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PREFACE 

This Memorandum, prepared for the Advanced Research Projects 

Agency, is part of a study of the effect of atmospheric turbulence 

on optical and infrared reconnaissance and guidance equipment. 

A quantitative understanding of the manner in which an initially 

coherent beam of finite cross section propagates is required for the 

prediction of the performance of various devices employing lasers 

for target acquisition or guidance in tactical missions, optical 

communication systems, and other devices. This Memorandum calculates 

the mean intensity distribution for an arbitrary amplitude and phase 

distribution in a finite aperture in both the near and far field and 

examines in detail the case of a uniform distribution across a circu- 

lar apertur-j. 

These results should be of use to those interested in propa- 

gation theory and its applications to laser range finders, laser 

line scanners, communication systems, and various guidance and other 

systems employing an illuminating beam. 
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SUMMARY 

The first part of this Memorandum Is devoted to extending the 

Huygens-Fresnel principle to a medium which exhibits a spatial (but 

not temporal) variation in index of refraction. With the proof of a 

reciprocity theorem for a monochromatic disturbance in a weakly inhomo- 

geneous medium, it Is shown that the secondary wavefront will be deter- 

mined by the envelope of spherical wavelets from the primary wavefront, 

as in the vacuum problem, but that each wavelet is now determined by 

the propagation of a spherical wave in the refractive medium. 

In the second part, the above development Is applied to the case 

in which the index of refraction is a random variable; a further 

application of the reciprocity theorem results in a formula for the 

mean intensity distribution from a finite aperture In terms of the 

complex disturbance in the aperture and the modulation transfer 

function (MTF) for a spherical wave in the medium. The results are 

applicable in both the Fresnel and Fraunhofer regions of the aperture. 

Using a Kolmogorov spectrum for the index of refraction fluctuations 

and a second-order expression for the MTF, the formula is used to 

calculate the mean intensity distribution for a plane wave diffracting 

from a circular aperture and to give approximate expressions for the 

beam spreading at various ranges. It is argued that the spherical- 

wave MTF is the basic quantity to be measuxed for computing the 

atmospheric degradation of an Intensity pattern from an arbitrary 

disturbance in a finite aperture. 
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I.  INTRODUCTION 

The problem of computing the mean diffraction pattern from an 

optical wave In a finite aperture In the presence of a turbulent 

atmosphere Is both of considerable Importance for a number of prac- 

tical applications (e.g., laser radar and laser line scanners) and 

a useful cool for evaluating our understanding of turbulence 

theory. 

To solve the problem, It Is first shown in Section II that 

the Huygens-Fresnel principle may be extended to a refractive medium, 

i.e., the field due to some disturbance specified over an aperture 

can be computed by superimposing spherical wavelets radiating from 

all elements of the aperture. The principle follows directly from 

Green's theorem and the Kirchhoff approximation applied to the scalar 

wave equation, together with a field reciprocity theorem (proven In 

the Appendix) between an observation point and a source point of 

spherical waves in an inhomogeneous medium.  To apply the extended 

principle to the atmosphere, we assume that the refractive index 

fluctuation is a random function of coordinates and does not depend 

on time, i.e., the refractive index n does not change appreciably 

over periods of the order At - )/c (At ■ 3 X 10   sec for a wave- 

length X - 2TT/k of ly), where c is the vacuum speed of light. The 

time changes in n are considered as changes in the different realiza- 

tions of the random field n(r). On the basis of this principle, one 

can separate the geometry of the problem, i.e., the disturbance in 

the aperture, from the propagation problem, which is determined by 

the manner in which a spherical wave propagates through the medium. 
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The mean intensity, calculated in Section III, ia found by first 

computing the intensity at a point from an arbitrary pair of elements 

in the aperture. Applying the reciprocity relationship and averaging 

reveal that the above quantity is essentially the modulation transfer 

function (MTF) for a spherical wave in the medium. The integration 

over the aperture is performed as a final step, which results in a sim- 

ple formula for the mean intensity pattern in both the Fresnel and 

Fraunhofer regions for an arbitrary complex disturbance in the aperture. 

