NOLTR 70-38

ANALYTICAL AND EXPERIMENTAL STUDY
OF THE DYNAMIC RESPONSE OF CABLE
SYSTEMS

By
Jack E, Goeller

N O 23 FEBRUARY 1979
Al—ﬂ'

UMITED STATES NAYAL ORDNANCE LABORATORY, WHITE DAK, MARYLAND

[Eﬂﬂﬂ
& N2 Bl
= | mu
ol
= 'Uﬂ
Cz) ATTENTION

This document has been spproved for
publc rolense and sale, its distribution
is unlimited,




DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
'NUMBER OF PAGES WHICH DO NOT

,REPRODUCE LEGIBLY.




NCLTR 70-~38

ANALYTICATL. AND EXPERIMENTAL STUDY OF THE DYNAMIC
RESPONSE OF CABLE SYSTEMS

Prepared by:
Jack E, Goeller

ABSTRACT: Segmented cables of steel and nylon are frequently used
in oceanographic applizations to support a suspended payload., This
report contains an experimental and analytical study of the dynamic
response of nylon rope and stranded steel cables with a suspended
payload under simulated conditions of ocean wave motion, A gener-
alized distributed mass model was developed for a segmented cable
made up of two viscoelastic materials, including inte naal damping
and linear external damping of the payload and cable, Viscoelastic
behavior was simulated by a two-paramzter Voigt model, A three-
parameter model (standard linear solid) was also studied for a
discrete parameter sysiem, Experimental tests were conducted in
air and water on cables of the order of 70 feet in length and 0.25

inch in diameter. The resuvl*s compared well with theory over the
fundamental frequency range.
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NOMENCLAT URE
Ap projected area of spherical payload Ap = g D2
A effective cross Section area of homogeneous
3 cable A = ,404 d
. a acoustic sound speed in elastic cable
; C damping coefficient
) CCR critical damping ratilo CCR = 21/Eeme
Cl’ Cz’
complex constants
C3r C4
i CDp drag coefficient of payload
ﬁ CDC drag coefficient of cable
D diameter of payload mass
d diameter of cable
% E modulus of elasticity
Fy, G4 constants defined by Eq. (B-37) of [7]
Fs, Gg constants defined by Eq. (B-38) of [7]
£ damping constant of fluid
G(w) complex modulus of three-parameter viscoszlastic
model
g gravitational constant
s K spring constant
3 Ko apparent spring constant of nylon for cyclic motion
L length of cable
0}
m frequency ratio m = L
ne
Me effective mass = My + Mvm
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mass of payload
virtual mass of displaced water
axial force in cable
perimeter of cable
period of sinusoidal function T = %;
static force in cable due to payload wp
time
maximum displacement of payload
axial displacement
frictional energy dissipated by damping
buoyancy force due to displaced payload

welght of payload

-WB

frictional energy per unit length dissipated

by damping
spatial variable (see Figure 1)

maximum amplitude of displacement function

k
ratio of spring constants Y = Eg
3

conplex Eigen value function (A = a + 16)

real part of A

b 4
viscous damping cocfficient B = RE
static deflection of mass
damping factor depending on frequency
imaginary part cf 2
viscosity

definition v = gt -~ o
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strain g;

density
phase angle
axial streass in cable
time constant oi viscoelastic model
natural frequency of simple spring mass system;
e
®ns "V?;
circular frequency of forcing furction

damping ratio = CS'

CR

frequency ratio &2-
ne

payload

cable

effective
viscoelastic model

identifies segment of cable j = 2, 3
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INTRODUCTION

Nylon rope and stranded steel cable are frequently used in
oceanographic cable systems, Nylon is highly desirable for buoy
systems, mooring systems, and other oceanographic applications
because of its lightweight, relatively gocd strength, and_ease of
handling., However, in cases where fishbite is a problem [1], steel
stranded cable is used in the upper portion nf the cable while
nylon is used in the lower poriicn., Many applications ianvo. ve the
suspension of a payload by a segmented cable of steel and nylon
where the upper end is evcited by longitudinal oscillation due to
ocean wave motion., This problem was studied analytically [2] by
approximating the wave motion as a sinusoidal displacement function,
The cable segments were considered as distributed masses with
viscoelastic behavior including internal damping and also external
damping due to fluid viscosity, The purpose of this paper is to
compare experimental data with theoretical prediction, using tuis
model and a second analytical model which approximates viscoelastic
behavior of nylon rope by a three-parameter model, frequently
referred to as a stranded linear solid.

