STANFORD ARTIFICIAL INTELLIGENCE PROJECT

MARCH 1970
MEMO NO. AIM-III

Do

(e

Q0

) SECOND-ORDER MATHEMAT ICAL

D THEORY OF COMPUTATION

(= |

2

BY
ZOHAR MANNA

CLEARINGHOUSE

SPONSORED BY
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

i
A N

R
- 4 . '
<§' S | W vindfsh o ! o 5

4w (0 ; »y [.5 T a3,

y Bo . “
1N -

BEST
AVAILABLE COPY

« —3 - L] o —

!

B TRACT s

STANFORD ARTIFICIAL INTELLIGENCE PROJECT MARCH 1970
MEMO ATM-111

WD =-ORDER MATHEMATICAL THEORY OF COMPUTATION

by

Zohar Manna
‘omputer Science Department

Stanford University

i work we show that it is possible to formalizc all
properties regularly observed in (determini ¢ic and non-
detorminictic) algorithms in second-order predicate calculus.

‘oreover, we show that for any given algorithm it cuffices
1 now how to formalize its 'partial correctness' by a
cecone-order formula in order to formalize all other
properticn by second-order formulas.

1o result is of special interest since 'partial correcriness'
as alroady veen formalized in second-order predicate calculus
t'or many classes of algorithms.

This paper will be presented at the ACM Sympnsium on Theory
of Computing (May 1970).

The research reported here was supported in part by the Advanced Research
Projects Agzency of the Office of the Secretary of Defense (SD-183).

Reproduced in the USA. Available from the Clearinghouse for Federal
Scientific and Techinical Information, Springfield, Virginia 22151.
! Price: Tull size copy $3.003; microfiche copy $.65.

-

T

Introduction

We normally distinguich between two classes of algorithms:
deterministic algorithme and non-deterministic algorithms. A deterministic
algorithm defines a single-valued (partial) function, while a non-
deterministic algorithim defines a many-valued function. Tnerefore,
while there are only few properties of interest (mainly, termination,
partial correctness, total correctness, partial equivalence, equivalence
and total equivalence) for deterministic algorithms, there are many more
(including partial determinacy, total determinacy and several additional
varieties Jf terminaticn, correctness and equivalence) for non-deterministic
algorithms.

Several works have recently formalized properties of algorithms in
first-order predicate calculus (see Manna [8]). The importance of such
formalization is clear considering the current power of mechanical
theorem proving techngiues, which hopefully will be further improved in
the next few years. Unfortunately there are properties (such as
equivalence) that cannot be formalized by a first-order formula; however,
they can be formalized by a second-order formula (see Cooper [L4]).

In this work we show that for any given algorithm, it is alweys
possible to formalize all its properties by second-order formulas, if
one knows how to formalize its 'partial correctness' by a second-order
formula.

This result is of special interest since 'partial correctness' has
already been formalized for many classes of deterministic algorithms, such
as flowchart programs (Floyd [6] and Manna [7]), functional programs
(Manna and Pnueli [10]), and Algol-like programs (Ashcroft [1] and Burstall [?]);
and also for certain classes of non-deterministic algorithms, such as non-
deterministic programs (Manna [9]) and parallel programs (Ashcroft and Manna [2]).

Papers closely related to this work are those of Cooper [5] and Park [11].

1

I. PARTIAL FUNCTIONS

Let y = f(x) bve & partiel function mapping D (called the

Pt = ey

input domain) into Dy (called the output domain). That i, for every

~ §€Dx s f(&) 1is either defined (notation: *f(t)) or undefined.
A function that is defined for all values of its input domain is called
total. A function whose output domain ic (true, false}, ([T,¥} for

short, is called predicate.

Basic definitions

Let V¥(x,y) bve a total predicate over Dy)(DV and let EGDY . We
say that

l.(a) f£(&) ig partially correct w.r.t. ¢ if ¥Xf(&) o V(¢,f(8)) ;

(b) f£(&) is totally correct w.r.t. v if *f(&) A V(E,f(¢)) .

Let y = fl(x) and y = fz(x) be any two comparable partial functiorns,
i.e., partial functions with the same input domain Dx and the came output

domain Dy . We say that:l/

2.(a) fl(g) and fz(g) are partially equivalent if

* — { = .

(v) flfg) is an extension of f2(§) if

*£,(8) o [¥21(8) A £1(8) = £,(8)] 3

: (e) fl(g) and fz(g) are equivalent if

[¥e(8) = *£,(6)] A [*£(8) A *£,(8) D £5(8) = £,(8)] ;

(d) fl(g) and f_(¢) are totally equivalent if
[#

*£(8) A *fz(ﬁ) A fl(ﬁ) S fzfﬁ) .

L Throughout the paper we are assuming that the connectives have the
following precedence: ~ , A, V, D and = . Thus '~' is more
binding than 'A', 'A' is more binding than 'v', and so on.

2

U“"

[}

Let) fl E)y ¥y fn(xn) ve partial functions with input
domains D, ,...,D and output domains D ,...,D , respectively.
X X N Y
1 n 1 n
Let W(xl,yl,...,xn,yn) be any total predicate over Dx xD = x.e.. ny x D

1 1 n)
We say that:

-

Z.(a) fl(gl),...,fnfﬁn) are partially correct w.r.c. V¢ if

£ ves A ¥E (B ¥ (¢ B)yeenyt ;
ll(El) A A fn(dn) =) A\ lJfl(al)J Janlfn(gn)) ’

, . ; ~
(b) fl(,l),...,fn(in) are totally correct w.r.t. V¥ if

o e 3 > 3
*il(F.l) A ves A fﬂ(gn) A w(al,il(,l),...,gn,fn(en)) .

