
where
- Ay
§ (o) mbitrtotlans, (289)

Having constructed for XA the approximate expression of the form

A g,""'ﬁ"*'"“*""’")fm,-

290
byt bz 4 oo 2" (290)

we will find constants 8,k B, ..., ..., Which enter into expressions for
S(z), from equations

2 Pr(®) 2{a) Pplo)

ip“) wloma ] e = el
)Py (- . .

-*5'__5;.*’".}":_(5“:10)1“33’ &mo. ‘. oOolu—i' - (291)

where
Py(t) = (b0t 4 .o 48,88 (apas+ Gt o+ R i

(O @t o 0 by Buaal s F 355,
: k”o' "ooc' n"i‘ i (292)
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(see formulas (U469) and (425) in § 7 of Chapter I).

? With the proper selection of coefficients k, kl, and k2’
, function
k - Lk g
. P(z) == 0" <3 :—v-—-—,ik::, (293)

in the interval —a<z<e 1s close to unity. Thus, for example, if,
following N. I. Muskhelishvilli! we set

k=1, k.=0,9, ka-oo (29“)

we will have the following values of function Y(x):

z 0,1a 0,26 10,32}0,408]0,50}0,6c!0,7¢}0,82]90,9¢

‘ ¢ (2) 1,00 1,02 1,03|i.03 1,06 1,06 ] 4,030,951 0,75

Thus, it 1s possible approximately to assume that

1&:).?(1):%-:—:%%:]/ ot - 2%, (295)
By comparing (295) with (290), we will find
A=, a,=ika’, o, =0, a,=ikk, b,=d* b,=0, b =ak, (296)

Substituting (296) into (292), we will obtain

P, (1) = a*Mlkt — hka'ak,t = )ka® (k, ~—k,) ¢, } (297)
P, (1) = @’ Ak, —rkatak, = 0ka® (k, ~ k,).

Substituting (296) and (297) into (291), we will obtain equations

13¢e N. I. Muskhelishvili, Singular integral equations, p. 386.
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IL;
P

& o dr o+ 1 pla) . p(=a) B Y
\ e 5 [ovrm] =iy Ty — =Ry {
N l (298)

r(s) P(—a) B
Spwdﬂ[a'-rk.t'ld‘ K T (k) ~ T, =R

But since in virtue of symmetry, function p(x) should be even, then

$pt0g [ormm) 4t = S S de=0, (299)
p(—a)=p(a) . (300)

Substituting (299) and (300) into the second of equations (298),
we will find

3‘::0. (301)

and the first of equations (268) can be represented in the form

a
a8t~ k.ot 2p (a) Be
S"(‘) TNy R Ty A R I R A (302)

Substituting (296) and (301) into (289', we will find

$(2) = ot (303)
Substituting (303) and (300) into (288), we will obtain
p(a)= 2t ‘%d:+aan(c>3"“°?f:‘“" det
‘
+c,coz¥—{.—c.z§n?. (304)
Assuming in (304)
s=af, ¢=ax, (305)

P
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we will find

£ gy o0 (5 D) Y ¢ ginl i) de
A ) ks
e e L =
] .
-~ < ¢, €08 -"-'—;55-,*-::,sinf‘;j’° (306)

Let us introduce further the designations

| ga=h Tee . (307)
3 t
?,(i, c)__'z_ S sln:f:;;;)d:' X c)a% Sslnc:e:;:)dc‘ (308)
0 " .

Then formula (306) can be given the form
p(a8) =Bfi (3, ¢) + p(a) s (5, €) 4-¢y coscite, simel. (309)
Since function p(x) should be even, we should have
€y =20, (310)
Assuming in (309) £ = 1 and taking into account (310), we will find

p@) =8, (1, )+ p(a) /i (1, c)+cicosc. (311)

Substituting into (302) expressions for t and 8o from (305) and (307),
we will obtain

|

1 1=kt p(a) B

_2-& p(at)“'i‘k:"")ad‘ni'fk‘ Th—k (31
1

o
~—

If further we designate compressing force tv 7, we Wilil 'y

Sp(t)dtnp,

-
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or, if one were to assume t = qt:

13

{Playdemt, (313)
-y

Substituting (310) into (30S), we will find

paz)=Bf, (3, ¢) + pia) /i (5 )+ 8, cos €k (314)

Substituting (314) into (312) and (313) and Joining relation (311)
to the obtained equations, we will obtain a system of three linear
equations:

o )

g'[ S/,(s, ) (:_*,:’;.,.dt‘-!-,,—:—:—,;]-*-

rrol oty mrta

§
'¥% Scmcz&+:3ydz-0 } (315)
BS/.(r.c)d +»(a)§/ (et e, M0l :
B O+ P@UACL 1)+ corcmO, | :

for the determination of three unknown constants 8, p(a) and eq-
Having detected 8, p(a) and ¢, from equations (315) and substituting
their values into (314), we will find the unknown pressure under the

stamp p{x).

Figure 35 shows graphs of pressure p(z) under the stamp for the

following values of parameter cu-&e

c=0,c=01, cmi,

cex={0 anl e=o0,

“r- e = e corpesponds to the consentional theory of tne -tamp, in

o odance witrow o W ixi=a . ppegcoyre plx) rarn inrte tnfinry,
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Fig. 35.
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At finite values of the parameter ¢ pressure p(x) remains limited,
and in the limiting case ¢ =

pressure under the stamp.

0 we will obtain the evenly distributed

L=
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CHAPTER III

AXISYMMETRICAL CONTACT PROBLEM

§ 1. Mathematical Introduction to the Axlsymmetricgl
Contact Problem of the Theory of Elasticity

e ke v e s o

In this section we show the general solution of the fundamental ;
equation of the axisymmetrical contact problem of the theory of :
elasticity

((E% i), 0<r<a, (1)

H

where region of integration I is a circle of radius a (Fig. 36), do -
element of the area of this circle, R — distance between point 4,
which remains motionless in the process of integration, and point 4’
included inside element do, p(r) — unknown function of distance r'’
from point A4' to the center of circle 0 subject tu determination

from equation (1), and, finally, f(r) — assigned function of distance
r» from point 4 to the center of circle 0. With respect to the
assigned function f(r), below we will assume that 1t is continuous
together with its first derivative when 0<r<a.

Let us present integral extended on the area of circle I, which
stands in the loft side of equation (1) in the form of a multiple
integral, selecting polar ccordinates R and ¢ at¢ variables of
integration with the center at point A. Integration with respect to
the variable R murt be produced within J to RO’ where RO — distance

L&




Fig. 36.

B
between points 4 and B in Fig. 36, and subsequent integration
with respect to ¢ — within 0 to 2w. The area of element do 1is equal
to RdRAY and, thus, equation (1) will take the form
20 Ry
Sde,gp(,-')annf(r). 0<r<a. (2)
v 0
Distances r' and R, entering into equation (2) are expressed in
terms of variables R and ¢ by relations (see Fig. 36}
B ORVY ) T (3)
R, rcosy + |/ a*~r'sin*e, ()
Let us Introduce into the consideration angle ¥, determined by
relation
R—rcosd .
Cosamm, 0w (%)
(as can be seen from Fi~. 36, the rati standing in the right side
of equality (5), in absolute value doe: not -xceed unity}. Let us
designate further by 9(¢) that value vhich *axk. * angle & when 2 = )
) rcosd P
] G (V) > — e, ¢
:‘ cos"(\'}) )/a’—r‘sm‘vp ! ‘
. and let us turn in equaticrn {O’) frem *he varfat e of Integration B
i
i to the variable 0. From (¢ we finl
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Rearcosy 4 cosd }/a‘-r'sin’q),
dR= —sind) &= sin ¢dd,

whence
Re )]

{p(r)dR= \ p () V 7= 5wy sind s, (7)
[’} 0 '

since according to relations {(4), (5) and (6) angle ¥ is changed
from 0 to 8(Y) when R is changed from R, to 0. Substituting (7)
into (2), we obtain equation

x  1(3) .
S dy \ »(r) V@ rsinpsinddd=/{r), O<r<a. (8)
[ 0

From relaticns (3) and (5) we find

Pt/ R=rcosy) +risin'p=s )/ cos’ D (a*—r sin )+ 0ia’' § me

=} (a'=r'sin'y) 1 —~2n* )+ r'sin’ .
= )/a'—-(a'—r‘ sin*y)si0® v, ) ) (9)

Equation (8) can be presented in the form

® Uy
S dy Sp(r') V at—r¥sin’y sin 0 dd -
v

"

+§ ds §p(r') & —risin’y sin0d0 = f(r), 0<r<a. (10)

Replacing 9§ by =—3, we find

LI{5) b .
Sp(r')sini)d{)- S »(r)sin8dd, (11)
] ) =-4())

sinee accoriing to (9) with this replacement r' retains its value.

Usitng tne - latlon (11) and replacing $ by m + ¢, we obtain




s

s o e

2

?
p(r'nfa’-r‘sin‘q:sinbﬁw- o -

w"*
&
Ly |

-

I Y- 4

% S PV e <Paa sindddee
. . L.

; ) qu. { )W/ @E=Fary snddl. (12)
. 1] w=3(nsdd

But from relation (6) it follows that

' LT S

! whence

i=L)==—0(¥), (13)

since according to condition 0ge8(y)<=. Substituting {13) into (12),
P we find

m oy - - N
S dn).g PIP)V @ =rsin' 9sind dd =
e .- oo -

.‘ ”l . . - ’ . vt .
..S dy S p(r) Y@ —rsm" §sind do. (14)
s P : :
Substituting (14) into (10), we obtain equation

S dy § 2PV e =Fany sinddd=f(r), 0<r<e. (15)
[ 1]

Substituting (9) into (15), we will have

: S dy S PV d—(@—rsingysn o)y @ —rein'g sindddej(r], (16)
¢ o<r<a.

Let us introduce further designation
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F<r>mz§ﬁuf F@ =T/ TP i dh0 <r <.

(a7)

Using this designation, we can give to equation (16) the form

+{Peingdpate), o<r<a

"Setting in (17) r=yY @~ we obtain

g p(;/a'*-*p;n’n‘ﬂ) paind éau-;-fv‘(;! g—p'), 0<s<a,

Introducing designations

IV ETRET ()
P/ a = )i Gle)

we will be able to give to equation (19) the form

L

L{ctiat)dd=(), O<p<e
[

L ]

Setting in (20) pmye'=7+, we find:

P.(r)-!—(’-/‘—-—;‘:.—;—'.?:)' 0('{‘;

From (21) it follows that

G(;)n-;z-ﬂ(y'a’mg' ), (.)<'p <e.

(18)

(19)

(20)
(21)

(22)

(23)

(24)

Thus, determining from equation {(18) function F(r), from formula

(24) we will find function G(p). Determining further from equation

(22) function g(p), by formula (23) we will find function p(»p),

which represents the solution of the initial equation (1).
we reduced the solution of equation (1) to the sequential solution of

Thus,

two 1dentical equations (18) and (22) for functions p(p) and glp).

190




Harwy

Replacing ¥ by =~9§, we find

S Pirsing) djm SPE' i(:: iin.ﬁ);d@,'
wfy ¢ .
whence

% wie

§F€rd9§)ie- S-F(rsi'n\}) 2
. [

-§-S F(rsia?)ﬂg-ﬂ??(rﬁaé)d@. (25)
= .

Substituting (25) into (18), let us give to equation (18&) the form:
=] .
yzmag:)d?umf 0<r<e (26)
similarly, equation (22) can be given the form
%
{;(,ssaam-cm. 0<r<a (27)
]

In order to obtain the solution to equations (26) and (27), let us
prove that for any function f(r) continuous together with its first
derivative vwhen 0<r<ae, there is the identity

=N ap .
S.dg gl‘(nin guin)reingdye 3 [/()—1(0) 0<r<a, (28)
A LA

Let us introduce instead of variable of integration ¢ a new variable
£, assuming

Let us find

9t € . .
diepecs§dd, dv-w—_:—.;;—ﬁ—:-g—-;ﬂ?%—-:—-‘;’ v
ul 4

Xr(ni:},ain ¢)reingdyes § f @sing) ~E%

._.. 2
FeE (29)
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Using relation (29} and changisg the order of integration, we will
find

ma’s“?’;j (rsmqsm\a)rsm?du- .
§«fe§i'cmn?)y = ‘*Sd:é%‘f.,—i—‘l‘g?d. (30)

—

Let us introduce further, instead of the variable of integration ¢,
the new variable n, assuming 9q=gsing.

We will find

dymicosgdy, d?“?{f‘i‘%ﬁ@?”?ﬁ%?’
o i '
£ (esing) dow § £ (1) il (31)
; 10 iy

Substituting (31) into (30), we find
f y " . ¢ £ d%’ (32)
do [(rsiaﬂiu%mnqdéaiﬂ e i
¢ 8

If in the multiple integral standing in the right side of
relation (32) we examine variables £ and n as rectangular coordinates,
then the region of integration will be the triangle shaded in
Fig. 37. Actually, first at fixed & integration is _onducted with
respect to n fromn = 0 to n = &, then integration with respect to
£ from O to r 18 produced., If in this multiple integral we change
the order of integration, then in order that the region of integration
is preserved, we must initially, with fixed n, integrate wlth respect
to £ from £ = n to £ = r and then integrate with respect to n from
6 to r (Fig. 37). Thus, if one were to change the order of
integration, relation (32) will take the form

‘S"d;n /' (rsinssing)rriagdy = ’dng A\ B 3 (33)
3 LV E=E=9)
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et us replace now the variable of drtegration £ by a new wvariable
t, setting

WP pd
-3

1)

iet us find

G+, el ]
& 3

Viep ¥ '43—-53.;%5,. -t { (34)

r L ¢ de "t U

yoput {rimtnil o3

Substituting (3%) into (33), we obtain

Btme

t | 4

‘sﬁ.gf(;d!?!hQ)rdu?iin-}Sj'(n)dw-}(l(r)-lieﬁ,

QED.

Using identity (28), 1t is easy to obtaln the solution to
equation (26). Let us assume first that there exists function F(»r),
which is continuous together with its first derivative when 0Lr<e
and which satisfies equation (26]}. Differentiating both sides of
equation (26) with respect to »r, we will obtain

=fe .
§ F'(raind)sin9db=f'(r), 0<r<s.. (35)
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"~ Replaeing in (35) r by » sin ¢ and integrating both sides of the
obtained relation with respect to ¢ within limits from 0 to #/2; we
will find

$
- I

T T ' wis A

§ag \ # (reid psia ghsin g dym VL troingdds, 0<z<a (36)
? ' »

'Multiplying both sides c¢f relation (36) by » and taking into account
identity (28), we obtain

%{F‘(r)aF(O)}-r s;‘(rsiaq)'d?. . o<cr e, (37)

Assuming in (26) » = 0, we find

";’F(O),".’I(%-. (38)

Substituting (33) in (37), we will come to the conclusion that
if equation (26) has a soclution continuous together with its first

? derivative when 0<Lr<a, then this solution should have the form
2 =/s

Frym2 [1O+r | fErsine)dp], €<r<a. (39)
1}

Let us prove now that function rP(r), determined by formula
(9), indeed satisfies equation (26). Using identity (28), let us
find from (39)

=/ ‘
S Frsing)dym

n/8 ®/0  afp

=210 } dy+ ng §/'(nia?aia¢)nin9dg]-g

w2 {310+ U-101) =10),  0<r<a,.

i.e., function F(r), determined by formula (39), indeed satisfies
equation (26).
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Analogously, equation (27) will have the solution
nfd
s=2 [0+ 36'(»&»?)«!?]. 0Le<a (40)

Substituting (39) and (840) into (24) and (23), we will find

Gl=g {7(0)-%-1/0‘*-? Se!’(l/c'-v m?)dg} (41)
. 0<gp<e, - " ,3, ‘
po=d (A4 Lo yer Finslir], (42)
0<r<a.

Formulas (41) and (42) determine the solution of the initial equation
(1). It is possible, however, to present the solution in a more
convenient form for calculations. From (24) we find

GOm iR G =3P I F ) . (43)

Substituting (43) into (42), we obtain

plrym { S
uis
B § FIV“’"‘“'"’)sinle?}:-‘-ﬁ%-w%ﬁ":;} . (44)

Let us produce now in (44) replacement of the variable of integration
¢, assuming

@' —(a* —r')sint pm 8

Let us find
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gﬁ'“?‘)?ﬁ&?m?ﬁ?ﬁ N’dg\u

Ve =Psingdses "’?‘,"r"‘%""’ -

Py : .

-~ B e --msd’ " nw—-g—d-:’ s

. Vai=rt o (B o) giudy Vm'

, Vv ~-r'sln?d9' ¢ P
{F [Vﬂ""(a"‘f')m'?} Va,a (8,_,,3;—;5':;:-“& el (45) .

' Substituting (45) in (44), we find
@ ¢ Fdsq -
p= gz [y | Tis ], 0<r<a. (46)

14

Formula (46), jointly with formula (39), for function F(r) gives the
solution to the initial equation (1). Formula (392) can be given a
form similar to the form of formula (46), if one were to replace the
varigble of integration ¢ by the new variable o, assuming

rsiny=a,

Let us find

d? rcose ;’f"‘"‘i" §/ (run?)dgs- ;,@-:‘—:; (47)

Substituting (U47) into (39), we find

‘r

F(r)n-}[/<0)+r§

(2)d '
yres]s  0<r<a (48)

<=

In conclusion of this paragraph let us show one more simple
formula for the solution of the initial equation (1).

Below we will assume that function F(r) has a continuous second
derivative. Differentiating both sides of relation (39) with respect
to r, we will find
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G e, R

Y o T o

wh

F‘{z)m-i ; firsing)ds 4 g f{rsing)nm?d?] (49)

0<r<e,

Assuming in (49) » sin ¢ = g, we will have (see (47)

F ()=l §~'—‘—°’ﬂ’3)éc, 0<r<e. (50)

Substituting (50) into (46), we fing

s

a ] .
- £} +ei® {9 e
5{r)= ';;'3435 €0°-Fi(b‘~¢‘)ds+ﬁ.:;' °<i.'<63 (51)
where
¢ 2 Fla) (52)
2 * <

Substituting (48) into (52), we obtain

k3 ¢ F{e)de
e [;(0)+a§;/§f:2‘}° (53)

If in the multiple integral, which appears in formula (51),
variables of integration s and ¢ are examined as rectangular
coordinates, then the region of integration will be the trapezium
shaded in Fig. 38. Actually, first at Fixed s we integrate with
respect to ¢ within o = Q0 to o = 8, and then we integrate with
respect to s within » to a. If one were to change the order of
integration, the initial integration with respect to s will have to
be conducted within s = p to s = &, if 0 < r, and within 8 = o0 to
8 =a, 1f 0 > p, 1.e., within 8 to a, where

ER=14 when ez, } (Su)
s,=0¢ When s>r.

Subsequent integration with respect to ¢ should be produced
within 0 to a. Thus, after a change of the order of integration

197



| N Fig. 38.