The properties of the medium (e.g., the turbulence parameters) appear 

only in the KTF. The MTF describes the reduction in lateral coherence 

between different elements of the aperture, effectively transforming 

the aperture into an equivalent partially coherent radiator, with the 

degree of coherence decreasing with increasing distance from the 

aperture. As a practical example, the mean intensity patterns «re 

computed over horizontal ranges of interest (of the order of kilometers) 

for both a 2-cm and 6-cm aperture using a range of turbulence parameters 

characteristic of paths of the order of a few meters above the ground. 

Over certain limited path lengths, approximate formulas exist for the 

MTF for a Kolmogorov spectrum. Introducing these expressions into 

the above-mentioned formula yields approximate expressions for the 

beam spreading at these ranges. It is shown that at distances suf- 

ficiently large so that the coherence length of the MTF is less than 

the stae of the smallest inhomogeneities, the intensity pattern is 

dominated by multiple scattering from these smallest scatterers and 

is contained in an angle which is independent of both wavelength and 

aperture size. 
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It Is also shown thst (1) for homogeneous Isotropie turbulence 

an optical measurement of the spherical-wave MTF can be Inverted to 

give the turbulence spectrum, and (2) the Intensity distribution can 

be Inverted to give the spherical-wave MTF, but only for spstlal 

separations smaller than the diameter of the transmitting aperture. 

Finally, It Is argued that the spherical-wave MTF Is the basic 

quantity to be measured for computing the degradation of an Intensity 

pattern from an arbitrary disturbance In a finite aperture. 
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II. AN EXTENSION OF THE HUYGENS-FRESNEL PRINCIPIi: 
TO A REFRACTIVE MEDIUM 

The problem considered in this section is the calculation of 

the complex field at an arbitrary point in a turbulent medium, given 

a complex monochromatic disturbance specified over a finite surface 

(i.e., the aperture). 

We assume a scalar wave equation for the propagation of an 

electromagnetic disturbance in the optical wavelength region through 

a nonahsorbing refracting medium: 

(72 + k2n2) U - 0 (1) 

where U is one component of the electric or magnetic field vector 

ard n{r)  ■ 1 + n. (r,) is the refractive index of the medium at the 

point £, where (n) ■ 1 and n. is the small fluctuating part of the 

refractive index field.  (Angular brackets are used to denote ensemble 

averages.) 

The method to be used is analogous to the integral theorem of 

Helmholtz and Kirchhoff   used in vacuum diffraction theory, and a 

similar notation will be employed. 

Let the turbulent medium occupy a volume V and be bounded by a 

closed surface S, and assume that U possesses continuous first- and 

second-order partial derivatives within and on S. Within V, let U7 

be the field at r_ due to a point source at P. Then U' satisfies the 

equation 

(V2 + k2n2) U^r.P) - - 4TT 6(|r - P|) (2) 
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where 6 is the Dirac delta function. Multiplying Eq. (1) by u', 

Eq. (2) by U, subtracting, integrating over V, and applying Green'i 

theorem yields 

U(P) - TZ  \     -U^U' - U'VUI • dA (3) An 
S 

where dA denotes   the surface  element with normal directed  into V. 

To proceed  further,  we apply the Kirchhoff approximation.    A 

monochromatic disturbance  is assumed  to propagate  through an opening 

in a plane opaque screen which  is  large compared  to  the wavelength 

but small  compared  to  the distance between P  and  the  screen.    The 

disturbance at P is computed by taking Kirchhoff's  integral over a 

surface S  formed  by (1)  the  opening A,   (2)   a portion B  of  the non- 

illuminated side of the screen,   and  (3)  a portion C of a large sphere 

of radius R,  centered at P, which together with A and B forms a closed 

surface.     The contribution to the field at P from C can be argued to 

vanish by assuming that the radiation field does not exist for all times, 

but begins to radiate at t - t    (which actually implies an unimportant 

departure from monochromacy).     Then if for all times of interest R is 

taken to be > c(t - t ),  the contributions from the surface C could o  ' 

not have reached the point P,  and the integral will vanish.      Finally, 

invoking the Kirchhoff approximation, we assume that,  everywhere on 

3U 9U 
B,  U and — will be approximately zero and that,  on A, U and -r- will 

not differ appreciably from the values obtained in the absence of 

*        (2) Bonr   ' has shown  that this assumption is not essential, but it 
shortens the discussion. 
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the screen. Hence the surface Integral In Eq. (3) reduces to an 