MATHEMATICAL MODELS

a, Model No., 1 - Distributed Mass Voigt Model

The following is a summary of the pertinent characteristics
of the first model. Tor a detailed discussion and derivation of
equations, the reader is referred to [2]. The model is shown
schematically in Figure 1., The model considers the cable as being
made up of two segments of different viscoelastic materials. A
two-~parametexr Voigt model is used for each segment. A continuum
approach was used as opposed to the frequently used discrete param-~
eter model, The viscous damping of the water was considered for
both the cable and payload by assuming the damping to be linearly
dependent on the local velocity, Damping forzes are, in general,
proportional to velocity squared, but an approximate linear damping
coefficient was obtained by equating the frictional energy dissipated
by linear damping tc that dissipated by velocity squared damping.
In order to have a generalized theoretical model, the payload was
considered to be attached to a rigid foundation by an elastic spring
and dashpot. This mcdel is an approrimation to the salvage recovery
problem where the mass is originally settled in the ocean sediments.
If the spring constant is set equal to zero, the model corresponds
toc a floating buoy or ship with a payload suspended from the boitor,
ot the caktle,

For each segment (j = 2, 3), the material is considered to
behave in accordance with a constitutive relationship of the form;

du ou
0
oxijjﬁf%"'de g’{(ﬁl) {1)

3
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vhere EJ is the elastic modulus and p“j is the internal viscosity

coefficient, Considering linear external damping on the wettod
cable, the equation of motion for each segment is
2

2 3

271 3 u au 27u
3% ¥ 73 an, at ) 83 at:1 ) alz Zitg 2
J ‘J J
where
Hy
TJ = p time constant of the viscoelastic model

aj = ‘}-1 sound velocity in the cable material
J

.

BJ = -i"”§i viscous damping coeffilcient of the fluid
h I

The steady-state solution to equation (2) for a sinusoiual di. -
placement function,x = X, sin wt,is given by the complex part of

the following equation
uy (xj, t) = X (x) it j=2.3 3)

By following the procedures in [Z], it can be shown that the
solution is

iwt

u, (x2, t) = e (C1 sin 12 X, + 02 cos i, x2)
(4)
u, (x,, t) = et (c_ sin A %, + C, cos A. x )
3 3! 3 3“3 4 3 73
where
2
2 2 w2 2 w2
w“ - b ———— - ——
Baj) rJBJw } - (aj) Tj3jw ] + {ij + rjw(aj) ]
a, = -
3 1% 2(1 + TJ‘&‘)
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M
w,? 8 w?| 4 (“’)2 r Bl & B+ (“L‘)22
RICUNRE U DR
68, = -
J 2(1 + 1'32'1'2)

The comstants C;, C,, C,, and C, are determined from the following
four boundary conditions:

1wt

Uy (LB’ t) = X, © (5)
32u2 6u2
T Ag = M, \-5% FCp\sT + K )
%o = 0 Zy = 0 Xy = 0
(6)
u, Ly, t) = ug 0, t) (7)
2] /3 ) 9 \ ®
u u u u
2 3 2 3 <) 3
A2 [Ez 5%, * M2 ST \sg)] A3 [E3 5%, ¥ Hv3 5% (a?c'g/]
Xy = L2 * X3 = )

The "effective mass Me" includes the payioad mass and the virtual

mass of displaced water. The first boundary condition is the
prescribed displacement at the upper end. The second is obtained
from a force balance at the payload. The third and fourth require
compatibility of displacement and force-at the joint between the
cable segments. The results obtained were expressed in terms of
the natural frequency Whe of a massless cable system using the

equivalent spring constant

o]

thn
Ke = w11
e o T B3

The following expressions were obtained for the dimensionless force
in the cable segments