+

For k = 1 we obtain properties 1(a) and 1(b) as special cases
of properties %(a) and 3(b), respectively. Note that the case k =2
and fl is identical to f2 » can be used to define some properties of
a single function which cannot be defined by 1(a) or 1(b).
For example, the property that a function f mapping integers
into integers is defined and monotonically increasing (i.e.,
e >E' D r(e) > (k")) , is exactly the case where the functions f
and f' (where f' 4is identical to f) are correct w.r.t.
@(x,y,x',y') X >x'oy >y' .

For k = 2 and E(xl,yl,x2,y2) PXy =X, Dy =y, we obtain

properties 2(a) and 2(d) as special cases of 3(a) and 3(b), respectively.

AN

— 4

—

The fornalization

Suppose that we can fornalize the property of I being partially

f‘/
=/

correct by a second-order formula w(x,q) in the following cense:

For every EcD, and for ecvery predicate v(x,y) over D_x DN :
X /

PS
e

w(t,¥) if and only if *f£(&) > (&, f(k)) .

I.e., w(t,¥) is true if and only if either f£(%) ic undefined, or

s true.

(SN

£(¢) 4ic defined and (&, (%))
Note that the following two propertiiers of w(x,q) are always true.
For every E&cD_ : 1) w(t,T) and therefore <gw(t,q) , and

(1) ~ *£(&) > Vqw(t,a) .

Theorem 1
0. (&) dis defined if &nd only if ~ w(%,5) :

1.(a) (&) 1ic partially correct w.r.t. ¢ i and only if w(E,V) ;

(b) £(&) diec totally correct w.r.t. ¥ if and only if ~ w(k, ~V¥) ;

2.(a) fl'E) and f_(#) are partially equivalent if and only if
Yalw, (8,q) v w (ks ~a)] 3
o
() fl(g) is an extension of f?(F) if and cnly if
YQ[WlIE:Q) D w (kg :
o

(c) fl") and f_(#) are equivalent if and only if

¥qlw, (t,9) = w, %)] 3

(d) flfg) ané¢ f_(*) are totally equivalent if and only if

o

/‘::1\ ~w,o(t, ~q)] 3

Yg[~ wy _

2 . / C s .
—/ We write w(x,g) to indicate that the wff w has no free variablec
except the individual variable = and the prediceate variable g .

ey mq ouny oay OGN GNG @B

L s

s DR

.(a) 1'1‘51)""’11 ¢) are partially correct w.r.t. ¥ if and only if
e 1SS

T, .03 fw, (3 sod A Wi q)
ql q.n{"Jl l) ’“ll) A A “n En) ~1n) A
‘-’ﬂl“ -‘f’ln[ll"-lyﬂl) AeseA anﬁn:"ln)) ‘V(gl’nl’ "')En’nn}]1 5

(b) l‘l".ﬂ);-..,fn'ir‘ arve totally correct w.r.t. ¥ if and only if

Ya,... (B, ¢ 3
"y an{wl(1?9/ A A wn(‘n’qn) ’

B3) IR -H’-””'Lfll"‘.l)ﬂl) Ao A ':;n{.in)fln) A :'l’fll’ seey En;ﬂn) 1} .

Proof of Theorem 1

0. ~w(E,F) o *L(E) D F » ~*f(E) .

L.(a) w(g,¥) = *r(e) 2 v(t,1(8)) .

() ~w(E, ~¥) o ~*£(E) D~ U(5,T(E))] o *£(E) A W(E,T(2)) .

2.(a) ~VQ[W1(§)Q) v W, (8, ~q)] e Tq[~ Wl(Q)Q) A ~W2(§) ~q)]
o Sq[*f (&) A ~a(E, (&) A *T,(8) A a(E,T,(8))]
o *£(8) A *L,(8) A £(8) £ £,(8)

¢~ l"fl-'F\ AL (E)) fl\lg) = ff\(i)] .

(=4

(b) ~¥glwy(7ya) D w,(5,9)] = Falw,(g,a) A ~w (E,9)]

o dqfl~*f(8) v a5, £,(8))] A [*0,(8) A ~a(E,£5(8))]]
s ~#£1(8) A *15(8) A ~ a8, £,(8))]

v e (8) A f5(8) A a6, £y(8)) A ~a(8,£5(8))]
o Hq[~*£ (8) A *1,(8) A ~ql&,1,(¢))]

v Zq[*£, (8) A *£,(8) A a(8,£,(8)) A ~a(8,1,(8))]
o [~xr (8) A *1,(8)]

v 3gler, () A *£,(8) A a(8,£(8)) A ~a(8,£,(8))]
o [~y (08 “0(8)] v [*E(8) A *£,(8) A £,(8) £ £,(8)]

L
o o~ [*£,(8) o [*£(8) A £,(8) = £,(8) 1) .

y[~AvC]/\ [BA~D] is logically equivalent to [~AABA~D]V[AABACA~D].
[~AAB]V[AABA~C] is logically equivalent to ~{BD AAC] .
5

— e wmd e o= NS

o —

(¢) valw (t,q) = w,(%,q)]
o Yq{lw, (&,q9) > w,(t,q)] A [wy(E,q) > w, (E,q)])
o Yqlw, (&,q) D w,(k,q)] A Ya[w,(£,a) D W (Eq)] 3

then use 2(b).