Integral over the aperture area, A, and from this assumption one can 

develop an extension to the Huygens-Fresnel principle for vacuum prop- 

agation to propagation In a weakly Inhonogeneous medium. The princi- 

ple as applied to propagation In a vacuum states that every point of 

a wavefront may be considered as a center of a secondary disturbance 

which gives rise to spherical wavelets, and the wavefront at a later 

instant may be regarded as the envelope of these wavelets.  It will 

be shown that, for a refractive medium, the "extended" principle is 

that the secondary wavefront will again be determined by the envelope 

of spherical wavelets from the primary wavefront, but each wavelet 

will now be determined by the propagation of a spherical wave through 

the refractive medium. In either case, the theorem is an approxima- 

tion valid only when the scattering angles are sufficiently small. 

We first assume the aperture to lie in a plane normal to the 

z direction, and we note that when the radius of curvature at each 

3U 
point of the aperture is large compared to the wavelength, -r— w 

lkU(e • e ), where e Is the unit vector normal to the wavefront in 
Iks + t 

the aperture. Then, writing U' ■       , where s ■ |r - p| is the 
s 

geometric distance between the point P and the elemental area in the 

aperture, and assuming ks » 1 yield 

"(P) ■ |£ | °(r) ^^ [V e, - V S, + f • ij "^  <*> 

2 
where d £ is an element of area at the point r in the aperture and 
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e Is a unit vector In the direction from P to r,. 
"* Iks + t 

For r ^ P, substituting U' -  Into Eq. (2) yields the 
s 

differential equation for f: 

72t + (7^)2 + 27^ • 7^o + k
2(2n + n2) - 0 (5) 

where 

*    Iks To m e  

Expanding \|r ■ £a,   t^i where \|i ~ n.. In Eq. (5) generates the 

(3) hierarchy of Rytov solutions   to the field at r_ from a unit spherical 

wave emitted at P In an Inhomogeneous medium.  In the. geometric optics 

regime, \|i ~ Ik J n.ds, iTir ' S*' * 'ni(e " e )|, and in the atmosphere 

at optical frequencies, |n.| ~ 10 .  In general, due to the smallneas 

of both the scattering "potential" (proportional to n.) and the 

ratio of the wavelength to the size of the smallest inhomogeneity (of 

dimension i  ), from a photon picture the scattered wave from the point 
2 

source will vary slowly over a wavelength for M (ki ) scatterings. 

The scattering length can be estimated from the decay rate of the 

2  2-1 
average field for a single-scale model to be « ((n.) k £ ) , which 

implies that the 7i|r/k term can be neglected compared to unity for all 

2     6 
distances of interest (i.e., I  /(n.) «s 10 km). 

It might be noted that at a range where |v(|f/k| ~ 1 one would 

measure a local beam divergence of the order of a radian due to the 

scattering, which has never been observed. 

Then, noting that in our develcnent the area A could have been 
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replaced by any other open surface whose rim coincides with the edge 

of the aperture, we choose instead of A a portion of the incident 

wavefront which approximately fills the aperture and neglect any small 

errors near the rim. Over the new region of integration, A', the de- 

rivative of U in the direction normal to the surface is =" ikU, and 

defining x = ^ - cos  (e  • e ), we obtain 

U(P) - f  K(x) U'(r,P) U(A/) dA' (6) 
dA/ 

where K(x) - (-i/2\)(l + cos x)• 

In the Appendix we show that U'Cj^.P) ■ U'CP.jc), i.e., reciprocity 

holds in that the field and source points may be interchanged in 

Eq. (2). Equation (6) is thus the extension of the Huygens principle, 

where the contribution from the element dA' of the wavefront to the 
iks + t 

field at P is K(x) IKA')  dA'. 
s 

When the distance from the observation point to the aperture is 

large compared with the linear dimensions of the aperture and the 

wavefront does not vary appreciably over the aperture, K(x) may be 

replaced by K(x ), where x is the angle between the normal to the 

screen and a line from the center of the aperture to the observation 

point.  In the same approximation, the factor 1/s may be replaced by 

the reciprocal of the distance from the center of the screen to the 

point P, 1/s . Then Eq. (6) reduces to 
o 

"(F) - ^ f e1"9 + * U(r) A (7) 
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Equatlon (6) or (7) reveals that If we know how a spherical wave prop- 

agates In a given medium, we can determine the response to an arbitrary 

disturbance In an aperture. In the next section we will give an ex- 

ample of the utility of this formulation by applying It to a problem 

of practical Importance. 
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III. THE MEAN INTENSITY FROM A DIFFRACTING APKRTÜRE 