5o, e

J=q

-

formula (51) will take the form

Q.
I {240/’ (2) a
S ViE-r }(s’—c')ds+VEﬁ7" 0<r<a. (55)

Py =\ 2

em 4]

When 0 < r, assuming

'ﬁ';:'. dﬂlkf, (56)

we find according to (54)

#l

¢ ds L
§mﬁ$ﬁ§%““sm¢(vx)(-$)

, ”j_ e =
The definite integral
at (58)

Fa b= o

is called the elliptic integral of the first kind, &=~ there are
detailed tables which give its value depending upon the upper limit

x and parameter k, called the modulus elliptic integral. Thus,
formula (57) can be given the form
a
when ¢<y Sm-}mx, k=P (z, &),
79 . .
z:--!;" k-—’; . (59)
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according to (56).
When ¢ > r, assuming -
s=f, ok, (60)

we will find according to (54)

P I

uwolw

P

§ de —
REACEICED

VGG

]
“a
"7SVF‘ k) (63)
Y

Using designaticn (58), we will be able to give to formula (61)
the form

- m—

when ¢>7 g;,-:,-,-_—— —-[m k)= F(z, k),

&= -g—, km-:- (62)

according to (60).

Formulas (59) and (62) can be united into one:

¢ = K)—F(z, k ;
| § et = L IF (1, D= F (@, B, (63) ]

where

zem—, k= when c<r,}

[ r
zm—, k=~ when o>r.

Substituting (63) into (55), we find

P()m == SM[F(i ky—F(z, k)]da-{-},_ (Fe)
Y]

0<r<a.
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In formula (65) z and k% are functions of the variable of integration
g, which are determined by formula (64), and the constant ¢ is
determined by formula (53).

Thus, for the solution of equatlion (1) we obtained two formulas:
formula (46), where function F(r) is determined by relation (48),
or relation (39), and formula (65). In those cases wnen furiction
F(r), appearing in formula (46), is determined in the elémentary
functions, it is advantageous to use formula (46) as being simpler.
If, however, the definite integral, which appears in formula (48)
for function F(»r), 1s not expressed in elementary functions and
requires methods of approximation of the calculation, it is more
profitable to use formula (65). Calculation of the integrand in
formula (65) is easily carried out with the help of tables for elliptic
integrals; after the series of values 0, included in the interval
of integration (0, a) its numerical values are calculated, it is pos-
sible to calculate the value of the definite integral appearing in
formula (65) according to any method of approximation from the
theory of mechanical quadratures (by the trepezium formula, by the
Simpson formula, etec.).

§ 2. Compression of Elastic Bodlies Limited by
Surfaces of Rotation

In this section we examine the axisymmetrical contact problem
of the theory of elasticity, 1.e., the problem on the compression
of two elastlic bodies limited by surfaces of rotation, where it 1is
assumed that the axes of symmetry of the compressible bodles colncilde
and resultants of compressing forces lie on this general axis of
symmetry. Let us construct the system of cylindrical coordinates,
r, ¢, z, directing the z axls along the common axis of symmetry of
compressible bodies and disposing origin of the coordinates at the
point of contact of the elastic bodies (Fig. 39). Let us assume that

2=a2,(r) and 2= —z,(r) (66)

equations of surfaces limiting the compressible bodies (we will
consider as the first — that body inside which positlve semiaxis z

pasces). Let ur assume that further Al and A., are two points of




Pig. 39.

surfaces of compressible bodies arriving in contact with compression,
and Uy and &2 are thelyr elastlc displacements. The distance a betwee
peints 81 and 32 in PFig. 39 constitutes the approach ¢f elastic
bodies with compression and will be constant for no matter how many
paira of points arriving in contact with compression we fulfilled

the comstruction shown in Fig. 39. If » is the distance from the
axis of symmetry on which points Al and A2 appear after compression,
then, disregarding smalls of a higher order, one can assume that prior
to tne compression points Al and A2 had coordinate =z equal according
to (66) to zl(r) and -zz(r). Then from Fig. 39 it follows that

a2y 5 (45 () =% (67)

vhere Uig and U,y &re projections of elastic displacements uy and ha
on the 2 axis. Let us now turn to the calculation of these elastic
displacement. )

We will consider surfaces of compressibel bodles to be perfectly
smooth and will designate by p(») the normal pressure sppearing
in the region of contact at distance » from the axis of symmetry.
We will further approximately consider that unknown displacements
Uy, and Upy will be the same as if the pressure appearing in the
region of contact acted on the upper and lower elastic half-spaces
with the same elastic constants as those of the compressible bodiles.
In virtue of the axlial symmetry, the region of contact will be the
circle of a certain radius a unknown as yet (Fig. 40). Let us assume
that do is the element of area of this circle covering point 4’
located at distance »’ from the axis of symmetry. Acting on this
element of area will be the normal force p(r’)do. As is known, the
normal force'P, which acts on the elastic half-space, causes at
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distance R from the point of its appllication a normal dizplacement
on the surface of the elastic medium equall %o Pgu, where 5«-%, E~
eiasyic modulus, and u — Poisson's ratlo. ‘

Thus, the pressure acting on the element of area do causes

at point A, shown in Fig. 40, a normel elastic displacement du,
equal to '

dﬁx“&%"ﬁo

where R — distance between points 4 and A'. In order to obtain the
complete normal displacement ug at point 4, which 1s at the distance
r from the axis of symmetry, it 1s necessary to integrate the

elementary displacement dus with respect to the whole area of
contact. Let us find

u,om S‘S &'g-‘—é., (68)

if by I we designate the circle of the radlus g, whlch represents

the reglon of contact. Thus, the unknown displacements Uig and Usg
will equal

nemt, (26505, nem -3, { {2, (69)

where

omiss, w3, (70)

1see Timoshenko, S. P., Theory of elasticity, 1937, p. 364.

202

o

Mo



TR

W ol AT 2

El and 82 ~ elastie moduli, and Hy and b, = Poisson's ratio of
compressible bodies.

Substituting (69) into (67), we will obtain the equation

0,43 {{EgRme-ni)=at)  0<r<s, (71)
or
S:Sﬂ%i’-“lfr). 0<r<a, (72)
where

fry=t=f{0en0, (73)

Equation (72), obtained by us for the determination of pressure
p(r) in the region of contact, coinecides with equation (1) of this
chapter studied by us in § 1. As we showed in § 1, the solution of
this equation is determined by formula (46):

=i [0 P2k, o<rea ()

where F(r) 1s the function determined by formula (48) or formula
(39). Substituting (73) into (48) and (39), we will find

p(r)-;(,—";;-;)[a-srg "",“.‘tf""’ da] 0<r<a, (75)
or
. ®/3 .
F(r)-;zm-ﬁ{a-—rgtz:(nin 9)+z;(nin?)]dg} . (76)
]
0<r<s,
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since z,(0)msz,(0)~0 (see Fig. 39). It is also possible to use
formula (65) for the unknown pressure p(») in the region of contact.

The solution obtained by us contains two unknown constants:
radius of the region of contact a and approach of bodies with
compression a. Lef us turn to thelr determination.

As can be seen from formula (74), if F(a)£0, then pressure
p{r)=>o, when r-sa. Thus, so that the expression found by us for

pressure p(») remains limited in the whole region of contact, it
is necessary that there 1s equality

Fla)=0, (77)

If condition (77) is fulfilled, formula (74) takes the form

p(r)u;%sg%z—:d-:-,. 0<r<a. (78)

Pressure p(r), determined by formula (78), on boundary of the region
of contact, i.e., when » = g, becomes 2zero.

Substituting (75) and (76) into (77), we will obtain for the
approach of bodies with compression a formulas °

33 (e)-+33(9)
ana§ y,m dc, (79)
or
r/2
a-aS [5; (asin §) -z, (asin ¢)) do. (80)

Let us designate further in terms of P the magnitude of the
resultant of compressing forces. Pressure p(r) appearing in the
region of contact should balance force P, and consequently, integrating
the pressure p(r) with respect to the whole region of contact, we




should obtain force P. With the deéignations accepted by us we
will obtain the conditlion

(§ e, (1)
3

or, since the element of the area do in polar coordinates r', ¢' is
equal to r'dr’'d$’', we have

s [ ]
%% \per)rar =P,
L] []
l.e.,

ZsSp(r:-)r'dr'vnP. (82)
7]

Substituting (78) into (82), we will find

_§a§ £E@E_ p (83)
I 4

If in the obtained multiple integral, variables of integration
r! and s are examined as rectangular coordinates, the region of
integration will be the triangle shadeﬁ in Fig. 41. As can be seen
‘ from the same figure, if one were to change the order of integration,
: relation (83) will take the form

a s
| —Sdsw‘i.f.‘j_‘.f,-i'. (84)
} 4 R 8
or, since
\ o=V E=F L =
we have

—-Si-“(s)sds-sP.l (85)
[




S0

VX Fig, 41.
A >
. Z,l{///f.g.r

i'ﬁ

%)
<
a.-....-..--

Fulfilling partial integration in (85), we obtain

§F(s)ds—si’(s)t:m1’.

or
{P(dsmp (86)

in virtue of condition (77).

Substituting (75) into (86), we find

ca"'SCkS Mtwd‘"‘ *P(G.-{-&,) (87)

1)

Substituting (79) into (87), we obtain

S"’”’""’aa Sasg AOLEO gy utep@0).  (88)
Yo=e .

If in the multiple integral, which appears in formula (88), variables
of integration s and o are examined as rectangular coordinates,

then the region of integration will be the triangle shaded in Fig. 42.
If one were to change the order of integration, then, as can be
seen from Fig. 42, we will have

[ a [
*n(‘)"“'-a(’) 3'(‘)4’-';:_‘3_
Sdas A do-a§da§:-——-—-‘ym ds, (89)
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or, since
¢ ds mmanaes [$200 ' ey
f -
;Sﬁﬁmyssmg'l“‘:aya’_g .
we obtain

[ ] [ [ )
§d’§'i%"§:‘:‘)' "’[°§ (_‘;“’"‘”zi(c)nf F=oids. (90)

Substituting (90) into (88), we find

{ @+ 56 (FRm =V T=") ds= =P 0, +00)
or finally

S’EVSG )‘:":;‘_(_!Z, dsw % rP (R 8!)' ('9 1)

[ (el ]

Assuming in (91) o = a sin ¢, it 1s possible to give to relation (91)
the form

=/2
a'§(s:(asinv)+z;(a-in?)1sin'9dq-;}=P(6.+o.). (92)

Thus, the radius of the region of contact a is determined by
equation (91) or equation (92) equivalent to it. After constant a
is found, the approach of bodies with compressicn a can be calculated
by formula (79) or formula (80). The distribution of pressure p in
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region of contact will be determined by formula (78), where F(r)
1s the function determined by formula (75) or formula (76) equivalent
to it.

The formulas enumerated by us give the general solution of the
problem about the compression of two elastic bodles limited by
surfaces of rotation. Let us now turn to analysis of different
particular cases of axisymmetrical contact problem of theory of
- elasticity.

First let us assume that the initlal contact of compressible
elastic bodies is carried out at one point, and for surfaces of both
bodies this point is regular. In this case functlons zl(r) and zz(r),
which determine the configuration of the compressible bodies, can be
expanded in Taylor series in nelghborhood of point » = 0O:

3() =5 O+ Or + 54O + 55" O+, | 01)
: 3
5 (7) = 24 (0) +2,(0) r 4 575 (0) F* 551" ()7 ..

Since we disposed the origin of cylindrical coordinates r, ¢, 2 at the
roint of contact of the compressible bodies and axis z is perpendicu-
lar to the plane tangent to both surfaces of compressible bodies at
the point of their contact, we will have

5,(0)=12,(0)=0, z](0)mz,(0)==0. (94)

Thus, according to (93) and (94) for the sum of functlons zl(r) + 32(r)
we will have the expansion

=0 & :u ° :'" 0
()5 () mEOEEO OO py (95)

Let us first examine the case when the sum of the second derivatives

%' (0)+2'(0) % 0. (96)
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In view of the smallness of elastic displacements and hence resulting
smallness of the region of contact, it is possible to take lor the
sum of functions zl(r) = 32(r) in the region of contact the spproximat
expression

a)+aE)=1EO+5 O, 0<r<a, (97)

dropping in the expansion of {95) terms of the highest orders of
smallness. Introducing the designation

Amz 1 O+5 O (98)
we will have in the examined case

L{r)+z (=4 0<r<a. (99)

Substituting (99) into (92), we will obtain the relation for the
determination of the radius of the region of contact «

wid
Ma‘gsin“?d?n-;-wl’(os-l'&.% (100)
]
Since

®/3 n/3 : - ’ 2o,
, | sin* g dpem — § (1 =cor'g)d(corg)=m —cos9+ goar's| ¥ = 3,
! [ .

from (100) we find

17/ 8P (0,40,
m-z.l/-"f-‘}—i’-‘.}l. (101)

Substituting (99) into (80), we obtain

w2
anZAa’Scinqd?nZAa‘. (102)
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Substituting (101) into (102), we find

am L} 0204l @, 4 80 (203)

Substituting (99) into (76), we obtain

#/2

&~ Zdr’ em 9d9) - 2022410 (104)

Pl = mm (58 *

8 (84U, (

Substituting (104) into (78), we find

e !
4A 1ds !
P iy | Yoo e g
L4

44V a=rv
ag()oa.*_”)' o<r<a" (105)
But according to (101)
A Anp
Wﬂm. (106)

Substituting (106) into (105), we find
pn=3/1-5L, o<r<a (107)

As we see, pressure p in the region of contact changes in the
axisymmetrical contact problem, depending upon the distance to the
initial point of contact, according to the same law as that in the
two-dimensional contact problem of the theory of elasticity.

Let us consider now the special case of the contact problem
when the sum of the second derivatives :j(r)+23(r) becomes zero when

r = 0:

5 (0) 42, (0) = 0. (108)
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For gener2lity we will assume that first term of expansion (95) not
turning into zero contains factor r in power 2n (coefficients

at all odd powers of » In this expansion must be equal to zero due

to the fact that functions zl(r) and zz(r) are even, if one were to
examine them not only for positive but also for negatlve values of

the argument r). Then, disregarding in expansion (95) terms of the
highest order of smallness, in region »f contact we will have

(24 (054 2, (2% 10
501+ 3 ()= OO,

or

5() 4 5 () = Art, (109)

if one were to introduce designation

{m (2_‘;)_‘(:;2’"(0)+.-.."“’ ) (110)

Substituting (109) into (92), we find:

i
meznfl s sia:ﬂ“"?d?n%:gp(alé‘a.” (111)

Let us introduce the designation

n/a
2 § sin3*+igde,’ (112)

By means of integration by parts we find

wf/a nf2
Cprs § sin?*Hodpea — § sin?" ¢d (cos @) =o
. . ']
w2 . ?
=2 S gin2"-1g cos’p dp «~sin"p cos p . ™
] .
n/3

el § sia2"~1o (1 —sin’p) dp =
w/3 ®/2 .

=2n § sin?"~todo —2n S sin?"Hodp = 2nc,_, ~2n¢,,
. ]
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whence

c“,u%cp’,a (113)

Assuming in {113) n - 1 instead of n, we obtailn

Cnes = P (114)

Substituting (114) into (113), we find

25 {2n2)
" o D) (115)

Expressing in (115) e, o in terms of e,_3 on the basis of the
general relation (113), we obtain

2 (I =2) (In=f)
(T F 1 (Ea=)(2a=3)

Cp o

Continuing the indicated process, we will arrive at formula

2n (2n=2) (2n—=4),..4.2
Cn > (3n4-1)(2n-1) (2n=-3).,.5:3 Cas (116 )

Assuming in (112) n = 0, we find

=|2

6= §sin§de-=1- (117)

Substituting (117) into (116), we obtain

2:4:6...(2r-=2)2n
a= 3-8:7...(3n=~g)(In 1) * (118)

Substituting (118) into (111), we find

2nAa‘.‘l+l 3

<4:6 .. (=D 2n 1
Tty ey =7 PGt

¢ e
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whence

P22
-3}

2357 D I 1) P8, + 0
W 2.%:6...(2n=2) % A (119)

Substituting (109) into (80), we find

®2
8= 2nde™ Sain‘»"‘"‘? do = 2ndc™ ey, (120)
H

in accordance with designation (112). Substituting (118) inteo (120),
we obtain

m? «b8...(2n—4} (22 ~2) 2n Aats,

& TS .. (nm3) (Zn 1)

(121)

Substituting (109) into (76), we will find

nf3
2 t Ape 2 (6—2nA2%,_,)
PO (-2 shirmipde) w2 (122)

Substituting (118) into (122), we obtain

2 __2-'1-6...(2n—&)(2n-2)2u .
F(r)m“oﬁ_o"[a e Arn | (123)

Substituting (123) into (78), we find

! 2.8.6...(2n=8)(20=2) 20 WA ( sidy
1 PN = s @t S, T S Vaos (124)

4

Assuming in (124) s = g0, we obtain

i
2:4:6...(20-4)(2n—2) 2n 2nAas"~} -t de
P(n)= 3:57...(an~=8) (In—1) =*(D,+0,) V"' 7 8 (125)
* Ve-()
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Introducing designation
Lo 2neg
)= ¢ de
Pap) §V=.?f;§-: (126)

we will be able to give to'formula (125) the form

b6, . (I - Ineg
p.(r)ﬂtsf 6...(2n—=4){2n~2} 28 2nde (r) (127)

Ton @n3) (A1) B (et O 20
By means of integration by parts we find

[ ]
¢* ’dn

-1 .o
Pa(0)= V S ‘“"d([/c = O

i 1
o = (28 —-2) S o"’"}/c'-—p‘ ds-{-a”‘"y ot e r.'
?

R Pt,m-e

- ~(2r—-2) g e ded YV Tmptem

s .
.-.—(Zn—-d)g 1/ +(2n -2)p° S ;/‘;‘_f’f e efe

" (0=2) oo () F (20— 2) PP () + Y T,

whence

Pa ()= 520 (1) + L12E (128)

Assuming in (128) n - 1 instead of n, we find
-yt

Prer ()= b P () + 2 4 (129)

Substituting (129) into (128), we have

acrn—— i 2"-2
Palp)= Vi - [ 2n-!+ (nr=1)\2r=3) F.] T

2= {4 \
+ (;_g;‘.‘:_s} (4 pn-ﬂ(?)’ (130)
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Assuming in (128) n « 2 instead of n, we obtain

ORE = MO A= (131)

Substituting (131) into (130), we find

. 4 -2
Pa (P)'”" I=p [.a-f‘— 2".‘1’;(."_3)9 +

=2 (2n-t) (2h—=2) (22 —0) (27 —6) ¢
+(~'=-l) (28=3) (@2 =5) ¥ ] +(m~:) @=2) -5 ¢ *Pea(p)- (132)

Continuing the indicated process, we arrive at the formula

-2 (32~2) (22 ~4)
Pn(”"‘!“"“ [.a-z FEshE P T Eno-aG "55 P

v (28=2)(20=%)...6 -4
R T B EET 3"“]"'

i (2n=2) (N=b)es 6282 o
4.(20-1)(.;;..4), 5+5.3° PP (p) (133)

Considering in (126) n = 1, we find
p.(;)-ns,,-__-;/e'-yl =V i (134)

Substituting (134) into (133), we obtain

==t -2 (2n=2) (28 =GY
Py =V T= [2n~t+(’ 0 (tn=3) ’+(1n-—1)(20-3)(:m-6)p.6+
{23n—2) (20 =4).. on—2) (2n—4).. -
B vy e e s S vty T s 3 ipm ]
or
(22 2) (30— : . .
O B e e e

*7...(2~ ')(2n-5) 3.5.7,..(2a=5)(2n-3) —
"i'z's DY Yo Gy orey S v e s,,,(g.-‘;(g,,—_,)]lfi -7? . (135)
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Substituting (135) into (127), we find
9.4 .6...(n=D)28 0 A »\tR4
p(’)‘”[s.s-v (2a=3)(in=1) ] **(o,+0g {(‘a‘) .'5'
¢ it $n.3 3¢85.2,..(2n~7)(2n=3) £ N8
( ) ( R = e = O

+ {28 =5) (2n=13) PN\*
+: e (m-s)(m-q]s/i“(‘;) 2 0<r<a, (136)

From (119) it follows that

Aa™ 1 3.5.7,..(n-1){241) P
Y Sl TR R W S Py T P (137)

Substituting (137) into (136), we obtain
2.4.6,..(2=5)(2n=2)2n =1 -y 1a-¢
P () =S [( )" er(E)
BN L 35 21 ~7) {2n-5)
2.6(4) +oed i 6 (m-s)(zu-t.)(?) '*'.