(d) ~Val~w (t,q) v~ (& ~q)] & 7glw,(E,q) A wy(E, ~q)]
o Fq(l+£(8) 2 q(&, £ (8))] A [*1,(8) 5 ~a(k,r,(8))])

4 Fa{l~ £ (8) A ~*T,(8)] v [~ *1(6) A ~a(E,1,(¢))]

v [a(g,£3(8)) A ~ 1 (8)] v [q(&,1;(8)) A ~aq(E, £ (8))])
o Fql~ #1(8) A~ #L,(E)] Vo~ XL (8) Vo~ XT(E)

v [q(&, 2 (8)) A ~q(&,1,(E)) 1)
g/ Tq{l~ *#1y(8) v ~ 21 (8)]

v [() A *(8) A q(&,1(8)) A ~a(k,£5(8))])
@~ *L(B) Vo~ A T,(8) v RQLHE (6) A AE(8) A g(8,51(8)) A ~q(g,T,(8))]
o ~ ¥ (8) v~ (8) VO[T (8) A M() A £ (F) £ £ (8)]

7/

& ~ [xr (8) A *Ty(8) A £(8) = £,(8)] .

3.(a) ’Jql...’?qn[wl’Fl,ql) A Gow M wn(‘gn’qn) A
e ¥n fag (B A eee g (8 5m0) D V(E N ee eyt ,n)])
© Fqy..0Tq ([#1(8)) 2 gy (8, £ (B) TA A (8) D g (8,1 (8))]
A ¥rigeea¥ La, (6, m0) A eea g (B ,m) D W(E My, e et 40)])
£ (8)

* (£) o V¥ (B)y eenst
b fl(gl) A A ‘fn‘gn) ‘l’ El)fl rl))).an

{b) ~Vql---an[W1’§_1’q1) A cee A wn(En;qn) D
Tnlocoqnn[ql(gl,r]l) A ooo/_q_n(gn,nn) A ‘{l"(§l,'f‘|l,...)§n)nn)]}
® Tq ..9q (71 (8) 2 q (8, 108)) IA o A DX (8) D g (8,5 (6)] A

{

W - &3 L oo EL LB ~~" coe
e ¥iglag (B mg) Aveena (8 0) 2 ~ V(B my5 0005k 50) 1)

'Xf{ O} \ 'f /‘ = ~~r, (‘) o0 /
& 1 51) A A n)n) i gl’fl .l))).‘-n)fn En))

; A} - { [} {
e ~[vfl(gl Ao AT gn) A ,(el,fl gl),...,gn,fn(gn))] .
Q.E.D.

2/ [ADC]A [BD~D]is logically equivalent to [~AA~B]vV[~AA~D] V

[~AA~B]V~AV~ABV|[CA~D]is logically equivalent to ~Av~BV[AABACA~D].
~AV~BV[AABA~C] is logically equivalent to ~{A A B A C].

Grand Gasy Gesy Gea oy Gy

Our theory is based on the assumption that for a given partial
function f , one knows how to conctruct tie appropriate second-order
formula w(x,q) . he construction depends, in general, on the (
algorithm cdefining f . wever, as mentioned in the Introduction, the
construction of w(x,q) has already been described for many classes of
deterministic algorithms, such as: flowchart progran loyd [],
Manna [7]), functional programs (Manna and Pnueli [10]), and Algol-like
programs (Ashcroft (1!, Burstall [21).

We shall illustrate the construction of w(x,q) for
function over the integers (undefined for nepative integers) defined by
four different algorithms; the first two are flowchart programs and U
other two are functional programs. liote that the formulas relflect the

3/
computations of the algorithms in a very natural way.~

1- >

wl(x)q) is

Ipfp(x,1,x) A‘le‘fzg[p(x, 2192 ,) D if z, = 0 then q(x, z‘l) else p(x,z. 2.,z

— —— 1 oL

determinis

2
-
)
ct
©w

-4 In the formulas, 'if A then P el nds for [ADB]A [~ ADC].

4

=110,

v (x,q) is

Tpip(x,1,0) A vz, ¥z, [p(x,2

Le vy = g(x,0), where Xy
(2 . o (1 “y -
w,(x,q) 1st Tp{¥y[p(x,
¥x¥z[if

l.'

W
z,) D if & % then q(x,zl) else q(x,zl'(ze+l),
¢« if x trnen 1 else x-f(x-1) .

W.(x,q) is! if x = O then q(x,1) elsc VYz[q(x-1,2) o q(x,x°*z)]

3 .

¢ if x = 2 then 1 else (z+l)-g(x,z+l) .

sY) Qlayd ’

h—r'

II. MANY-VALUED FUNCTIONS

One natural extension of our results is obtained by considering
many-valued functions rather than single-valued functions.

Let y = F(x) Dbe a many-valued function mapping elements of D,
into subsets of Dy ; that is, for every &eD F(¢) 1is a (possibly

empty) subset of Dy . We say that:

. F(t) dis defined if F(¢) £ 6 .

2.(a) F(&) 1is partially determinate if

VY Yy oly €F(8) A yocF(8) Dy = ¥,
i.e., F(&) 1is either empty or a singleton;

(b) F(&) is totally determinate if

F(8) £ B A Yy ¥y [y cF(8) A v cF(8) D vy =,],

i.e., F(&) 1is a singleton.
Let VU(x,y) be a total predicate over DxxDy . We say that:

3.(a) F(t) is partially %-correct w.r.t. V¥ if

F(¢) = ¢ v aylyeF(e) A ¥(E,y¥)] ;

(b) F(&) is totally J-correct w.r.t. V¥ if

Tylyer(e) A V(E,¥)] 3

L.(a) F(t) is partially V-correct w.r.t. v if

VylyeF(E) o v(E,y)] ;

(b) F(&) is totally V-correct w.r.t. V¥ if

F(&) # B A ¥ylyeF(e) o v(E,y)] .

