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FOREWORD

This report, OSURF Report Number 2183-4, was prepared by
The ElectrqScience Laboratory, Department of Electrical Engineering,
The Ohio Siate University at Columbus, Ohio. - Research was conducted
under Contract AF 19(628)~5929. Dr. John K. Schindler, CRDG, of the
Air Force Cambridge Research Laboratories at Bedford, Massachusetts

was the Program Monitor for this research,

The material contained in this report is alsc used as a thesis
submitted to the Department of Electrical Engineering, The Ohio State
University as partial fulfillment for the degree Master of Science.
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ABSTRACT

A ray-fixed coordinate system is intrpduced and used to derive
a naw, compact form of the dvadic diffraccion coefficient for an
electromagnetic wave incident on a perfectly-conducting wedge.
This diffraction coefficient is merely the sum of two dyads;
furthermore, with the use of simpie correction factors which have
the same form for plane, cylindrical, conical or spherical waves
incident on the edge, the dyadic diffraction coefficient is valid

in the transition vegions of the shadow and reflection boundaries.
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CHAPTER I
INTRODUCTION

The purpese of the research described in this report is to derive
8 dyadic diffraction coefficient for electromagnetic waves incident
on a perfectly-conducting wedge. It is desired that this diffraction
coefficient be valid, not only in the illuminated and shadowed regions
surrounding the wedge, but also in the transition regions adjacent to
the shadow and reflection boundaries. Furthermove, it is desired
that the diffraction coefficient be compact and accurate so that it
is useful for computational purposes. These objectives have been
attained in the form of a new dyadic diffraction coefficient, which
is drived in the pages to follow.

The diffraction coefficient is introduced in the geometrical
theory of diffraction in order to relate the field of the ray in-
cident at the edge to the field of edge-diffracted ray. The dif-
fraction coefficient is analcgous to the reflect’on coefficient used
to relate incident and reflected fields. A description of the
geometrical theory of diffraction is given in References 1, 2, 3.

If the problem involves scalar waves, the diffraction coefficient

is a scalar guantity; on the other hand, if the problem involves
vector waves, as it does in the case of electromagnetic waves,

the diffraction coefficient is a dyadic. The diffraction coeffi-
cient in question is found from an asymptotic solution of the
pertinent wedge diffraction problem, where the result can be given a

ray-optical interpretation. The diffraction by a wedge has received
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a great deal of attention over the years, and some of the more im-
portant contributions to its asymptotic soiution are described in
the following paragraphs.

MacDona]d4 obtained an integral representation for the eigen-
function expansions of the total field. Plane, cylindrical and
spherical wave illuminations of the wedge by scalar waves were
treated., However, the earliest asymptotic solution to the wedge
problem appears to have been due to Sommerfe]d.5 He considered
the case of scalar plane wave illumination, and his solution is
valid outside of the transition regions at the shadow and re-
flection boundaries; however, it is not valid within the transi-

tion regions. Pau116

and 0berhettinger7 obtained uniform asymp-
totic solutions which can be used in the transition regions. Both
of these solutions are restricted to the exterisr wedge problem,
i.e., they are restricted to wedge angles less than 180 degrees;
furthermore, there is a deficiency in Pauli's solution that im-
poses a further limitation. This deficiency is peinted out in

Reference 9. Fe’isen8

has obtained uniform asymptotic solutions

for plane, cylindrical and spherical wave illuminations of the

wedge. His solutions can be appiied o both the interior and ex-
terior wedge problems. In addition to wedges with the usual Dirichiet
and Neumann Boundary conditions, Feisen has considercd wedges with
impedance boundary conditions. Pauli obtained a factor type cor-
rection term which makes his solution valid in the transiticn region,

whereas Oberhettinger and Felsen have additive type corrections.

These differences result from the different methods used to treat




the pole close to the saddle point in the asymptotic solutions.

Hutchins and Kouyoumjiang’14

generalized Pauli's sclution for the
scalar plane wave illumination of the wedge and obtained a factor
type correction for the transition regions, which makes the leading
term in their asymptotic expansion more accurate than those of the
solutions described previously. Their sclution corvected the afore-
mentioned deficiency in Pauli's solution. In addition, the relatively
compact form of their solution further adds to its desirability from
the computational point of view.

The work described thus far has been Timited to the case of
scalar waves. The more difficuit vector diffraction problem has

been treated by Nomura, 10

who obtained 2 uniform asymptotic solution
for the problem of an oscillating electric dipole illuminating a
perfectly-conducting wedge. Even though his solution employs a
factor type correction for the transition region, the expressions
for the field possess a rather complicated form and they are not

amenable to easy computation. Tuzhih‘nn’12

treated the scalar

and vector wedge diffraction prablems; his results possess additive
type correction terms for the transition region which involve com-
plicated integrals for the cylindrical and spherical wave i1lumi-

nations. Recently Bowman and Senior13

unified and simpiified the
results of Tuzhilin and others by treating the case of a conducting
half-plane excited by an oscillacing electric dipole. An acymptotic
representation for the Hertz potential was presented with an ad-
ditive type correction for the transition region. The results of

Reference 13, although simpler than those o1 References 11 and 12 and
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others, still Tead to cumbersome expressions for the fields obtained
from the space derivatives of the Heriz potential. In summary, none
of the electromagnetic solutions described in References 10 through
13 appear to be in a form suitable for the derivation of a compact
dyadic diffraction coefficient.

It was decided to derive the dyadic diffraction coefficient for
several types of edge iilumination, Although the diffraction coeffi-
cient is irdependent of the type of edge illumination outside of the
transition regions, it differs with the type of edge illumination
within the transition region. Let the edge of the wedge lie along
the z-axis. 1In the case of plane and cylindrical waves incident on
the perfectly-conducting wedge, the field components are readily
found from EZ and Hz, the z-components of the electric and mag-
netic fields, respectively. In turn, the soiutions for EZ and HZ
reduce to the ordinary scalar diffraction problems. The incident
spherical wave may have z-directed electric or magnetic current
dipoles as its source. The electric and magnetic fields, due to
these dipoles, can be obtained from anndAz, the z-components of
electric and magnetic vector potentials, respectively. Again, the
solutions for AZ and FZ reduce to ordinary scalar diffraction
problems.

In Chapter il asymptotic solutions of the scalar diffraction
problems are cbtained by the modified Pauli-Clemmnw method of
steepest descent. The wedge illuminazted by a 1ine source is treated
first and an integral representation of the tield is obtained from

jts ejgenfunction expansion. By letting the line source vrecede to

4
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infinity this {ntegral representation is transformed into an integral
representation for a plane wave incident on the wedge. The integral
representation for the field of the point source illumination is de-
duced from the integral representation for the.fie1d of the line
source illumination by a Fourier transformation involving the z-
coordinate. After asymptotically evaluating these integrals, the
scalar diffraction coefficients and their correction factors for
the transition regions are obtained. These diffraction coefficients
are of interest not only in the case of scalar diffraction, but also
in the case of vector diffraction, where they appear in the dyadic
diffraction coefficient.

In Chapter III the diffraction of electromagnetic waves by a
perfectly-cenducting wedge is treated. The plane and cylindrical
wave solutions of Chapter II are generalized to oblique incidence,
so that in the place of an incident cylindrical wave cne has an
incident conical wave whose source is a traveling wave electric or
magnetic current line source, Starting with EZ and Hz one then
determines integral representations for all of the field components.
These integrals are then evaluated asymptotically.

In order to simplifyv the expression for the diffracted electro-
magnetic fieid, special coordinate systems for the incident and
diffracted fields are introduced. These coordinate systems are
suggested by the law of edge diffraction and they are fixed in the
incident and diffracted rays. ¥nen the components of the incident

and diffracted fields are written in this coordirate system, and



only the leading term in the asymptotic solution is retained, the
resulting expression for the dyadic diffraction coefficient reduces
- to a sum of two dyads. If, instead, a simple edge-fixed coordinate
: system wers used, the resulting dyadic diffraction coefficient would
appear as a suim of seven dyads; thus, the importance of introducing
the special ray-fixed coordinates can hardly be overemphasized.

The case of a spherical wave obliquely incident on a perfectly-
conducting wedge is treated in a similar manner; in this case, the

field components are found from AZ and Fz'




CHAPTER 1II
SCALAR WAVE DIFFRACTION

This chapter deals with the scalar wave ‘diffraction by an im-
penetrable wedge; both Dirichlet and Neumann boundary conditions
are treated, Plane wave, c¢ylindrical wave and spherical wave
illuminations of the edge are considerec. The retationship of

these problems %o the electromagnetic problem is indicated.

A. Cylindrical Have Illumination

Consider a z-directed, uniform 1ine source of unit strength
radiating cylindrical scalar waves in the presence of an impenetrable,

infinite wedge as shown in Fig. 1. The total field, which consists of

Y

OBSERVATION
POINT
Alp, )
P// {
/,{ | (pid)
p: ¢ P —~~—® LINE SOURCE

IMPENETRABLE
2-D WEDGE

Fig. 1. The 2-D wedge and line source in the
circular cylindrical coordinate system.
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the incident and scattered components surrounding the wedge,is given

by a two-dimensional scalar Green's function G (F}E“) where

;

(1) (%% + k%) G (5") = ~s([5 - 5°])
h

v% = the two-dimensional Laplacian operator in circular cylindrical

coordinates, and &(lp - p'|) is the Dirac Delta function. k = wave
number of the linear, homogeneous and isotropic medium surrounding the
wedge, GS(E}B“) satisfies the following boundary conditions at the

wedge sur¥ace:

(2) Gs(psp') = 0 at ¢ = 0, nm;
(3) 55 6(p5p') = 0at ¢ = 0, nm.

Boundary conditicn (2) corresponds to the acoustic case for a soft
wedge whereas (3) corresponds to the acoustic case for a hard wedge.
In mathematical terminoiogy, (2) corresponds to the homogeneous
Dirichlet boundary condition and (3) corresponds to the hemogenzous
Neumann boundary condition.

Furthermore, G (p,p') also satisfies the Scmmerfeld radiation

condition15 16

and the Meixner edge condition, respectively. Thus
the solution for G _(p,p') is unique.

The above p&oblem, depicted in Fig. 1, represents the basic
canonical problem in this report, It will be used to deduce the

solutions of the other canonical problems.



The Green's function Gg(p,0') for this canonical problem is
h .
given by a convergent eigenfunction expansion as
() 6(75") = 6 (opin’ ') = T T e Iyfho) 12 (ko) -
h h m= n n

m N m 1
'[cos = (¢-6") + cos = (s+4")],
where

0 <9, ¢' <nm
in<p'<0°,

and

(Y]
n

1, m=20

2, m# 0,

Jm(kp) and Héz)(kp') represent the cylindrical Bessel function of

n n
the first kind and the cylindrical Hankel function of the second

kind, respectively., A time dependence of the e+jmt type is

assumed and suppressed, Gﬁ represents the modai description of

the waves existing in the presence of the wedge structure excited

by a vine source at (p';¢'). Gg as given by {4) converges for all

psd,p',4' and n (interchanging 2 and p* in (4) yields Gy forp > p').
It is easy to see that the total electric field (zzdirected)

is proportional te Gg if the 1ire source is electiic, whereas

the total magnetic field (z-directed) is pronortional to Gh

if the Tine source is magnetic., Thus, the sc¢alar problem is

useful in the treatment of the elactromagnetic problem of a uniform

electric or magnetic cuvrent line source illuminating a wedge which

is perfectly conducting.
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If the line source is electric, then the total electric fieid, EZ

is given by

(5) Ez(-D_) = =jun IGSa

where w is the angular frequency and u is the permeability of the
medium surrounding the wedge.
If the Tine source is magnetic, then the total magnetic field,

HZ is given by
(6) HZ(E) = =juwe MGh,

where ¢ is the permittivity of the medium surrounding the wedge and
T and M are the strengths of the electric and magnetic current line
sources respectively.
An integral representation for the product, Jm(kp)H&Z)(kp') ist
n n
(1) 3Pty = - 1 jc'jw Stk o5 ) | (B_Z_gt.o_)g-t
n n 0

(3

c>0,£nn->-1 and o} < |p'] .