2 _1+Y . . -
Kexo = % {(F4 - Tzwb4) sinwt + (G4 + rsz4) ccawt} (9)
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P (10)
3 - ilxY {(F - T,wG.) sinwt + (G- + T,0F.) coswt
K x Yxo 5 3775 5 3°5

where F4, F5, G4, and G5 are lengthy transcendental functions

dependent on the position coordinates Xq and Xq. In order to

obtain these values an 8 x 8 matrix must be solved. The details

of this solution are given in Ref., 2 , Equatioms (9) and (10)

give the dynamic force in the cable. The total cable force can

be obtained by adding the static force due to the payload and

cable weight. The sclution given is valid provided the total cable

force is always tensile since the cable cannot support a compressive
stress.

The damping coefficients Cp and fj ”j can be estimated by

equating the energy dissipated for linear damping to that dissipated
by velocity squared damping. Following this approach it is shown
in Appendix A that

4
Cp = [ CDP AP Umax ® (11
and
3 3 2, \
(£1) - 45 CDC w d U.max -z Uﬁax (Umax Y
#) Aver 3 U - x )3
o 2 - o) - %) + max o
max max max o 3
2 1 3
+ Uﬁax (Uhax B xo) -3 (Uhax - xo)
3
(U - %)
2 max 0o
Umax - Uhax cu%ax = xo) + 3
(12)
where
Fy
P =
CD g p Ap V2
Fc
CDC g p d V!

Estimates of CDC for standard steel cable can be obtained from [3].

4
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The internal damping '"time constant 7" cf the nylon was
obtained from experimental free oscillation tests.

b. Model No. 2 - Three-Parameter Discrete Model

The main disadvantage of Model No. 1 is that the spring constant
is considered to be a constant, whereas in real viscoelastic mate-
rials both the spring comnstant and the internal damping factor
are dependent on frequency. In order to investigate the effect of
frequency, a three-parameter model as shown in Figure 2 was
examined. The characteristic behavior of this model is useful in
explaining the experimental behavior observed in nylon ropes. For
example, the constitutive relation in terms of force-strain is:

(#2 + 1 §E) P = (Kl Ky + (K; + Kp) u ;%) € (14)

From the theory of linear viscoelasticity, the substitutior of
n

(10)® for 2= is permissible. This yields
at
2 2 2
o _L Kl K2 + u oW (Kl + KZ) + iucuxz
K2 + BT W

The real part is frequently referred to as the storage modulus
and the imaginary part as the loss modulus. If we apply a harmonic
force of the form

P=2P + AP cos wt

STAT
Then a plot of P versus ¢ can be made [4] as shown in Figure 3
using equation (14). The slope of the diagonal A-B can be inter-~
preted as an "apparent dyramic spring constant."” Thus the apparent
spring ccnstant is frequency dependent. Moreover, for low
Zrequency it approaches the static spring constant and at high
frequency it approaches (K1 + Kz). The "apparent spring constant

Ko" at resonance can be estimated from natural frequency measure-
ments by Ko = Me wnez. This will be higher than the static spring
constant. This was found to be true in the experiments where the
static spring constant was found to be about 2.9 1b/in compared to
the estimated apparent spring constant of 3.4 1lb/in. fThe damping
factor 6(w), which is a measure of the mechanical loss in the
system, is given by

Bow K22
5 (w) = v 7
Kl K2 + u% w (K1 + K2)

(16)

o
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It has a maximum value at a frequency called the transition
frequency [5]. This can be obtained by

d 6(1()0)) w (17)
Hence, we obtain

g T "“E%?Z

ua
where a is the ratio of the high to low spring constant; namely,
K. + K
1 2. The corresponding maximum value of 6(w) is
1

5 o= &=l (18)

For damping less than 0.3, & is approximately equal to 1/v

max .
times the logarithuwic decrement [5] and is eauivalent to e which

is used in Model No. 1. This was measured in the free oscillation
air tests and was found tc be .158 for 1/4-inch nylon. Knowing

5max’ the quantity a can be computed from equation (13) viz
2\1/2 2
a =1+ 2 bmax + 11 + Bmax + 2 6max (19)
The equation of motion in terms of the complex modulus G(w) is
d2 X, d Xg
Me —d-—‘gz— + CP -ar = G(U)) (xl - Xz) (20)
where
- lwt
X, X, © (21)
The solution exists in the form
x, = Xx elvt (22)