Let y = Fl(x) and y = Fz(x) be any two comparable many-valued
functions, i.e.. many-valued functions with the same input domain Dx

and the same output domain Dy . We say that:

— owed o

—4

5.(a) Flfg) and F,(t) are partially non-disjoint if

Fi(8) =B VT, (8) =B v I[F(8) NFL(E) #4135

(b) Fl(ﬁ) and Fz(g) are totally non-disjoint if

F1(8) NEL(E) £ 9 ,
ieeey Ay Ay [y Py (8) A ¥ eF(E) A Yy = ¥,] 3

6.(a) Fl(g) and }2(5) are partially determinate-equivalent if

VylVyz[yl*Fl(E) A yZCFZ(E) Dy =¥,

(b) Fl(g) and szg) are totally determinate-equivalent if

F [(e) £ . 4 -
Fo(8) £ DA TFLE) £ B A Vy Ty ly Py (8) A ycFo(8) Dyp = ,]
i.e., Fl’g) = F2(§) and they are singletons;

. (i : i Fo(8) i P
7.(a) Fl,g) is an extension of T, £) if Fl(g)‘g Fz(g) 5

(b) F]_(E) and F_(f#) are equivalent if Fl(i) =F2(§) 5

8.(a) Fl'g) and T_(#) are partially equivalent if

2

F (8) =P VF(8) =PV F (k) =Fy(8) ;

(b) Fl(g) and T, t) are totally equivalent if

Fr(8) £ P A T8/ BAT(8) =Fy(8) .

-

Suppose that we can formalize the property of F being partially

correct by a second-order formula W(x,q) in the following sense:

For every tcD_ and for every predicate V(x,y) : W(&,V¥) if and only

if YylyeF(E) D w(t,)1 .

10

by e amy Oy aEy oy

o rr‘

Note that the following two properties of V(x,q) are always true.
For every EcD (i) W(t,T) and therefore <qW(t,q) , and

(i) F(&)=@ o Yqu(E,q) .

Theorem 2

1. F(t) is defined if and only if ~ W(E,%) ;

2.(a) F(t) 1is partially determinate if and only if
Ya[W(E,q) v W(E, ~a)] ;

(b) F(&) 1is totally determinate if and only if

~W(E,F) A Yol ~W(E,q) vV ~W(E, ~q)] ;

3.(a) F(&) is partially 7-correct w.r.t. V¥ if and only if

W(E,F) V ~W(E, ~¥)
(b) F(&) is totally 7-correct w.r.t. V¥ if and only if
~W(E, ~V) ;
L,(a) F(t) is partially V-correct w.r.t. V if and only if W(E,V¥) ;

(b) F(&) 1is totally Y-correct w.r.t. V¥ if and only if
~W(E,F) A W(EV) ;
5.(a) Fl(g) and Fz(g) are partially non-disjoint if and only if
W, (6,F) VW (6F) Vv Val~ W (8a) v ~W (8 ~a)] 5
(b) Fl(g) and Fz(g) are totally non-disjoint if and only if

Yol ~Wy (£,9) v ~ W, (8 ~a)] ;

G.(a) Fl(g) and © (&) are partially determinate-equivalent if and

2
only if Va[W, (8,q) v ¥, (& ~q)] ;
(b) Flfg) and F2(§) are totally determinate-equivalent if and
only if ~W,(E,F) A ~VW,(8,%) A Va[W;(E,q) vV W (E, ~a)] ;
T.(a) Fl(g) is an extension of Fz(g) if and only if
valW, (€,q) > W (E,q)] ;
(b) Fl(g) and Fz(g) are equivalent if and only if
va[W, (¢,q) = W (8,0)] 3
8.(a) Fl(g) and FE(E) are partially equivalent if and only if
W, (8,5) v U,(8,F) v Va[W, (E,q) = Wy(E,0)] 3
() Flfg) and IE(=) are totally equivalent if and only if

~ 0y (8,%F) A~ (E,5) A YalW (8,0) = W,(8,0)] &

Proof of Theorem 2

1. ~V(E,F) o ~Yylyck(E) D F] o TylycF(E)] o F(e) £0 .

2.(a) ~VqlW(g,q) vV W(E, ~a)] o Tg[~W(E,q) A ~W(E, ~q)]
e Sq{TylycF(e) A ~q(t,y)] A TylycF(E) A q(&,y) 1]
o Hy 3y [y, eF(E) A y,eF(E) A vy £ ¥,]
o ~ Yy ¥y [y F(8) Ay cF(5) 20 =¥,]
(b) Follows from 1 and 2(a).

3.(a) Follows from 1 and Z(t).

(b) ~W(E, ~V) & ~YylycF(t) o ~V(t,y)] o FylycF(e) A V(E,y)] .

ey Sy ey g ey e e

peoy

| L] M‘

L §

‘e

Y. (a)

(b)

5.(a)

(b)

f.(a)

(b)

7.(a)

(b)

8. (&)

W(E,¥) o Yylyrr(t) v(Eyy) |
Follows from 1 and k(a).
Follows from 1 and 5(b).

e g (Vyly -l'E) alt,y) 1 A Yylye ;2/5) o ~q(t,y)]}

P
<

Yy Y7 ly oF (8) A yeF o (8) D vy / v,

@~ T TRly T (8) Ay FR(8) Ayy =l

o

t

vl (8,q) v W (E; ~q)] e Zql~ W (£,q) A ~W,(E, ~q)]

o
~

Tq{3ylyeF (8) A ~alk,y)] A TylyeF () A a(t,¥)])

3

Ty, Ty g €F (B) A WP (8) A vy /¥,

N

~ { € { =
v~ Yy Wy Ly P (B) A v R (8) D wg =y, s
Follows from 1 and ((a).