Z
Im (5-%9L ) represents the modified cylindrical Bessel function

n 2 '
of the first kind, A useful integral representation for Im (5—%9—-)
. m

=

is given by

Yy 1 d
O 1 £,

n Y+ju>
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—r

where -n < y' <0,

T<y <2m
Thus ,
2 5393:— cos £ + j m»g
O N S I de,
n L
o 2 . 5329: Cos £~ Jj—¢&
Im(g—-%&—)=-—2*;[et N de,
n L

where the contours L and L' are indicated in Fig. 2. Replacing the
cosine terms in (4) by exponentials, and utilizing (7) and (9) in
(4), interchanging the orders of summation and integrations, and
choosing the L' contour representation for 10(53%910 {corresponding

tom = 0), allows one to write (4) as

(10) 6,(75°) = 6(5,5"387) ¥ 6(5,5°3567),
h
where
- ¥ C-Je 020 2, 42y.-1
(11) e@mqf)=-J?J -k (o™ It77] .
81rn°
Koo . W i
Kool cosep o 58 (48
. J e y e dg +
L m=1
o0 cos g o -3 2 (ere)
et T e
11 m=0
and
(12) gFzoF e =P

11




I

Imé&
‘} (I compLEX & PLANE

}
, |
: |
-2 T
— | }Y i ,:l "Y ‘;. l'Y 2|7r - F"ef
| |
N
| L I
| I
| |
| !

Fig. 2, The a?d L' contours for the integral representation of
Im(K—%ﬂ—J in the complex g plane.
n

Eq. (11) may be further simplified by noting that

. M . M
o jo=(g+8) @ J = (g+s)
X e n =Z e n - 1:
m=1 m=0
and m
E i n (e#8) 1
m=0 +5(5E)
(13)9 1-e
Also
c s | +
T oL (c+) 1=t et &8y _ L
L= 2] *2n 7 2
m=0
and
© =] ""(5’*‘3) 1
= 1 £X8 1
[ e 75 ot (55 ) +3
\ m"'o




Therefore, (11) may be written via (13) as

Cmi® 20 20 12y,-1
(14) G{psp*3B) = = ; I [tk (p+p! 1t
81rno .

K200
.Jet COSE[I

L)

which on interchanging the orders of integration, gives
1eg) = 1
(18)  Gpup's8) = - L |

1 E+B 1
dE-—--cot( )-- .
81rnL {23 en 2}

. Uc-jw @ 3[t-ke(o24p'2) 71 + 1‘—%9—— cos
0

t
1. f 1 (€+e) 1
- de < 5= cos + = .
8nen ! '{23 n )2
[ c-J= 44 %[t-kz(pz+o’2)t 1] + 5—%2— cos
. - e
[ 4
0
It can be shown that4
. _t.;?
(16) 3 B e )
C=Jo

where Ko(jz) is the modified cylindrical Bessel function of the
second kind, of order zero and argument, jz. Utilizing (16) in

(15) gives

13
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G(pyo'3B) = - oldk ATRLEW cose:){ -}3 cot ('5’“;*6‘) i ’21‘}0'5 -

-b\\’i
—
—t—

: 2, 12 1 E+8 1
Kok /o +p'“~20p’ cosg) {-23: cot(——z—n—) + E}dg .

or, on combining terms one cbtains

..1f
2
41rnL

{17)
Gip,p'iB) = J (3k /pz+pi?-..2;,pl cosE) - .,..]:. cot(éﬂ'ﬁ_ l e
47" H] ] -J zn 2
L-L
Let k Véz +0'% . 200" cos g = z(g)
then,
1 1

! }'K (32(g))de = [ = K (JZ g))de - ) K (jzie))dg o =

2 20 Z 20
4“ n . Lt i L’ 4," n

—

= K (jz(g))de - | K (jZ(-a))d(-s)} =
7
81 n 1 0 l Y

since z(&) = z(-£).

Finally, (17) can be written as

(18a) 6(p,o'38") = —l§- f dg ;3 cot( E+B.) Ko(jk/£2+p'2-209' COSE) .
417 n L_LI 2n

Equation (18a) directly leads to a complex contour integral repre-
sentation for Gﬁ (psp') = G(pp'387) ¥ G(p,p';8+). The integral

representation is still an exact form of the solution.

14




If |z{g)| is large with respect to the order of Ko(jz(g)),

one may use the large argument approximation

Ko(dz(g)) ~ ’ §3§TET e'jZ(g), where z(g) = k/£2+p'2-2pp' cos &

and -n < arg (jz) < .
In the asymptotic solution described later it will be seen that |z|

remains large in the neighborhood of the saddle points. Therefore,

(18a) may be written as

(18 6(pa's8") ¥ e | dgj — ;
8a73n (1) 23k(p“4p ' 200" cos £)*

. cot (.gi@i) p“jk/pz*'p'z-pr' cos £
= 8

Furthermore, the exponential may be approximated as

(19) e-jk¢/;é+p‘2-290'cos £ . e-jk//(p+p‘)2-290‘(cos g+ 1)

~jk(pte') {1 = —22—s (1 + o5 £))
o 2 etp')

The above approximation will be justified a little later in the
chapter,

Let

¥ §+§— ~jk(ptp!
Filg,87) = 12' — T% : 5 cot( )e Jkle*e")
8r°3n | 2ik(o“+p'“=2p0p' cOS E) 2n

and

fg) = j [1+ cos & .

15
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Thus,

(200 6(Fa'36") j de E(e,67) &8
L-L"

is a compact notation for the expressicn in {18b) but containing the

J
approximation of (19).«x = k(%%;& and is assumed to be large. Thus,

Eq. (20) is in the proper form for an asymptotic evaluation of the
integral via the metod of steepest descent. The steepest descent
paths (SDP) selectec for the asymptotic evaluatiorn of (20) are those
which pass througn the saddle points of f(g) at g, = for the
following reason.
The saddle points of f(g) occur at
gigr::, = 0;

=g
however £ <« %7 are the only ones chosen because the steepest descent
paths through g, = £7 allow one to close the (L-L') contour, thereby
facilitating the use of the Cauchy Residuc Theorem. Figure 3 indicates
the locations of the steepest descent paths through the pertinent saddle
points at. £g = M. It is easily seen that the required integral in

(20) s given by:

»

. —
(21) [ e f(e,sn) T8 = - [ e E(e,6T) U8 g -
1
D

L-L* (w) t

- !: dEF1(€9B$) er(g) dg +
SDP(-n)

+ 21 [sum of the residues of ﬁ(5v3+) enc]osed} +
between L-L' and SDP(r)

+ (bvanch cut contributions, if any)

15




The saddle points are the roots of

(el - ofr(r ) = oiocin £ =
i f (gs) = -j sin g = 0.

Es
Thus, it follows that

Eg = + 9w, Where 2 =0, 1, 2, 3, +--

As indicated earlier, only the case corresponding to 2 = 1 is of

interest here.

COMPLEX & PLANE

BRANCH

O

uT

Fig. 3. Steepest descent paths (SDPs) and the
complex £ plane topology.
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In order to ensure convergence of the integral in (18b), one must
have Re f(g) < 0 as |Im £] -~ ». The portions of tha complex £ plane
for which Re f(g) < 0 as |Im £]| » = are shown as shaded vertical
strips in Fig. 3. The SDP equations are found from the condition
that

Im f(g) = Im f(gs)
or

cos u cosh v = -1, where ¢ = u + jv.

The above equation is valid for £ = im and the paths chosen are
depicted in Fig. 3, the choice, as mentioned before, being governed
by the fact that Re f(g) < 0 on the SDP(#s) as |Im g| + « (where
Im & = v), and that these paths blend in with the L - L' contours as
{Im g| » «, thereby aliowing one to obtain a closed path of in-
tegraticn. (The paths corresponding to the images of SDP(xnx) about
Re £ = % also satisfy cos u cosh v = -1 but are paths for which
Re f{£) > 0 as |Im g| » =).

1t is desirabie at this juncture, to study the singularities

of E(E,Bi) in the complex & plane.

I

- 1 W + -Jk{otp'
Fle,8) = 2 7 2 i COt(Ezﬁ )e Skloto )
1 81°jn | 23k{p“+p'“-2pp"' cos £)*

ﬁ(s,ax) has branch point singularities at ¢ = g which are the roots
of

02 + 0'2 - 20p' cos g = 0

18
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For the case where o # p', it follows that pz +0'" > 20", and

therefore

2 2
gy, = 2% *j cosh'1 9~§§;$1- , where ¢ = 0, %1, 2, ..

The branch points and the branch cut locations are indicated in

Fig. 3, where it is saen that the branch points are not in the
vicinity of the saddle points at £ = *m, and the branch cuts lie
cutside the closed path formed by L - L' and SDP(#r), so that the
closed path is unaffected by the branch cuts. The integrand is

single valued on and within the closed path, and since no deformations
of this path are necessary for singie valuedness, the branch cut

does not contribute to the integral.

The pole type singularities of Fl(g) occur at ¢ = gp, where gp

are specified by

gp = -a+ + 2nNw, N = 0, 1, £2, **°*

The residues corrasponding to ¢_ are evaluated for lgp| < w as only

p
these poles lie within the closed path of intagration since g

m

¢ + ¢', (it is easily seen that ¢ is a real quantity). It can

p
be shown that £_are simple poles.

For suffic:ently large «, the major contribution to the in-
tegrals evaluated over SDP (+r) occurs only frem the "irmediate
vicinity" of the saddle points (gs = %); hence it follows that the
approximation of (19) is justified, as |[(1 + cos £)| is small for
Emig.

The first order saddle point approximation for a pole not close

’

to the saddle point is given by

19



- n/4}
=3n/4

/ o |
Kf"(i‘ﬂ')

< T j(°31r
e VT : . T
in which e is associated with Eg = n,and e

(22) [ ij:‘) £,6 )er(g)dE o rt(_h" .8 ) Kf(""ff)

with £ = -
The residue contribution to the integral over the closed path,

¢ is given by

) P(ag,s"ﬂ
(f) Fi(a,s“)e“f(g)dr, =(ﬁ ——g’—ﬁ—)-da = 2mj 2
C

(- oF
Q(e,8%) Q (cp,B J

where ¢ = (L = L') + SOP(x) + SDP{-n), and P(&,6") and Q(z,8") ave

both analytic functions of the complex variable, &.

P(a,e‘"‘)

2ik{p%+p'=200" cOS )% 2n

and

2 . [ £+B )
8n"jn sin (_—Zn

Q(a,s;)

with -
+
£+8

Q' (£,6%) = anj c05(~2-,-,—)

The residue at gp = - B+ + 2nNn is thus given by

o A d [
"J wk{p+p ' “=2pp'cOS[-p +2nNg]) 2

N
)
'-
~N
)
0
o
o
o
e
!
T
-+
*-
ro
3
=
—J
-—/

20




which may be recognized as the asymptotic form of

—2715 { - a}Héz)(k/pz+p'2-2pp'cos[-s++2nwn1)} ULn-|-g +2nNa|],

and therefore represents the geometrical optics contribution in terms
of the line source fields due to *he source or it's image (the total
geometrical optics contribution being a superposition of the incident

and the refliected fields).

s 1

0
ult) = 3%,
1

o D
—h —h ~h
ct c+ ct
v il
ooo

U(0) = % ensures the Cauchy principal value when the pole singularity
Ties on the closed contour c¢. The function U(n-|-8++2nNn|) auto-~

matically restricts the geometrical optics contributions to aspects

defined by I-B+ + 20Nw| < =, so that the contributions from poles
outside the closed contour, ¢, are not included.
Thus, for the N = 0 case, one obtains for the geometrical optics

contribution, Gg‘o‘ the following field
h

.0, ] 2J
(24) €9:0- nq - J—f *
; w0240 '2=2p0 " cos (4-9')) 2

Y
. a-dk{p%p!