3:5+7...(230~5) (231~3)
+‘2-6-6...(2n—6)(2n-2)]y/i ) wr 0<r<a, (138)

Thus, formula (119) determines the radius of the region of
contact a; after constant a is found formula (121) wlll enable us
to calculate the approach of bodles with compression a, and
formula (138) determines pressure p in the region of contact.
Pressure p changes depending upon the distance to the inltial point
of contact according to the same law as that in the corresponding
two-dimensional contact problem (see formula (46) and Fig. 9 of
Chapter II).

Until now we assumed that the point of the initial contact of
the compressible bodies 1is the regular point of surfaces of both
bodies. Let us now turn to the consideration of the case when for
the surface of one of the compressible bodies or for surfaces of
both bodles subjected to compression the point of initial contact
is a singular peint.
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Let us examine first the case when the point of initial contact
of compressible bodles 1s the corner point of the axial section of
the surface of one of the bodies subjected to compression (Fig. 43).
If the tangent to the generatrix of this surface in the corner point
forms with axis z angle Y, then, as can be seen from Fig. 43,
disregarding smalls of higher orders, in the nelghborhood of the
origin of the coordinates we will have

2 (r) 2, (r)=retgy. (139}

Substituting (139) in (92), we find

={3
a'etgy S sintody == %nP(&.-}-S.),

v

or, since
=/2 n/3 .
. ‘ . /2
sin'odpm -,}S(1—cos2;)d9u—;-(9—-;-sm29>: u-:- ,
° 1
J}a‘ctgyni-;- =P (3, +9,),
whence

am)/ TP, +""5'.‘)'{g"‘y. (140)

Substituting (139) into (80), we find

v..--_}actg'g. (141)

Substituting (139) into (76), we obtain

2 [ ]
F(r)nmo-;)-(an-i-rctgy). (lu?)
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Fig. 43.

Substituting (142) into (78), we find

w21 ds ctzy ey 1ot
PO =g | i = sl b =V =) [ -

’
elyy 8 at

From (140) it follows that

clzy 22 (144)

[y O

Substitutirg (144) into (143), we find

p)= (2} 5-1), 0<r<a. (145)

In the examined case again we obtain the same dependence of
pressure p on distance up to the initial point of contact, as that
in the corresponding two-dimensional contact problem (see formula
(107) and Fig. 12a of Chapter II). Pressure p(r) increases without
limit when distance » up to the inltial point of contact approaches

zZexro.

In conclusion of this section let us examine the case when
axial sect.ions of surfaces of compressitle bodies have at the point
of initial contact a continuously revolving tangent, but the curvature
of one or both indicated sections at this point is infinitely great.
We restric: curselves to an examination of the example in which the
initial distance between the points touching with compression
Zy + 35 can be represented in the neighborhood of the origin of
coordinates by the relation




f(F) k2 ()= prth, 0Lr<a. (146)

° Substituting (146) into (91), we find

e ,= :
552.::4::“1-?;9!4-99. (147)
Assuming in (3147) o = at, we obtain
; & §;s,1::!: wp (5i+bg), (148)
Substituting (146) into (79), we find
: 3, t Vodc
E Gm o A Syst_.aa

4 or, assuming o = gt,

Definite integrals entering into formulas (148) and (149)
are elliptic, and after reduction to canonical form they can be
E calculated with the help of tables for elliptic integrals. Their
values are such!

11y 7dt

Vi uJ.no 7189 (150)

Vvi-¢

$
L § RATI ART TR
[+

. Substituting (150) into (148) and (149), we will obtain the final
formulas

1See Appendix 1, formulas (1) and (14).
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e [sP (&,4-9,)}0:6'

3“"3”;445.,3.
Substituting (1L6) into (75), we find

F(r)n;—m(¢—- ;Ars ?!,.;.-—%f.

Considering in (153) o = »t, we obtain

o 34 Vtds
F(r) * (0, +iu) “. ..AA’ S?x-t.)'

or, according to (150),
2 3 8}
P sy (2= F ™),

Substituting (154) into (78), we find

“0

p(r)= “,(o _a 0<r<a,

\V 0

Assuming in (155) & = r/t, we obtain

1
9,4V 7 dt
p(r‘)m‘ngi(o""o;) ’SI.‘ Vi(i_'.)' 0<r<ao

Introducing designation

1=y¥ S‘m 0<p<t,

we will be able to give to formula (156) the form

o, A .
pr)= 4~*('a‘3;%)’(§)' 0<r<a.
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From relation (151) it follows that

A =P
s N (
T Ay (159)

Substituting (159) into (158) and assuming according to (150) §?n0£.

we find

py=1554(2), 0<r<a (160)

The definite integral, which enters into formula (157) and
determines function f(p), is elliptic and after reduction to
canonical form can be calculated as a function of variable limit p
with the help of tables for elliptic integrals®!. As calculations
show, dependences of pressure p on distance r to the initial point
of contact, determined by formula (160), is the same as that for the
corresponding two-dimensional contact problem examined by us 1in
Chapter II (see Fig. 11). Pressure p remains limited in the whole
region of contact; however, derivative dp/dr increases without
limit according to the absolute value when r approaches zero.

§ 3. Pressure of a Round Cylindrical Stamp on an
Elastic Half-Space

The problem about the pressure of a rigid stamp on an elastic
half-space, which 1s the subject of this section, differs from the
contact problems examined in the preceding section by the fact that
in this problem the region of contact is predetermined by the shape
of the stamp. Tf one were to designate a as the radius of the base
of the stamp (Fig. 44), the region of contact of the stamp with the
elastic medium will always be a circle of radius a, independently of
what force is pressing the stamp to the elastic half-space.

The initial distance between points of the compressible bodies,
which touch with compression, which we designated in § 2 by zy + z.,

1Se~ Appendix 1, p. 7.
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will in the examined problem be equal to zero in the whole region of
contact:

5{r)+2,(r)=0, 0r<a. (161)
Substituting (161) into (75), we obtain

T 23

F)= ooy, 0<r<e. (162)
Substitutirg (162) into (74), we find

p(r)

=saTnvaS  0<r<a (163)

Substituting (163) into condition (82), we obtain

2 ¢ r’dl_’___
wil, +9y) J T

=P,

or, since

a
rdr e
— o —— — a —
§ )’a'—r"= V Laa,
2613
o=

The obtained relation determines the approximation

ae 20N (164)

Substituting (lol) inte (163), we find




4 e iy - ey
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P :
p(ry=05 =5 ““"“"1"""-——;;-:
l/*‘";s

0<r<a. (165)

We obtained the same dependence of pressure p on distance r up to
the axis of the stamp, which in the corresponding two~dimenslonal
contact problem (see formula (116) and Fig. 13 of Chapter II). On
the becundary of the base of the stamp (when r = aq), according to the

formula (165), an infinitely large pressure p appears.

In order to obtain a picture of the distribution of pressure
und.. the stamp close to the real one, just as in Chapter II, we
wlll assume that the edge of the stamp has limited curvature even

though 1t is large (Fig. U45).

Fig. 4s5.
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If by b we designate the radius of the circle, in the region of
which initial contact of the stamp is carried out with the elastic
half-space, then with compression the radius of the regicn of contact
a will take a value somewhat exceeding its initlal value b.

For the initial distance zq + 2 tetween points touching upon

compression will have the expression

() +2(r)=0, 0Lr<b, -
(5 ()=A(r =8y, b<r<a, } (166)

if smalls of higher orders are disregarded.

Substituting (166) into (91), we find
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24 {200 3 wP 0, 40)) (167)
[}

Assuming ¢ = aq cos ¢, we have
¢ b)etd
[\ $ ot " — 1 -
S Taa = § (acos 3 ~b)cost g do

ua‘ [as (4 —sin* ) d(sin 9)-—-;— §.(1+cos29)¢7} e
J

- gt a(smq,---—sm‘@,)--(?, 31929.)] (168)
where
9.~=°rccoa_§ (169)

Accorulng to (169)

b
Substituting (170) into (168), we find
(a - b) ot dc o . .
S )’G'—C' ) ' ) i v
s 1 )
‘we b¥sec’ p, [smzp,-—--»sm P (.059. (9,+sm9,cos?,)]—

mz-’—:- sec’ v, [sin p, (6 —22in’ 7 — 3 c08% 9,) 3 ¢, 03 P, ] ==

H%M'?. (3¢in 9, + sin’ p,~3p, c08 3,). (171)

Substituting (171) into (167), we obtain the equation

’ . P (0, 40
sec’ ?.(SSin 90'*""'. ?0"'3?0 cor ?o) "—_-%'A'T?-"!) ’ (172)

which deternines angle ¢>O. Having found $ns WE find by feormula
(170) the radius of the region of contact aq.
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Substituting (166) into (79), we find

¢ Swed
3“2/‘0 § ﬁ-‘:?dﬂo

or, assuming 0 = g cos ¢,

L

B
a-Ma5(000:9-b)d9=211a(a9in9.—- bs). (173)

Substituting (170) into (173), we obtain

aus 240° 800 9, (L8 Po > @4)- (174)

Having found angle % from equation (172), we find by formula (174),
the approach a.

Substituting (166) into (75), we find

F (r)= ;-(b:—-—?rs;) when 0<r<b,

4

2 o=b
F(P)m m(a-%&r gmdc) when b ¢ < a,

or, since
&
e=d —t—— Cmp
§V’—c-.-,d=“(—l/r'mo'-i-barccoa—;'-)h.
i "'V""‘b’-—bnncu%;
- ’
F(r)e= (5, +0y when 0<r<b,
. 2 —
#(r)e a (6, + 0) (a-wl/""b'+2/ﬁ'barc cos-l;’-) (175)

when d<r<a, J

Fulfilling in (175) differentiations with respect to r, we find
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P (=0 when 0Lr<8,

, “A oy « orm .
F'(r) o — m(zy’r’-b'-ebaum r) .
when §{r<a,

Substituting (176) into (78), we find

plr)= W%D.)S (2]/3'-—6‘ —barccoa—-)lf‘ ==
when 0<r b,

d
Pir)= s, +e,)g(2y'""b""“'°°°°");7'a‘?;

when b_<r<a.

Assuming in (177)

we obtaln

1
when Q< r b,

[} .
Pl . 24P § 2lge=7)zpdy

£
® (\n"' s) X-E—,coa'q
)
d 2t t
P(r)= :,—(-:—A—;_—m S @37-91299% yhen b<r<a,
e

cos—}/""'im’?

since according to (169) arc cos -:-aw..

Introducing the designation

c;(z).,'i (2lgo~9)tzrdy when 0<z<1,
% Y 1=zcos'y
¢ Atz =)tz vd
! Ar—-¢iizede
¥(z)= S V! z'cos‘9 when ‘<z<c°°? '
IICCOD-; h

we will te atl. to gilve te formulh (178) the form

-

(176)

(177}

(178)

(174)




e el

POy ¥ (5).  9<r<e (1803
From (172) we find

24b 3cort e, P .
? (3, + 9’) = 3‘{:‘ 7’+5!‘\' 9,,-31‘3 co3 Yo ;F’ * ( 1 8“' /

e Wnn o R e amme o o
.

Substituting (181) into (180), we obtain

} gcosd 9, P
1 P(')“nh 9.+c£u'9.13:,aug, v (%')W' ¢<r<a. (182)

Formula (182) Jointly with relations (179) determines the
distribution of pressure in the region of contact. Figure 46 shows
graphs of pressure p(r), which correspond to different values of
ratio k = a/b, i.e., different values of angle ¢0 appearirq in
formulas (182) and (179). <Calculation of definite integrals appearing
in formulas (179) was produced by the approximate Simpson formula.
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CHAPTER 1V

GENERAL CASE OF THE CONTACT PROBLEM

§ 1. Potential of the Elliptic Disk

As we already saw above, the two-dimensional and axisymmetrical
contact problems of the theory of elasticity lead to equations
for which it is possible to plot general solutions in closed form.
In the absence of radial symmetry tlhree-dimensional contact problem
of the theory of elasticity proves to be incomparably more complicated.
Those solutions of it which we discuss in this book are based on
certain properties of the potential of the elliptic disk, to the
examination of which we now turn.

Let us construct a system of rectangular coordinates, z, y, z,
combining plane x0y with the plane of the elliptic disk (Fig. 47).
Then, according to determination of the Newtonlan potential, potential
V(x, y, z) of the elliptic disk at point 4 with coordinates z, y, 2
will be equal to

Viz, y, o= | fRULDL (1)

where p(x', y') — density at point 4' with coordinates z', y', 0,
R — distance between polnts 4 and 4', I - region of integration
constituting the part of plane x0y occupied by the elliptic disk.
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Fig. 47.

In particular, if point 4 llies on the surface of the disk, then

520, R=)(z=2)+(y—y)

and according to (1)
e (( pfE v)detdy’
V(z, 3 0) S;S Vo (2)

If semiaxes of the ellipse, which 1limit the elliptic disk, are
designated by a« and b, then with the appropriate location of axes =z
and y the equation of this elllipse will have the form

-
-~
-

I

<

-1 (3)

<
]

As we show below, if density p(z', y'). has the form

n
z't y’l>m
[ - e -
mz-om(i a? 8

P(z', y') o= '———E'—'—v,—,' ' (u)
Vs

where ags ays <+ G, are constant coefficients, then the potential
of the elliptic disk on its surface, determined by formula (2),

is expressed by a polynomial in coordinates x and y of power 2n.
Based on this property of the potential of the elliptic disk are
solutions of contact problems discussed in subsequent sections.

Let us turn to proof of the indicated property of the potential of
the elliptic disk.



Substituting (4) into (2), we find

¥(z g, 0= 3 tn fn(3, ), (5)
ma
where
. ” ” -"— ) d d(
L=t y\™"2 27d)
In(2, y)“'gg(i '";i""g.') Ve (6)

m=0, 1,...,n.

Let us turn in the muitiple integral (6) from rectangular
coordinates x', y' to polar coordinates R, ¢ with the origin at
point A with coordinates x, y (Fig. 48). As can be seen from Fig. 48,

z'=z4-Reosy, | (7)
y'=y+Riing, |

instead of the area element dz'dy' we will have the area element
do = RdRd¢, and formula (6) will take the form

M Reld) $
Na \J s 4 Rsin pB Y™~ 7
folz, ) (g, | [ 1= Exlgatl_GEERE™ ap, (8)
b v !

where R0(¢) — distance between points 4 and A" in Fig. 48. Since
point A" lles on the ellipse with semiaxes a and b, i1ts coordinates
x", y" must satisfy the relation

DA A (9)

a"b g ’

At the same time, as one can see from Fig. 48,

y' =y-+R,siog.

Substituting (10) into (3), we obtain the equation

t 1 . y
{3+t R c039) + 57 (y+ R,sin p) m{,




Fig. 48.

At s
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or

- L(Q) R +2M (3) R, — N == 0, (11)

i where

i ) int
L(?)"' (‘;2:1‘!“5“’ :a '

M (g)m 22 L L2 (12)

s
Nmf—&?—'b-;.‘ )

ol e R e e

Let us note that
N>0, (13)
since the point with éoordinates xz, y lies inside the ellipse.
Solving equation (11), we obtain

Yo v
R.(q)n*ﬂl(v)i)Lﬁ(l?§?)+hL(9 . (14)

As can be seen from (12),
L{¢)>0 when 0<Le<2x. (15)
In virtue of inequalities (13) and (15) we will have

VIFR+NL(3) > | M ()l (16)




Thus, from the two solutions of the quadratic equation (11),
determined by formula (14), one is always positive and the other
negative. In order to obtain a positive solution of equation (11),
which is of interest to us, one should take a plus sign before the
radical in formula (14). Thus, finally we find

R, (g) = =M (m-x: z(;‘)‘(v‘)""’")f RA0Y 17

Formula (8) can be given the form

(2. 7} ogd.m)(v){ 1__:____ ,m(zcm v+vaiu p) R’(co:: +

' i lfo(t) w3
+E) " «magw \ [¥-2Ru@~RLU] ¥R,

according to designations (12), or

Im(2, y) =

In Ry(o) 1

__i
- ga? (2F 7 INL )= 28L(5) M(e) = RL )" ¥ dRm. .

(@M () + NL(9) = () +BL{5))"} ‘dRen

( t ’ 1
.‘1’ (9) "\-; .‘l (,) - RL (9) s m—‘:
d L N {1~ M ] dR.  (18)
?§ [ + ] Y iP5+ NL() }

(According to inequalities (13) and (15) the subradical expression
in formula (18) 1is essentially positive.)

Since OKRCR, (7). and function L(¢) according to (15) is positive,
we have

M) Y ()~ RL(D M (9) ~ R (1) . (v)l-(v) (1

VIE@+aLa) VA ()< L() - VAP () FSL(Y)

But acecerdirye teo (100

o — e



M{9) -1 20
M (7)+ NL (D) > =4 (20)

and according to (17)

M(?)"‘Ro(?) L(’)n g,
VI n+AL® (21)

From relations (19), (20) and (21) we get

M (1) +BL(Y)
~I<VFmraLm <P (22)

and, consequently, instead of the varlable of integration R it is
possible to take a new variable #, assuming

M(3)-+RL (1)

08d = s (0€9<n), (23)
From (23) we find
Vo L(z)
- gindd)= V k) (i):’:-\l'_(?-) dR, (2“ )
IR o — ‘ﬁi(—?')""""" sin 0 d0

ot vim
From relations (23) and (21) it follows that

$=0 when R=R,(3). (25)

Producing in (18) replacement of the variable of integration R by 9,
according to {23), (24) and (2%) we will have

(a9
o
N~

2n
w 17 am (
fa(2,9) Sod? Dy N )" a0 ao,

< L~y
st /]
b
—
~l=
ooy oy
~2

where 06(¢) is the value which takes the variatle c¢f Integraticn J,
when R = 0. From (23) we find




COS’I("‘;;& e (27)

Assuming
ve find
i o)
LI 2 TLTC) WAV L
)ée) VI 5 [T + 7] semoa .
® KSH) ¢ , . » .
G L [ G=9), wT™
Ed? § == | 1o +N] sint™ 9., (29)

Substituting (28) into (12), we obtain

Liz+§)=L(9), M (x+g)m— 3 (9). (30)

Substituting (28) into (27) and taking into account (30), we have

08 ) (= ) = =08 6 (¢),
whence

Substituting (30) and (31) intce (29), we find

“S‘d?”g” ‘,—Z_(-T;[“-‘L-’-.(‘?’))+N]”ain=mada-
[]

X n-t)

..&193 ;-,-LL(-;;[%_‘V_;%.N]“M“M&. (32)
v

acsuming In "¢ ) Gmr—d, w0 o tae

s i AL - s nns o o

e



SdP S : [A;:(g +If]?sin""8a’3u | ..,

-ff i e o
(¢}

Using relation (33), we will be able to give to formula (26) the form

9) .
fm(z.y)de?§ T [ e+ N ] om0 angy

L1 I[ MR (e )
; ![ L{y) +”] oo™ 0 dd =

=
“§d? §V}‘“ {"f——“—"wv}“aiamsda.;
.
3 {*(y) -
e&§d? = [ E2+¥]" 0™ 8 dd

Vi
« a5 §-—-’ (L2 8] im0
YVIm LT, h

)
or finally
* ® M'() - 4
fo(z, g)mey \ [H2E0 L 7™ _de (34)
a (@) §[Lm+ ] Vie
where
®
cmmgsin”‘&db. (3%)
0

Substituting (12) into (34), we obtain

®
(xh% cos 7 -+ yaltsin 7)? b’x '+ y‘
fm(z y) =cqab S [;‘b‘(a'sin’gﬁ-b'ws’?)'*'i Ty ]

. y & _
' Varsint ;4 bicosty
b
fdtz8 4 g%y} (b sint t cast a) ol r)s al m
e Cp G0 & [1_. bzt 4 a%yl) (atsin® 9+b% cos? ) (sl cosp +ya sinp)l]

alb(atsint g+ dVcosly)

| e g



X de s
Vatsint g4 bicast g
=
- £l sin® 7 4 y*a’bt con’ g - 22yatbiein g cosp 1
= Ep ab § [1 a'ht (adsin%y 4 bV costp) } X
o 4t
Varsogiticany "

or finally
n
(zsing—ycose) 1 dy
;,,(z.y>==cmab§ [t S Fatsint g0 oy (36)

Substituting (36) into (5), we find

V(Z,y,O)t:- \
=2 ®on - (x8ing--ycosy)? W de
ab g 'E‘)amcm [1 s*aind g+ btcosty ] "/gl ““'?“'mm' ( 37)

Let us now turn to the calculation of coefficients C in formula
(37). Fulfilling in formula (35) partial integration, we find

e = | 010 (008 ) m —sin™* D c03§ 1 +
'] . *

+(2m-—-£)§sin““” 0 con? 0 ddea(2m—1)( {sint~todo—
¢

" .