~¥q[W,(k,9) D W, (E,q)] e« Tg[W,(8,q) A ~W (k)]
o Aq¥ylyery(5) > alt,¥)] A "Jy[y<F2(§) A ~aqlt,y)])

& “Y[YCFZ(E) A Y/Fl(ﬁ)] & ~'[Fl(§) > FZ(E)] .
Follows from 7(a).

and (b) Follows from 1 and 7b).

13

QoEoDc

III. AUGMENTED MANY-VALUED FUNCTIONS

In order to formalize ceveral mor: natural properties of a non-
deterministic algorithm it ic usually not sufficient to consider it as
defining a regular many-velued function F (mapping elements of I‘x
into subsets of Dy), bul rather as defining an augmented many-valued
function F+ s mapping elements of “): into non-empty subsets of
Dy U {»} . Thus, for cxample, for some algorithm with
D, =D - [the integers) we urite F (7) = {3,5,9] to mean thai
for input x =7 : there is at least one finite computation of the
algorithm yielding y = 3 , there is at least one finite computation

of the algorithm yielding y = 5 , and there is at least one infinite

computation. We say that:

\ 03 ~-+A
1.(a) F () ic T-defined if Tylyc¥ (8) A y £ o] ;

(b) F (&) is Y-defined if 'V.’y[y<‘F+(§) Sy f=].

2.(a) F+(§) is partially detemminate if

+ o
Ty ¥ [y e (B) A v F (B) Ay Fo Ay, oDy =v,] 5

(v) F+(§) is totally determinate if

9 I VAV + _
Yy Yy [y, cF (B) Ay cF (B) Dy, foo Ay, foony =vy,].
17ty 2 1 2 1792

3.(a) F’l(g) is partially %-correct w.r.t. V¥ if 'qy(ycF+(§)A [y Ao D ¥(E,y)]);

+

l

(v) (¢) is totally 7-correct w.r.t. Vv if 'EIy[ycF+(§)/\y;éw/\\V(§,y)] .

xy

4.(a) F+('§) is partially Y-correct w.r.t. Vv il Vy[yr‘F+(§) Ay £ D Y(E,y)]

+ +
(b) F (&) ie totally ¥-correct w.r.t. V¥ if VylyeF () D yfoav(t,y)] .

+ +
Let vy = Fl(x) and y = F_(x) be any two comparable augmented
many-valued functions, i.e., functions with the same input domain Dr

.

and the same output domain _“y . Ve say that:

1k

s B

5.(a) Fz(g) and F:fﬁ) are partially “-equivalent if

’-... T‘+' \ 1
V137, FI(8) Ay P (B) A [y Ao Ay, foDy =uw,l) s
v-+ \ v+ —~ . .
(v) F,(8) and ©, (%) are totally “-equivalent if
o
I ~er [+ Yo, R) t.,
4 F 4 = + - A o A Y O = M
.)l J.:LJl 1 . -Il, JZ/ A ul \/l ’

.*
6.(a) }l’i) and F_(#) are partially determinate-equivalent if

‘L'y"\,’v[y L..."Evl\y('F\“".‘/aa/\y/oo'y = ¥ ¢
ALzl S alh i 2 2 ‘1 2 1 o'’

£

+ §
(b) El") and F_(#) are totally determinate-equivalent if

.‘4 .‘..
Y & 2 / , = 1 q
vy Fr(8) A v F(8) 2y Fmn vy Fo Ay =7l s

+ Ié . v
7.(a) Fi(8) partially extends Ip(8) if [F)(8) - f=}] 2 [Fi(8) - (0} ;

(b) 1‘1(5) totally extends: 1;‘5\. ie ’; £) o f’;(g) ;
+ + . . .
8. (a) Fl(E) and F_(#) are partially equivalent if

[F1(8) =)] - [55(8) =)05

+
(b) Fz(ﬁ) and ft(&) are totally equivalent it Fl(g) F;(g) .

+
Suppose that we can formalize the properties of F being partially

T
J-correct and partially Y-correct by second-order formulas W (x,q) and

¥

W' (x,q) , respectively, in the following sense:

For every EcDx and for every predicate V(x,y) over DY)‘?Z

Wi (E,¥) if and only if Fy(ycF (8) A [y £ o> ¥(&,5) 1) ,

and
W (E,¥) if end only if Wylyer (8) Ay £ > u(E,y)]

cl
Note that the following properties of W (x,q) and wv(x,q) are
o s\ iC) cl
alwvays true. For every £eD : (i) W (&,T) and therefore 7gW (&,q) ,
; ‘s +)
ii) Wv(g,T) and therefore ?qu/g,q) s (iii) oocF (&) D YaqW (E,q) ,
and (iv) F(8)={=} > ¥Yqi' (£.q) .