~2pp'cos (4-¢'))® Un-[o='|)[ ¥

;[_ il 23 .
1 wnk(pz-%p' -pr'cos(¢+¢')f2

s p 8, 42 1y
. e-Jk(p +p'“-2pp'cos{¢te'))? U(““!¢+¢'|)
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(The minus {plus) sign between the two terms on RHS of {24) cor-
responds to the soft (hard) boundary condition), ‘The first term on
the right of (24) is the direct source (at p',q') radiation at the
observation point (at p,4), whereas the second term reoresents the
reflected wave contribution at the observation point (at p,¢) which
appears to emanate from a virtual line source (at ¢',~¢'). The re-
flection ocaurs from the wedge face, ¢ = 0. In geneval, the incident
field is described by N = 0 and 8~ = ¢-¢'. The reflected field from
the surface ¢ = O,resulting from the incident field, is described
by N = 0 and 8" = ¢ + ¢'. Other values of N describe fields which
may be refiected either from the suvface ¢ = 0 or the surfaces ¢ = nw.
Since the total field is composed of the geowetrical optics field
and the diffracted field, it follows that the saddle point coniirie-
butions must yield the diffracted ray field in accordance with
Keller's theory. The first order saddle point results for large

(kop®)/(ptp') 2s obtained from (22) is given as

i o7
6 - - L [ oreene e . | Fl(g,s")e"ﬂg’s)dgj 7
.Dp(‘l?) SOP(-7) .
+
3 l Fy(e,80)e< 168 Dy o j Fy(z,8h)esf (68 )da}
or, $DP(n) SOP{-n)

g, edklere) JT 33 AR 8"-a |
GS n = e cot( 5 + e cot( 5 )
h 8rrkvpp! i '

4
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(12
[
Nl
(]
o
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i.e.,

=i Wlleinm 1o
(26) Gd L1l e jk(p+p") y Sin o i D sin =
S 8" ¥ 8"

cos -n- - COS -r-'-—

L
{COSn-COSn .

For N = 0 case, the total field surrounding the wedge is given asymp-

totically by superposing the results of (24) and (25) as indicated
by (21j.

The value of the incident wave at the edge is given by, ui where
. . . - il
u' = - %-ng)(kp') N - %- /%ﬂ;T g~Jke s

for large kp'. Therefore, in accordance with the geometrical theory

of diffraction, Gg may be written as

h
. . n . -jkp
d i , 2 -jkp! ey
(26) G [F N - i __lr e ] D s
ﬁ 4 nkp ﬁ /p-

for large kep'/(p+p'), where D, is the wedge diffraction coefficient

h
associated with either the soft or the hard boundary condition at
-Jjko
e

the wedge surface., The factor describes the variation of

o)
the amplitude and phase of the field of the diffracted rays emanating
from the edge and traveling in the positive ; direction.

Comparing (25) with (26) it is seen that
1l . « 1

o . m
o ) o~Jn/4 7 sin - . psing
\27, Dc = /_ + .
e Al . )
h 2nk cos + - cos Q—Q—) cos - cos [&Fo
) n n n
The result indicated in (27) is identical to thati deduced by
Sommerfe'ld.5 This result fails at the shadow and reflection bound-

aries where Qﬁil = %-+ 2Nw, and it ic evident that at the shadow and
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reflection boundaries the diffraction coefficient becomes singular,

As mentioned earlier, ¢ = ¢' + m (N=0) defines the shadow
boundary; however a shadow boundary does not occur if the exterior
wedge angle nm < nm or if num - o <¢' < 7w in the case where nm - m> 0,
A reflection boundary associated with the wedge surface ¢ = 0 occurs
at 4 =7 - ¢' (N=0); if nm > 7 - ¢', Other reflection boundaries
may result from the reflections at the two surfaces.

In the transition regions of the shadow or a reflection boundary
a pole is close to the saddle point. Later, we will be interested
in the pole closest to the m saddle point, and the pcle closest to
the -m saddle point. The values of N associated with these poles
are defined to be N* and N”, respectively. The value of N* is
decided by the integer which most neariy satisfias the equation:

2nNiw - B =1,
where B = 3; z ¢+ o',

Whenever the poles of the geometrical optics fields 1ie in the
vicinity of the saddlie points which happens when the observation
point is in the transition region, the ordinary steepest descent
method is not applicable and a more sophisticated approach is
necessary, This approach accounts for the pole singularity of
Fl(a) when it is in the vicinity of the saddle points of f(g); and
this method will be referred to as the "Pauli-Clemmow modification of

con 9514,

he m his moaified steepest descent

o satonnact decns
uiE fic steepesy aesde

method has been presented for a general case with sufficient details in

Appendix I, Hence, no formal derivations will be presented for

24




the different problems corresponding to the different source il-
luminations considered in this report. Only the .results will be
presented for the sake of brevity, A summary of the details in
Appendix 1 may be stated in the fellowing manﬁer.

The modified steepest descent method essentially involves
replacing the integrand by a product of two functions, one of
which is singular with a simple pole and describes the effect of
the pole near the saddle point in question; the other factor is
analytic in the neighborhood of the pole and the saddle point
in question. The analytic portion of the integrand is then ex-
panded in a MacLaurin series about the saddle point and the
resulting series is integrated termwise. In all of the results
presented in this report, only the first term of the MacLaurin ex-
pansion is retained for simplicity. Thus, the results presented
here correspond to a first order asymptotic approximation, Equation
(25) is corrected through the modified steepest descent method of
Appendix I, from where Gg (diffracted fields) for large « = (kep')/(pte')

is directly given by

~jk(p*o"') XY J°TT o -
28) Gg T :nzjn JZJ'k(g*'D') J 21\&};‘;‘?— : He ! cot (%‘E’) F[Ka+(8 N-

3 T
- - J + "

)
-3—31 ” +\ " \1]
-e ¥ cotkl':—g—ﬁ) Flca (8 )]” .
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(Note: 3+

¢+ ¢'). As before, Gg may be re-expressed for inter-

h
pretation in terms of the GTD as follows.

d i, = '2‘ -j kp'] o-Jdke
(29) GS " [u A T’- .131(?)"- e DS =
h P

h

where, u' represents the line source field incident at the edge. The

new diffraction coefficient, dencted by DS is given as
h

(30) D = (d'(87,n) FLxa'(87)] + d"(8",n) F «a™(g7)]y ¥

h
T d"(6%,n) FLa* (67 + a (6 ,n) Ok~ (8T
where
-j%

(31) di(s,n) R — %—cot (1'5-@-) s

nv2nk n

B=6=¢3¢"s «=kop'/(ptp')
and

S s .
(32) Fleat(e)] = 2idai(e) 0 ) [T g3 g

4

*
where the positive branch of the squareJEE;E;E; taken, and
(33) a*(g) = {1 + cos(-g + 2nN*r)}
(The superscript + {or -) refers to the saddle point at Lg = *m
(or g, = -u).)
It can be shown that for xa“(g) » 10 Eq. (30) reduces to
Eq. (27). This is due to the fact that F[xa ()] » 1 as ka(g) - =,
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but for practical purposes Kai(e) > 10 is & sufficient condition
to replace the F factor by unity.

The result of (28) or (29) yields a uniformly asymptotic repre-~
sentation for the total field so that the dif%racted field properly
compensates for the discontinuity in the geometrical optics fields
across the transition boundaries, thereby yielding a total field
(geometrical optics plus the diffracted fields) which is continucus
everywhere, This can be verified by taking the 1imit of Eq. (28)
or (29) as one approaches the transition boundaries from either side.
Further, the total field obtained via the 1imiting process on either
side of the boundary exactly equals the "Cauchy principal value"
resulting from U(C) = %, as explained earlier, i.e., the Cauchy
principal value yields one half the residue contribution associated
with the pole corresponding to geometrical optics incident (np
reflected) wave when it happens to fall exactly on the saddle
point in question thereby defining the total field on the shadow
(or reflection) boundary. This continuity of fields at the shadow
and reflection boundaries will be described in the foilowing para-
graph.

It may be easily verified that the diffracted field just within
the 1it side (¢-¢' = m-e; e>0) of the shadow boundary gives in the
limit (e+0) the following:

’ ' \ h)
(38) _;__{_H’;'g: e-a[k(p+p',-n/41}
whereas the diffracted field just within the dark side of the shadow
boundary {¢-4' = wte, ¢>0) yields in the limit (e»0) the following:
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Uil 2 -ilklpte')-n/8]
(35) z{-% oty @
The incident ray field which is visible just within the 1it side

(¢-¢' = m-e3 as >0 and ¢>0) of the shadow boundary is

(36) -{_ %, EE%E:E?Y o-ilklp*p') -n/4 ]} .

(Equation (36) is just the large argument approximation for the line
scurce field, ~j/é Héz)[k(p+p')]). The total field just within the
1it side on the shadow boundary is given by the sum of the results

of (34) and (36) and it is seen to equal the total field just with-
in the dark side of the shadow boundary given by (35). Thus, the
total field is continuous across the shadcw boundary and equals cne
half*the geometrical optics incident ray field, which as indicated
earlier is exactly the Cauchy principal value associated with the

incident wave pole for the shadow boundary, and is given by

(37) -%-{- %—/ ;—E%;E'T e'j[k(0+p')"ﬂ/4]}

Similarly, the total "scattered" field on the reflection boundary
is one half*the geometrical optics field of the re.icuced ray (just
within the reflection boundary). The incident ray field is of course
continuous across the re‘lection boundary. The total field (in-
cident pius scattered) is thus continuous across the reflection
boundary.

It is of interest to note that the solution presented above
for the canonical problem invelving a perfectly conducting wedge

excited by & line source (electric or magnetic) is the same as

*In tnis discussion Kpp'/ptp' is assumed to be large.
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that conjectured by Rudduck and Tsai18 except that the results of
Reference 18 employ the Pauli result for the plane wave diffraction
coefficient instead of the generalized Pauli result given in

References 9 and 14.

B. Plane Wave Illumination

The plane wave incidence case is treated in this section. The
result for the plane wave case may be obtained by letting o' » « in
the 1ine source case of Section A so that kpp'/(p+p’) » kp in the
expression for k, However, we shall treat this problem in detail
for the sake of completeness. In going from Eq. (18a) to (18b) the
large argument approximation for Ko(jz(g)) was used, If instead,
an approximation corresponding to ko' >> kp is used, one may then

write

i , -j(kp' - “) .
Ko(jk/éz+p’2-20p'cos E)n zl. ?E%T e 3 [zneakpcosg] ,

as given in Reference 4. Thus (18a) becomes

(38) _
— iy _' H2 -3 s I3 + .
G(p,p:;8+)k 412 [,4;_ {;‘-f‘g'r e Jkp] J ul cot(%ﬁ )eJko cos gdg.

Tn LlJ

If one suppresses the "1ine source factor " appearing in brackets,
outside the inteqral of (38), then the resulting expression which
may be denoted by gp(p,e$) is used to obtain total field, gg(p,¢;¢')
due +o a plane wave normally incident on ihe edge of the wedge.

92 is given by
h




(39)  gPlose3e") = oPlos8T) F gPlo,8"),
h

where for a plane wave of unit amplitude and zero phase at the edge,

- ; )
(40) Plo,eT)z —L ] cot(%e_.) oko 05 £ 4
dajn n
L-L'

Moreover, gg satisfies the 2-D, homogeneous scalar Helmholtz equation,
h

(a1) (v + k%) oflo034") = 0,
h

the Dirichlet (s) and Neumann (h) boundary conditions on the surface
of the wedge, and the Meixner edae condition. Thus, for an electric
plane wave field EEi incident on the wedge, the total electric field
is given by

(422}  E-z28'g

whereas for a magnetic plane wave field EHi incident on the wedge,

the total magnetic field is

(422} W=zH .