- §.in='" &d&)-—(Zm 1) epr—(2m—1)cre

whence

cmuwj-—:c,,,_.. (38)

Assuming in (38) m - 1, m - 2, etc., instead of m, we obtain the
relations

o=zt (5.)

=t T T Cege

in—=53 (an

Cper = dn = 4 A-sr




etc. Substituting (39) into (38), we find

2m— 1) (i -
mu%"{r 3 (ul)

Substituting (40) into (41), we obtain

{"m-— )( 2m 1) {“m-o)

€™ " (Im=2y(m <4y Cra-ye (42)

Continuing this process, we arrive at the formula

(s
Setting m = 0 in (35) we find
N (44)
5
Substituting (44) into (43), we obtain
n= R e e (45)

Substituting (44) and (45) into (37), we Ffind

T L5, . (2m —3) (2m = 1)
V(z,y,O)-gabS{a,-{-Z T Tr amg.
v

thel

(zsin 9~ ycos g, ]m} dy .
x[ 1= <Gmsgra | | Xy e (46)

.

Thus, the potential of the elliptic disk is expressed on the
surface of this disk by formula (46), if density p is expressed by
formula (4). Expression (46) obtained by us for the unkncwn
potential indeed represents with respect to variables x ani y the
polynomial of the 2n power, which was required to be shown.



§ 2., Pressure of the Elliptic Stamp on the
Elastic Half-Space

In Chapter III we examined the problem on the pressure of the
circular cy.indrical stamp on the elastic half-space. In this
chapter we examine the problem on the pressure on the elastic
half-space of a rigid cylindrical stamp with elliptic cross section.

Let us designate by a and » (let us agree that a < b) the
semiaxes of the ellipse limiting the base of the stamp, and let us
plot the system of rectangular coordinates z, ¥y, - in such a way
that the equation of the curve limiting the region of contact
of the stamp with the half-space has the form

3 ]
E‘.'*':-,:’i, Zmo.

and that the elastic half-space covers the negative semiaxis 3

(Fig. 49). Let us designate further by p(x, y) the normal pressure
appearing uader the stamp at the peint with coordinates x, y (the
base of the stamp will be considered ideally smooth). Under the
action of tne mentioned pressure the point of the surface of the
elastic half-space with coordinates z, y should accomplish an elastic
displacement with projection u, on axis z equal to (see formula (69)
in Chapter III)

.  (z°,y') dz’ dy’
u =:—v)SS ! ’
2 X ,/(z_x:).-*_(y—y:).‘ (“7)

vhere omfigt E— elastic modulus, u — Poisson's ratio of the eclactic
medium, £ — reginn in which pressure p(x, y) acts, in our case the
region limited by the ellipse

] .3
Lpet

Let us .esicnate further by a the forward displacement which

the stamp ac~compllishes in the direction of the negative semiaxic =z

S 3K
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Fig. 49,

with compression. Each point of the elastiec half-space found in
contact with the stamp should with compression undergo elastic
displacement in the direction of the negative semlaxlis a2 equal to
&, 1.e., in the whole region of contact the condition

1y es —a, (48)

should be fulfilled. By comparing relations (47) and (48), we find
that in the region of contact the condition

SS___.u.v'wz':%g'_z; 2 (49)

should be fulfiiled. The expression standing in the left side of
relation (49) at the point with coordinates z, y, 0 determines
the potential V(z, y, 0) of the elliptic disk with density p (see
formula (2)), and 1n the right side of equality (49) there is the
constant ratio .

Thus, the problem of detecting pressure p under the stamp is
equivalent to the detecting of that density p at which the potential
of elliptic disk maintains a constant value on its surface. In the
preceding section we showed that if density p 1s determined by
formula (4), the potential of the disk ¥(x, y, 0) is determined by
formula (U46), constitutes a polynomial of the 2n power with respect
to variables x and y and, in particular, with n = 0 maintains the
constant value. Assuming in (4) and (46) n = G we find

ORI, S (50)

Pz’ y) = ‘/_1-:—-——

23 y"'
a? Lt
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V(z.y.O)nﬂaba.S (51)

]/c’sxu';-«]- ¥ e¢os® ¢

Thus, if for pressure p(x', y') we take the expression (50), then
the multiple integral standing in the left side of relation (49),
will maintain the conctant value determined by formula (51). Thus,
in order that in the region of contact condition (49) be fulfilled,
it is sufficient that this constant value be equal to %n Hence

we obtain the relation

* ds s
re ba ‘W T (52)

which connects coefficient agys appearing in expression (50) obtained

for pressure p, and the approach of the stamp with the elastic
medium a.

Let us designate by P the force pressing the stamp to the
elastic half-space. This force should be balanced by the reaction
of the elastic half-space. Consequently, integrating pressure p
with respect to the whole region of contact, we should obtain force

({ iz y1dz dy =P, . (53)
I
Substituting (50) into (53), we obtain the relation

o, { { - L —— (54)

) ]
T ’/1-:‘_...?5..

Formulas (54) and (52) determine the constant ag and approach a.
In order to calculate the multiple integral entering into formula
(54), let us cross over to 1t from the rectangular coordinates x',
y' to polar coordinates r, ¢, assuming

z’=arcosg, y' =mriineg,

240




Let us find

s c"z)

gy § rde (55)

SS Vicg-i (SR

| The 1imit of integration r0(¢) is determined by the condition that
the point with rectangular ccordinates

P ot i . e

2’ =r o5, Y wrsing,

should lie on the ellipse

flwpﬁlmgf

[y

Hence

»lo )(cos"_!__z_'_g) (56)

f Fulfilling in (55) integration with respect to r and taking
| into consideration relaticn (56), we find

dz’ dy’

(7t

cost ’ “‘ ’ reryy) '
"-g‘/i—'( My ) lr-o cos’y tln_!
ry e

ki J
) 2y
=a't! § aTeldy T oiconty 20" S a'sinty +b'coa'9 (57)

since in the last definite integral the integrand has the period =.
Assuming further ¢m=z—¢, we find

dy
atsin®g 4 dicosvy’

d7
otsinty + brcosty =

(IR 1 e ¥ ]
tw.q’

2h1




whence

S
- T ”
§ o' sln'7+b'coz' g ‘aindyg +b'co:' S c‘sin'v+b'c«'y
0 »
T /

.’.
dy
2\ e 5 .
.'."‘ Sﬂ'siu'p-f-b'cos'y. . . ()8)
(-]

Let us introduce in the last definite integral instead of the
variable of integration ¢ the new wvariable of integration ¢, setting

)
\'g?"-:l.
:

Let us find

®
—

2
scct 9 dy =S d{lgy)
')

o]

dy

[y YOI

a'ein? g 0%¢costy - §.=z;xa+o' :‘t-"'-i-b'
« —-dt “’ . . .
dae l o ™
S l‘t.‘.ti Si+‘l .rCtgelo -mo (59)

Substituting (59) into (58), we obtain

§ . dy » (60)

Ssintprlicory b
v

Substituting (60) into (57), we find

SS.__-.‘i‘.'.‘.’_Vf_._..;,.z,,ab. (61)

Using formula (61), we obtain from relation (54) the value of the

constant aO:

P (62)
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Substituting (62) into (50), we find the final expression for
pressure p(x, y) in the region of contact

P .
P(z,y)n-———-—;-—"'__._—._‘.. (63)
2ned ;/l-%—%—.— -

Substituting (62) into (52), let us determine the displacement
of the stamp with compression a:

Ph d, -
T ) ety asicons (64)

L ¥

Formula (64) can be given the form

P P
S)’"-&-(a' ~8%)sin'y T§m (65)
where
e=y1-% (66)

is the eccentricity of the ellipse (we agreed that a < b). Since
the integrand in (65) remains constant with replacement of ¢ by

“"¢:

=

7 .-
§ dy azg : d?
"Vl—c;lln‘y p 1—evsinty’

and formula (65) can be given the form

bl
7 .
£y de ‘c
[ - oy .
=3 571-—:'5!11'9 (67)

As we already repeatedly noted, the definite integral




¢ . de . 7

is called the elliptical integral of the first kind with modulus k.
In the case when the upper 1limit x is equal to unity, the elliptic
integral is called complete, and we denote

(1, k)= K (k). (681)
Setting sing=z,
d
?’c_o';z“' ""‘1{7;"; ~
T ) ,
8
§ }/l-c'slu' l-x') (1=e'z K(e) (69)

Formula (67) can be thus given the form

a2 K (e).. (70)

Displacement of the stamp with compression a is expressed in terms
of the complete elliptic integral of the first kind with the modulus

- equal to the eccentricity of the ellipse limiting the base of the

stamp.

Formulas (63) and (70) completely solve the contact problem
examined in thils chapter by determining the pressure under the stamp
p(z, y) and approach of the stamp with the elastic medium a. As can
be seen from formula (63), when the point with coordinates z, y
approaches toward the ellipse, which limits the base of stamp, the
denominator in the expression determining pressure p(x, y) approaches
zero, and pressure p(x, y) increases without limit. In the contact
problem examined by us the section of the stamp by a plane passing
through the z axis has at the base of the stamp right angles (see
Fig. 49). 1In reality for any real stamp such a section will have at
the base of the stamp a large but limited curvature. In this case
althougn pressure p(x, y) can reach at edges of the base of the stamp
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great values, nevertheless it remains limited in the whole region of
contact. By examining the two-dimensional and axisymmetrical contact

problems, we examined this question in detall. 1In the absence of
radial symmetry this question in the three-dimensicnal contact

problem leads, unfortunately, to great mathematical difficulties,
and we do not discuss 1t in greater detail.

§ 3. Compression of Two Elastic Bodies Initially
Touchlng at a Point

In Chapter III we examined the problem on the compression of
two elastic bodies initlally touching at a point for that case when
both compressible bodies have a common axis of radial symmetry. 1In
this chapter we examine the general case of this problem, assuming
that the compressible bodies have an arbitrary configuration.

Let us construct a system of rectangular coordinates x, y, 2,
disposing the origin of the coordinates at the point of initial
contact of compressible bodies and combining the plane xz0y with the
common tangent plane to surfaces of compressible bodies at the point
of their contact (Fig. 50). Let us assume that

2===/,(z,y), } (71)

2= — [y (2, y).

are equations of surfaces limiting the compressible bodies. Let us
assume that, further, Al and A2 are two points of these surfaces
touching with compression; AlB1 and A2B2 — elastic displacements of
these points {(see Fig. 50). Points B, and B, are combined with
compression due to forward displacements of the compressible bodies
causing the approach of them, which we will designate by a. Ve

will subsequently assume that resultants of compressing forces lle
on the z axls, and the indicated approach of the compressible bodies

with compression 1s carried out along the z axis. Under these

assumptions segment BB, on Fig. 50 should be parallel to the z axis.

Let us designate by 34 and 25 coordinates z of points Al and A2.

Ve




Fig. 50.

Then the 2 coordinates of points Bl and 82 will be equal to 29 + Ug,
and z,+4u,,, where Ui, and uzz are projections of elastic displacements

of points Al and A2 on the z axis. The distance between points B1
and 82 thus equal to 2y + Uy, ~ (z2 + uZz)' On the other hand, this
same distance 1is equal to the approach of the compressible bodies .
Consequently, for every pair of points touching with compression,

we should observe the condition

2 Uy, (3 F Ug;) = e, (72)

Let us designate, further, by x, y the corresponding coordinates of
points B1 and 32' In view of the smallness of elastic displacements
it 1s possible approximately tc assume that

3, =/,(z, ¥) z,= —fo(z, ) (73)

in accordance with equations of surfaces of compressible bodies (71).
Substituting (73) into (72), we obtain

"u"“u:“""’lg:‘v y)"f:(" y)‘ (7“)

Let us designate, further, by I the projection of the region of
contact on plane x0Oy and by p(x, y) the normal pressure at the point
of contact with coordinates x, y. We will consider subsequently
surfaces of compressible bodies to be perfectly smooth and assume
the displacement Uy, approximately equal to that displacement which
is accomplizhed in the direction of the z axis the point of elastic

(29
oy
[wal
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half-space 5 < 0 with coordinates =, y, 0 under the effect of normal b
pressure p(z, y) effective in region L. Then

> --0‘ S ...f‘f"‘.".’.‘.)iz.'.iy’.,- ( ns)

R RV ey o g ‘

(see formula (47)), where aaa-z , By~ elastic modulus, My = Poisson
coefficient for the second of the compressible bodiles.

Under similar assumptlons we will have

- _pl.y)dzdy (
e =y SSV(: -2+ (y-yp’ (76)

where 9, u*'”‘ E,~ elastic modulus, and My T Poisson coefficient for

the first of the compressible bodies.

Substituting (75) and (76) into (74), let us find that in region
Z there should be fulfilled the condltion

SS plet, yYdz' dy ﬂc-h(z V)~ Js {2 V) (77)
Viz=2)+=y) b+

'
Since according to condition the origin of the coordinates 1is the
regular point for surfaces of compressible bodies, functions fl(x, y)
and fz(x, y) in equations of these surfaces (71) can be expanded
in power series in neighborhood of the origin of coordinates

102, ¥) = Gy G2 + 0,y + 6T a2y + syt + o -, } (78)

L(z, ) =b,4 bz +byy+ 5,2 + by + 00" + ...

Since surfaces of compressible bodles pass through the origin of
the coordinates and planes xz0y touch, we will have

a,=a,=0,:=b,=b =5 =0. (79)

Taking into account (79), we find from (78)

47
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hiz, i+ (2, 9) =(an+ b)) 2+
d (@it b)) xy+ (a4 00) ¥ + .00 (80)

The direction of coordinate axes x and y have thus far been left
arbitrary. Let us now orient these coordinate axes in such a way
so that in the expansion of (80) the coefficient at zy turns into

zero and inequality a,,+b,> ¢, 44, takes place, l.e., so that conditions

@y Fb0,=0, a,4b,>0a,,+b; (81)
were fulfilled. We wlll assume that here not one of coefficients
a, + bll and ayo + b22 turns into =ero. Then, 1if we disregard 1ln

the expansion of (80) smalls of higher orders (proceeding from the
smallness of the region of contact) in region I we will have

fi(z, ZI)'!": (2, y) = (@yy - by3) 2* F (035 + bs4) Y. (82)

Subztituting (82) into (77), let us find that in region I condition

p(z’, y)dz'dy’ = s~ Azlen Dyt
S;S Ve-sypta—yr otk (83)

should be fulfilled where
A=ayt+by, B=a,+b, (453). (84)

Integrating the pressure p(x'y') with respect to region I, we should
obtaln the resvitant of external compressing forces acting on each
~f the compressible bodles. Designating this resultant by P, we
will nbtain the condition

(\pz, vz dy =, (85)

T

, '~ .rtr to solve the examined contact problem, it 1s necessary

-

>t~ I, pressure p(x, y) and approach a by proceeding
©%3) and (85).
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The expression standing in the left side of relation (83)
detormines at the point with coordinates x, y, 0O the potential
of the disk with density p, which cover in plane z0y the region L.
In the right side of relation (84) there is .a polynomial of the
second power in x and y. As we showed in § 1, if the disk is limited
by the elllpse

Dt =y, (86)

and density p is determined by formula (4), the potential of disk
V(x, y, 0) 1is a polynomial of the 2n power with respect to variables
x and y determined by formula (46). Assuming in formulas (4) and
(b6) n = 1, we find that the integral standing in the left side of
relation (84) will be in region I equal to

sl s o
Y=z fy=y)

"?ﬁb“xs [i (zsn;f-ucosﬂ‘] dy (87)
’

e*sint g+ bicos’ )y atsint g bt cos‘,

if as region I we take the part of plane z0y limited by ellipse
(86), and for pressure p(x', y') we take expression

P,y )=a, 5/1——-'--5— (88)

Coefficient a, in formulas (4) and (46) were taken equal to zero in

order for pressure p(z’, y') to ohtain the expression limited in
the whole region I.