From Eq. (7), the intensity at the point P is 

,  /I + cos xn\  »p lk(8  - 8,) 
I(P)-|U(P)12^-T^J JJe   l   2 

x e  1 UC^) U*(r2) d^ dZr2 (8) 

where s., s. are the geometric distances between the point P and the 

points r,, r« in the aperture, respectively, and ♦(£,). ^(.Lj)  are t^e 

perturbations in the field at P due to unit spherical waves emitted 

at jr., £-. For the case in which the index of refraction fluctuations, 

n. , is a random variable, the mean intensity from a finite diffracting 

aperture can be computed if /exp [tdj) + ^(r-)]^ is known for all 

r,, jr.. Similarly, higher moments of I(P) can be computed from a 

knowledge of terms of the form /exp IXl^) + t*^) + i|r(r3) + t*^)]^, 

etc. For the mean intensity problem, it follows directly from the re- 

ciprocity relationship (in the Appendix) that exp [♦(£,) + l*^)] is 

the field at r, multiplied by the complex conjugate of the field at 

r» (normalized to the vacuum field) due to a spherical wave at P. In 

particular, the quantity 

ik(s1 - 82) 
e  

8182 
(exp [HtJ  + **(r2)]) 

is equal to the cross-correlation of the complex fields at 
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the points r,, £„ due to a unit point source at P^. The function 

/exp IHtj,)  + t*(£.2^) i8' by definltion» the m*  for a spherical 

wave, Mg^. 1.2*  z) • 

When one observes the Intensity as a function of time, one sees 

the effects of beam "wander" and "breakup," both of which contribute 

to the intensity scintillation at a point. If the average is taken 

over times long compared with the periods over which n. varies, this 

mean Intensity distribution would include all of the above effects. 

If averages over an ensemble corresponding to a shorter time period 

could be obtained, a time history of the intensity distribution 

corresponding to observations over this shorter time interval could 

be obtained. For plane waves, the long-terra MTF, correct to second 

(4) order in n. , Is given by 

M (p,  z)  = exp J-5- 
P |zc 

JoV1^ *n<K)KdK1| 
Jo VK) KdK    -11 

(9) 

where p = |r, - rj, 4 (K) is the spectrum of the index of refraction 

fluctuations, and 

00 

z - [2n2k2 f i  (K) KdK]"1 (10) c        .Inn 

Is the propagation distance in which the mean field of a plane wave 

or spherical wave is reduced by e  from Its vacuum value. The 

quantity z  Is also the distance over which the perturbations In 

the field due to the medium become comparable to the field in the ab- 

sence of the medium, and can be computed by setting l/2^|i|; | y = 1. 

It should be noted that. Independent of the form of the spectrum. 
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2 
z <* X . Consistent with the approximation that the angles x of 

interest remain small Is the assumption that the points r,, r„ 

may be considered to be lying on a large sphere centered at P. In 

this case, the MTF given by Eq. (9) Is modified for spherical waves 

by substituting for the Bessel function J (Kp) the quantity 

jJVKpu) *»• 
Using Eq. (9) for the case of homogeneous Isotropie turbulence, 

one can determine the turbulence spectrum from optical measurements 

of the spherical wave MTF (e.g., by using a sufficiently small 

aperture). 

First, the distance z Is determined by considering a sufficiently 

short path length, z, and measuring the limiting value of M (p, z) for 

spatial separations much greater than the largest turbulence scale, L . 
-2z/zc 

0 

From Eq. (9), this limiting value Is e 

Then, from the relation between the spherical and plane MTFs, 

one can construct the quantity ln[M (p, z)], which Is given by 

ln[M (p, z)] - ^- [p In M (p, z)] (11) 
p        op       s 

With z and the logarithm of the plane-wave MTF known, one can 

Invert Eq. (9)(5) to yield 

00 Z 

*n<K) T^T-   f  Jn(KP> T1 + 27 ln M>' Z)l PdP (12> n     2TT k Z JQ 
0 L   ^Z    P     J 

C 

for the turbulence spectrum. 