The integral appearing in (40) has been extensively treated in
Reference 14 where the generalized Pauli plane wave wedge diffraction
coefficient was obtained via the method outiined in Apperdix I. One
might note that the integral over L-L' is evaiuaied exactly as dong
earlier for the canonical problem, where the SDP(#r) closes the

L-L' contours thereby facilitating the use of the Cauchy Residue
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Theorem, Only the results for the diffracted fields (SDP(%n) con-
tributions) will be listed here, the geometrical optics terms being

evaluated via the Residues of the integrand. Thus, the diffracted
d

field gg is given in terms of the scalar p]aﬁe wave diffraction

h
coefficient, DS as

d
(43)  gf ~ D

and is obtained for a largness parameter « = kp.

(44) D, = (d"(87,n) FLea"(87)1 + d™(8",n) FLxa™(87)) %

h
® (d'(8",n) Flxa' (813 + ¢(6%,0) FIxa (") 1,
where .
7 ]
* 8 ¥ -
d*(g,n) = - & ,—cot('n-_) s B=8 = ¢+¢'.
nvewk < zn
Also,

(45)  Fxa“(8)] = 23la™(p)

- -0 . 2
e‘]Ka (8) J e J7 dt,

VKai(Bﬂ

where « = kp ,and

(46) ai(a) = {1 + cos{-p + 2nNin)} .

T
1]

ne t to unity ¥
4

AV 1)

ka(8) » 10, Wher F + 1 in all of the four terms in (44), Ds reduces

to the form given earlier in (27). h
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One obtains (44) by utilizing the results of Appendix I for evalu-
ating _ .
§(6,8+) e<fle) de
L-L'

via the modified steepest descent method, where F(g,s+) and (&)

are taken to be

+ 1 §+e;
Fi(E;,B ) = 4ajn cot ( 2n ) >

and

f(g) = j cos £, with < = kp.

It can be shown that the complex g-plane topology is the same as in
Fig. 4 with L-L' and SDP(#r) contours unchanged. The integrand of
(40) however has no branch point singularities.

C. Spherical Wave I1lumination

Up to this point, only 2-D geometries have been treated. Con-
sider now the case of a scalar point source illumination of the wedge.
Let the point source be placed at s'(p',4',2'). The point source
generates scalar, spherical waves. For a scurce of unit strength,
the total field due to spherical waves incident on the impenetrable

wedge is denoted by gcl(p,¢,230's6'52'), where gﬁ satisfies
h

(47) (V2+k2)gﬁ(§,§') - 5(9-0')65)45-‘#')6(2-2') (5.

gs(s,$') is the scalar point source Green's function for the wedge,
h
relating the field at s(p,¢,2z) due to a unit strength point source

at s'{p',9',2").
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gs(§]§") satisfies the Sommerfeld radiation condition, the

h
Meixner edge condition and the boundary conditions:
— el
—— 39h(5:5)
gs(s,s') and sm————1 =0,
¢ ¢=0,nm
2 _ 2. 9% . .
Note that v© = Vi *+ = 1s the 3-D Laplacian operator. This 3-D

3z
probTem may be reduced to a 2-D problem through a Fourier integral

transformation, The z-variation may be removed via a Fourier
transform on the z variable,

Thus,
(48) G (pr0shs0's0's2") =J 9,(5,5")e™IM2 gz
h < h

and by the uniqueness of the inverse transformation,

(49) gﬁ(glgv) = %;‘ f 3§(p3¢,h30',¢',z')e3hz dh,

The existence of the transform pair is assumed. Thus, Fourier

transforming (47) yields

(50) (V% + kz)as(ps¢’:h;p'a¢'az') = -G(p:p )5(4;-4,‘) e"‘]hz ’
h o
where
2 _,2 2
kt = k° - h*,

Rewriting the above result as

(51) (v% + kf)Es(p,¢;,;gn)ejhz' - s[5,
h
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: ]
allows one to interpret BS (p,cp,h;'s"')eth as being identical to
—-— h
Gs(p,p') (2-D scalar 1ine source Green's function of kq. (4)) with

tne exception that k must now be replaced by ky in Eq. (4). Thus,
ejhz'

Es may be replaced by 6 (v,p'3 k).
h S .
The integral representation for G_(p,o'; kt) is known, as it

is equal to G (e,0"3k) with k replaced by k. and is given by

h
(52) G703k, ) = Gl,0"s875k,) ¥ 6(0s0'38" 3K, )
or gsejhz° - 3(8-)ejhzl 3 B(B+)ejhz'
h
where
(53)

36NeM?' = 6(,0ts8T5k,) = Lo Loor(E8) ¢ (3z(g))de
Psp 5B aKy 422 23 on o\« ’
oL

as given by (18a), with z(g) being

(54) z(g) = ktféz+o'2 ~ 200" cos € = ké-h? /éz+p'2-299’ cos &.

From the irverse Fourier transform relation,

(55) 9,(5,5") = 9(0,230",2"387) ¥ glps230' *'38")

>
h

vihere

9(psz3p",2"58) = %’ J . : COt(giﬁ)Ko(jz(3))e—jh(z.-2)d£]dh’

or
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(56)

glpsz3p'52"38) = “12 f dg cot (%%%) .
32a°n oL

m Ly 03 i- LY
: J dh H((,Z) (kP-h? (p24p*2-20p"cos £}F)e~N(2'=2)

- 00

where

7 (@)
. - s T Z 2
K,{3z) = -] 5 € H, ' (2)

has been used to obtain (56) from the preceeding equation. Further,

19

it is known™” that

J dh ng)('kz-hz(oz+p'2-2pp' cos £}?) o-ihlz'-2)

(-]

e-ik/é2+o'2-20p'cos €+(Z-Z')2

m

23

Véz + 0'2 - 2pp" COS § + (z-z')2
Utilizing the above resuit in (56) yields:
(57)
A TNY 4 2
- -Jk/gﬁ+p‘ -2p0p 'cosE+(z-2")
o(p,z50',2'38) = L dg cot 51?) &
16723n anJ a2 2
L-L? p“+p ' =2pp' cosEt(z-2")

The usefulness of the above point source scaiar problem in
the treatment of the vector electromagnetic problem is seen if
one considers the case of either an electric or magnetic dipole

+jut

moment (& time dependence assumed) which is z . rected, and

radiates in the presence of a wedge., The magnetic vector potentiai,
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K at s (observation point) for an electric dipole moment of strength,
Epea(ii'-g'l) Tocated at s', is given by

(58)  K(S) = zwp, 9 (5,5")

whereas the electric vector potential, F at E'%or a magnetic dipole

moment of strength, Epmé([E -s']), is given by

(59) F(s) = zep g,(s,e').
Also,

VA dE = BE
(60) ﬂé == and E = - —

where the subscripts e and m are used to denote field quan "ties

resulting from an electric dipole moment or a magnetic dipole

momznt, respectively. Thus, Fé = magnetic field intensity due to

Epes(rg -5'|), whereas E = electric field intensity due to

Epma([g -s'|). An arbitrarily-polarized spherical wave can be

generated by a superposition of the fields of these two dipoles.
Figure 5 depicts the geometry involving a point source at

s' and the ohservation point at S, for the source radiating in the

presence of the wedge which is impenetrable. A coordinate transforma-

tion is now introduced. One is referred to Fig. 5 for details.

Let p' = s' sin B, and p = s sin g . Hence,l(z-z'ﬂ=(s'+s )cos By

and

(61)

oz+o'2-200'005 g + (z-2')% = (s'+s )2 sin? By -

-2s's sin230(1+cos g)+(s'+s )2cos2 Bs

25's sing
= (s'+s )2[ - ——2 (1 + cos g)].
(s' +s )2

36




Incorporating the above result in (57) yields

(62) glp,z30's2'38) = '12 [dé; cot (%%) .
167%jn ‘L~L' .
2

2s' s sin‘s
-jk(s'+s }[ 1 - ——
(¢ +s )2

1)

(1 + cos &)
e

j(s'+s )2-2 ss sinzeo(l + cos £)

.

As before, the jntegral over L- L' is evaluated asymptotically for
1
Ss
large k T sinzso, and the SDP(#x) again close the L-L' contours

allowing the use of the Cauchy Residue Theorem. The location of the
SDP through saddle points at £g = *m and the complex £ plane topology
is once again unchanged except that the branch points of the integrand

are now given by

4262 4 2¢' s c05280

2s's sing 7 Qrlis2yee
i
0

-1

Ep = 291 + j cosh

and one is referred to Fig. 4 for details.
The asymptotic evaluation of the integral as in (62) is per-
formed via the modified steepest descent method outlined in Appendix

I, withFy(g) and f(g) now given by

-jk(s' +s)
- +
Fyle) = 12. °°t( %ﬁﬁ) = : ’
164n J(§ +s )22¢ s sinzso(1+cos £)
and
f(g) = J [1+ cos g]

where the approximation
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. 2's sin280
-jk(s +s ) 1~ —————— (1+ cos ¢)
(s 45 )2
(63) e 9

s's sin‘g
-jk(s' +s ) 11 - —--—-———(21 (1 + cos &)
[ (s +s)

has been used in (62) for reasons identical to those involved in the

approximation of Eq. (19).

SOURCE S
POINT

sipypid) '
O~~~

~

{ SIDE VIEW )

Qe IS A UNIQUE POINT ON THE
EDGE FOR A GIVEN SOURCE
AND OBSERVATION POINT.

Fig, 4, Geumetry for a point source illumination
of the wedge.
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The residues corresponding to the poles of Fl(g) at ¢ = zp =
- + 2nNn (N=0, %1, #2,..+), yield the geometrical optics fields
(Note that |gp| < m). The saddie point results yield the dif-
fracted ray field component. ‘

As before, the diffracted fields may be denoted by gd(E}E"),

;

where

(64) 92(515") = gd(o,Z;p',Z';B') 3 ¢%0,250',2'38%),
h
with
¥ F.OR y . R
g%o,z30",238") = - f Fi(e87)e T 6 J Fy(g,80)e (6,
SDP () SDP ()

[
$ S

-~ - 3 2
(Notz that x = k T sin

B, in this case).

No derivations are preserted, but it can be shown by using the results

of Appendix I, that

7
k(s' +s ) 13
~jk{s +s 7 =3
2u{s +s ) -
K
- I Fl(E,B)e f(g)dg v S K ) 5 ¢ *
SDP(2n) 16n°jn(s +s ) | xs s sin“g,

+
. cot (1'7?% Flka™8)] »

which may be re-written as:



[y YT

[~ anS i /4
) «f(g) e e 1/
(65) - J Fl(isB)e dg ~ ¢ } 2nf[ sing

4qst —
SDP{ £7) L /2 k.

N s' ~jks
. FLxa (8)] \JS_TSTTS—T e

cot ("is 1

One is now able to interpret the asymptotic result in terms of the

GTD, through a diffraction coefficient, Ds' Thus
h

- -jks' — "
, d i e S -jks
(66) §g v lu Y } Ds .js S +s €

h h

where

u' = field of the unit source incident at the edge, and is
given by
- jks'

u' = gz;gr"a (and is equivalent to the point source, scalar

Green's function in the absence of the wedge).