Relation (87) can be given the form

Iy D2+ Jzy— Ty, (89)

(§ Ay
oV E-FF =)

where




-l ]
J 5= aba, § T T (90)
| § . )=y a0y S V(c'siu'ﬁ-b'ms",)"' ' (91)
- sin g cos 9 dy
Jy = zaba, S(ﬂ‘ e (92)
¢ cos? d. v
- 2 dy
A 5 aba, §(¢,sin,,+b,m, R (93)

As we already showed in the preceding chapter,

Vo =1 K (94)

: Vavsluiy 4 it costy

(compare formulas (64) and (70)), where

emy/ 15 (95)

is the eccentricity of the ellipse limiting the region I (on the
assumption that a < b,

R/2

dy . ’ .
K{e)m § Vicrams (963

1s the total elliptic integral of the first kind with modulus e.
Substituting (94) into (90), we find

Jy=raa, K(e). 9

Formula (91) can be given the form

b
» ¢in? 9 dy -t sintp de
oL 7 %N J (08—~ a?) slu'e]"‘ 2h ‘(t—c‘ilu’y)"'

4 _S__ﬂ;_]_
(L~etsinty)'h  JY T<evsint;

(-1 Y

(98)

(1 -e‘sm';)"' S)/t—e'ua%]

R

UELT AR b

[Ew——




o e e S

i a3

dgee B e

since in these definite Integrals the integrand remains constant with
replacement of ¢ by * - ¢. In order to convert formula (98), let us
use the identity

sin Qeou 1 ~2sin%y +¢'si£\' »{4 —sin';)_

ﬁ Vi= sty }’l-—c' sin'y = (L—etsinty)'t
- 1 =2sin%3 .4 ¢*8intp ‘e' ¢ c‘ lln'p)'
o (1~ et sintyg)’ls A (1-etglnty)’ls
1 oy : == et 1
- Ly Tt (99)

Integfating both sides of identity (99) with respect to ¢ within
1limits of 0 to w/2, we find

. an
[ -7 "
0--—- § V -~ ¢'sin ?d?"' o2 (V= ctslatp)is”.

whence

{t—e* g‘-!\..e).l‘ t gt

w3 ) :
§ i ;Vi-—c‘ n’n'?dy. (100)

The definite integral appearing in the right side of formula (100)
is called the total elliptic integral of the second kind with modulus
e and is designated by E(e):

v/t
E(e)m | Y T=esin'e dg. (101)
[

Thus, formula (100) can be given the form

12 ‘
S de _ _ El) (102)
J (i Sshutg)t 1-ot

According to (96) and (102) formula (98) can be presented in
the form

o= e [E () = (1 =) K (2))
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or according to (95)
Jym ZHE ()~ (1 —e') K (e)]. (163)

Let us turn to the calculation of the definite integral J, (see
formula (92)). Let us find

tin 9cos ydy i yon
(atsintp 4 51 cos’;)"' (d* ~a?) ]70' sin’y + 57 coslp gt

| S T

whence

Jym0, (10%)

From formulas (91) and (93) we find

" K4
a6 de

*
§ (s*sin®p + b' costy)'ls T J(8- c' oln’g)' s

nae, dy naa,
- 3 (l-e' ‘int’)‘lt -bt (I—C‘) (e)

according to (102), or
JitJ, =2 E (¢) (105)

in accordance with (95). Substituting value Iy from (103) into (105)
we find

y = ZH[eE (e)—E () + (1~ K (¢)), ‘

or finally:

Jym LK ()~ E (). (106)

P A T S

Substituting (97), (103), (104) and (106) into (89}, we find
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SS V.-g-_.(:‘_“';'i‘f(f‘zw mra,{aK ()~ 2 (E (0) = (L~ e) K ()] '~
=LK (o)~ ~E()y'}. (107)

Thus, 1f for pressure p(xz', y') we take expression (sic) the
multiple integral standing in the left side of relation (sic) will
be determined by formula (107). So that here condition (83) is
fulfilled, it 1s sufficlent that the polynomials standing in right
sides of relations (83) and (107) would be identically equal to
each other. Comparing the coefficients of these polynomlals with
each other, we will obtain the conditions

ﬂaa,K(e)n°+° ’ (108)
prey (E(e) (1"¢‘)K(e)]"° +3 ’ (109)
5‘3(1 ’)[K(e)-—E(e)]-o oy WO (110)

Substituting (88) into (85), we obtain the additional condition

SS }/1 2 dz‘dy -p, (111)

In order to calculate the multiple integral entering into formula
(111) let us turn in it from the rectangular coordinates z', y' to
polar coordinates r, ¢, assuming

P =rcosg, y mrsing,

Let us find

SS V1S Rardy =

3.3 nis)

_349 \ Y 1= (&2 ) e, (112)

where the limit of integration ro(d)) is determined by condition

rzcos'y‘l_r:sin'r“‘. (113)

at b




Fulfilling in (112) integration with respect to » and taking into
account relation (113), we find

S S /1 n v‘. dx'dy‘ ==

cos'; sin'9 $jgrmre ’
=7 S [ ( + )] L.o os’p sln .
+
"
c'b‘ dy "«‘b' dy
=3 § ' ﬁm,.,.b' oy 3 § s’sindy + bicos'y ' (114)

since in the last definite Integral the integrand has the period .
Substituting (60) into (114), we obtain

SS;/z- =y V- dr'dy’ e -nab, (115)

Substituting (115) into (111), we find

+

(116)

ap
Tnad

Thus, we obtained four relations (108), (109), {(110) and (116)
for the determination of semiaxes of ellipse a and b, approach a and
constant a,, which enters into formula (88) for. pressure p.

From relations (109) and (110) we find

E(e) = (1 —¢Y) K (¢)
=K@ =E(@] " B ’

or:

&-1) [‘53 ] '

(117}

A+B ®

Equation (117) determines the eccentricity of the ellipse ¢ according
to the assigned ratio B/A. Let us note that ratio B8/4 and, conse-
quently, the eccentricity of ellipse limiting the region of contact,
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are determined only by the confiliguration of comrpessible bodies
(see formulas (84) and (80)). Figure 51 shows the dependence of
eccentricity e with respect to ratio B/4 (let us remember that ratio

B/A does not exceed unity).

Fig. 51.

Substituting (116) into (110) and replacing in (110) the
difference 1 - e2 by the ratio a2/b2, we find

SRS ()= E () .

or according te (117)

WPE(e) _A+B
TA=e) o 046, (118)

whence

Y TIE () (9 ~ 0P
b“l/éu-eﬁ eyl (119)

Detecting from equation (117) the eccentricity e, by formula
Knowing the semimajor

1 (119) we find the semimajor axis of ellipse b.
semiminor

" axls of ellipse b and 1ts eccentricity e, let us find th
% ' axis of ellipse a by fermula

a=byT-c (120)
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Substituting (116) into (88), we obtain the final formula for pressure
p(z, y) in the region of contact

pan=ih Y 1-5-5. (121)

Substituting (116) into (108), we obtain the formula for the approach
o

am 3 K () OENE, (122)

Formulas (117), (119), (120) (121) and (122) completely solve the
examined contact problem of the theory of elasticity, successively
determining the configuration of the region of contact, pressure in
the region of contact and approach of compressible bodies with
compression.

With B = 4, 1.e., in the case when the initial distance between
points touching with compression, according to formulas (82) and
(84) are equal to

Lz )+ hE =4 (r=yz+y), (123)

the eccentricity e of the ellipse, which limits the region of contact,
is equal to zero according tc graph 51. In this case b = a, and the
region of contact turns into a circle of radius . When e = 0, as

one can see from formulas (96) and (101),

K(e)=E(e)=-. (124) ,

According to (124) formulas (11G6), (121) and (122) take the form '

am/ 30T, (125)

ap ST
pla =2/ 1=, (126)
,,a%ni_”-’fT"eli’, (127)
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and we arrive at the solution of the axisymmetrical contact problem
of the theory of elastlicity, obtained by us earlier in Chapter III.

The account we have given in this section of the solution of the
contact problem belongs to Hertz!. 1In this solution an important
fact is the assumption that in the expansion of (80) in the selection
of the direction of coordinate¢ axes x and y corresponding to
conditions (81), not one of the coefficients ayq * bll = A and
Ano + b22 = B turns into zero. Actually, otherwise for the initial
distance between points of the elastic bodies touching with compres-
sion, we would not have the right to take as the first approximation
the expression (82). The special case when one of the coefficients
A and B is equal to zero or both these coefficlents are equal to zero
was not examined by Hertz. For the case of radial symmetry we
indicated complete solution of the problem on the compression of
elastic bodies initially touching at a point regular for surfaces
of both compressible bodies, not imposing any additlional limitations
on the configuration of these surfaces in the neighborhood of the
point of initial contact. In the absence of radial symmetry such a
complete solution of the contact problem of the theory of elastlcity
is associated with great mathematical difficulties. However, leaning
on the property of the potential of the elliptic disk, indicated by
us in § 1 of this chapter, it is possible to supplement the solution
of Hertz by a number of other particular solutions of the contact
problem of the theory of elasticity.

Let us consider the case when the expansion of (80) starts from
the uniform polynomial of the fourth power, which takes with
proper selection of the direction of coordinate axes x and y the form

Az 4+ By’ + Cy* (4> C).

Then, disregarding, due to the smallness of the region of
contact, smalls of higher orders, in region & we will have

'Hertz H., Gesammelte Werke, Vol. 1, Leipzig, 1895, p. 155.
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1105, Y) + [ (z, y) = Az + Ba'y* 4 Cy*  (ASC), (128)

and condition (77) will take the form

SS p(z’, y)dz'dy’ nc—Ax‘-B.:'y‘-Cy‘ (129)
AR eers e v e

If as region & we take again the part of plane x0y limited by
the ellipse

1 s

L,
the multiple integral standing in the left side of relation (129)
will represent the potential of the elliptic disk V(x, y, 0) with

density p(x', y'). According to the formula (4) and (46), if for
pressure p(x’, y') we take the expression

) ‘ y's "3 3N/
e )=a Y 1= S g, (i =5, (130)

* this multiple integral will equal

. ” .
Bz, v)dz'dy’ ~ A 1 _ (xsin¢—ycosy)
S:S Va-srt-vr rab § {.f o [i s g+ oeosty | T
) Y

+ea[1-fimrye ]'} s

Tatsinig+Eicosty Y atsiut; 4 0% cos? ,-

= . .
i 3 r 3 zsin g —ycoss)
=xab§ [’E’a"*"é‘as"'('-f“x"l'zag)( ¥ —ycosy) +.

adsin? 5 4-b%cost g

3 (zsiny— ycos3p) d? ’
+'§'a’(a'sin' 7+b’cos‘“9_)"] X e (131)

In order that the polynomial in z and y in the right side of relatlon
(131) is identically equal to the polynomial appearing in the right
side of condition (129), it is necessary that

1 3
7t a=0

“
(A
(¢ o

4
5
4
4
]
;

|

A am




Ay

e

R UV

— e e e o

whence

a2 g, (132)

Substituting (132) into (130) and (131), we find that when

- ’9 Iy
Py )=e, ;/1--.—.—-——[ (-5-5)] a3z
SS piz', v)dx'dy’ ® abg * {zsiny—~ycosp) ‘ix
V(‘_,,l)t.*,(’_ﬁ iy § s (C'Slﬂ’,-{-b‘ﬂﬁff)’d
xisint 3 -4y slntgcony
ety n:,.{_pw,n, Ky “b“lS [i (atsin? g+ brcostz)? .
__Lz’y'-!n‘vcox'v-&n'sinfcos‘v-rz:‘cos°v . (134)
e Vremees

We find, further, by replacing ¢ by w - ¢

b

S sind9coszd? -
J (e*sint g2 cost g)'ls

®/2 p = .
S_ sindpeoe 9y S sind3cos o dy -
3 sind 3 4-b3cos? 3N 2 4ind 2 noc? o)
u( it #h) Mz(a sin? 9 4-53cos? g)*ls

"ﬁ’ sin? 9 cos 9 dy —.S” oot 0 (135)

J (a¥siuty 443 cost i J (a*5in*y 4 B cos? W =

and analogously

»

sin 7 cos® ¢ dy

§ (a*sindp+ddcostg)ln ' (136)
[

According to (135) and (136) relation (134) takes the form

SS P2, )2y
Yx=zP+(y-yP
-
" a44int g 1 622yt sin? 3 cosly +ylcosty
- e Obag S [‘— (a‘sm'p-}-b' cos? g1 N ] X
dy -
}/a-‘-sin’p-i-b'coa‘,

B

P

L

L 3
S [bc__ S‘Sih‘p+6x*y'sin’;cos'7+y‘cos‘9 x
J (1 —c?sintg)?

dy

]/1 —~ecteinty




-

y Y ’ - . -, . - Lo 3
where em}/i—tz— the sccentricity of the ellipse. Since in the

obtained definite infegral the integrand remains consiant with
replacement of ¢ by 7 - ¢, relation (137) can be given the form

PR

SS 1 ’43’33 20y S [ B z‘a&n‘ﬁsx!y'sim;cw%,m]‘x“‘* -

,/(3,.,’!.{,(’..,")\ PN (l-e’sin‘”
. dy.
X iz (138)
Let us introduce the deslgnation ’ ) i
A(v)s-]/ Bt am' | o (139>

We find

z*#in’ o4 62"y ' sin* g cos’ gt ylcosipum
- 2 sint o 6%y =san'?(i-am'9)+y (i”ﬂsm"q-}un‘;)-
=yt (627" —2y*) sib’e - (2 — G2y’ + ) sin' pam :

c+ z*y'—-ﬁy‘(i A’)+M‘(l-—2.\‘+&)u
-——[e‘ t-4-6e z’y’-Zc’y + 24 —82%' 4yt —

(Bety? =26y 4 2t — D02y 2 YA (=Gl ) ]
= -~ {z‘-G(i-oc’)z'y o+ (1 =)ty = 2[2* =3 (2~2") 2'y" 4

4 =é*) Y A o (20 = B2 + y‘) A‘) (1kQ)

Substituting (i40) into (138), we obtain '

SRR (oo st
/g

+2[:‘-3'(2-e')z’y’+(iu-e‘)y‘,} SK"G)"’ '
1]2 . ’ '
[ =61 met) 2ty +(1-—-e’)’ D S‘FG'} (141)

According to the formulas (96) and (102)

" %
w/2 =/2 |
» d? 8(6)
§ a(y) s =X e S &Gy - (142)
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In order to convert the third integral of integrals entering into
formula (141}, let us use identity :

d falngcop -2-2'stn'?+%a's’in'eu-s!n'y)“eQaz(iméﬁj_*_

LA N3 & v
208~ &%) [ed e (4 ~29)] I (26, —3W L 32 LBt e
+ 3‘” G‘A’ L2 - .l;s

At sEny, ()

Integrating both sides of identity (143) with respect to ¢ within
1imlts of zero to w/2, we find

»/3 /2 LY I
0w — 55'(?'*'2(2 ) g w( )"3(""")i T
whence

. w2 ,
A*:» w—e» [2‘2 "’\ww 53‘5‘%]“

“t?-e)s(e) —-(l=eY)X {e) .
w OB . (144)

according to (142)

Substituting (142) and (144) into. (141), we find

(2’ ¥'Ydz'dv ) rda
SSfﬁﬁ';;-;i;a‘-,» e e (O (0! =3t 462y = y) x

X (1=K ()4 62 =3(2= ') 29+ (1 ~€) '] (1 =e*) E ) =
w13 =6 (1=e) 2ty (1~ ][22 =Y E (- (1= K (9] =
it (0 (1= PP K () 4+ [ =31 =) K ()
FO( =) E () =22 =Y E () + (1= ) K ()28
+6[3(1—c*PK (€)= 3(2 =€) (1—¢}) E (¢) 42 (2 =€) (1~ e1)E (e)—
— (=YK (]2 +[ =3 (=) K (e) +6(1 =) E )

~2(2=e)(1 =) E(e)+ (1~ K ()] ') = grrzrgm X -

X {36 (1=K (e)+[—(1—") (2—3e")K (e)+2 (12¢") E (e)] 24 +
+6(1—e)[2(1 =) K ()= (2~ £ () } 2y &
+( =) [ = (2+e) K () 4+ 2(1 + ) E()] 3*). (145)
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Thus, if for pressure p(z', y') we take expression (133), then
multiple integral standing in the left side of condition (129) will
be determined by formula (145). So that in this case condition (129) .
is fulfilled, it is sufficient that polynomials standing in right
sides of relations (129) and (145) be identically equal to each
other. By comparing coefficients of these two polynomials, we
obtain conditions '

MB;K()“

e (146)

W%‘ﬁ—;r,,w e';<z-3c’)xze>—-2(i-ze’mena%m (147)
gy L= 2(1-e=)x(e>+(2-e*)£<en-g-- (148)

5 (RO =2+ NE@ g T (149)

Substituting (133) into (8%5), we obtain an additional condition

Sg/i-—--—-..[i--—-(i- - }dz’dg =P (150)

In turning from rectangular coordinates z'y'’ to polar coordinates r,
' ¢’ ioe., assumil’lg

2'warcose, y'mriing,

we find

()" v =

n u(s)

- Sd? [1_( costy 5 ah sh’? ) ,.]'h’ dr, (15;)

where the limit of integration r0(¢) is determined by relation

r;co;'g 2 e‘alx ¥ «i, (152) .
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Fulfilling in (151) integration with respect to » and taking into
account relation (152), we find

(-girere
"""§[i ~(5t ) ]"’L;S‘"’mf

858 Cdy 2 ’
- §amsnvw'r‘;‘3’“’ (153)

accerding to (60).

Substituting (115 and (153 into (150), we obtain

o yrab—} 0 Jaak) w2,

whence

aymipe (154)

Thus, in order to obtain the solutlon of the .examined contact
problem, we must satisfy five conditions -~ (146), (147), (148), (149)
and (154). At the same time at our disposal there are only four
constants, the selection of which we can arrange in order — semiaxes
of the ellipse g and b, approasch a and coeffilcient aq in formula
(133) for pressure p. Thus, aforementioned conditions impose a
limitatlon on the assigned constants appearing in the foxmulation of
the examined contact problem. Let us first discuss the character
of this limitation. From conditions (147), (148) and (149) we find

(22 )R () -2{1 Leh) Eie))(1—et)t

c
(U= e) 2 de)K ()= 2(0= ggl)b(.) - A0 (155)
Cl{—2(1= )N () (2~ E(NI~-Y) . B (156)
(L= {~ A ()= 2(1=2er E(e) A’

Expressions standing in left sides of relations (155) and (156)
depend only on eccentricity . Thus, excluding from relations (155)
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aiia (156) the ecceniriciiy e, we Obiain thne connrection between ratios
B/4 and ¢/A. 1In order to show the character of this connection, let us
introduce the designation

Smi o (157)

_Since relations (155) and (156) express the ratio B/4 as a fuggtién
of ratio C/4, ratlo B/4 should be a rcertain definlte function of
parameter %X introduced by us. Lef us present thiswfunctignai
dependsnce in the form

2. 2k {12 (R) ] {158)

In the table below a number of values of function §(k) is given:

% ! o33 | 0692 | 0463 | 6,2

P 0 6,001 | 0,005 o.g"iaz { 8,015

As we see, function 6(k) over a wide range of the change in
argument % obtains small values as compared to unity. Substituting
values of constants B and ¢ from (157) and (158) into (128), we find

hison)+filz, g) = Azt + 2k[1 =2 (R) ]2y + By (159)

Thus, so that we could arrive at a solution of the examined
contact problem, the initial distance between points touching with
compression f(z.y)+/h(zy) should have expression (159), where 4 and k&
are constants subordinate to conditions

0<kgt, A>0, (160)
and in other respects are arbitrary constants.

Since~quantity 6(k) is small as compared to unity, formula (159)
can be replaced by an approximate formula:

264

‘\




11(2 9} 4 5z y) = A (2 + k'), (161)

Figure 52 shows curves determined by equations
(S By ety P IRI-R) 2y + Ryt

when k = 0.079 (in this case 6(k) = 0.124, and the eccentricity e,
determinéd by equation (155), 1s equal to e = €.975). The first of
these equations determines the internal curve and the second the
external curve on Fig. 52. As we see, even at values of % close to
zero, and, accordingly, with eccentricity e close to unity, we obtain
a fully satisfactory approximation, passing from the dependence

(159) to the approximate dependerice {161).