The complex medulus can be written as
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3 G(v) =K (W) [0 +1 & ()] (23)

Utilizing equation (20), equation (21), equation (22), and equation
(23) it can be shown that:

X* Vl + 8 (m)z

-— =

] X
3 ) ° Me w2 ¥ CP v -
-rwy) t\kgy t 8 (w)

I£f K (9) = Ko at the ratural fregquency Ve of the systenm

(24)

w 2"‘
ne

oo™

; Then it can be shown that

¥ %o - (02 + m’ a) (1 + mz)
{ FW) @2+ nd) A+ a2 a)

(25)

2 Q0m 6max

6 (w) = ——p———— (26)

Q" +m

: where

i w

. | N = 2 and m = -.1;_
i )] W
ne ne

{
; We can now write equation (24) as

oo

$ 2

i - ‘\ﬂoz +md) +@ams )2

3 - max

i = E (27)
¢ ° Q° + S

where

9
Qeen?. @ +n’a) +ad)

1 + «a m2

2¢ 0 (02 + m2 a) (1 + mz)
S = p > +2mas
l+am max
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The force in the cable can best be obtained from
P = (wMe X* w2 + Cp X¥ 4 i) ei‘”t

The maximum cable force is

J 4 2 -
P =K x (-ﬂ-) + (2 L Qﬂ-) S (28)
max o "o T pa__) X,

In these equations, it is reasonab:e to assume that the
transition frequency is identical to tne natural frequency. Hence,
m was taken equal to 1.

TEST APPARATUS

The tests were performed at the Naval Ordnance Laboratory
using the Hydrobnllistics Tank shown in Figure 4. The tank is
approximately 35 feet wide by 100 feet long with a water level of
up to 65 feet. The water is of high purity, The driving
mechanism for oscillating the cable was located on the top deck
with the cable inserted through a por:ihole in the deckk, A portion
of the cable length was in air while the major portion was immersed
in the wat-r. The payload could be photographed through ports in
the sides of the tank.

The driving mechanism for oscillating the cable is shown in
Figure 5. 1t is essentially a crank-type device with a drive
rod attached tc the flywheel. The prime mover consisted of a
d-c shunt electric motor with a reduction gear for reducing the
speed and increasing the torque capability. The motor had adjusta-
ble speed, but at a given setting the speed was insemnsitive to
changes in the applied %forque.

The force in the cable specimens was measured by load cells
located at top and bottom of the cable., The load cell used was
model A 8293 as manufactured by Schaevitz with a maximum load
capability of 1000 pounds. The voltage output was fed to a
Beckman-type R oscillograph where a trace of force versus time
was obtained. Prior to each test, the instrumentation was
calibrated by applying known weights to the load cells,

The payload was a sphere of B-inch diameter which was made
of solid aluminum with a weight of 26.9 pounds, including attach-
ment fittings. The weight of the sphere in water is 17.8 pounds,
excluding the weight of the attached cable., The virtual mass, or
added mass, of the displaced water is 0.15 slugs (4.85 poundq)

Tests were performed on segmented cables of steel and nylon,
and cables of nylon alone. Pertinent characteristics of the cables
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are given in Table 1. The steel can best be described as aircraft-

type cables constructed of carbon steel according to MIL-¥W-1511.
The diameter was 3/16 inch with 7 wires per strand and 19 strands
per cable. The nylon rope was 1/4 inch diameter and can best be
described as a braided rope with a breaking strength of 1150
pounds. Experimental static force-elongation data for a 73-foot
length of nylon rope are shown in Figure 5. The data shown are
for the loading phase. The nylon rope exhibited appreciable
hysteresis during unloading. The force-elongation data also
depends on previous history. For example, curve A is for the
first test. Curve B is for the last of the three succeeding
tests. The rope exhibited an increase in stiffness for the
latter test. Dynamic force-elongation data on 1/2-inch nylon
rope from [ 6] also indicated a hysteresis loop. The data also
show that the apparent spring constant (slop2 of the principal
axis of the hysteresis loop) increases with increasing mean load.
It was also observed that the apparent spring constant under
dynamic cyclic load is higher than the static spring constant,
This lact makes the static spring constant rather useless in
predicting dynamic response of oscillating cahle systems, It
was also shown that the dynamic spring constant for 1/4-inch nylon
rope is significantly higher than the static spring constant
obtained from Figure 6. The apparent spring constant for cyclic
operation was estimated from measurements of the system natural