(4) 
Yura and Lutomirski   have used the spectral density 
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0.033 C2 e-(Kio/5-92>2 

*n(K) f—TTTTi  (13> n (K2+t2)11/6 

0   ' 

an extrapolation of the Kolmogorov spectrum.    In Eq.   (13), C    is the 
n 

Index structure constant and I  (■ 2TT< ) and L (= 2T* ) are the inner o    o     o     o 

and outer scales of turbulence, respectively. In Figs, la and lb we 

plot z versus X for three values of C roughly corresponding to weak 

(3 x 10"16 cin'2/3), medium (3 * 10'15 cm"2/3), and strong (3 * lO-14 

-2/3 
cm   ) turbulence. For horizontal propagation near the ground, we 

have used the nominal values of l    = 0.1 cm and t    m  10 cm and 100 cm. 
o o 

For / « t . one can approximate the integral in Eq. (10) to yield 

z M (0.4 k
2C2 l5^)'1 (14) 

c n o x 

The coherence length z , and hence the MTF, will depend strongly on 

the outer scale of turbulence. 

Returning to Eq. (8), we thus obtain 

<I> - A2 JJ e   1   2 M^r^ r^, z) U^) U*(r2) d
2^ d2r2 (15) 

2 2 
where A " [(1 + cos x )/2s X] and M is the MTF for spherical waves. 

O    O 8 

For the case of a plane wave in a circular aperture of diameter D, 

we take the origin of the coordinate system at the center of the 

aperture, let 
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U(rlj2) - 1. Ir1>2| . D/2 

■ 0, |r1)2l > D/2 (16) 

and integrate over the entire plane of the aperture.  If we define 

the vector £ as the normal from the (z) axis of symmetry to the 

observation point P, then 

2     2 2 
Sl,2 = Z + ^-^l^ 

and, in the small-angle approximation, A^ «s (r"~) and 

-2£ ; (^ - r2) + r^ - 4 
s1 - s2 -z  (17) 

Changing variables to £ = r.   - jr«» JL " %(r.   + £2)»  then for the case 

of homogeneous isotropic  turbulence 

x U-(r - i B) e(lk/2)i-E d2r (18) 

For our problem U is real, and inspection of Eq. (18) reveals that 

the inner Integral is the integration of the function e   z'ß.'I. 

over the area of overlap of two circles each of diameter D, with 

centers located a distance p apart. The integration is straightforward 

2 
and yields for the inner integral D rD(x), where P 
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rp(x) rw t sin [2Bx(cos 9 - x)] 
(2ßx cos 6) 

(l - cos [2ßx(co8 9 • x) 

(2ßx cos 9)2 ^ 
d9 

x S 1 

- 0, x > 1 (19) 

where x - p/D and ß ■ kD /4z.  Then, using polar coordinates for the 

£ Integratloi., performing the angular Integral, and changing variables 

from p to x - p/D yield 

<I> - ^ ß2 [ x Jo(2ax) M8(Dx.z) T (x) dx (20) 

where J is the zero-order Bessel function and a ■ 7"* ■ -r- tan 9, 
o /z   z 

where 9 (- x ) Is the angle which the direction to P makes with the 

central direction. Normalizing the Intensity at a particular range 

(z) to the on-axis value (o ■ 0) in the absence of turbulence (M - 1), 

we obtain 

(h) 
rj- x Jrt(2cyx) M (Dx,z) rR(x) dx " 0    O        S P 

II  x ^(x) dx 
(21) 

In the Fraunhofer region of the aperture ß - 0, and D r (x) re- 
o 

duces to the overlap area of the two circles. From Eq. (19) 

r0(x) - i cos  (x) - X VTTT" (22) 
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and substituting in Eq. (20) with M ■ 1 and integrating by parts 

yields the vacuum Airy pattern: 

/   N       la2 

o(*)  - 4 0 
2^(0) 

a 

For arbitrary ß, Eq. (21) gives the normalized mean intensity distri- 

bution in the Fresnel region as well as in the Fraunhofer region of 

the aperture. Numerical calculations show that Eq. (22) is a good 

approximation to rg(x) for 0 ~2.  (See Fig. 2.) 