15

—]

Theorem 3
Lt =
l.(a) ¥ (¢) dig T-defined if and only if ~ W (E,%) ;
+ ict
(b) F (&) 4is Y-defined if and only if ~W (¢,%) ;
?
| + : .) .) Y, ¥
) 2.(a) T (¢#) dis partially determinate if and only if Vq[W (&,q) vV W (&, ~q)] ;
(b) I~‘+(§,) is totally determinate if and only if vqf ~Wq‘(§,q) V o ~W (B, ~q)]
3.(a) F (&) is partially T-correcct w.r.t. V¥ if and only if Wo.(E,V) j
(b) F+(§) is totally Td-correct w.r.t. V¥ if and only if ~WV(§, ~¥)
L.(a) F+(§) is partially Y-correct w.r.t. V¥ if and only if Wv(é,‘l’) :
c
(b) F (&) is totally Y-correct w.r.t. V if and only if ~ W (&, ~¥) j
. (a) F;_(g) and 1“‘*?(5) arc partially “-cquivalent if and only if
va(Wy (8,9) Vv W,(E,~q)] ;
(v) FI(E) and Ft(‘) arc totally "-equivalent if and only if
Yal ~WX(§,0.) v ~WZ(§,~q)] 3
+ + : : .
6. (a) Fl(g) and I’E(_F) are partially determinatc-equivalent if and
only if Vq[wg'_(f.:q) Vv w\;(ﬁ, ~aq)]
(v) F;_(g) and F:(g) arc totally determinate-equivalent if and
g 0 &
only if Y¥aql ~Wi(§,q) v ~WE;(§; ~a)] ;
+] + . 3 Y v
7.(a) Fl(g) partially extends F2(§) if and only if Vq[wl(g,q)) we(g,q)] 2
+ + c! c
(b) Fl(g) totally extends Fe(g) if and only if Vq[Wé(E,,q) o wi(g,q)] :
8.(a) FI(E,) and F;(g) are partially equivalent if and only if
Y
YalW} (g,q) = Wi(E,0)] s
o (b) thg) and thg) are totally equivalent if and only if
1q[W(%,q) = W3(Eq)] .
- lf
i |

e B

-.-‘»1

Procf of Thneorem 3

1.(a)

(b)

>.(a)
(b)
L.(a)

(v)

.(a)

\N

(b)

LN AN 4 \ A 17 B Yo o / = - 3 +|- \ 1
~ il \E ,) ~ .,[,; & t) A .,'/ o r) & :},[IPF ".) / ,‘,’/‘fl, .

. ; \ » +
W (5,5) 5~y T () A [y A= Fl) o WlyeF (1) 5y fe] .

w 'S 57 .
~¥qlW (3,q) v W' (2, ~1)] = 3q[~W (%,q) A ~'~'A'V(E;~(1)
e Faf ATyl ") A v h oo als VI A ~ ¥yly F(2) A - (¢
Qs ~7Y ! IR Y ~ Fylyecr (),‘y/m ~ Q :.Y)]}

o Fq{aylyF (8) A v £ o A ~a(ty)] A Tylyed (B) Ay fo A alt,y)]]
V7l F(8) A vy fm Ay F(5) Ay, £ A Yy F Vo]
* ~Vyl‘vfy\,[yld'(i) A y.c“F"(E.) ANy, Fe Ay, foD ¥y = vsl .

~ ¥l W (8,0) V ~ W (5, ~a)] o FaqlNE(E,q) A (8, ~q)]

o 2ql3y{yc i (8) A [y # =5 a5 1) A SylyeF (8) A [y £ oo ~a(k,y)11)
¢ ’7/1'11«"_*'Jlfk+(5) Ay, ¥ (E) A [vy Al Ay, po Dy by,

o~ VYL, o F (8) A v) Sy Ao ny, Aoy -y

’ +I' E
W e s aylyar (2) A Ly £o o (20)

.1 +
~W(Ey~V) o ~VYy[yeF (8) Ay / ® D~ V(E,y)]

+ ;
o AylyeF (8) Ay # o n ¥(E,y)] .

+ -
wv(g,w) o Yylyel (8) Ay foD¥(E,y)]

—~

—~ : A |
~W (B, ~U) o ~ Ay {yeF (B) A (Y £ D~ V(8]]

o YylycF (8) oy £ oA W(E,y)] .

2

G g i

VQ[W;I_(E)Q) v Wé(i) ~q)] e Tql "“"Wl(E)Q) A~ WQ(E) ~q)]
+

o 7qliylyFy(8) 5 ¥ f = A ~a(8,3)] A YylyeF,(8) o7 £= A a(t) 1)

+ + .
o Yy, ¥y [y eF () A v eF (8) Dy Ao Ay, Fo Ay bl

+ + . _

& ~?quyr\(ylr?l(§) A .‘,1'2(3‘2(5) A [yl ﬁ o A J2 #m i) yl = 021}

Y V] r vv
¥al~w (8,0) v ~W (8, ~q)] = SQ[Wz(E:Q) roS(5 ~a)]

2

2

?qf‘-’y[yd‘;(&) Ay Feoalty)ta Tlye (k) A v £o D ~a(t,y)]]

3

+ + .
¥y 17, [y eFy (8) A vy £ o A ¥peFo(8) A vy Fo Dy £ ¥p]

+ 1+ - -
e ~*:_;.-l'~ry_,[ylr_Fl(=,) A ¥oFo(8) Ay FoA Yo £oo A 7 c vol e

17

e

7. (a)

~¥a[W)(€,q) v UL(t, ~q)] = Tal~W(E,q) A ~WI(E, ~)]

o F{lyeF (8) A ¥ £ o A ~a(t,¥)] A TylyeFo(8) A v £ = A a(t,y)])

o By ALy, Fy(8) A vy Ao A S, FL(8) Ay Fe Ay F)

- ~VylVy2[ylrF1(§) A yang(é) AYy Fony, FoDy =yl

~ Yol ~W(6,0) v ~ W (6, ~@)] @ TalW(8,q) A WA(E, ~q)]

o Tq{Eyfyer () A Iy /o 2 a(t,9)]) A SxlyeFa(t) A [y £ o> ~a(t,y)]))
o By Ay ly eFy(8) A yoeFo(8) A [y Fo Ay, Aoy £ 3,])

+ +
~ ¥y Wyply eF (8) A yoeFo(8) Dyy Fo Ay, Fo Ay, =] .