(67) D, = [td"(87,n)FCxa (87)] + d(87,n}Fxa (7)1 ¥
h
F(d*(8%,n) FLxa*(87)7 + ¢7(87,n)FLka™(8) 1)) a’rlv'a; ,
with
(68) d*(g,n)z - :;%;£4 %—cot 1%% , 3=3; ¢ F4's

Teat(e)] = 2d/kat(e)] e (8) J[” RS
ani(ﬁﬂ
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in which

t
(69) ai(s} = {1+ cos(-p + 2nNin)}, K = §§;§~ sin2 By

and N* denotes the poles closest to each of the two saddle points.
Once again, F may be Tooked upon as a transition region cerrection
factor which tends to unity away from the transition boundaries or
whenever « ai(s) > 10. The geometrical optics contribution may

easily be shown to comprise of terms of the type

0) e-jk/p2+p'2-zpp'cos[-s+2nN*nj

ULw-|-g+2nN x| 1.
4q}pz+p’2-29p'cos[-s+2nNin]
If F>1in (67), then D, of (67) veduces to Dﬁ as given in (27).
The (sin Bo)'l factor asgociated with D¢ in (67) indicates a
conical spreading of the rays in space as scgematized in Fig. 5.
This conical spreading of the diffracted rays is a consequence cf
Fermat's principle.
Summarizing the results derived thus far, one observes that
the canonical problem of a line source wedge illumination
(cylindrical wav. incidence) is useful in treating the subsequent
scalar problems involving plane wave and spherical wave illuminations
of the wedge. Separating the line source factor ocut from the in-
tegral formulation of the canonical problem yieldsthe solution
for the plane wave incidence case, whereas a Fourier transformation
related the spherical wave incidence case to the cylindrical wave

incidence case.
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The asymptotic approximation in each of the problems treated
results in a solution which can be interpreted in terms of the
geometrical theory of diffraction, and as expected, outside of the
transition regions of the shadow and reflectioﬁ boundaries, the
diffraction coefficient is independent of the type of edge il-
lumination. Within the transition regions, where strictly speaking,
ray optics is no longer valid, the geometrical theory of diffraction
can be used formally if one corrects the diffraction coefficients in
the following simple manner. The scalar diffraction coefficients
may be written as the sum of four terms, and each of these terms
is multiplied by a function F[xa], see Eq. (32) for example.

|F(xa)| < 1;
outside of the transition regions, whzre xa > 10, F[xal ¥ 1.

It is very interesting that F{xa] has precisely the same form
for the different edge illuminations. The only difference fcr the
different types of illumination occurs in it's argument; if we
write va = kLa, then

p for plene wave illumination

1
L= %Q;Er— for cylindrical wave illumination

L.S ey sin 3 for spherical wave illumination.

To ensure the validity of the asymptotic soiution, kL shculd be large.
t is indeed remarkable that the complex field behavior in the

transition regions can be described in this compact, simple way.
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In the next chapter we shall show how these scalar (acoustic)
problems are related to the electromagnetic problem of a perfectly-
conducting wedge illuminated by an arbitrarily polarized, plane,
conical, cylindrical or spherical wave. It will be seen that the
scalar diffraction coefficients developed in this chapter play an
important role in the dyadic diffraction coefficient of the

electromagnetic problem,
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CHAPTER III
ELECTROMAGNETIC WEDGE DIFFRACTION

In Chapter II, the plane waves and the cylindrical waves
asscciated with the uniform line source are normally incident
on the edge of the wedge. The solutions of these scalar problems
can be directly related to the corresponding electromagnetic prob-
lems, see (5) and {6) for the line source case and (42a,b) for the
plane wave case. In this chapter the normally-incident waves of
Chapter IT will be generalized to obliquely-incident electro-
magnetic plane waves and obliquely-incident conical electromag-
netic waves whose sources are traveling-wave line currents.

In addition, the scalar spherical wave excitation will be gen-
eralized to an electromagnetic spherical wave. Arbitrarily-
polarized, plane, conical and spherical waves may be treated by
properly superimposing solutions of the electric and magnetic
type. Asymptotic solutions to these more general probliems and
their interpretation in terms of the geometrical theory of dif-
fraction form the material of this chapter,

However before taking up these problems, a ray-fixed co-
;rdinaté system will be introduced., It wiil be seen that when
this coordinate system is used, the resulting dyadic diffraction
coefficient may be written compactly as the sum of two dyads,
or alternatively, it may be written in matrix notaticn as a

2 x 2 diagonal matrix.
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A. Coordinate Systems

The circular cylindrical coordinate system (o,6,230'40'52")
which we have useu to treat wedge diffraction is an edge-fixed
coordinate system. On the other hand, the rays incident and

jffracted at QE in Fig. 4 are more convenienyly described in terms
of spherical coordinates centered at QE‘ Let the position of the
source of the incident ray be defined by the coordinates (s',36,¢')
and the point of diffraction, by the coordinates (s,80,¢) as shown
in Fig. 5. The orthogonal unit vectors associated with these
coordinates (g‘,éé,g'; §,éo,$) are ray fixed in contrast with the
unit vectors (3',3',2';;,;,2).

The plane containing the incident ray and the edge of the

wedge wWill be referred to as the plane of incidence, and the plane

containing the diffracted ray and the edge of the wedge, as the

plane of diffraction., The unit vector f = -g' is in the direction

of incidence and the unit vector S is in the direction of dif-
Traction. It is apparent that the unit vectors Eé and 3‘ are
parailel and perpendicular, respectively, to the plane of inci-

»~

dence, and the unit vectors 8 and $ are paraliei and perpendicular,
respectively, to the plane of diffraction; moreover, éé = é' X f
and éo = 3 x s. It will be shown later that when the incident
field is resolved into its parallel and perpendicular ccmponents
and the diffracted field is resolved into its paraliei and per-
pendicular components, the diffraction coefficient can be ex-

pressed as a 2 x 2 diagonal matrix, and in this sense the ray-

a5



(S’ —s 00 FOR PLANE
WAVE INCIDENCE )
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Fig. 5. Geometry for the ray coordinate system
for electromagnetic wedge diffraction.
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fixed coordinate system 1is a preferred coordinate system.

In the following sections the diffracted field components
will first be determined in the edge-fixed coordinate system
and then transformed to the ray-~-fixed coordinate system,

B. Plane Wave Illumination

The cese of an arbitrarily-polarized, electromagnetic plane
wave obliguely incident on a perfectiy-conducting wedge is treated
first, The geometry of the problem is depicted in Fig. 5. The
incident electric field Eﬁ may be decomposed into a component
parallel to the plane of incidence EJ =6$ . Ed, and a component
perpendicular to the plane of incidence ﬁf = ;' . Ei. Thus,

- 56 E: g ﬁf, and ' = §6 HZ + ¢ ﬂ?. The Z components of

i i
£, and E, are

(71) g, =z = (8 - F)sing and E =0.

The 2 componients of the magnetic fields associated with the
parallel and perpendicular components of the incident electric
field are

¥ i— i=£6'..—.i i

(72) an = 0 and le Vﬁ: {¢* « E') sin Bye
TS B i i_ o,

(Note: K, = ¢' - H and H, = 36 H')

The totai electric field intensity E and the total magnetic
field intensity H §n the region surrounding the wedge may be de-
composed into total transverse (to 2) fields (T

axial fields (Ez’Hz)’ respectively. Thus,
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(73) E- Ft + z EZ and H = H; + 7 Hz‘

Let Gg(p,¢,2;¢') represent the total field die to a “"scalar”

h
plane wave obliquely incident on an impenetrabie wedge. G°(p,¢,z;¢')

;

satisfies

(2 + k8) 62(p,,234") = 0.
h

A traveling wave dependenc: in z allows one to express GE(B}¢') as
r .
_ _ ~jk_z
6(p30') = ab(s34"sk,) e Z , where
h R
(74)k, = k cos B, (V2 + k%) gP(p,0303k,) = O
{ 7 0? t t ?] pPad3ds t s

and kt = k sin 80.
(

gp(p,¢;¢',kt) is identical to the expression for gg
h
in (39) with k replaced by Ko

It follows that

1 . ~jk_z
c,Elde
(75) <and .
_giop IR
i HZ = HZ 9

If one knows the solutions to the axial fieids EZ and Hz’
then one can evaluate Ek and ﬁi in terms of the axial fields from

the results of Appendix II, given by the folowing relations

v, E 2 % VM
E, = -k, =2 + joy —p—b
(76) Hh N : -
g Z XV
t 2 t 2z
H’ ="'Jk -w£ .
t z kz_kg K2 . kg
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The above expressions are valid for problems which possess cy-
Yindrical uniformity in structure and fields,
The solutions for Ez and HZ are already known from Chapter II,

d .d
2 and Hz’ may be

The 2 components of the diffracted fields E
written in terms of the diffraction coefficient D_ of (44), hut
with k replaced by kt‘ The total axial field is of course a
superposition of the geometrical optics field and the diffracted ray
field. Since this report is primarily concerned with the cajculation
of diffracted fields, oniy the results for the diffracted field will
be presented here, It is a straight-forward matter to obtain the
geometrical optics contributions via the residues at the poles as-
sociated with the incident and reflected fields, as was done in
Chapter II, or, alternatively, the geometrical optics contributions
can be deduced directly from physical considerations.

For the diffracted ray contribution to the axial fields,
aP(p 930" 3k;) is replaced by gpY as in (43) (but with k replaced
b§ kt)‘ ggd is in turn expressed in terms of By of (44), but with

h
k replaced by kt‘ Thus, .
R ey AL
EZ " EZ sin 8, DS = e R
(77) {and -jktp -5k_z

Hg " H;,/sin By Dh £ ¢ ¢ s
\[?
where E;, H; are evaluated at OE’ the point of incidence on the edge,
(78) D = g [1d*(87,n)FLca ()1 + ¢™(67,0)FLka(87)]) ¥
0

S sin
L Fdet,nka’ (81)1 + a7 (6T ) Fka~(8T) 13
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with ¢ = ktp = kp sin BO,
-j %
d*(s,n) = ~° 1 cot (zzg)
2 n ’
n f2uk

. i . 2
Flxa®(8)] = 2| fea®(s)| &3 <2 (8] [ e dr,
ka (8) |

x ¢ b4 +
and a (B) = 1 + cos{-8 + 2nN"n), B =8 = ¢ = ¢'. One may refer to
Chapter II for the definition of N*.  From Fig. 5 it is esvident that
p =S sin Boe Also,

e'J(ktp+kzz) - o~Jks (with Q; as the origin),
To evaluate E¥ and ﬁ&, one may take the vector Ve and 2 x Ve operatcrs

within the integral

j%,p cos & ¥
gp(o,¢;¢‘;kt) = J e t cot (E r8 ) dg

4nin 2n
L-L*
where gP(p,034'3k,) = gPlo,838"3k,) ¥ gPlo,036'5k,)
h
p 9
(Note: as before, gs‘ = 0, and 3——| = 0).
$=0,nm ¢ $=0,nn
Thus, r i -jkzz }
" A Ez e [ ) JXgp €OS £
vtEZ e e e l J' gkt cos £ e
L-L
[cot(—g—i—@——) - cot(g—i—g—)} da},
2n 2n
(79) ﬁ . -jk_z
o H; e * { [ . ko cos g
Vtﬁz “vop - A7 3n < J JRy C05 & €
L-L'
- +
£ 48 g+ 8
\ -{cot(f~3?- )-+ cot( 5 )] dgr,




i .i 2 i K] i K
where E and H, are, respectively, E, sinp and H sinp  taken at Q.
The approximation involved in (79) is such that only those terms

are retained, which on asymptotic evaluation yield terms of 0(-"l).
d9,
Higher order range dependent ‘erms are nealected; this is a valid

approximation if kp is sufficiently large. The diffracted field con-

d d
t 2 Z

obtained from the asymptotic approximation of (79) via the modified

tribution to v.E and v,H (denoted by v,E, and v.H respectively) is

method of steepest descent described in Appendix I; one finds that

d (i -jk.p
vk, . IE t ~jk.z
(80) U2 hnod 7 b (<jk sind/2 B,) Dy E=— e *
th‘;i 1 hJo

with D_ in the above equation being identical to that of D, in (78).
h
One may re-write (77) and (80) in terms of the parallel and

perpendicular components of the incident field as

d 1-1 .