¥!
i Flg. 52.
&£
R
g;.
4 '

Thus, whereas Hertz showed the solution of the contact problem
for the case

hiz, y) + (=, y)=A(z*4 ’»'y')e

we actually arrived at the solution of the contact problem for the
case

12, 9+ 1z, yy= A2+ by

Substituting (157) into (155), we obtain the equation
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(T=e) (2=deDA (e) = 2Mi — 227} K (¢)

{24 MK (c}~2(1+e’)£(c)!(t—c’)’_;‘a’ (162)

which determines the eccentricity ¢ of the ellipse limiting the region
of contact as a function of the assigned coefficient k. Figure 53
glves a graph of the dependence between the eccentricity e and
coefficient k. )

£ L
i+ A © Fig. 53.
’4:‘

Y, a7 7R

Substituting (154) into (147), let us obtain the relation

a2 =30 ~2( -2 E0)) =345,

" from which it follows that

Vet = o (2= 3e55K (r')-‘z(t-oze')ﬁlc)] (0,«}-3,;?
b"’]/ 126 (1 €' ) a (163)

Thus, having determined from equation (162) the eccentricity e,
by formula (163) we find the semimajor axis and by formula

P  r (164)

the semiminor axis of the ellipse, which limits the region of contact. Y

Substituting (154) into (133), let us obtain the final expression
for pressure p(x, y) in the region of contact:

P 158 [1-2(1-5-8) ] (165)
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Substitu@ing (154) into (146), we find the approach of elastic bodies
with compression a:

s=E Do, 10,2, (166)
Formulas (162), (163), (164), (165) and (166) completely solve
the contact problem examined by us, successively determining the

configuration of the region of contact, pressire in the region of
contact and approach of chpressiﬁle bodies with compression.
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APPENDIX 1

REDUCTION OF CERTAIN ELLIPTIC INTEGRALS
TO CANONICAL FORM

¥

1. Ler us first consider the definite integrals

)
caws‘yiq-—rsy n"o; i' deoo
]

Assuming in (1) ¢t = 1 - :c2, we have

!
5 fl-z’) ?dz

V/i—-z‘ )

or

- 23}
/3] s

;/(x-z*)(x.--sﬂ)

Introducing deslgnations

2™ds

=

1 T
xnnS ’ nﬂo, "'o.,o.,

? .o
we find

o=}/ 2(Xy—X,),
c;ﬂlfz-(nvo_zx;'}'x‘;)’ ]
C.ﬂ'l/i(x,-3X,+ 3x.-x.), Etc -
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r— ot —

Thus, the calculation of definite integrals B, te Ty
the calculation of definite integrals Xn' Using sounventt -
designations

- k’x!

E (k)= Sm E(k)-S;/TF (%)

for complete elliptic integrals of the first and second kinds, we
find

=k (%), | (6)

%

X = “-""_u—-’—-—:—-—-ix-a—-"":."‘_“"‘
) § V’(a-.-;)(:--é- x’)

s

mS ‘/{!-x’)(l-——-z‘) :

{7t -V i)
-2[5 ()= -%11)]. - w

X

Let us use, further, the identity

A/ (1]
2 2(31=3) 2574 = 3 (20 — ) 2304 (20— ) 210 (8)

2 /(t-:ﬂ)(x-%s')

Integrating both sides of identity (8) with respect to z within
limits of zero to unity, we find in accordance with designation (3)

0w 2 [2(20 = 3) X oy =3 (28 —2) Xoey o+ (28~ 1) X, ],

whence

x“lﬂ3:'3-:‘£'%x“-x 23:-2xa0|' nnz; 3. coe ) (9)
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Formula (9) makes it possible to express any integral X, by
integrals XO and Xl’ which in turn are expressed according to

formulas (6) and (7) by complete elliptic integrals of the first and
second kinds.

In particular, from formula (9) it follows that

X;wg'(?tX.—X,)e 1.
6 1nqe 2 0y (10}
X,em £ 2K, = Xi)m 3 (9K =4X,).
Substituting (10) into (4), we find
5 Vi, 2V3
_c,=;/2(x.-x,). ==Xy G= = (X=X (11)

Substituting (6) and (7) into (11), we have

BEICORICOI N
a=X2x (%), (12)
=2 () -1 ()],

#

From tables of complete elliptic integrals find (see, for example,
Ya. Shpili'reyn, Tables of Special Functions, Part II):

k(L2) =1,85107, E(%F)=1,3508%, (13)
Substituting (13) into (12), we obtain

¢,=1,19814, ¢, =0,87403, c,=0,71888, (1)

We performed the calculation of integrals e and sy in Chapter III
(for integrals ¢y and ¢, we used designations J, and J2)‘.

1See formula (150) of Chapter III.
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2. Let us consider, further, the definite integral

b2
fa ‘ .
1@9«§_m; Qegigs. - - - (15)

Assurdng in (15) ¢t = 1. - xa, we obtain

L .
=3 1= : ] '.. 6) .
%) Vggiﬂﬁm (16)

We find further

oS ?“‘*'a—%‘:a-u;r;%:aa —
_?4-—-(?:& 1= "‘ 3{"61‘-'-‘;!7“ (a7

Substituting (17) into (16}, we obtain

“7“""5'0%[ S;/(g.., c_,__.. e T

t+¢

Ty

:+¢Sz;:::;5;7::i;??ffi:jl

Introducing designation

(18)

1

@, B iz : (19)
® % §(t-&'a’y‘) 37 @-e9 (1-3#) ¢

and using designation (5), we can give to formula (18) the form
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10m i [ ) 2 (VT ) -
| ~5 (/R D) (20)

The elliptic integral Xy, k) is expressed by elliptic integrals of
the first and second kinds. This transformation is based on formulas
af the addlition of elliptic integrals, which we derive below.

3. In order to obtain formulas of the addition of eliiptic
integrals, iet us examine the differential equation

e300, U 2y
where
with the initial condltion
y=g when z=B {[s]<i), (23)

Dividing the variables in the differentlal equation (21), we obtain

iz - ay
Y7 R Y1

whence, in accordance with the initial condivion (23},

X 4
} %=~} %+

or

S?‘:—;Su-g ;&)—si%r (24)

Using for the elliptic integral of t@g first kind designatlon
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& - . - .
MS é%’““ --‘-'-"‘;;r‘jﬁ - v (25)

we will be able to givé to relation (24) the form
Thus, we obtai'ned the solution of difrérential equation (21)
in elliptic 1ntegrals. At the. -same time, as we will now show, for

this differential equa.tion the algebraic integral can be..cbtained.

If y as a function of x satisfies differential equation (21),
then o

i(i wkiz'y) e < 20 ay (H- “") = — 28 zy {Y*-"%%’ ;] '
Line)+a@lmpd s+ B+ G-
- g () ()= (3 (5) 4 58 IS it )= 3

whence

Sl5a{s) 453 (0]} yd(2)4’ (s) =23 (y)3°(3) :

NI =S G- e @7
according to (22)

a(z)en (1 =) (1~ K5} m 4 — (4 4 B) 224 s,

whence

A(3)A' ()= ~(1 4 &%) 24 2K"2,

Thus,

;n(s)a'(s)uza(gw(g)-y(zw-(a-g.k')z)- y
= (RR = ) ) Ry (P =) (28)
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On the cther hand

whence

[23{y)~ ¥ (=) [3805)% 3 ()] & W@fzﬂ'(z}‘ i
w21 k)4 B = (4B B B =
g' K2y g - Ratyh e (2 ) (1 B2ty

3 =y (o) m B (29)

Substituting (28) and (29) into (27), we find .

Hence

yd () + 2519} __ sB(2) +2b(y). .
‘."!4(1.2:35'5;‘;‘%? T:';Gs;i!l Co (30)

d{va (=) -28{y €{$ = ktxly
yi(z) ,-z.ﬂﬁ'l 1=k 3? i
la[yd () + 33 {y)] = 10 (1-'*’&' ¥y +lae, } ' (31)

yd(2) k23 (y)

1=kt O

where ¢ 1s an arbitrary constant.

Let us define now the arbitrary constant ¢ in accordance with
initial condition (23). Assuwing in (31) z = 0, y = 2, we find

4

b (32)

Substituting (32) into (31, we obtain

A(z) < 23 (¥
e (33)

Thus, by integrating differential equation (21) according to
the initial condition (23), we obtained the solution in two forms —
in the form of relation (26) and in the form of relation (33).
Thus, if numbers z, y and s satisfy relation (33), relation (26)
takes place between elliptic integrals of the first kind with upper
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limits =, y and g. We arrived at the formula of addition for the
elliptic integral of the first kind. It is clear directly from
relation (26) that this formula is accurate only when z and y satisfy
the inequality '

[F(z B)4Flg 1< PU D)=K (K). (34)

Let us now derive the formula of addition of the elliptic integral
of the first kind when

K(E)SF(z B+ (v, K< (%), (35)
For this we replace the initial condition (23) by initial condition
y=1 when zms’ (07 <1). (36)

Integrating differential equation (21) according to the initial
condition (36); we find

or:

i.e.,

F(z, Ky4-F(y, k)= K ()4 F (', k). (37)

On the other hand, differential equation (21) has the solution
(33), where s 1s the arbitrary constant. Let us define constant z in
accordance with initial condition (36). Assuming in (33) = = z' and
y = 1, we. find

() (38)

=iz ™%



Thus, according to condition (35) instead of the formula of
addition (26) we will have the formula of additlon (37), where 2! is
connected with z by relation (38). Let us convert formula (37).
From relation {38) we f£ind

S {m3n’ i"'l‘ g- k 8" jé"&osg!' § -5

=5 =it R Tl
A A 2*’:d=~2-"-:%-_-;§:-’:i—;§5. A
whence
=1y (29)
From (38) it follows that
s=i when =G (4o)

Integrating (39) and taking into account (40), we find

I dz ds’
Vit =-
whence
2o ba da b
E ) M o
P B= 5= Vi o (3)..5 1K)~ T (41)
8 ]
Substituting (41) into (37), we obtain the formula of addition ‘
F(z, K)+F(y, k)=2K (k)=F(3, k). (42) '

Let us derive now the formula of addition for elliptic integrals of
the second kind.

Using identity (29), we can give to relation (33) the form

Sj
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Ef""“‘?i’m-? 5
or
T e Y )
I T I f@ ""[y ek (43)

But if ¥ as a function of = satisfies relation (33), then y satisfies
the differential equation (21). Using relation (21), we can glve
to equality (43) the form

! ;'(";‘;“a +} o - K " dy = Kz{y dz -+ zdy). (hy)

Taking the initial conditions (23), we find from (44)
1 ~ 028 1 - k%t
§ Y der ST’"(”) dy = Kz,

or

(slase [ itar- | S5 apmben (45)

Using for the elliptic integral of the second kind the designation
§31f'-(%‘f S VAL Ty (4€)
0
we will be able to give to relation (45) the form

E(z, K)+E(y, k)=E(3, k)+K'zys, (47)

Thus, if z, y and z satisfy relation (33) and inequality
(34), for elliptic integrals of the second kind the formula of
addition (47) takes place. If x and y satisfy inequality (35), then,
using initial conditions (36), we find from (ll)
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1-&5.2' 1 1P by (2e) e
S S ”dymkx(zy 3N

or

. )
Lkt l—kz’ g..;,e.,t
§"‘A'(“'z3‘ d2= \ g 95t ‘ YO

§ = k% ,
3 (y)“" dy = K'z2(zy~3'),

i ©

Using designations (46) and (5), we will be able to give to this
relation the form

E(z, )+ E(y, M) =E(K)+E(@', k) + kz(zy—2'). (48)

From relations (38) and {39) it follows that

1k oo Sk s
T C bt v v O (49)

Integrating (49) and taking into account {(40), we obtain

[ 4

E(, k)='—(1= k‘)sm-a-(;)n(i ")Su-i%m (50)

We finé further

R (s Viss .k' 171""-3‘_'__ ks Kty 1=t
V=i kt,v) T e R Vi y e S oy 1 - A% l)'ls
k' (3 = 23) (1 = k®3%) = K239 (1 == A*3Y) 2 K020 (4 = ;a)
. (1 ~ k%) 3(3)
A AR L S M Rl 4 Rt
el =y UL v 7y M £y i ey o vy O (51)

Using identity (51), we find according to (50)




s[5+ 5 R o

nz-d“ §ﬂ~k’ dn+km/i-s‘ ‘

) a@E 3(s) YieFs

" mE(K) E(s, k)-g-“;;:,-——{-—_.%.if:. , (52)

Further, according to (38)

yi=3 (= k5 a0 Y
Vm:iﬁ ;/ k'a"‘ Voisom v (53)

Substituting (53) into (52), we find
E(, b)=E(§)—E(s ¥B+K. X (54)

Substitvting (54) into (48), we obtaln the formula of addition

E(z, )+ E(y, B)=2E(k)—E(s, &)+ K zys. (55)

Joining formulas of addition (26), (42), (47) and (55}, we will
finally have

E(z, A)+E(J, Ib) E(ao A)‘*‘kzjo
when |F{z, k) +F(y, k”‘(i((k): (56)
F(z, K4 F(y, B =2K (k)= F(z, &),
E(z, )+ E(y, k)=2E(R)=~E(z, k)+ k'zys
when K(k)«F(z, k)+F(y, k) <2K (k),

Flz. kY4 F(y, X)=F (2, k), . ' ]

where

R

. g L@ +23()
l -~ k’z'y‘ .

’

I, Let us turn to the transformation of the elliptic integral

)
i N(y, K= ds — (57)
‘ - § (1 = kgt ;/(1 -at) (z '"“i ,.)
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We will first assume that 0<y<1i. Since in this case when 0<z<
[Fz, B)+F{~y, B)| <K (),

we will have, acc-ording to the formula of addition (56)

Flz, )+ F(~y B)=FE k) } (58)
E(z, )+ E(~=y k) =EQ, &)—~kzt, 0<z<d ],
where
tw O, (59)
But
F(~y B)= Sﬁ—-”,, -— S;"—(;, o —F(y, B), (60)
7 3 .
and, analogously,
E{(=y, k)= —E(y, k) (61)
Thus, formulas (58) can be given the form
F(z, k)y=F(y, b)=F( k), _ } (62)
E(s, )=E(y, )= EG =Kzl 0<z<de
Let us designate, further, by y' the number for which
F(y's ky+ F(y k)=K (k). (63)

Then

0< F(z, )+ F(y, k)< K when 0<z<y,
K <F(z, )+ F(y, k)<2K when y' <z<14,

and according to formulas of addition (56) we will have



F(?o k)'!‘F(yo k)°F(:x k)a } (6“)
E(z B+ E(p ky=E(z, )+ k'zyz, 0<z<y,s
F(zo y)'*'F(yf' &)mZK(}s)—'F(Z, k)' } (65)
E(z +E(y, ) -2B(A)~E(5, Ky +k'zps, y' <z<4e ‘

From formulas (62), (64) and (65) we derive

E{z, k)~E(, k)=2E(y k)—~k'zy(z+() when 0<z<y),
E(s, &) +EG, ))=2E(k) -2E(y, kj+Kay(2+() (66)
when y'<z<14,
Further, according to (56) and (59),
z+CuT%%%?. (67)
Substituting (67) into (66), we find
: Y ) i = E (5 K=+ E (2, W)+ E(y, )
; SR Wi =T EC H—7 B B)+HE(y, 8)
; mmn0<z<y.r‘ (68)

. 9 t 4 i « —
ky.\(y)m%;;’;'aﬂz E{, k)'%“.fE(zli‘) :E(y'k) E(’;)
when y' <z <4,

Multiplying both sides of eaualities (68) by dz/A(z) and
integrating with respect to x, we find- (considering that z and g
depend on a):

v V
. ‘S zldx 1 E k)d:
k y.\(ys =Kz A () 75
* L
1 Bz kjds
..._3.3 n«z) +E(y, ’\)3 “. 60)
s'dz E(3,Kdz
k‘yA(y)Sa“:_T;'——M zx Y
ul
E(s.k)d=

+ -; 3 i HEW K- E(#) } 5@

'l /

whence




]
. 2ndr 1 ¢ B3 K4z B‘(x.k)dx
«"“y)c\u P YE Sl R YE) "'"o YE R
@

+ % § ECSELE( k)
id

cm»

dz
Y= E("’Saw (70)

Differentiating with respect to x both sides of the first of relations
(62), we find

1 {1 43
mumﬁ, 0<z<,

vhence

dz di
mﬂa—(—‘.), 0<z<1. (71)

Differentiating with respect to x both sides of the first of
relations (64) and the first of relations (65), we find

! 1 ds R 1 { dsz ’
e 0V ae= TIear ¥ <F<h
whence ‘j
dz ds , dz ds ' .
I-\-;)Bm' °<2<y. K‘C;')""E‘(‘;). y<z<1. (72)

further, from (59) and (56) we find

(= —y when 2=0, (ea= ‘Aip, when r=1i,

z=y when 2:0, zem 'i‘l-“’—):,;y'f—f#'?- when z=y’, (73)

3= ab(g" when z=i, ) .
Introducing designatioas é_—-—‘ky&ﬁ-=5‘u nd Wﬁf” ay, we find in -

accordance with formulas (71), (72) and (73):

€1,
r



¢
. § m:.mdamg' Bz Wiz § E{s,0)ds _
4

. 3@ TR AT
] I v m
4 B{s, k)dy E{zs k)ds E(s, k)ds
‘ il Y5 “"S a@) -3 a@
¢ R - ¥ v '
3 )] "0 v
8 N . CE(.kds Bz, 1) d3 EQ@. N d}
E - ) "5 i e Tkl Syt (74)
3 | -y .

since function Qg%;‘l according to (61) is odd. Further, according

to (63)
1 ] 1 v
d ds de '
§,r§s"§m—§ £ = KW=y, K= Py, R). (75)

Substituting (74) and (85) into (70), we find

4

KyA(y) § aorrsE =K WEG H-E(RP (1, ). (76)

f?
L]

Thus, when 0<y<{ we arrived at the relation

33 L
U (y, k)= § = % 'f't e

” S wad : 4 N - T‘
‘ 3/ L= kiyt dy ’
"o §l/ i 4mEe 5 Vi-9) G=ky) 77
= Ky V(-9 G =a9) )

- .

Quite analogously, by using formulas of addition of elliptic
integrals corresponding case y > 1, we can obtain relations

b 4 v
1=Ky dy

k@ § 4 por YHE® § V@-n(i-ky)

L b= ve-na-rm — a8
) o 1<y<t,
¢ . . k’_ll"—‘ dy .

; . ‘-E(k) ’Slh/ yn“‘—dy" g(k) gh i?(y‘_n (ktyl..g) . (79)

e k= ‘ Ky ¥V =1 (' =1) '

y> 1k '
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We restrict ourself to the formal derivation of formulas (78) and

(79) from formula (77).

*

Assuming in the right side of formula (77)

VISPV =T,

‘We obtain

.\' : -A’(k)s V,‘qk 2y E(k)\ l,(-——m

W(y, k)=

mJVﬁFfb(fIK*ﬁ
When 1<y< ¢ we have
S 1""# d? S }/ z'l. ‘ k'? dy"

aSV‘;f_'{ + the imaginary part,
L]

and similarly

v v
dy - dy
§ L 3'17=??ﬁ=750+°the imaginary part

Substituting (81) and (82) into (80, we find

— 9%

Viv=-0)Uu-kyH)
Ryl (7 S0 (= k)

v
K (k) S y""“”-' dr+E (1)
ey

-mc

(y, k)v-

+ the imaginary part.

But the left side in relation (83) is the real part.

(80)

(81)

(82)

(83)

Consequently

the imaginary part of the expression standing in the right side of
relation (83) must be equal to zero, and we arrive at formula (78).