frequency, i.e., Ke = Me mnez' It was also shown that Ke is

significantly lower in water compared to air,

EXPERIMENTAL RESULTS

a. Nyion Rope Tests in Air (System No., 1)

Fos-ced oscillation tests were performed on 1/4-inch nylon
rope 73 feet long with the 8-inch diameter spnerical payload.
The tests were performed in both air and water. The tests were
performed in air for several reasons. The first was to estimate
the internal damping of the cable free of any external damping.
Secondly, it was desired to observe the pulse shapes in air so
that tue effect of the water in causing nonlinearities could be
observed. Thirdly, it is a known fact that the elastic properties
of nylon change when exposed to water, This then would have an
effect on the natural frequencies and the cable force.

The system was oscillated at the top at displagement amplituds
of one to three inches. The forcing frequency range was zero to
three Hz. Typical oscillograph traces are shown in Figure 7. The
response is very nearly sinuscidal and was found to be very
reproducible. Similar response traces were obtained at displace-
ment amplitudes of up to three inches. Beyond this displacement
amplitude, snap loads due to slack in the cable become very
pronounced. For a discussion of snap loads in cable the reader
is referred to [7].

P4
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In order to effectively get a comparison between the theory
formulated by Model No. 1 and Model No., 2 and experiment, the

experimeptal data were non-dimensionalized by plotting K-gxw
e "o

versus mﬂ—. The dynamic component P was obtained by subtracting
ne
the static force "TSTAT" from the maximum cable force. The

natural frequency was considered as the value of U for which

the displacement of the mass, in the absence of damping, becomes
infinitely large as a function of time. An approximation was
obtained as the frequency which causes resnsnance. Verification
was obtained frowm the free oscillation tests, For the nylon rope
specimen, it was found to range from 1.06 Hz to 1.18 Hz. The
apparent dynamic spring constant was computed from the natural

frequency, i.e., Ke = Me wnez‘ The internal damping factor of

TW e = 0.158 was obtained from Figure 8 which is the force~time
response of a free oscillation test. It can be shown that Tw,

is approximately equal to 1/m times the logarithmic decrement.
Using these values, the computed dimensionless cabie force was.
compared to experimental results as shown in Figure 9., The
comparison is reasonably good for frequency ratios up to resonance.
The experimental results are slightly lower in the low frequency
range, but this is probably due to the nonlinear characteristics
of the cable. The steeper rise near resonance is very close to

a jump condition., The good agreement was probably obtained
because of the relatively small elongation of the cable resulting
in near linear behavior. At higher frequencies the experimental
results are somewhat higher than the distributed mass model.

Also the experimental results show a dependency on excitation

e

amplitude, whereas the theoretical force ratio K"Bi" plots as a
e "o

line independent of excitation amplitudes. The dependency on
amplitude was also observed in the water tests.

It was hoped that better agreement between theory and experiment

could be obtained by a mathematical model which accounts for
increase in stiffness with frequency. The three-parameter Model
No. 2 has this characteristic plus the characteristics of damping
dependency on frequency. The internal damping reaches a maximum
at the transition frequency, then continues to decrease, it was
assumed that this transitioc:n frequency occurs 3t the matural
frequency viz m = 1, Figure 10 shows a plot of equation (28)
compared to the distributed mass-Voigt Model No. 1 and the average
of the experimental data., The three-parameter Model No 2 shows
slight improvement at the higher frequency. The improvement was
not as good as expected tecause the damping factor decreases at
the nigh frequency range,whereas in many materials it actually
increases with fiequency. Hence, it is believed that better

11
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agreement could be obtained if the material properties are
obtained in a dynamic test as a function of frequency and these
properties are used in combination with the distributed mass
model.