We have numerically integrated Eq. (21) for a 2-cm and 6-cm ap- 

erture, using the spectrum of Eq. (13) for propagation paths of 1 and 

5 km for X - 0.6328u and 5 and 10 km for X - 10.6y.  The results are 

shown in Figs. 3 through 6 for turbulence parameters characteristic 

of the strengths and scales found from zero to several meters above 

the ground.  The dashed curve on each graph is the vacuum intensity 

pattern at the range indicated, normalized to its value at 6 - 0.  For 

a given range the 6-cm aperture has less effective coherence than the 

2-cm aperture, which results in a correspondingly greater degradation 

of the distribution in the absence of turbulence.  Further, for given 

range, aperture size, and turbulence conditions, the longer wavelength 

10.6y pattern is the more coherent due to the larger coherence 

length, zc. 

In Fig. 7a-c we compare the mean intensity distributions for 

the above wavelengths and aperture diameters. As explained in the 

next section, the angle for which the intensity is reduced to one- 

half its axial value becomes independent of both X and D at large 

ranges. 
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u01 

Fig. 2 — The overlap integral defined by  Eq.  (19) 
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Fig. 3 — Comparison of beam patterns at  1  km for 2-cm and 6-cm 
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IV. APPROXIMATE FORMULAS 

The integrals involved in Eq. (20) for computing the mean pattern 

can be economically performed on a computer. However, for the purpose 

of relating our work to others and to show precisely what conditions 

are required for their use, formulas for the beam spread over certain 

limited ranges are obtained. 

If p  is the transverse distance for which M (p ,z) = e  , then o so        ' 

for the modified Kolmogorov spectrum of Eq. (13), approximate formu- 

las exist for the MTF when p « £ and i    « p « L .  (It should be o    o     o    o    o 

observed that the condition |7i|f/kl « 1 implies a lower limit of 

p ~\.)     Introducing these MTFs into Eq. (20) results in approximate 

formulas for the mean intensity, provided that the correlation length 

p  in each case is small compared with the size of the aperture. 

CASE A:  p « i 
o o 

When sufficient scattering has occurred so that the mutual 

coherence between the field from different elements of the aperture 

is small compared with the smallest scale of turbulence, i   ,  the 

Bessel function in Eq. (9) can be expanded in powers of (p/£ ), and 

the MTF for a spherical wave can be approximated by 

( 2   f* «  (K) K3dK ) 
„   , v   _ )     zp    -' 0    n    / ( M  (p,  z)  = exp  '- r* ; 

2     2 
ex pj-kzpq| (23) 

where q - TT /3 J" $ (K) K dK.  Equation (22) will be valid for all p's 



of interest if and only if 

z » zi = (kV q)"
1 (24) 

For the spectrum given by Eq. (13), q can be estimated by computing 

.     -(K£  /5.92)2 , 
f K3e        0 ,„  _ 1 /iW73   f ve-

y . 
J0    (K2 + ^

2)11/6 ~2^oJ        J0 [y + U  /5.92 L )2]n/6    ' o o o 

where T  is the gamna function and, for i    « i , 
o    o 

2  -l/3 
q « 0.5 C £ 1/J (25) 

no ' 

2   2 2 
Defining y = k D zq, it follows from Eq. (24) that for D ;t i 

2 
Y »1. When M (Dx, z) is substituted into Eq. (20), rfl(x) can then 8 p 

be approximated by rQ(0) = TT/4, yielding 
P 

Y 
^ - ^-r jo(^y) e'y ydy' z >>zi 

:. - (C.5 k2 C2 i  5/3)'1. 
i  \       n o  ^ 

where z," (C.5 k C i       J    .    Taking the upper limit as infinity, 

the integral can then be evaluated   to yield 

3   8z2 e2 16qz 
a 
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where p ■ 9z and 

6 - (2qz)l/3 « 1.1 C rl/6zl/a (27) 
n o 

is the angle corresponding to the standard deviation of the gaussian 

beam pattern. Using Eq. (27) and the inequality Eq. (24) yields 

6 » rr" a   kl o 

Hence the beam spreading in this region is dominated by many scatter- 

ings from the smallest eddies, and for z = 100 km, 6 M 0.2 mrad for 

typical turbulence conditions. 