Assuming in the right side of formula (78)

VI-Fy =iy By,
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vwe obtain

4 v
-x(&)§ TS dy—B(k)S dy

=T V-1 -1

T . (84
By Y (' ~1) (@ - 1) )

N{p, ke

When y)-;. vwe have
y e me———
Fy=1 byt =1
W= Sl/gw“ﬂl/"y‘-*:ry
SV’;;’__";"d + the imaginary part, (85)

and analogously

dy -
W ] e Tt o s »
5‘,(”‘“”(””‘_\” §,V(9‘“i) s )+ the imaginary part (86)

Substituting (85) and (86) into (84), we find

v
k3t =1 -
i) Ve ,S, Vo T
O {y, k) s &

Ky Vir- Dy = 1) -+
+ the imaginary part. (87)

But the left side in relation (87) is the real part. Conse-
quently, the imaginary part of the expression standing in the right

side of relaticn (87) must be equal to zero, and we arrive at
formula (79).

Thus, elliptic integral N(y, k) is expressed by the elliptic
integrals of the first and second kinds.

5. Above we obtailned for the elliptic integral

{
*h 4t .
’m”§yﬁmw-m' o<y,
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the expression (see formula (80))

7 @) iy 26 (w)‘“‘““(}’ e )
| ~ztn(y/ L, )] (88)

Let us transform this expression, using the above formulas for
the elliptic integral N(y, k). Since when 0<i<t

V&> Vi i<y i<ve

in the elliptic integral n(y’r}é, -‘-{1-2.) y)-{., and in integral
ﬂ(;/zi;, %—3) 1<y<-};, Thus, for the transformation of the first

of these integrals we must use formula (79) %d for second — formula
(78). Assum* ng in formula (79) ym;/, k=Y2 and in formula (78)

- s’ 2!
y“i/i-i-s' Al , we find

°
rs

V"z;: T . . |

-5 (1) f ;/‘i'y,”..__:‘,‘.a,,
= f“)(r‘z ‘)
VE

*(%) f ;/('-n(-y' x)

u(;/ V’)u

i=¢r

(89)
il/t = 1—? i)('f'_"t)
)j'“ 1_._2_31
O W,
o8 gy e ey o
- g(ﬁ) fﬂ 3 )
. e ‘/(”"”(";”').'. (90)

’/":1’(.:4-6 -1) (1)
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Assuming gm!‘?o we find

L . - L ”’n ' """"": "d' '
- ] ; . zu.c-.g‘
» ., E) . Vi ™ h

STW Ls/«-wcw—»' e

Using identity

GV TR T

t .
i___ aﬁ..—‘l/—- =3 ' 1"?% . ‘
% 3" ...aﬂ . ‘-,“ | -
ﬂ-—-?
‘- - ( —

t--- 15‘

we find

gl

._-—S:l/ "':_:, dn+ S ‘!/—‘:{:n

g..--(l o]

S +.‘/.{i—(l-§)l

Y =4

(93)



Further

,/Li/(l'-s‘) (i--ﬁ) f/ﬂw’)(‘——-a’

-""‘-—--——ﬂ-_--:-—;-—--—5-f~<*'f> 1y >

o

VA
[ "y'"adJ-—E(K-)ﬂ“
Ve
-H:'(;/i-s }4—,/;;;33,
V.—"f-f{-_mg
A V-0 (Fu-1)
K (§) - (V1=

* Substituting (95) into (89), we obtain
n(V & 5= ‘—’--é—%—:,%i'[ﬁ(@)”(v‘?ﬁ)"
..A("” e(y =%, )] (1= t)x( )

1
Assuming y= ———==
l/‘ __TI,}!

(94)

(95)

(96)

(97)



- & i, "’ (98)
éf }./'(i'-v.'f(i-%n‘) * (V

1
‘) /D) _VISE 'f"”’"f:
- s
ﬁ(""’““;/x--w AR
" Vl_g"

we find
Yi=i
f _Viewdy
GO
_ -VT:'E _wdy Q- mt-u- =
- ‘S ; t—n’)(‘-——n‘) 1-7 (-9

¥ist -1 :
] P VS RVE =X
- - =9 ey
i L a=a(i-§v) -

mzp(Vm.l’;)—zz(Vi"-'-"e. )+;/“’ 9 (99)

Substituting (99) into (97), we obtain

V& iy
f s
[

"'F(Vi--c-—— ~e(yi=, ¥2)+ 0=9, (100)
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Substituting (98) and (100) into (90), we find

2V ot 5P [ (e (V= 1)-
: ¥ F(;/a-e "‘)+5("2)F(1 z,?-}']-

~(+HK T) . (101)

Substituting (96) and (101) into (88), we obtain

Io= ity {25 () +
/BT () (o -
()5 (= D)ok (D)) -
~VEER (R ()E (Vi) -

KO (/TR K s (R )]

+1-0K ()} o {2000k (B +

+Y A=) [ F (1/"1-'6 -.)-.'
—~2E ()/3-—5, ]K(V-)}

o.|

or finally

romit ()Y 24V T [ (/7. 1) -

~2£ (YT YY) (102)

6. 1In Chapter II, solving the two-dimensional contact problem
off the theory of elasticity for that case when the initial distance
between points of compressible bodies touching with compression 1s
proportional to |zj*(z— distance to the initial point of contact),
arrived at the following formulas for pressure p(x) and half-width

of the reglon of contact a (formulas (103) and (104) of Chapter II):

r\d
(e
(W]

b e =



. o -2 .
! p(z)m .--E;- : V, ( aﬂ) » 0< 2| <5, ) (103)
g S tkdt .
1 0},{-::.
3 ] Qm Rpt(o!-!.'b’) “k. . (104)
ukS tkds .
. ) 7i=h

! For the case k=*, assuming |z]=a} and using designations
(1) and (15) for appropriate elliptic integrals, we have

p@)m Y T=T0,  o0<iqy, (105)
1 aP (0, 4 0,) 1%
- dﬂ[ 34 C-';—)] s . (106)

Substituting intc (105) and (106) values of elliptic integrals
; ¢, and J(E) from (12) and (102) we find

; p(ac.)- i_:--&_'{i-}-)/u S p(;/?:t,!f;:)_
N —ZE(VT—?'E.‘—’—,’:)]}. (107)
R "'?“P“"f-i-”-‘ir'- (108)
[us (l'-,;") ] '

Assuming temcos'e, and tesing, W~ will have

!

¥ - vas . .

? ' . ( . ’ T) So ;/(1..‘:) \g_,.;p) .g,}/g--u,‘y

‘*i E (V:—s, 3) —11/’“’: it §/i--—-sm ¢

A

g pn--—-rsmﬂfi-f-cos‘?-}- !

é VZ wa‘9(§}/i-~“nl S,/i-—nnt?d?)] P (109)
‘ . g = arcens 1-'-' ]

z SNl
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We arrived, thus, at the formula convenient for calculations
which determines the pressure p(x) in the region of contact. In
accordance with formula (109) a graph of the distribution of pressure
in the region of contact, located for the examined case in Chapter II
(Fig. 11) is plotted.

7. In Chapter III, by examining the ax!symmetrical contact
"problem of the theory of elasticity for the ¢ 3e when the initial
distance between points of compressible bodies, which touch upon
compression, is proportional to r'si{r— distance to the axis of
axsymmetry), we arrived at the following formula for pressure p(r) in
the region of contact

p=imt(5),  0<r<s, (110)

where

10=V7 Sf{/‘,a"ﬁ:; 0<p<t, (111)

~ see formulas (157) and (158) of Chapter III.

Assuming ¢mcos’y, p==voste, We find

/@of?)ulfiun?g dy . (112)
o costy )/ -;-:m‘q;
i
Using identity ,
—— 2 1~ — sig ‘
d 1 * / v ‘
,‘-,-;.{(2 tsv)/1~-2- sm’v)_ e '/ sioty -
{——slat¢
9~sxln'w-31-\’vcos v 0s*y _ m’ '

\}
sin’ @

COS‘V‘/ 1 ._._ b‘n' w‘. l/x__.,l“ﬁ J ’/.‘u___

we find
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S T n2tg? _E_ TR

beasty }/"";"‘“’i‘ Vﬁ R

r

’; n ’flg;}/1+cos'?+
y’1~-2 sinty

ins ¢

L)

& -3-’5’?%._..»2;/1-%&&@ dq; (113)

Substituting (113) into (112), we obtain

J(cos?7) =2sin 3 Y/ T+ cosl o+

+erm?( (114)
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o
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Zrsuming in (110) reacosts and substituting into (110) the
expression for f(cos'¢) from (114), we find

b= %[uin ® )/i +cos* o4

b 4
+Zzicostp{g—-—--i——-__?‘__——__~2§V1~-}sin'?d7)}' (115)
. o} :

Comparing formulas (115) with formulas (109), we are convinced
of the fact that the distribution of pressure in the region of
contact in the examined axisymmetrical contact problem is the same
as that in the corresponding two-dimensional problem of the theory
of elasticity.



APPENDIX 2

THE APPROXIMATE SOLUTION OF CERTAIN INTEGRAL
EQUATIONS OF THE CONTACT PROBLEM

1. In Chapter II, by examining the problem on the compression
of two circular cylinders, the radii of which are almost equal, we
showed that the solution to this problem is reduced to the solution
of integro-differential Prandtl equation from the theory of an
airfoill of finite span and discussed the method of solution of thils
equation propnsed by I. Vekua [Translator's note: name not verified].
Examining, further, the problem of pressure of a rigid stamp on the
elastic half-plane taking into account surface bhanges of the elastic
medium, we arrived at an analogous integro-differential equation,
the approximate solutlion of which can also be obtained by the method
of I. Vekua. After sne of the functions entering into the integro-
differential equation is replaced by the properly constructed
approximate expression, following the method of I. Vekua, the
solution of such an integro-differential equation in closed form can
be obtained. Here we arrive, however, at the calculation of definite
integrals, which are not expressed in elementary functions, and in
connection with this for numerical calculations general methods of
approximation of the solution of integral equations can be more

convenient. Taking into account graphs illustrating the corresponding

sections of Chapter I, we used the method of finite differences.
This method consists in the fact that the unkncwn function is
assumed variable not continuously, but ty Jjumps. Dividing the
interval of the chanye in the unknown function into n parts and

assumling tnat in each of the ottained subintervals this function

e e

G -



maintains a constant value, we reduce the solution of the integral

. equation to the detecting of these n values of the unknown function.
By proper selection of these values we can achleve that the integral
equation is satisfied at n points of that interval in which this
equation should be satisfied. We arrive, thus, to the solution of the

b system of n linear equations with n unknowns. Solvirng these equations,

3 we will obtain the approximate expression for the unknown function

in the form of a step function, changing by jumps. Constructing

its graph and smoothing the jumps, we obtain finally a smooth curve,

which depilcts the approximate solution of the integral equation.

Below we give the calculations made by us.

> ot >y

2. As we showed in Chapter II, § 7, in the case of the
compression of two circular cylinders, the radii of which are almost
equal, pressure p(¢) in the region of contact 1s determined by the
integral equation [Chapter II, equation (31)]:

P

LO) .
2(8ry+347,) 3 p(3)eos(e—¢')latg l?“_“z‘?"“ dg’— .

-
8 ..

- o e 2

Co

< .
~(untan) § p(e)sinly—g'1dy' +200 | p(¢) dy =

=(ry— ) (1 =cosg)—acosy, —¢,<P<P (1)

In order to exclude from equation (1) the unknown constant a,
in (1) we set ¢ = 0. Let us obtain

200,74 0,r,) S p(7')cosg’ Intg '—32:-' dp' —
e

= (%, + 2,7,) S P (7" )sinje’|de’ 4 20,7, S p (¢')d¢’ nh ..:a. (2)

-$s ~30 .

Substituting a from (2) into (1), we h~ve

Co o

2 2(0;’3"‘0,".) S p(?)[cos(?- )mtg!—’.——’—l "COSfCOS? 1“‘8" '] d? —
"'0 e
~ (s ) S P(?)[sin]p—9"|—conzsin] o’ |l d7 +

-3¢
«Co

+ 204, (1—cos 9) S P(')d?’ =(r—r) (1 —cos7), =2, <9< Q0w (2)

c)()t




Integral equation (3) jointly with condition

920 P
\ P)eorpdp= -, (4)

=3

where P — the compressing force, determines the angle ¢0 and pressure
p(¢) in the region of contact -¢0 < ¢ < ¢0. Since function p(¢}

should be due to even symmetry, we have

9 .
Z(Oz'x-i'oa’a)g »(% )[cos(? 9’)Lntg“’ vl

—co3 P ¢0s 9'Intg '—3—’} do' =

L]
-(t.r.+t.m \ M?)[uzﬂ? #'[=copsinfe’ i}d? +

-7 o N
FBA—ce) p(e) g
o . ’

B . c‘ o ' s
wz(e.r.+0.r.>§p(9'>[coa<9+v')xnts"*; -

. 3

1]

. —~cozpcosp’ lntg %—] de’ —(xiPs+x7) § P(¢’)(sinle+

-

+¢'|—conpaing’ldp’+ 20ir, (1 = cos9) | p(e") ",
) PU

in virtue of which the integral equation (3) can be given the
following form

Ca .
20n+9.5) § £(5) [cos (p—)Intg 5T +

J-sos(,m-,)lnlg VT 9 cosy cos;lntg-—]d?— i

-
H

—(uritnrd | p(e) sinty = 3" aintg 5 -

~2cos7siny’)dy 4o (I ~cosg) B £(7')dy =
v

sa(ry=—r)(1—cos3), -2 <9< (5)

I
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Let us divide the interval (0, 4»0) into n equal parts, and we
will consider that in each of the obtained subintervals function p(¢)
maintains a constant value:

#(7)=p, when (k—1)) <p <k, (6)

kmd, 2,000 0, doet,

Substituting p(¢) from (6) inte (5), we obtain

n
2Q007, +0cr3) 3 2 Y {cgs(;o-—;')lntg'-i-}ﬁ-i-

Amt  {R=1)d

’-}-co“c(9+9‘)2ntg'"i"'-Zco:gcos?'lntg«?‘:]d«p';-
L &9
~(xrst2r) D) Pa Y (sinjg—g¢'|+sinjodo’|—" -
T Y RT3y .
n 13
-2cezs?sin;'}d;'+-'m‘r,(i--cos?)Ep,‘ S dy’ =
kel (R=g)d -

"‘(’t‘"':!)(‘“CW?). ~ 9 <9< 9y (7)

In the right and left sides of relation (7) the odd functions of
¢ stand. Consequently, if relation (7) takes place for any positive
value of ¢, then 1t takes place for the corresponding (equal in
absolute value) negative value of ¢. Further, when ¢ = 0 both sides
of relation (7) turn intoc zero and, consequently, are egual to
each other. Thus, if one were to determlne Pys Pps «++5 P, in such
a manner that relation (7) is fulfilled when 3=4, 24,...,a0, then it
wlll be fulfilled at all points $=l{l= =a,,.., -1, 0, 1, ..., n).

Assuming in (7) s =0 =1,2, ..., n)
equations

we obtain the system of

Ad

2@0nd ) Do | [costo—5)intg B3y

ke} (k~-1)9
con (049 Intg2EY —2cos i cosy Ity "r] dp’ =
AP

=) D § (a1 — o sin g0 4 99—

A=l (2} (&)

n '3}
—2cosldsin ¢’} de’ + 40,r, (1 — ccs 1) AN g dp' = (ro—r) (L —cosld), [=1,2, ..., n.
Ly (kIp

\‘ "7



Let us turn to calculation of definite integrals appearing
in equations (8). Let us find

when &&!¢
25 . .
S confli—g)latgPrtlap' e | -
T ' .
1 0=y 5,
- S cos (1 — ") Intg ~ L do’ =
(k=130 ’ .
. . ”cl’ *
o e pin (-7 )lntg peteipp™
m-m(z-k)oznzg““"”-}-
Fas +sm(l-k+l)3ln%gu L) LB 8
when k>»l+14
e . ' -
ccs ({0—9')In lg!-l-"’—'z'—"'—-l de' = . iy -
(k=) ,
&% ,’
) cos(0—5) gl gt .
{h=1)?
&2 o &1 — Pl —' vehb
sin (10 —¢') lntg --—-2 L'-(k-m"

w ~sin(l~k)01n Lg(k—-:zp—o-f-sin(l_k +1)0Intg (*-l:lzb_a’

49
cos(l04+9')Intg Q%—"d?’ =

(2-1))
: o Dby =k
=ain (0 +¢") latg =L — L’-(k-m“
.-.-.iu(z+k)oxmg‘i—%"_’-‘?-sin(z-pk-x)ong(_‘_t’:i:_‘ﬂ;.’o,’
11 .
cos¢’Intg Ldp msino’ lntg Lemmo' [ o
'(k-g-l)b v ey =eine nigg—e L'-(**m

e sin kO ln tg?—sin(k—l){)!n tg (k-—xi)b__a.
Thus,

11}

{ [eoso—- 9)lntg”° iy
{k-1)}

+cos ({0 + ¢’ )lnlg

22 cos £d cos %’ lntg—%:] dy’ =
=sin(l-k+1)01ntg '—l-"—liﬂo—-sin(z-.k)mm»l‘ —x|o¢

+ein(l+8)01atgUERY_gig (g k—1)010rgEEE=DO_

—20 ~ 2cole{smkulntg-—-—sm(A—i)Olnlg(k )-t')]. ¢
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Further: when k<&l

114
‘ injll=g'ldp' = S sin(id—9)dy' =
@S Renp

= cca(idg) ey '”;m(t-zf)a-coa(z-k+i)o;

when k341

[ 12 ' &d
S sinjld—¢’|dp = S sin(y' —0)dp =
(aase &=
- —cos(y’ =i ™" m mcos{l—K) D+ cos({~k-+1)9,

' ) $raa{l 1)y
{sin (10 + 7' )—2cosldsing’}dp’ es
Ak=1)

om «=cos(l04 ¢')$2cos ldcos p’ l imtyp ™

we — o8 {§ 4 £)O o cos (1 4k —1) 9 + 2 cos [0 [cos kd = cos (k1) 3],

Thus,
"
' [sin |0 =o' | +sin (104 9’') —2cos [l sin 9’} dp’ =
(ki) . ' .
asd(l—k)[cos ({— &) —cos({—~k1)0] +
o+ cos ({ + k—1) 8—cos (- k) d 42 cos i? {cos kd—cus (k—1) 3], (10)
where

i(k)=1 when k>0, } (11)

t(h)= —4 when k<-—1.

Substituting (9) and (10) into (8), we obtain the system of

equations

2 Py {2(°xrs+0.r,) [sin(l—k+1)01n,gil—k+t]0__
et - :

~sin(l—k)01a tgH5 0 gin (14 k)0 Intg LER2

-.in(z‘+k-:)01n:g““‘~—-{-‘-’-°—2o]+ .