b. Nylon Rope Tests in Water (Specimen No. 1)

Forced osciliation tests were performed in water on 1/4-inch
rope 73 feet long with the 8-inch spherical payload, The system
was oscillated at the top at displacement amplitudes of one to
four inches, Typical force-time response plots are shown in
Figure 11, At low frequency a nonlinear response was observed
wvhich was not observed in the air tests. The nonlinearity is
probably caused by the damping of the water. At higher frequency
the effect of nonlinearity disappears and the response is very
nearly sinusoidal,

Free oscillation tests were also performed in water to
estimate the damped natural frequency. It was found that the
average natural frequency in water was about .72 Hz compared ‘"¢
an average 1.10 Hz in air., This indicates a significant lower
spring constant in water.

The experimental data were non-dimensionalized by estimating
the spring constant from measurements of the natural frequency.
Figure 12 shows the comparison between experiment and theory
using the distributed mass Model No, 1. The tangential drag
coefficient per unit length of cable CDC was estimated to be .010

from Figure 5-15 of [3]. The plot of CDC is relatively constant

beyond 2 Reynolds number of 500, The Reynolds number for 0.25-~
inch nylon rope at a velocity of 1 ft¢/sec is about 2000 and is
therefore greater than 500 over the major portion of a cycle of
oscillation. The assumption of constant drag coefficient then
appears reasonable. In general, the comparison between theory
and experiment is reasonably gnod for frequencies up through the
resonant frequency. The results tend to diverge at the higher
frequencies in the same way as the air tests.

Comparing Figure 9 with Figure 12, it will be seen that water
has a significant effect in lowering the cable force. For absolute
values of force, the difference in spring constant between air and
water must be considered.

¢, Segmented Cable Tests in Water

Forced oscillation tests were performed on segmented cables
consisting of stranded steel in the upper portion and nylon in
the lower portion. Two basic configurations were studied; namely,
system No. 2 consisting of 34.5 feet of 1/4-inch nylon joined to
36.5 feet of 3/1€-inch steel cable, and system No. 3 consisting of
6 feet of 1/4-inch nylon joined to the bottom of 62 feet of 3/32-
inch steel cable. During testing of this latter configuration, a

12
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snap condition was experienced which invalidated using the models
presented in this paper., A complete discussion of the results for
this specimen is given in [7]. In testing specimen No. 2, the
displacement amplitude was one inch to preclude a snap condition.
Typical nscillograph traces of the force at the top and bottom of
the cable are shown in Figure 13,

Figure 14 shows the comparison between experimental and the
theoretical force at the top and bottom of the cable using the
distribution mass Voigt Model No, 1. The results were non-
dimensionalized based on a measured natural frequency of 1,05 Hz,
As the case of pure nylon cables, the comparison is good up
through resonance. At hkigher frequencies, there is a difference
which is believed to be caused primarily by the nylon characceristics,
As mentioned previously, the nylon stiffness and damping appear to
be sensitive to frequency in the high-frequency range. Actually,
if the frequency had been increased to cover ithe second resonant
frequency, the cable force at the top is predicted to be somewhat
higher than at the first resonant frequency. This is illustrated
in [2]. At resonance the cable force is a maximum at the top of
the cable, but in the anti-resonance range, the force is higher
at the bottom of the cable than at the top., This can be seen
both by theory and experiment from Figure 14. Therefore at the
higher '"modes," the location of maximum cable force can cccur
anywhere along the cable length, depending on the forcing frequency.