It should be noted that conservation of energy requires 

2 
2TT I  <I(p,z)> pdp - TT £_ I   ^ (28) 

Jn ^  aperture 

which is seen to be satisfied by Eq. (26). 

CASE B: I    « p « L 
 o    o    o 

Substituting the spectrum of Eq. (13) into Eq. (9), expanding the 

integrand for I   « p « L , and integrating yields 

Mpw(p,z) - exp {- 1.46 k
2 C* z p5/3 [1 - 0.80(p/Lo)

l/3 + 0(p/Lo)
2]} 

(29) 

The second term in the exponent proves to be an important correc- 

(3) 
tion to the wave structure function given by Tatarski,   whose analy- 

-II/3 
sis is based on a spectrum which continues to increase as K     with 



-27- 

decreasing K, even for K £ t . A more complete discussion of this 

point Is given In Ref. 7. 

The modification of Eq. (29) for spherical waves can be written 

M8(p,z) » exp •[- 0.55 k
2 C* z p5/3 [l - O.71(p/Lo)

l/3 ]}     (30) 

For Eq. (30) to describe correctly the mutual coherence between 

different elements of the aperture for all p's of interest, it is nec- 

essary that M (£ ,z) « 1 and M (L ,z) « 1, which is essentially the 

condition 

z « z « zJ (31) 
c        1 

Defining Ci  - (0.55 k2 C2 z)3/5 D, it follows that for D Zl  , n o 

0 » 1.    Then in Eq.   (20), Fgfr) M Tr/4, and substituting u - fix re- 

sults in 

(32) 

where, within the range indicated by Eq. (31), the integral will be 

insensitive to the precise value of the upper limit. For D ^ L , re- 

quiring M (D,z) « 1 leads to the condition s 

z ^ B 177 (33> 
1 - 0.71(0/1 )1/a o 

2 2 5/3 -1 
where we have defined z- » (0.4k C D  ) u        n 
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Substituting for 0,0, and a,  one obtains 

<V ■   Z'1?2   ; Kr) <T ■ f) w b   .a/8 ria/B le/s \zj    V«.  8^/ k"'0 C*"'0 Z
xo/0  ^ c  ' c  "b 

n 

where we have defined 

z   ■*" 

Kf)  ■ I " «P {- "'"[l ■  0.67(f)  «"']} d„ 

,z    "• 

!" Jo(^") «p {- "6/3[^ - "-"(f)   "1/31} ^ 
c  -b- PI, 

c 

and 

,I/B re/6   ,3/5 eu - 0.69 k
1'0 C3'0   z*'0 (35) 

b n 

The function F is a slowly varying correction to the on-axis 

intensity, while the function G determines the angular distribution 

(which is "almost" gaussian). F(z/z ) is plotted in Fig. 8a, while 

in Fig. 8b we plot the result of a nu'.iieiic9l inversion of 

G(z/z , 9/9. ) = 1/2, the latter giving the dependence of the half- 
c    b 

intensity angle on range. It follows from Fig. 8 that for 

15 ^ z/z S 104, one can use the formula OWa - 0.7 kl/5 Ce/5 z3/5 
c *'■ n 

within an error of w ±25 percent. 

The inequality (31), together with the condition z » zD, implies 

that 
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F(z/zc) 

%S 

Fig. 8 — The correcfion to the on-axls intensity,   F(z/z ),  and the 
c 

half-power angle,  found by inverting  G(0,/0L,  z/z ) = 1/2, 
^     b c 

as functions of normalized range z/z 
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kö ' MT ^ 9b ^ kT 
o o 

The scattering in the region where Eq. (34) applies is then domi- 

nated by the presence of the largest inhomogeneitles and is valid only 

when 0. is much greater than the vacuum diffraction angle. 
D 

The results of this section are summarized in the table on the 

following page, where the conditions required for the use of the ap- 

proximate formulas are indicated. 
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V. GENERAL DISCUSSION AND CONCLUSIONS 

From Eq. (18) one can calculate the mean Intensity distribution 

for an arbitrary disturbance in an aperture if the MTF is known. For 

example, for a focused beam without amplitude perturbations (i.e., 
2 

-ikr /2f 
U(r) = e      ), the mean intensity is readily shown to be given by 

2 

Eq. (20), where now in the integrand (only) 0 = -T~ ] —| and f is 

the focal length. 