4 (0 xgr,) (S(L~K) [cos ({ =k 1) & —cos (1 —~K) 8] +
F-cos(l+Kk)d —cos({4+k—1)d} +

TG
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+40,7,0—2cos I) {2ga,r,,+e,r,) [sinkazn g
_.sm(lw-i)é)lntg(& 0o O}-{- :
(0 +2ar,) [cos kD cos (k — 1) 5] +za,r,o} -

= (Py = ry) (1 - cos D), lmi,-,...,n. (12)

Let us introduce designation

By=2(0,r,+0,7) [ sin(k+1) In1g LI gin i1 g 1410 ~0]+
o+ (P %57,) & (K) [c08 (k -+ 1) D co8 K0] o+ 20,70, (13)

Then equations (12) can be given the form

D Pa (S Sjoper —2 €08 103, ) = (py = 7,) (1 = cos 15), (14)

hwi

=12, ...,n,
since
Ll4h—1)mi(k—1)m1 When k31, i34
according to (11).
When 450 we have

5.02(0,}',-*-0,?.))( .
X [ sin(k+41)01n tg(-k—'%‘—)-i’—sinkalntg -%9-—0] 4
o (2,73 4 %yr) [cOs (5 4 1) § — cos kD) 4- 20,7,0. (15)

When kx»1{ we have al:to

A y=2(0,r + 0y0) X
X[-—-sm(k-—-i){)l tg +sxnk0§ntg-—-—-—0]+
4 (2yry Fv,7) [ —cos (k— 1) 4- cos kD] 3 20,7,9,

»

et el

© e e o e cann



+40,7,0—2 cos 10 {2(0.;-;.;-0.,.) [mkun TT A N

-nin(k«-»,i)&lntg(k;‘”-.o}.;. o
+0uran) coskd—con (k= 1) 0+ W0} =
s (py—r) (3= cosld), Im4, 2, ..., 0 (12)

Let us introduce designation

b= 20, +0,m) [ sin(k+1) 0 Intg LR~ sindin1g A0 —0 ] 4
o (xyry -+ 1y7) (k) [e08 (& + 1) 0 — con k3] + 20,7, 0. (13)

Then equations (12) can be given the form

N P (Spnt djuar 2208103, ) = (ry = 7,) (1 —cos l0), (1%)
ket .

1=14,2,...,n,
since
Y4k 1)mi(k—1)=1 When k>1, I>1
according to (11).
When &3>0 we have

A.-DZ(()..I',-}-O,F,)X .
[sm(k+1)01 tg(k+ DL —sinkdinty 1‘,—}-—0]-}-
o+ (%, + %Py ) [cOs (b + 1) O —cos kD] + 20,70, (15)

When kx{ we have also

A= 2(dry + 0y0y) X
;([-sm(k-—i)()l tg ”b-i-sml.()lntg——-—-()]-%-
o (%P - 2y7) [ — €08 (K — 1) O - cos kD] 4 20,r,9,

»

[P —



A, =8, , when k31, (16)

Introducing, further, designations

P(R)=2(0,7, +0,7,) (sin Kolntg .’-f}--ko) +
: + (6 + 17,) cos kY - 20,88, k30, (17)

we can give to formula (15) the form
=P+ 1)~F(k), k>O. (18)

Uniting formulas (14), (16), (17) and (18), we finally arrive
at the following system of equations for the determination of
unknowns Pis Pos +oes pn:

" : A\
2 Pa (Bt Bgona =2 coa iy ) = (ry — 7} ( — cos 1D),
‘-" . e

. 1=1,2,..., n,

where (19)
MymPR+1)=F(k), k>0, A=, k>,

F (k) =2 (8,7, +0,,) (ain K lntgs— ko) g
+ (nry 4 7yry) cos KO 4 25,7, 50, )

3. We will subsequently assume that compressible cylinders
are made of one material, i.e.,

0, =19,, %Xy =%y, (20)
where 03315%; xﬁmilil%%:Ei' E— elastic modulus and p — Poisson's

ratio of compressible bodies.

Since on the assumption that radii of compressitle eyliniers
are almost equal, 1t is possible to also assume

r,ﬂf.=r. /’1}




Then the expression for function F(k) in formula (19) will take

the form
P (k)= 40, rsin k0 In tg 2% 20,0k 0 4 24, con 40,
or
F (k)= — 20,7/ (K), (22)
where
J(k)= ~2sin k0 lntg 2> 4 KO — ceon &3, (23)
-tz (21)
Assuming further
8y = —20r9,, (25)

we will have in accordance with (19) and (22)
= f(hF1)—f(K), kR0, ¥y=2,, ES L (26)

Substituting (25) into equations for the determination of
unknowns pqy, «..» P, (19), we obtain the equation

2 P2 08 108y = b= Y p0) == o= (1 —cos 20),
Aewg

l=12,...,n, (o7
where
=Py —1ry, (29%)
Assum™ - in (07)

plm_'f;_;%v ke t,2,..., n, Ry

e n A ———
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we obtain the equation

. q°
{ %@.(3 (4} laakﬂl..al*k‘“ahk-l) = i - C08 lO, :ﬂ " 2, vaey h' ( 30 )
k) :

determining unknowns qys 955 <+ Qe Solving equation (30) for
unknowns Gys Qps +ovs 4y then by formula (29) we will manage to

find Pys Pos c+es Py

Below we give solutions of the system of equations (30) for

;«
3
§
;‘ three values of angle ¢0: 30°, 50° and 60°, taking Poisson's ratio
: u equal to 0.3 and setting »n » 5.
;
: According to (24) when u = 0.3
i L
‘s B
i
: According to (23) we will have
"l 135 ’ P <, {31)
J (k)= —2sinkd Intg — 4D — - cos kD, Lo

Since 0...3‘.'., when n = 5 we will have 0=06' when ¢.=30° 0=10° when

9e==50°, 0e==12* when ¢ = 60°.

Given below are values of differences &, =f(k+41)—/f(k), calculated

in accordance with formula (31).

&
. Table ek .
Yo . ?
¢ J oser | so | cor ‘s | osor | eot
k k
TR B B— T~
o Jogmo o taest 5 10,160 0,085%] 0,070
i 0,43497%,0,°5601{ 0, 54035 1 0,1:361, 0,05%67]—0,0501
. 2 jorsi 0laresa0.36s1al 7 0,052t 0)o0ia3| —0,0:02
3 0,25421 0, 236641 0, 21612 8 0,06607'—0,01315] —0,00601
I R L B D IR




Substituting from this table differences ék into equations (30)
and using here relations i,=%. when &>! (see (26)), we obtain

equations

¢y ==30°

0,279309,~0,18258¢, — 0,04031g, — 0,02020, — 0,01266¢, = 0,00548,
0,64030, — 0,125050,—0,282537,0,0931g,—0,03442q ,= 0,02186,
0,79081g, + 0,19207g, — 0,230729,~0,336067,-- 014300, = 0,0489%,
0,86252g, -+ 0,31882, + 0,041669,~0,34501, ~ 0,41828g, = 0,866,
0,89252g, + 0,3788%, -+ 0,14990g,—0,03685, — 0,44558g, == 0,13398.

7, == 50°

0,44682g, — 0,30970g, — 0,07288,—0,03944g, ~ 0,02720g, = 0,01520,
1,01730, = 0,23598, = 0,49264g,—0, 11774, ~ 0,11446¢, = 0,06030
), 174283, + 0,25230q, — 0,47780g,0,64178¢,  0,28050g, = 0,13398

1,18326g, - 0,39608g,  0,0230%7,—0,65788¢, = 0,78212g, = 0,23397
1,05970g, + 0,45348g, + 0,104384,—0,22378¢, — 0,820269, = 0,35721

9, =60°
0,52652g, —0,37610g, — 0,09218¢,~0,05234¢, — 0,03802g, = 0,0218¢
1,17460g, — 0,30334g, — 0,60872¢,—0,23260g, = 0,15814g, = 0,0864(
1,30514q, ++ 0,51486g, = 0,61214g,—0,81014¢, — 0,30214g, = 0,403
1 23408g, + 0,35750g, = 0,00370g, ~0,83635g, — 1,01262g, = 0,3308
1,018767, - 0,33024q, + 0,02024,—0,36822g,—1,00294g, = 0,5000

Solutions of these equations are reduced by ns in the following

table.
Table q,.
k
1
k
{ 2 3 4 5
| i
! ! I
0T p o s e 0,0570 ! 10,0595
L0 0,397 0 s 5 038 1 o260 o0/1783
$0* e, 0,20.0 0,7:% 10,6212 l 0,035
!
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When p = 0.3 we have

{—-pl 0,94
on—;—b,—-ﬂ-;-k—, (32)

Substituting (32) into (29), we find

p‘._-{:;{'qﬂf""u (33)

Substituting the found values of g, into (33), we obtain values
of Py reduced by us in the following table

Table Pg+

! k
7e

E
30? 0,296 -; 90,1954 Ee ('),1'4'832E 0,15025—‘ 0,1022 Ee
’ r r r

. J
S0° | 0,60363F | 0,5290%8 | 0,5295¢ | 0,n1958 | 0,200 8
r

Et
6 [zt e E | e B amEe | o 000
4

'

Since on the assumption p(¢) = Py when (k—1)d<o<kd (see (6)),
the obtained table for values of 30°, 50°, and 60° of angle ¢0
enables plotting a graph of pressure p as a function of angle ¢.
Smoothing the obtained step graphs, we arrive at those distributions
of pressure p in the region of contact which are represented on

figures placed in Chapter II.
Assuming in relation (4)
P(7)=py wWhen (k=)0<o <K, k=i, 2,..., 8 r=r,

we find

1X)

23 m § cospdimt,
ket (k=130



or

2 p,lsin k0 —sin (k=1)0] = 5~ (24)

kg

Substituting (33) into (34), we obtain

"l

e i D qulsin kb —sin (k—1)0]. (35)
ket ’

Using tables of values 9ps Ve find by formula (35)

£5;0.1676 when ¢, =30,
=0,7722 when ¢,=50"

p
.13
f==2,1118 when ¢,=60".

Furthermore, obviously,

6}.’;&0 when ¢,=0,

since the compressing force should be equal to zero so that the
contact is carried out at the polnt. Thus, we obtain four points
for plotting the curve expressing the dependence of angle ¢0 on

atio P/Ee. Plotted along these four points is the curve given in
Chapter II which enables according to the difference in radii of
cylinders ¢, elactic modulus E and compressing force P finding angle
¢0 and thus Jdetermining dimensions of the region of contact.

Let us recall that if the region of contact 1s small, i.c., at
small values of angle ¢O, for the solution of the examined contaert
problem it !s possible to use the fundamental equation of the flat
contact protlem (as before we will assume that the compressitle

bodles are of “he same material)

S p(2Y(Injz—z"|—Inlz" ) ds' = A2, T

-

A1 -8Y
£

~

i
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where

%
Aﬂ’i{(?}? rel (37)

3

N s v DA e L R e 3, o

1(z) — initial distance between points touching with compression.

K Jointly with condition

: Sp(z)dxn}’ (38)

equation (36) determines the pressure p(z) in the region of contact
and half-width of this region a. As we indicated in Chapter II,
the soluticn of this equation leads to formulas

———————

play= /12, (39)

anzl/“;;;j{". (40)

In >rder to obtaln representation about the accuracy which is
ensured by the above used method of finite differences, we conducted
by this method the solution of equatioh (36), having divided the
half-interval cof the change in function p(x) - @ into 5 equal parts
and having assumed the pressure p to be constant in each of the
obtained subintervals. Finally we arrived at the solution of the
integral equation (36) depicted by the solid line on Fig. 54.

The 4dashed line con the same figure shows the exact soluticn of this
equation, plotted in accordance with formula (39). As we see, the

i curves differ from each other very little.

Fig. 54,

-
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As we already noted above, at small values of angle ¢0 for the
determination of the half-width of the region of contact a, 1.e.,
quantity r sin dq> it is possible to use formula (40). Assuming in
(40) a = r sin $ps We find

)
¢, ux 81C8IN 2 l/’-sig.:;).g (41)

The initial distance I1(x) between points touching with compres-
sion for the case of two circular cylinders will equal

Wz)=r =}/ A=z (=Y ri=2' )
whence according to (37)

1 7 43 1 1 1 Py=—P
- = LAY (R S S0
A= 2 (d:')g..ou 2 (r, I A 20,0y ?

or, if one were to assume in the denominator ry = r, =1,

A=t (42)

Substituting (42) into (41), we find

ETTeTCId
9,=-nrcsin.2 V 3—-‘-‘-—"-”—'-‘28; . (43)

In particular, when u = 0.3 formula (43) gives

¢, = aresin 2 y/-l—‘;‘s—i{%. (ub)

In Chapter II we compared the dependence of angle ¢O on the
ratio P/Ee, obtained as a result of the solution of the exact
integral equation of the problem (so0olid curve on the figure), with
the dependence of ¢, on P/Ee, determined by relation (44) (dashed
curve on th- same figure). As we see, for angle ¢O = 30° formnula
(44), basel ~n the assunption of the smallness of the regisn of
contact, g'ves consideratle error, and at larger values ~f angle ¢

It ¢ it ifnappliceat le.
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In Chapter II we also compared the distribution pressure p in
the reglon of contact, obtained as a result of the solution of
the exact integral equation of the problem (solid curves on the
figures), with the distribution of pressure determined by the
well-known approximate formula

Pcose
p(?)m’ {ain g, €08 £ 4 50) (HS)

(dashed curves on the same figures).

Presenting formula (45) in the form

D cos 9 Ee

P(yi= EC(3IN G, 0800+ 99} # ?

and using values found above of ratio P/Fe for angles ¢0 = 30°,
¢y = 50°, and ¢, = 60°, we find
p(5)=0,1732 coso £: when g,=30°,

P(%) =0,5'557 cos 3 £t when 9, == 50°,

P(%)=1,4267 cos¢ Et yhen 2, == 60°.

(46)

In accordance with formulas (46) and dashed curves mentioned
are plotted.

k., By examining the problem about the pressure of a rigid
stamp on an elastic half-plane, taking into account surface changes
of the elastic medium, we arrived in Chapter II at the solution of
the integral equation [Chapter II, equation (286)]:

:p(aE)—-cSp(at)ln:t—ildtua, ~1<i<d, (47)

-
where p(z) — pressure under the stamp, g — half-width of the stamp,
¢ — parameter depending on elastic constants and on surface properties

of that elastic medium on which the stamp presces, and a — tndefinite
constant. Together with condition




(plandial (48)

equation (47) uniquely determines the unknown function.

To plot graphs of the distribution of pressure under the stamp
given in Chapter II, for different values of parameter ¢, we also
used the method of finite differences. Below we give the calculations

made by us.

Since function p(xz) is even, i.e., p(~z) = p(z), we have

0 ] i
S p(a:)lnl'c-iid-:agp(-a-.)ln[-—:-iidtm Sp(ar)lniz-{-iidt, ‘
-4 [

and equation (U47) can be given the form

]
:p(ai)ncSp(a:)(lnf-.—-Et-}-ln(:-{-i)]dtma, 0<i<t. (19)

v

Let us divide interval (0, a) into n equal parts, and in each
of the obtained subintervals we will consider the pressure p(z) to

be constant:

p(z)=p, when (It—-i)%<z<k-§-, k=1,2,...,a. (50)

Assuming in (50) =z = af, we find

p(at)=p, when %(E(%, k=1,2,...,a. (51)

Let u. define now quantities Pys Pos ++es P, with such
calculation that equation (49) is satisfied at n points 253%;‘

(L =1, 2, ..., n), i.e., so that there will be equalities

w:p(a %F)—ci p(az) [lnlt—%‘-—tl -~1~-lxl<t-}-£2:—-1 ]dt::a,
8

I=1,2...,n. (%2)

T g
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Substituting (51) into (52), we obtailn equations

TR i ey o e v s

‘

i sp,o-cé a:ign {lnlt-u-?»%-!"{-ln(h}'&ﬁ)]dt-z, (53)
3 keot. B=g

% , R TIPS

i

?«f When k3i+1 we find

% :g In|<— ’;;‘ S = 2 dram

; _(1__21-1) (“ 20— 1) m

% - BBy, 2&-—:3-&»1_2&-;:-1 I n-.-:.:-c__%;.

when kg£l—4 we find
i "(“ -1 oray
ﬂ.lni‘-—_—ld‘-.s_,l~( -—-Q)dt-‘
) i

| (=) u(E )=

| L IS
' and, finally, when k¥ = I we find

' ol

‘ ”S“!nl.--t‘:—‘- d= zz—.ST ( ‘-“)d"%'

. x-2 =

(1o (em By dem (cm Bt 1 (Bt )
f +ﬂ§?‘xn Bt g (e B2t 1 (220)
’ 3“5““ - - N N

? -~ -1 (.-—4’--3) (1-— 2! ‘) 11;-:_‘n71n2—n—'-‘

Thus,




kin ’
2~ 2 % -2+t
S‘“l‘“ 'n;m ‘[dz 2% -~ l-rx! ] +i

n 2n
L33
9y mlmt o |K—2—t]
bt ud n xn n ..';;" k“i,z,.o-,n. (5“)

Further

kin

01 LI I | 2 - © king
o (oo ) e (o 222) 0 (o ) =[5
Aot v
n
mﬂk 21-1} 2% L2 2!:-!-21-31 2&-}-2!—3 i.
a s 2n an TR
kai.z'oco’nO (55)

Substituting (54) and (55) into (5., and replacing for the

convenience of calculations natural logarithms by common, we obtain

the system of equations

n

\ %—2U+1 J2%-2+1) *
= 3 m (B 8 g

ket

' I 21-u LU~ Dkt U~1
. in ig + 2n ! n
- kN3 2 oM
T ] S ) e 1=1,2,...,n (56)

where

).-a-::—l-' .)Iulg¢m0,43429. (57)

Substituting (51) into (48), we find

LS g (58)
Aw}

Equations (56) and (58) determine unknowns Pys Pps +e+s Py

incidentally conscant aM/c. Determining Pys Pps ==vs Py in

and

accordance with formula (50) we obtain the approximate solution of

integral equation (47) in the form of a step function.

FTD=MT= 4ot =) )

Mo s e sl e i
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5. Assuming in (56) » = 5 and taking into account (58), we
obtain equations

(0,25686 4-1.) 2, 4 0,05052p, ~ 0,04843p, — 0,10035p, ~
- ad P
- 0, IJ.QGp. = —:—--‘-— ’
0,05052p, 4 (0,45791 -+ 1.) p, —0,01038p, — 0,09305p, ~
—0,14468p, = X 2
—0,04843p, ~0,01039p, + (0,11329 +1) p, —0,04573p, —
—0,12236p, =22 . L
e N P !

— 0,10934p, — 0,09306p, — 0,04573p, + (0,05308 ) p,—

-0,07077p,= 2L £

—0,15396p, — 0,44468p, — 0,12236p, —0,07077p, +
$(0,06214 + 1) py= 2L 2

¢ . @

Excluding from these equations aM/e - P/a, we obtain four
equations

(0,2063% + k)P, — (0,10739 +- 1.)p, ~ 0,0350%p, —
—0,01629p, —0,00928p, == 0,

0,09895p, + (0,16830 + 1) p, — (0,12368 4 2) p, —
—0,04732p, — 0,02232p, = 0,

0,06091p, 4 0,08266p, 4 (0,15902 +1)p, —
' —(0,12971 4 &) p,— 0,03159p, = 0,

0,04462p, + 0,05163p, + 0,07663p, + (0,15475 + ) p,—
—(0,13201 4-3.) p, =0,

which together with equation (58)

5 p

Prtpst Pyt Pt Pie g o
determine unknowns Pys Pps P3» Py and p, . in the table glven below
solutions of these equations for three values of parameter e are
shown, namely: ¢ = 10, ¢ = 1 and e = .1 (i.¢., acceurding to (57)

for A = 0.13644, A = 1.3644 and A = l3.044).

FTD-MT-24-61-70




Table Py
X
1 2 3 4 5
[

10 o065 2| 0,3527L | o0,4230-2 | 0513921 o,8120 2

[ a -3 a a

\ ousoe L | oL | o580 2] oo 2| 050l

e a a 8 a

ot | 0wnt | oeseL | 00822 | 05002 05008

a a 8 a a

Having plotted in accordance with formula {50) and the above
table Py graphs of functions p(x) and smoothed them, we obtain for
e =10, e = 1 and ¢ = 0.1 distribution curves of pressure under the

stamp, given in Chapter II.
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