CONCLUSIONS

Based on the experimental and theoretical results, the following
conclusions are made,

1. The force response of nylon rope in air for small
elongation is fairly linear. The distributed mass Voigt model,
wvhich is based on linear theory, yields good predictions up through

resonance. At high frequencies, the dimensionless force K'2§" is
o “o

dependent on excitation amplitude, whereas the theoretical
dimensionless force is not. Better agreement in the high~frequency
range can be obtained by a three-parameter visccelastic Model No, 2
with stiffness and internal damping dependent on forcing frequency.
The apparent spring constant computed from the natural frequency
must be used in preference to the static spring constant,

2., The internal damping measured by a logaryithmic
decrement approach can be applied to forced oscillation problems
wvith good accuracy. The damping in 1/4~inch nylon rope tested
is significant viz TH e = . 158,

3 Water damping has a significant effect on reducing
the cable force in the vicinity of resonance. At low frequency,
damping appears to actually increase the force slightly., The
approximate linear damping coefficient for the payload obtained

13
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from velocity square damping based on equivalence of frictional
energy vields results from the distributed mass Voigt Model No. 1,
which compare well with experiment. The cdrag coefficients were
based on steady~flow conditions in a range practically insensitive
to Reynolds number,

4, The apnrarent spring constant of nylon braided rope is
significantly .ower in water than in air, A factor as high as
twn was computed based on the change in natural frequency between
air and water,

5. The distributed mass Voigt Model No, 1 for seguented cables
yields good comparisons with experiments in water over the
fundamental mode., The evperiments verified the theoretical
predictions that the force is a maximum at the top of the cable
up through the first resonance frequercy. The force is a maximum
at the bottom of the cable in the vicinity of anti-resonance.

This indicates that the location of maximum stress in the cable
must be examined closely, since it can occur anywhere along the
length of the cable, depending on the forcing frequency.

6. The effect of the virtual mass of water can be accounted
for by lumping it with the payload mass.

14
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FIG. 2 THREE PARAMETER VISCOELASTIC CABLE
MODEL WITH ATTACHED PAYLOAD
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APPENDIX A

APPROXIMATE DAMPING COEFFICIENT FOR NONLINEAR DAMPING

In the previous analysis, the external damping of the payload
mass due to fluid viscosity was considered to be linearly propor-
tional to the velocity. Data on various shaped bodies show the
drag force in steady flow to be proportional to the velocity
squared, In order to use these data, an effective linear damping
coefficient was computed by equating the energy dissipated for
linear damping to that dissipated for damping proportional to
velocity squared. Following this approach, the total energy

dissipated for linear damping over a full period of vibration
"T" iS

au 2
- f c ( 2) at (A-1)

X2 =0
For a displacement of the form
u, (o, t) = Uiax sin (wt - ¢) (A-2)

integration of equation (A-1) yields

2 -
W=on Cp Umax (A=3)
The total energy dissipated for velocity square damping is
2
P CDp A T [3u (Bu.
We——L [ \=) [\3¢/ et (4-4)

where CDp is the drag coefficient. For a sphere, CDP is fairly

constant at .5 in the range of Reynolds number of 500 to

5 x 10. Again, utilizing equation (A-~2) and integrating equation
(A~4), we obtain

4 g 3 2

= A . l“-\
W 37 Cpp *p Upax @ \A=0)

Equating energies from equation (A-3) and equation (A-5) we
obtain

4
Cp = #5 P Cpp Ap Upax (A~6)

R
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Since Cp depends on Uﬁax’ an iteration technique is used where
Cp is assumed and Ulnax computed, The assumed value of C, is then
compared to the calculated value using equation (4-6).

P

The average damping coefficient (fu)aver was computed in a

similar manner. The energy dissipated for an element of cable
length dx assuming linear damping is

w = fu dx jf (g% dt (A-T)

The energy dissipated over dx for velocity square damping is
T 2
n u
w=gdpCpdx f (%{)
o

Where Cp. is obtained from [3] and is defined by Cpe = ﬁ—;—f—;g
2

Over the first mode of vibration it is reasonable to assume a
linear variation of displacement from top to bottcm as follows:

%% dt (h-8)

u - [umax - (U - x) ’f] sin (wt - ¢) (A-9)

Using this and equating energies from equations (A-7) and (A-8)
we obhtain

[

3 3 2
(fu) .4 C d Uﬁax -9 U'max (Uﬁax - xo)
Waver = 3F° “pc ¥ 3
2 (Umax - xo)
Uﬁax = Uﬁax (Uhax - xo) + 3
2 3
+ Umax (Uhax - %)% - .25 (Uﬁax - xo)
3
2 (Uhax B xo)
Umax = Upax (Umax - xo) + 3 .

A-2
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