E E -Jks

(81) § 2 m{" sing D £—o

d il

z LM Is

H H

d i .
v, E -~ |E -Jjks
(82){ ©%l~o {" (-3k sin%g ) Dy &
(

H s

vt Z

Utilizing the above equations in (7€), noting that 3 = ¢ sin B, +

Bo Cos By, 7 = S COS By = By sin By and z X p = %, 9ne obtains the

following expressions for the diffracted fields (Ed,ﬁd) expressed

in termc of the coordiqate system fixed in the diffracted ray
: -jks : ~jks
acd i e i e
= t iy D -4 E D
(8) E=E w3l -8 E D 2E D,




~jks o 3 -jks
e '*H:;Ds?"“
Js s
The relations Hl.Jule = - El and ﬂf we = EJ have been used

to express the above results for Ed and ﬁd in terms of (EJ,E:) and

by d » ‘i
(84) - Hg oz o~ i) D

(HI,H:) respectively.

In equations (83) and (84) the incident-field is resolved into
components parallel and perpendicular tu the plane of incidence. Now
if the diffracted field is expressed in terms of its components parallei
and perpendicular to the plane of diffraction,

_pdh o
£ - els, £l

_ yds d»
nd - H.LBQ + H"(P k4
one may rewrite the above expressions in the form of the geometrical

theory of diffraction.

Ed'\lni(QE) . D, &

where the dyadic diffraction coefficients 3%(¢,¢';%) and ﬁh(¢,¢';60)

are exnressed in the following simpie form

5 De (620" 58,) =~BEB, Dg(6:0"58,) -4'6 D, (8,0",8,)

Dy(650"58,) ==8380 Dy (650" 48,) ~4'6 De(6:0°,8)
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where Ds(¢,¢',eo) is given by (78).

h
Expressing the difftraction coefficients in matrix nctation

d T 7 T

E|| A 'Ds 0 En {QE) e"]ks

el Lo -y ()] 5
(86)

1T i .

Hol o[-0, O 1 T H}(QEﬂ e~Jks

|

Hld. 0 =0 | I.Hui(QE)- fs

The diffraction coefficient reduces to a 2 x 2 diagonal
matrix, because we have expressed tre field components in the proper
coordinate system, namely, the ray-fixed coordinate system, and
because we retained only the range dependent *erms of 0(1[/6).

Keller and Lewis have obtained the dyadic diffraction coefficient for
a wedge i1 an edge-fixed coordinate system, where the incident and
diffracted fields are expressed in terms of their cartesian com-
ponents, Tney obtain a 3 x 3 matrix with 7 non-vanishing elements.
Furthermore, unlike the results given here, their diffraction coeffi-
cient is not valid in the transition regions at the shadow and re-
flection boundaries. We have transformed our dyadic diffraction
coefficient to the edge-fixed cartesian coordinate system. Outside
of the transition regions, where the correction factors may be
replaced by unity, our dyadic diffraction coefficient is identical
with that of Keller and Lewis, which shows that the degree of ap-
proximation in the two asymptotic solutions is the same. In-

dependently of our work, L.J. Kaplan* has shown that the Keller

*L.J. Kaplan, private communication.
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and Lewis diffractior. matrix can be reduced and diagonalized by a
suitable matrix transformatich.

C. Conical Wave Illumination

~

Consider next the diffraction of a conical electromagnetic
wave by a perfectly-conducting wedge. At the edge the direction
of incidence, which is noymal to the conical wavefronts, is
given by the unit vector f; 1.2=cos Bys where n/2 - Be, is the
half-angie of the conical wavefronts. Conical waves may be gen-
erated by'the electric aqd magnetic traveling-wave line curvents
21 EFszz and z4 Q-szz , respectively, where T and M are compiex

constants and k, =Kcos Bye

~ "jk Z
The axial {z-directed) incident electric field due to Te 2
-jk.z
and the axial incident magnetic field due to Me z may be shown
to be,
1 k% "ijZ, '_'_'i (2) . ]
(87) EZ = %Ie {-4 Ho (ktp )J’ and
2 .
k -jk 2}
i_"t 2 -j u(2) ' .
Hz = ﬁMe [-4-1 Ho (ktp )] s respectively
. 2 _.,2 2 .
with kt z k= - kZ = k sin 80.

The primes are used to denote a source-fixed coordinate system.
Next let us examine the conical wave behavior; the electric

current line source will be treated, The fields of this source are

2 s, o1
k; ’Jk_z | 10\ 1 N
..t - \2) ' [
T T 0 |7 o (k'] s My =0
{88) .
v jk, oE .
i__ sz Tz i 50 Jue 2
E; = -y k% 3ot 0 and Hy = =¢ k% SET'EZ‘
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for ktp' large, the Hankel function may be replaced by its asymptotic

approximation, so that
3 L]
~szz

. . . . ~j(k.p'- n

T (B 45N 8 ¢ LA 4+ 3 (_1 2 tt 4
( )E' (Et+ZEz)I Joe kt[pszzkt]'q ';k—t?re ’
89

D ke 7 milkee'- 7 )y -3k20

iyl A t 2 t 4 z

R = Ht v o'l (r ;'-E?)—r e )e

ktp' + kzz' = k(p® sin By * z' cos eo) = constant describes a conical

surface and 1 - E' and I - A both vanish; consequently, for ktp'
large encugh for the Hankel function of order zero to be replaced
by it's asympiotic approximation, the electromagnetic field of a
traveling-wave electric current line source is a conical wave with
it's field vectors tangent to the wavefront, i.e., perpendicular
to the associated rays. The electromagnetic field of the traveling-
wave magnetic current 1ine source has the same properties. In the
case of the electric current line source, the incident electric
field 1ies in the plane of incidence, whereas in the case of the
magnetic current line source, it is perpendicular to the plane of
incidence.

The total axial fields (EZ and HZ) excited by electric and
magnetic traveling-wave line sources can be shown (see Appendix
I11) to be 2 _

Ky -jk,z
(90) JrEZ =T Te Gs(p,p';kt), and

2 .
k -jk_z
‘ 2 7 LT

Gh(B}S";kt), raspectively.
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The special Green's function GS(E}S“;kt) is the same as that of (4)

h
with k replaced by kt' As before,
(91) G (B-:-p— 3k ) = (’(0’0 98 kt) G(Q)B' t)’
h
where the integral representation of G(p,p';8+;kt) is given by {18b)

with kt used in place of k. Also, the approximation of (13) is

utilized in the exponent of the integrand in (18b)., Specifically,

i

02) 6(o.pts8Tsk) ¥ —— | | y oo (42)
8123n L2Lh 23k, (0%4p'%-20p" cosE)®

-3k (oto' M1 - -‘Z-&—-)- (1'+ cos )

. e wre! de .

The diffracted ray contribution %o (91) is known from the result

of (28) in Chapter II from which the axial diffracted fields may be

written as
( d kz "Jk pA j 2 -j(ktp"' % )) 4 N -Jk
Ez a 3-0)—(_:- Te ('3- —k-;s-r e DS s1nBo J—
(93)
1and
d ki -jkzZ :J‘_ 2 J(ktp - —')} .
LHZ " Jup e (4 nktp h S'ln s

where D_ is identical to that of (78), but with « equal to

h

kepo' g
s " ptor S1" o

In terms cf E; and H; vwhich are the fields incident on the edge at QE’

it is easily seen that {93) can be written as
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o

|32
(=8 N
(s
N =t
S
I
t
<.
=~
(34
©
&
.
o
N

e z :
(92) ~ 5% G e [sin By
lH H e
z z
The transverse components cf the diffracted fields may be ob-
tiined via (76) in the manner similar to that of the plane wave case

treated earlier. The vector v, and z x v, operators are taken within

t t
the integral of (92) before carrying out the asymptotic evaluation.
-jk.p .
a . t ~jk_z
, d . ,
[ktﬁz n o -pjk E; DS 51n3/230 & - e ¢ ’ B
(9 .
) 5)1 d ~ i . 3/2 e-Jktp "jk_’z
thz n -p gk Hz Dh sin™"g, -—-:;- e

[}
where DS js identical to that of (78) but with x = %%gT-sin 80.

h
In deriving (95), terms of 0(1//p) are retained; all higher

order range dependent terms are negligible for ktp sufficiently large.
One might observe that (24) and (77) possess identical forms as do
(95) and (80), respectively.

. i_ i 7% BN B . i_ el s _
. Since E = Si an? Hy = H in this ?rob]em, Ez.- Eo sin 8, =
Eﬁ sin By and H; = H: sin By Also, E: = «fule H:, and ] '
i i -3(kypk 2)
E, =J /e R . Utilizing these results and the fact that e =
e'jks, (see Fig. 5), one may express (94) and (95) respectively as

d i
Ez EIl .
. o~JKS
(96) d v 5 DS Sin 80 "._ , and
H_. IH.‘ h \S
U <) N J

(Note: the subscripts e and m on E; and H; respectively dencte the figlds

of electric and magnetic traveling-wave line sources.)




d
]

- : s 2 e
(97) v (=-jk) D. sin“ 8
. S 0 =
vtnf H1J h s )
~/

1

Equations (96) and (97) are similar in form to (81) and (82),
respectively.

Foliowing the procedure indicated for the vector plane wave in-
cidence case, one may utilize {96) and (97) in {76) to obtain the
total diffracted fields in the ray-fixed coordinate system, Then
(Ed and Hd) may be written in the form of the geometrical theory of
diffraction as

ﬁmﬁmg-ﬁifs
{¢8) >

e-JkS

=

, and

ﬁd e H-l(QE) * ﬁH

Here, DE are the dyadic wedge diffraction coefficients for a conical

H. .
wave excitation.

and

_ 1 +, - -ty = - - -y - ;
Dﬁ = m—;{{d (87,n)Fixa (87)] + d (8" ,n)Flxa (7))

(" (8T )kt {8T)3 + a7 (87 n(FLka™(8) ] s

where the di(s,n) terms are identical to the di(e,n) given in (78}

for the plane wave case. The form of F[Kat(s)] is the same as in
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(78) for the plane wave incidence case, except that « in the cor-
rection factor F{ka] is equal to %%%;-s?n By in this case., As the
Tine source is removed from the edge p' + =, the lecal illumination
is plane wave and x + k sin Bo’ as it should,

When By = n/2. which corresponds to uniform line source ex-
citation (cylindrical wave incidence), then D, are given by (30).
Finally, as the arguments of the transition rggion correction factors
become large, i.e., when xa > 10, the diffraction coefficients are equal
to the D_ given by (27) nultiplied by (sin 8)™".

The matrix representation for (98) is given by (86).

D. Spheric-1 Wave Illumination

The final vector wedge diffraction problem treated here is the
diffraction of a spherical electromagnetic wave incident at QE along
the direction I with an arbitrary field polarization transverse to f.
Such a spherical wave may be created by superimpesing the fields of
2-directed electric and magnetic dipoles at s', see Fig. 5. The idea
being that a general field may be constructed through a superposition
of the TE (to z) and TH (to Z) waves with the vactor potentials F
and A, respectively[19]. The same principle was used in the pre-
vious problem of conical wave diffraction, where a superposition of
electric and magnetic traveling-wave line source fields generated
an arbitrarily-polarized conical wave.

As pointed out in Chapter II, Section ¢, A and F are given by
A(s) = gupegs('s_,'s") and F(5) = ermgh(é','s—'), respectively.

The electric dipole moment, Qpec(lglgﬂ) and the magnetic dipole

moment, Epms(!§¥§'|) generate the fields
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A=

= 1=

Vx A and fm - Llyy F, respectively.
€

The Green's function gs(§}§“) relates the field at s due to a source

- h
at s*,

9. (5:5") = glo,2z30",2"387) ¥ a(p,z30"52'38%),
h

where g(p,Z;p',Z';B+) is given by (62). Now,
1 A —— A —-—
ﬁé(é} =SV X zupegs(s,s') = -z X vtpegs(s,s'),

and sinilarly

E(s) = 2 x vyp g (5,5").