The MTF has previously been shown to determine the limiting resolu- 

tion obtainable looking along an atmospheric path, as well as the sig- 

(8) 
nal-to-noise ratio of a heterodyne receiver.    We would like to empha- 

size here that in order to predict the beam pattern from an arbitrary 

wavefront in an aperture for (say) design considerations, it is again 

the MTF which should be measured rather than specific beam patterns. 

To clarify this point, we first observe that Eq. (20) is merely 

2 
the Fourier-Bessel transform of the quantity (8/Tr) ß Mg(Dx,z) ^(x), 

which can be inverted to yield 

D2 rß(p/D) M8(p,z) = 2TT J Jo(^ p) <I(p,z)> pdp       (36) 

where (l(p,z)) is the mean intensity at a distance p from the axis at 

range z. For an arbitrary disturbance in the aperture, the function 

ro(x) given by Eq. (19) would be replaced by the appropriate overlap 
p 

integral of Eq.   (18).    Equation  (36)  thus provides a possible method 

for determining "part  of"  the MTF from measurements of the beam pattern. 

However, because rß(p/D)  ■ 0 for p * D,   inverting the intensity 

distribution can give no  information regarding M (p,2)  for spatial s 
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separations larger than the size of the aperture. In particular, In 

order to determine the distance z from a beam pattern measurement. It 

would be necessary to have an aperture diameter greater than the largest 

scale of turbiience, L , which might be of the order of meters. Hence, 

If one can determine the spherical wave MTF for all spatial separations 

at a given range, one can Infer the Intensity distribution from an ar- 

bitrary aperture distribution at that range, while the reverse Is not 

true unless apertures greater than the coherence length at that range 

can be constructed. Even If the beam pattern were measured, one would 

first have to construct M (p,z) from Eq. (36) from the given measure- 
s 

ment to determine the general response. 

Finally, although there are many conditions under which the spec- 

trum of Eq. (13) Is not expected to apply, the Intensity pattern can 

still be determined from Eq. (15) If the MTF Is known. For field ap- 

plications employing coherent optical devices, measurements of the 

turbulence spectrum are useful only to the extent to which they yield 

knowledge of the MTF.  It Is suggested that MTF measurements be made 

and correlated, not with detailed spectrum measurements, but with the 

gross meteorological and topographical measurements of quantities which 

might be observed to determine the degradation of the higher spatial 

separations of the MTF, as perhaps wind speed, temperature, and 

properties of the terrain. 
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Appendlx 

PROOF OF RECIPROCITY 

Let [U.Cr, r,), U2(rp, r^)]  be the field at point r. due to a 

spherical wave source at (r,, r»), respectively. Then 

(72 + k2n2) U.Cr, r.) = - 4TT6(r - r.) (A-l) 

(V2 + k2n2) U2(r. r2) = - 4TT6(r - r2) (A-2) 

Multiplying Eq. (A-l) by U^r, r1), Eq. (A-2) by U^r, r1), subtracting, 

integrating, and using Green's theorem, we have 

[ [Vl. ^ ™2('Lt  -2) " U2(£' i2) ^l^' -I5] ' ^ 

- - 4^2(1^, j^) - U^j^, rp] (A-3) 

If the surrounding surface S is taken as a sphere of radius R, then 

the surface integral can be written 

I Wir - iknU2) - u2(gr - iknUi)]R2dn (A-4) 

If we take the spherical surface outside of the region where n ^ 1, then 

(9) 
the Sommerfield radiation condition 

llmR- R(|l - ikU) " 0 v3R 

which ensures that at great distances from the source the field repre- 

sents an outgoing wave, results in the vanishing of the surface term, 

and establishes the reciprocity theorem. 
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