8

~Va[Wi(8,q) 5 W(E,a)) e TalWl(g,a) A ~U(E,q))
@ Zq{VylycF (8) Ay £ =2 a(Hy)) A ByreFL(8) A ¥ A= A ~a(6y)])

o FylyeFL(t) Ay £ = A yfF(E)]

3

~Vy[ycF;(§) Ay feo>D yfFZ(E.)] .

g 'z : 3
~ ¥q[W,(&,a) D W, (6,9)] o ”q[wg(i,q) A~V (&,q)]

o FalEylycFo(8) A (7 £ = 2 a5} A Wylyery (8) S 5 f = A ~alt,¥)])

i

Hy[yfF;(é) A 'J/Fi(i)]
o~ ylyeFy(t) o yery (8)] .
Follows from 7(a).

Follows from 7(b).

Q.E.D.

1R

ey ey gy

|

[Q

, »

Example

The construction of

T
3\

Wix,q

A
and W (%,q)

.as already been

descrited for several classes of non-deterministic algoritims, suct

non-deterministic programs (Manna [9]) and parallel programs (Ashcroft

and Manna [2]).

. . .oV il
We srall illustrate the construction ot W' (x,q) and W '(x,q)

for s non-deterministic program computing trne factorial function.

In the program below a branc

of Lthe torm

is called a chioice branch and means that upon execution of the program,

at this point we are allowed to proceed with either branch, chosen

arbitrarily.

1
1

Fror x = 3

of the program:

The execution of the program proceeds until

- et
= Zg
<

-

s for example, there are %0 different possible executions

P

of them are represented by table 1 below, 10 by

table 2, 10 by table 7, and 5 by table k.
”» Il 1 ot e e] -t -~ ~t L} L} L}
102 lF pe2 21%2 P52 =222 I 1P2 le 2 | k3t 22
1{3|l1] o 1] 3 3 o 13 ||1 0
3 2 3 2 1 1 1
P 1 32) 1-2] 2 1°2 2
321 0 123 3
table 1 table 2 table 3 table 4

19

—

-—t

—d

zl - zl~z
22 - 22-1

Wq(x,q) is

Tplﬁp2fpl(x,l,x,l,0)

1] 1] 1 1 3 = 1 ot
A Vlez2Vlez2[pl(x, 21 22,21,22) o> if 2, = 2! then q(x,zl zl)

else p2(x, 2)s25s215 z'z)]

1 t] 1) -
A Vlez2Vle22[p2(x,zl, 22,21,22) > pl(x"‘l 259 25-1,2 Vv

i)zé)
pl(x, 215259 zi- (zé+l),zé+l) 17 .

wv(x,q) is similar, with the 'v' connective replaced by 'A'.

COMMENTS

1. There are clearly many natural extensions of our results. We shall
present here just one example.

Let fl and f? be any two comparable partial functions, and let
TP(*fl(x),*fz(x)) called the termination property, be any formula

constructed from primitives *fl(x) and *fz(x) and propositional
connectives ~, D, A , V and = .

We say that fl(g) and fz(g) are equivalent w.r.t. TP if

TP(*fl(E),*f?(é)) A [*fl(i) A *f2(§) > fl(E) = fz(é)] ; i.e., if fl(ﬁ)
and f2(§) satisfy the termination property TP and if fl(g) and
fz(g) are defined, then fl(g) = fz(g) .

By specifying TP we obtain as special cases all the notions of
equivelence introduced in Part I (2(a)-(d)): (a) partial equivalence
(TP is T) , (b) extension (TP is *fz(x)) *fl(x)),
(¢) equivalence (TP is *fl(x) = *fz(x)) , and (d) total equivalence
(TP 1is *fl(x) A *fz(x)) A

The following result follows from Theorem 1 (O and 2(a)):

Theorem: fl(g) and f2(§) are equivalent w.r.t. TP if and only if
Thus the theorem gives second-order formulas for the above four

properties by appropriate substitutionsfor TP . However, Theorem 1

(2(a)=-(d)) gives simpler second-order formulas for the same properties.

i

—_—d —d

r—1

—d — —

b e

Similarly, one can extend the notionc of correctness. In general,

any property ‘'an be formalized in second-order predicate calculus, if
it can be expresced as a composition of some of the basic formulas
(that were formalized in our theorems) using propositional connectives
(~3y Ay V,D and =) . The appropriate second-order formula is
then the proposcitional compocition of the corresponding basic second-
order formulas. This, for example, was the way we formalized several

properties in Part II.

2. Note that among the 'equivalence properties' defined in Part I,
only equivalence, i.e., property 2(c), is really an equivalence
relation (i.e., reflexive, symmetric and transitive) as can be seen

from the following table:

—— oti:;;r:ires reflexive | symmetric | transitive equivalence

property e q relation relation relation relation
publications

partial weak

equivalence | equivalence yes yes no no

extension inclusion yes no yes no

equivalence | strong yes yes yes yes
equivalence

total (termination) no yes yes no

equivalence equivalence

Among the 'equivalence properties' defined in Parts II and IITI only property

7(b) in Part II and properties 8(a)(b) in Part III are equivalence relations.

22

Ja Our results imply that the cecond-order formula formalizing the

'partial correctness' of a given algorithm represents, in some sense,

all input-output relationc of the computations of the algorithm.