It can be verified quite easily that

- — N ikp.(s'~s cosg)
(99) -z x vtpegs(s,s') ~ ¢ J 1632' sin g cot (fﬁi%) .
L-L' 7 3n
;. ... S's sin“g
k{5 s ) [-3+] Tl © {1+ cos £)]
e

- dg
(s'+s)2 - 2s's sinzso (1 + cos &) ’

where one retains only terms contributing a range dependence of
6(1/p). 1In deriving (99), it is convenient to use the Green's
function in (57) rather than {62) so that the 5/3p and the 1/p 3/9¢
operators of v, can be applied directly. Following this operation,
the transformation p =§ sin B, and p' = s'sin B, may be used
along with the approximation of (63); ther, re*>ining the proper

order of the range dependent terms, one obtains (99).
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The complex & plane topology for f(g) = j(1 + cos &) is similar
to that indicated in Fig. 3; however, the iategrand of (S9) has no
branch cut singularities in the complex & plane. The diffracted
rays corresponding to ﬁé may be obtained via the saddle point ap-
proximation of the integral of (99). Following the procedure
outlined in Chapter II, the diffracted field, ﬁg may be expressed
in terms of I(s;), where

“ T jkpg  (s'-s cosg)sineoe"jk(5+5')
oI(B) =-¢ I

SDP ()

+g;
2 Z 2 - C°t(§§HT) )
16n°jn  (s'+s)"-2ss'sin 80(1+cosg;

3 1
3%3;% sinzso(l+cosg)
.« e dg -

. . _
- Jkpg (s'-s cosg)sinsoe'Jk(s+s )

-9 I 7 cot (55%:) °

- Z pecteiZe [1an
SpP(~q) 16¥ 3N (s*+s)"-2ss'sin"g (1+cosE)

i%?%é— sin280(1 + €o0s £)
. e dg .

then

(100)  FS~ oC1(s7) - 16N,

where

g = o+ o',

I(s$) is of course evaluated via the niodified steepest descent method
outlined in Appendix I. The geometrical optics compenent is again

obtained from the residues at the poles of the integrand of (99).

One may write 1(g%) as follows
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ﬂ'
a "JkS‘
ey 1 Zn
(101) ¢I(8) ~ ¢\(Jkpe 7 sin BQ) T ETHE cot{5 Jm—.J'TETTf\
eIk °E»<a (8)] -
. -J
-jks' 4 ;
N e . 1 e S
"¢(Jkpe gt SN B) Fajn sin g cot 2n ‘ S(s'+s

e~ K Erca™(8)]

ks's . 2
dt, and x = s 5 sin B

where
LE 9 . 2
o~3ka (B) J -Jt

Flka™(8)] = ZJ'U’E)

Rearranging terms in {(101), and utilizing (100) allows one to write

N Jk 1 - -dke
(102) T4 (kpy S sin 80, [crdmy €K

where D is given by (67).
: e am o mat d. fEe e
In the ray optics approximation, one may use o= ~los X H
where $ again denotes the direction of the diffracted ray. Using

»” ~

SX¢= -8

-Jjks' [“ ; :
= ~ . e J . s! -sks

-jks"
Cne may recognize that the term (jwupe Eﬁggr- sin so) represents the

-85 component of the incident electric field radiated by the electric

dipole moment evaluated at the point QE on the edge,

Again, El . 36 = :; and thus,
gd o i ls’  -iks
(104) Ee v 80 E" D m e o

0



From duality, one may obtain JEg via (100) on interchanging ﬂg by

=d .
-Em, Pe by Py and Ds by Dy respectively.

o-Jks’ i
(105) -4 B(3kp, Epr sin ) D'E~T§;?§T g3k

where D, is identical to that of (67). Alternatively, (105) may be
obtained from ( %-v x F), where it is understood that only the dif-
fracted field contribution of ( l—v x F) leads to (105).

F1na11y, = (S xE “d%fe/u in the ray optics approximation,
so that

"J kS ) .
S -jks
(106) Hg o s (Jmepm T sin 8, ) D sy © .

e jks' s s oA
One may recognize (Jkpm =T sin so) in {105) to be E: = E; —
-jks’ -:

Similarly, (Jwep 5—~§r— sin B ) may be recognized to be -H: =~H; .

g
66. Also (Jkp "ﬂ"T' sin g, )} in (102) is equal to -H; = -ﬁi -&'.
Far-zone conditions for both the source and the field point are as-
sumed in the above analysis; this is consistent with the desired
ray-optical approximation. One may re-write (102), (104), (105)
and (106) as

rEg . _go ﬁf 0, I§1§;3§3 o-Jks

d T ik
Epv-e E DhJ’T""E)

m 1
(107) ﬁ —d . [-—————- .
A i -JjKs
He v =¢ Hy Doy gremsy ©
=d TS | s! -jks
Hy v =8 By Dh,ls(s'+s§ ¢
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The total diffracted electric and magnetic field intensities

are respectively

Ed = Eg + Eﬁ, and
_ d
ﬁ-ﬁ+%

—
—

In terms of the dyadic diffraction coefficient E

R U
B E(q) - DEJEG—;%T e"3k, and

md . H’i(QE) . ﬁll’s—(?%ﬂ e'jks, where

In the convenient matrix notation, (108) is given by

4

N r 9 ]
ES N Dy O Eq(QE) / s' o-Jks
Ed LEl(QE) s(s¥sT)

-D
(o) { -3¢ ’ E .
e BRI K0S B ks
| Wl Lo o) {Hlgp) 56D

As an example of the utility of the above results, let us con-
sider the diffracted electric field of an arbitrarily-oriented
electric dipole moment, u' pes(ls-s']).

Let G'pe = pep';' + pe¢’8' + pez.g', where pg ; and

pl 9 pe¢
A H A A
Py 2Te the components of u’pe in the p',¢' and z' directions,

respectively. Table I gives EJ and Ef for these components.
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electric i_g ., ¢ el o %, i
dipole orizentation By = By £ EL ¢ E

-~ . e"jksr

pEp'p' -Jkpep' Ans! cos B0 0
I3 N e-ij'

Pe¢:¢' 0 Jkpe¢- YL
N e—jks'

Pagt?' ~JKpg e FrgT— SN B, 0

The diffracted electric field is readily found by substituting
El, £ into (109),

The preceding results were derived for 0 < ¢' < nm, If the analyses
are repeated for ¢° = 0, nm, i.e., for grazing incidence along the sur-
face of the wedge, in each case the diffraction coefficients Dh are
multiplied by a factor of 1/2 and the diffraction coefficients DS = 0,
This also may be deduced by considering grazing incidence as the Timit
of oblique incidence. At grazing incidence, the incident and reflected
fields merge, so that 1/2 of the total field propagating along the

face of the wedge toward the edge is the incident field and the other

1/2 is the reflected field.
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CHAPTER IV
DISCUSSION

It has been shown that when electromagnetic plane, cylindrical,
conical and spherical waves are incident on a perfectly-conducting
wedge the resulting diffraction can be approximated asymptoticaily
in the form of the geometrical theory of diffraction. Summarizing

the results of Chapters II and III, the diffracted electric field

(110) Els) = B (gp) - T(s,DAcs)e Ik

where Eﬁ(QE) is the incident electric field at the point of
diffraction,
A(s) is the spatial attenuation which describes how the field
intensity varies along the diffracted ray,

r
%:- for plane, cylindrical, and conical wave incidence
J§S

(s is replaced by p in the case of cylindrical wave

incidence),
(111) A(s) =

Sl

for spherical wave incidence
<5755 or sphe )

\

ﬁ;(g,f) is the dyadic diffraction coefficient,

~

D (06" 38,) — 6'6 D, (656" 38, 5
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(113)*

’ * 5T % Ced"(8™,n)Fxa’ (87)7 + d™(8™,n)Flxa™(s7) )

1d" (8" n)Frca’ (g1)] +
+ d”(e+,n)F[Ka'(e+)]}] . where
-j %

(114)  d5(g,n) = - 2 — Foot EB  inuhich g = g = {¢Fe')
Gven

-+t

and
(115)  Frea®(8)1 = 23 |\eai(p) | 3<% (8) J eI dr.

[+

The parameters which appear in F[xa (g8)] are defined below
(116) a®(g) = 1+ cos(-g + 2nN"n)

. . EIR s e . .
in which N™ is the positive or negative integer or zero, which most

nearly satisfies the equations

2naN” -g

(117)
2n1rN+ -B

e

k = kL is the Targeness parameter in the asymptotic evaluation of

the pertinent integrals involved in the formulation of the dyadic

diffraction coefficient. The quantity L (appearing in x = kL) may

be viewed as a distance parameter which depends upon the type of

edge illumination; it is given by

4

s sin
'

8} =G J L or cylindrical waves,

p+p' 2 t J Ve o wr
s's sincg

[ s+ s®

230 for plane waves,

for conical and spherical waves.

*For grazing Tncidence (¢‘=0,nw),see discussion at the end of Ch, III,
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When the ray-fixed coordinate system is employed, the dyadic dif-
fraction coefficient may be expressed as the sum of two dyads. One
of the dyads involves Ds’ the scalar diffraction coefficient for
the Dirichlet beoundary condition, and the other, Dh, the scalar
diffraction coefficient fer the Neumann boundary condition. In
turn Ds’ Dh depend upon trigonometric functions which appear in
dt(s,n) and F[xai(g)], which involves a Fresnel integral. The
latter may be regarded as a correction facteor to be used in the
transition regions of the shadow and reflection boundaries.
Outside of the transition regions where, Kai(B) = kLat(B) > 10,
F is approximately equal to one. Even within a transition region,
usually only one of the four correction factors in (113) is signifi-
cantly different from unity. Curves of the magnitude and phase of
F as a function of kLa are presented in Fig. 6.

Two important approximations have been made in deriving (110).
In accordance with the gzometrical theory of diffraction, it has been
assumed that the high-frequency diffracted field propagates along it's
ray path in the same manner as the geometrical optics field. Con-
sequently, the diffracted electric and magnetic fields in our
asymptotic solution are perpendicular to their direction of propa-
gation. This approximation does not introduce serious error if both
the source pcint and the field point are far from the edge. Secondly,
in deriving (110) it has been assumed that KL is large. However,
based on the extensive numerical study of asymptotic solutions of

this type presented in Reference 9, it wouid appear that generally
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speaking this approximation introduces serious error only when kL < 1,
It should be noted that the accuracy of (110) depends on both approxi-
mations, and a study of the error introduced by the two approximations,
when either the source point or the field point (or both points) are
close to the edge has not been carried out.

The preceding discussion has been restricted to the diffraction
by wedges with straight edges; however the geometrical theory of
diffraction may be used to treat the diffraction from curved edges,l’2
The diffracted ray paths are determined by the generalized Fevmat's
principle for edge diffraction, and the conservation of power flow

in the resulting astigmatic bundle of rays, see Fig. 7a, leads to

the general spatial attenuation factor
(119) A(s) = gr;;ﬁ;*gy

where the caustic distance Pe shown in ¥ig. 7a is given by

2y L.l .n:U-9
Y ' :
c Pe sin BO

for spherical wave illumination of the edge.21 In the equation above
Po is the radjus of curvature of the edge,
ﬁ is the unit vector normal to the edge,
f,g are unit vectors in the directions of incidence and dif-
fraction,respectively.
8o is the angle between 1 and é, the tangent to the edge at
the point cof diffraction - see Fig. 7b.
The expression for A(s) given in (119) reduces to that given in (111),

if Pe is set equal to infinity for the straight edge; furthermore,

70




Ditfractcd

Rays \\\

Incident
Roys

(a)

CENTER OF
CURVATURE

e
RACTING \O
- DIEFRECTING N prase centeR

OF THE SOURCE

IN GENERAL O DOES NOT
LIE IN THE OSCULATING
PLANE.

(b)

Fig. 7. Diffraction at a curved edge.
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for plane, cylindrical and conical wave illumination of the straight
edge, Pe = @

The diffraction coefficient is assumed to be independent of
Pe fo a first approximation; this is a reasonable assumption because
it is independent of the curvature of the incident wavefront to this
approximation, as has been demonstrated here in Chapters II and III.
Furthermore, the validity of this assumption has been confirmed in
numerous applications of the geometrical theory of diffraction to
structures with curved edges. Thus in accordance with the postulates

of the geometrical theory of diffraction, (110) becomes

(21)  E4®) = El(gp) -ﬁE(E,h/S S ek,

where D; is given by Eq. (112). Alternatively, if the incident and
diffracted electric fields are resolved into components parallel
and perpendicular to the planes of incidence and diffraction,

respectively, one may write (121) in terms of matrix notation as

y :
E, b, 0 Ed

] TR ks

(122)] | = js ey 0
d i
3 o -] LE

By introducing the proper ray-fixed coordinate system the
polarization effects of high-frequency scattering may be greatly
simplified, whether this involves the reflection from a smooth
curved surface, the diffraction from an edge, or the diffraction
from a smeoth curved surface. Specifically, the polarization of
the scattered field may be related to the polarization of the in-

cident field by a 2 x 2 diagenal matrix. In the case of reflection

72



one resolves the incident and reflected fiélds into compenents
parallel and perpendicular to the plane of incidence, as is well
knowrn, and in the case of diffraction by a smooth curved surface,
one resolives the incident and diffracted fields into components
parallel and perpendicular to the planes of incidence and dif-
fraction, respectively, where the plane of diffraction in this

case contains the normal to the surface at the point of diffraction

and the diffracted ray.2

In summary, employing the modified Pauli-Clemmow method of
steepest descent and introducing a ray-fixed coordinate system,
a compact, dyadic difiraction coefficient has been found for the
perfectiy-conducting wedge. This diffraction coefficient is valid
in the transition regions of the shadow and reflection boundaries
for a variety of edge illuminations. From a practical viewpoint,
this diffraction coefficient is of value in applying the geometrical
theory of diffraction to anterna and scattering problems involving

three~dimensicnal structures with edges.
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APPENDIX I
MCDIFIED STEEPEST DESCENT METHOD
FOR A POLE SINGULARITY NEAR THE SADDLE POINT

Given

D) 10 = [ Fyte) e

]

and the contour c¢ is a path of integration in the complex £ plane such
that thc integral converges. The following procedure outlines the ap-
proximate evaluation of I(x) for large x, where k is real.

Let f(g) possess a saddle point at & = Eg (i.e., df/dg = 0 at
£ = ES), and further,let Fl(g) possess a simple pole type singularity
at g = gp. The procedure to be outlined allows for gp to 1ie in the
vicinity of Ee

The contour ¢ is deformed so that it passes through £ along the
steepest descent path (SDP). If any singularities of the integrand
are traversed in the deformation of ¢ to the SDP, their contributions
must be properly accounted for in the evaluation of the integral.

The SDP in the compiex ¢ plane is given by the equation

(A-2) Im f(g) = Im f(g ), (subject to Re f(g) < 0 for |g] » =).

The SDP in the ¢ plane may be mapped into a straight 1ine along the

Re p &xis in the complex u plane via the transformation
(a-3)  f(g) = £lgg) -

Further, the descending part of the SDP is mapped onto the positive m

axis (this determines the choice of the branch of u in Eq. (A-3). Thus

Kf(is) JB

2
I(k) = e e Fy(g) gf du, -A < u < B.

-A
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e

Assuming that %ﬁ-is analytic in the nbhd of £ let
_ d
(A-8)  Fylu) = Fyle) @& [#(e) - £(g)] .
Fo (1) is now analytic in the nbhd of & and £.. Thus,
= oM
(A-5) F{u) = mzo cH
and is a valid representation for F,(u) about the saddle point. Let
(A-6)  f(g) - flg)) = Flgg) - fle)) « ¥ = -0 + ja),
where
(A-7) a = j[f(g) - f(ﬁp)J .
Using (A-4), (A-5), and (A-7) in I(x) yields

2

«F{g.) B F, (n)e™ ¥ kF(£.)

(A-8) () = - ° I -f‘-é--——- dpz e .
-A wo + ja

2
rB e-KP du

~ 3
O_A Uz + ja

if one retains only the first term in the MaclLauren expansion for F, (u).
This leads to the first order saddle pecint result. In the asvmptotic
approximation one may extend the limits of integration from -« to «
since the dominant contribution to the integral is from the immediate
nbhd of the saddle point at u = 0 when x is sufficiently large, and
elsewhere the integrand falls off extremely rapidly, contributing

negligibly to the integral. Therefere, (A-8) becomes:
2
kflge) [“ o Kb
% 2

Ju© + ja

-0

(A-9) I(x) ~ -e dy .
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From the relation f(g)-f(gp) T . (u2+ja) of (A-6) it follows that

d _ , -2
= "1\( )
a§1u=0 Pleg) 2

f
¢, = Bl &) = Fl(ES)‘i ey b (da),

5

The choice of the piraper sign on %%

is detevmined by the direction
u=0
of integration along the SU" in the g-plane. It can be shown that

0 . 2 ?
~KH . ® . 2

f ez dp = ZeJKaJ?E I e dr.
p- + ja

- /ka
Thus, it follows that (A-9) can be finally written as

«f(g,) ' ¢
(4~10) I(c) v e S F](gs) | E%%%E—T| eJ S F[xa] ,
’ S

[}

where b accourts for the argument of -2/f“(g;), and where
. e . 2
(A-11)  Flka)=23j l\ﬁa‘eﬁ"a e VT dr
Jnz |

F[ka] may be viewed as a factor which accounts for the effect of the
pole of Fl(g) which may lie in the vicinity of the saddle point. When
k@ + o, F{xaJ-» 1, and for «a > 10, F[xa] ~ 1. Thus, when the pole
singularity is sufficiently far reimoved from the saddle point, F[xa]
may be replaced by unity, and (A-10) becomes

Kf(e) [
(A-12) I(¢) v e (ES Fl(s;s) K‘Z" e >

5

which is the well known first order asymptotic result for the case of
pole not close to the saddle point. The techniques developed in this

appendix may be referred to as the "Pauli-Clemmow modification of the

method of steepest dascent”,
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For those who are interestad, the mapping of the £ plane onto
the u plane is shown in Fig. 8. Although there are two isolated, first
order saddle points in the ¢ plane (see Fig. 3), it should be noted
that only a single saddle point can occur in the u plane, Thus only
a finite region of the ¢ plane, adjacent .0 a given SDP, is mapped
onio the u plane., In the present case there are two 3DP's and thus
there are two finite regions to be mapped in the ¢ plane; onne is
defined by (0 < u < 27, == < v < =) and it maps onto the p plane
as shown in Fig. 8a; the other, defined by (=27 < 4 < 05 == < v < @)
maps onto the u plane as shown in Fig, 8b. In carrying out the
transformation shown in Fig. 8a, the positive branch of p =

Jf(e) - f(g ) is used, whereas in carrying out the transformation
siown in Fig.8 b, the negative branch of u= [f(g) - f(ss) is used.
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APPENDIX II
FIELD RELATIONS FOR SYSTEMS WITH NO VARIATION ALONG THE
z- (AXIAL) DIRECTION IN CYLINDRICAL COORDINATES

let v = Ve + 2 3%-, where e is the component of the 3-D
Lapiacian operator v, which operates on the cylindrical coordinates
transverse to 2.

let E = E% + E} and H = Hi + R, where E and H respectively
are electric and magnetic field intensities satisfying Maxwell curl

equations:

—

(A-13) VxE=-jupHand v xH = juwe E.

E, and ﬁ% are the transverse (to z) field components and E_, H, are
the axial fields (along z).
For systems uniform in ;, one may separate out the z-dependence
_ - -jk.z
in E and H by assuming an e z dependence, Next, equating the

transverse components of the Maxwell curl equations gives:

(A-14)

- - _9
(vhere v, =235 ).

-jk_z
L

Finally, using the e dependence in E and H allows one to solve

for ﬁ% via (A-14) as follows

t=jw€VtXE+V XVtx.H-'i'VZxVZxH't

t




i.e.,
v, H v, x E
T ~ . t Z . t
(A-15) Ht = 'sz 3 2 + Jwe 2 2
k™ - kZ k kz

In a similar fashion, one may obtain:

v, E zxV_ H

= R t "2z . t z

(A-ls) E. = ..]k + jop 55—
t 212 _ 2 22

-

Z Z

(Mote that VX E} = -7 x v.E, in (A-15).)
Thus, (A-15) and (A-16) allow one to calculate E{ and ﬁi from

a knowliedge of Ez and HZ alone.
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APPENDIX III
THE AXIAL FIELDS OF TRAVELING WAYE ELECTRIC AND MAGNETIC
LINE SOURCES IN THE PRESENCE OF A PERFECTLY CONDUCTING
INFINITE, 2-D WEDGE -

-jk-zl
Case 1 (Traveling wave electric current, Ie < )

The magnetic vector potential A associated with the electric

-~ =jk_z'

current z Te % satisfies:

(A-17) &=z A,» and

-. '
szz

(V2+k2)Az -u [Ie G(P'Q‘)‘S(i'q’!)‘s(z'z') dz' .,
o p
-jkzz
Let AZ =a, e (since the source and the field Az must have

the same z-dependence for (A-17) tc be true). Thus, (A-17) becomes

) 2 . (121 21s = 7 Slo=0')6(s-0")
(A-18) vg + (k*-k3)Ya, = -uI .
Let
(A-19) K2 =K% -K2 .

The fields associated with Az are given as:

(A-20)  H = magnetic field

l-v X 2 Az’ and
intensity ¥

(A-21) E = electric field
intensity =

u

i
<
€
N
x>

+

The boundary conditions on AZ are the following:




1

(A-22)  E [ yug,ny = O mRTiES T S5 |¢-0 = O
and
(A-23) E| 0 1 aaA 0
-23 E = 0 implies JmA T S 4 =
2'¢=0,nuw Juue azz $=0,n7

For (A-22) and (A-23) to be simultaneously true, one gets

(A-28) Al g pn = O

(and therefore a | = 0),

$=04n7

In addition, A, satisfies the radiation condition (for a time dependence

of the type e+j“t) and the Meixner edge condition. It follows that

(A-25) @, = ul G.(ps¢3p',6"3k;) where

-n! - [
(v2 + K2)6 (pst30" o' 3k,) = - oz )olemt’)

and G |¢_0 ng = 0. Also G satisfies the radiation condition and the

Meixner edge condition.

Finally, 2
Ez Juus (k° + ;2._2- Az = Joye a ¢ 3 Hz=0
or
ke -jk,2 \
23 e P | t, -
(A"26) EZ = Jwe Ie Gs(..f’:‘?:.‘) ¢ :ktl 3 HZ 0.
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-jk 2’
Case 2 (Traveling wave magnetic current, Me 2 ).

The vector electric potential 7 associated with the magnetic
. =3k z!

current zM e Z  satisfies

(A-27) F =z F,, and
-jkzz'

8(p-p')8(s-0') (z-2') 4
o

(v + kz)FZ = -¢ [ Me
-jkzz

Writing FZ = fz e as before ,

one obtains:

- 2 . v2ve - _y Slo-p')8(¢=0")
(A-28)  (v5 + KE)F, = - .
Thus,

(A-29) fZ =~clf Gh(ps¢;p's¢l3kt)

where

(A-30) (Vﬁ * k%)ah(p,¢;p',¢'skt) = - 6<o-p'36(¢-¢')

The boundary conditions on FZ (and hence fz) and Gh are identical

and are obtained from

L
— =0 and =
84’ ' ¢=0,n1r a¢ ¢=0’n“

where

It follows that Fz’ fz and Gh satisfy:
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oG of oF
_h = -z - -z . -
=0, 33 =0 and = 0,

o¢ $=0,nn $=0,nm a¢ ¢=0,nm

Finally the radiation condition and the Miexner edge conditions must

also be satisfied. One may then write

2 .
k -jk.z
. ot 2 U
(A-31)  H, = si=Me % G (0s0i's0'sky),  E

)
(o]
.
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