In general, all our results hold even if the formulas w , W and

W”'3 -Wy formalize partial correctness in the following weaker sense:

For every §€Dt and for every predicate V(x,y) over D,xD

y

(1) w(E,¥) if and only if Fq([*f(8)>q(t,f(8))IAYyla(t,y) 2V (E,¥)]}

(i1) W(&,¥) if and only if Fq(VylyeF(t)>a(t,y)IAYyla(t,y)o¥(t,¥)]} ;

(111) W (E,¥) if and only if Fq(Ty{ycF (&) A [y £ = > a(t,¥)]} A

and

vyla(t,y) o v(t,¥) 1)

wv(g,w) if and only if ?q{Vy[ycF+(§) Ay #FoodqlE,y)] A

vyla(t,y) > ¥(&,¥) 1} .

L, All the propertiec mentioned so far werc defined and formalized for

fixed input values.

One can extend all the definitionc and the corresponding

formulas to hold over some total input predicate @(x) , which means that

the property should hold for every &cD s.t. ®(t) =T . More

precisely, if property P for £eD was formalized by wP(g) , then

the property P holds over input predicate ¢(x) if and only if

vx[p(x) o wP(x)] 5

2>

e

5. The formulas w , W and wq'-wy constructed in previous

publications for various classes of algorithms share an important
common feature: all additional predicate symbols introduced in the
formulas are existentially quantified (see erxamples above). This
is because the additional symbols were always introduced for the
same purpose, namely to cut the algorithm into pieces which can be
formalized directly.

In this case certain properties happen to be formalized by

first-order formulas, (i.e., all predicate symbols are universally

quantified); for example, properties 0, 1(b) and 2(d) of Part I,
1, 2(b), 3(b) and 5(b) of Part II, and 1(a), 1(b), 2(b), 3(b), 4(b),

5(b) and €(b) of Part III.

Acknowledgments

I am indebted to EDWARD ASHCROFT and STEPHEN NESS for many
stimulating discussions and also for their critical reading of the

manuscript and subsequent helpful suggestions.

2k

1

&

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

References

E. A. ASHCROFT, "Mathematical Logic Applied to the Semantics of
Computer Programs", Ph.D. Thesis, to be submitted to Imperial
College, London (1970).

E. A. ASHCROIT and Z. MANNA, "Formalization of Properties of
Parallel Programs", Computer Science Department, Stanford University,
Artificial Intelligence Memo AIM-110 (February 1970).

R. M. BURSTALL, "Formal Description of Program Structure and
Semantics in First-Order Logic", in Machine Intelligence 5
(Eds. Meltzer and Michie), Edinburgh University Press, 79-98

(1970) .

D. C. COOFER, "Program Scheme FEquivalences and Second-Order ILogic",
in Machine Intelligence 4 (Eds. Meltzer and Michie), Edinburgh
University Press, 3-15 (1969).

D. C. COOPER, "Program Schemes, Programs and Losic", Computation
Services Department, University College of Swansea, Memo No. 6
(April 1969).

R. W. FLOYD, "Assigning Meaning to Programs", in Proceedings of
Symposia in Applied Mathematics, American Mathematical Society,
Vol. 19, 19-32 (1907).

Z. MANNA, "The Correctness of Programs", J. of Computer and System
Sciences, Vol. 3, No. 2, 119-127 (1969).

Z. MANNA, "Properties of Programs and the First-Order Predicate
Calculus", JACM, 2LL-255 (1969).

Z. MANNA, "The Correctness of Non-deterministic Programs",
Artificial Intelligence J., Vol. 1, No. 1 (1970).

Z. MANNA and A. PNUELI, "Formalization of Properties of Functional
Programs", ACM Symposium on Theory of Computing (May 1969). To
appear in the JACM (July 1970).

D. PARK, "Fixpoint Induction and Proofs of Program Properties",
in Machine Intelligence 5 (Eds. Meltzer and Michie), Edinburgh
University Press, 59-78 (1970).

25

Sfe\n“! Classification

DOCUMENT CONTROL DATA-R&D

(Securlty clasellication of tille, body of abetvect and ‘""'” ame ‘ton musl! bo ontered when the everall repert In claseified)

“JH

1. ORIGINATING ACTIVITY (Corperate suther) » 20, REPORY SECURITY CLASSIFICA TION
Stanford Artificial Intelligence'qujelt Unclassified
Computer Science Department 1. enOUP
Stanford University l

O—————————
3. REPORY VITLE L

Second-Order Mathematical Theory of Computation

4. DESCRIPTIVE NOTES (Type of repert and inelueive dates)

S. AUTHORISI (Firet nome, middie inltiel, last fome)

Zohar Manna

e, REPORT OATE 78. TOTAL NO. OF PAGES 75, NO. OF REFS
March, 1970 25 11
88, CONTRACY OR GRANT NO. 82. ORISINATOR'S REPORT NUMBERIS)
5 vuutcm.A SD-183 AIM-111
e. me
<

10. DISTRIBUTION STATEMENT

Statement No. 1 - Distribution of this document is unlimited.

J 1. SUPPLEMENTARY HOTES 15, OPONIORING MILITARY ACTIVITY

IS AUSTRATY

in second-order predicate calculus.

3

classes of algorithms.

Computing (May, 1970).

DD /<V.1473

In—this work we show that it 1is possible to formalize all properties
regularly observed in (deterministic and non-deterministic) algorithms

Moreover, we.show.that for any given algorithm it suffices to know)
how to formalize its ''partial correctness'" by a second-order formula
in order to formalize all other properties by second-order formulas.

This result is of special interest since "partial correctness" has
already been formalized in second-order predicate calculus for many

This paper will be presented at the ACM Symposium on Theory of

