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FOREWORD

This report, OSURF Report Number 2183-4, was prepared by
The ElectrqScience Laboratory, Department of Electrical Engineering,
The Ohio State University at Columbus, Ohio. Research was conducted
under Contract AF 19(628)-5929. Dr. John K. Schindler, CROG, of the
Air Force Cambridge Research Laboratories at Bedford, Massachusetts
was the Program Monitor for this research.

The material contained in this report is also used as a thesis
submitted to the Department of Electrical Engineering, The Ohio State
University as partial fulfillment for the degree Master of Science.
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ABSTRACT

A ray-fixed coordinate system is introduced and used to derive

a new, compact form of the dyadic diffraccion coefficient for an

electromagnetic wave incident on a perfectly-conducting wedge.

This diffraction coefficient is merely the sum of two dyads;

furthermore, with the use of simple correction factors which have

the same form for plane, cylindrical, conical or spherical waves

incident on the edge, the dyadic diffraction coefficient is valid

in the transition regions of the shadow and reflection boundaries.
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CHAPTER I

INTRODUCTION

The purpose of the research described in this report is to derive

a dyadic diffraction coefficient for electromagnetic waves incident

on a perfectly-conducting wedge. It is desired that this diffraction

coefficient be valid, not only in the illuminated and shadowed regions

surrounding the wedge, but also in the transition regions adjacent to

the shadow and reflection boundaries. Furthermore, it is desired

that the diffraction coefficient be compact and accurate so that it

is useful for computational purposes. These objectives have been

attained in the form of a new dyadic diffraction coefficient, which

is d.rived in the pages to follow.

The diffraction coefficient is introduced in the geometrical

theory of diffraction in order to relate the field of the ray in-

cident at the edge to the field of edge-diffracted ray. The dif-

fraction coefficient is analogous to the reflect-on coefficient used

to relate incident and reflected fields. A description of the

geometrical theory of diffraction is given in References 1, 2, 3.

If the problem involves scalar waves, the diffraction coefficient

is a scalar quantity; on the other hand, if the problem involves

vector waves, as it does in the case of electromagnetic waves,

the diffraction coefficient is a dyadic. The diffraction coeffi-

cient in question is found from an asymptotic solution of the

pertinent wedge diffraction problem, where the result can be given a

ray-optical interpretation. The diffraction by a wedge has received



a great deal of attention over the years, and some of the more im-

portant contributions to its asymptotic solution are described in

the following paragraphs.

MacDonald 4 obtained an integral representation for the eigen-

function expansions of the total field. Plane, cylindrical and

spherical wave illuminations of the wedge by scalar waves were

treated. However, the earliest asymptotic solution to the wedge

problem appears to have been due to Sommerfeld.5 He considered

the case of scalar plane wave illumination, and his solution is

valid outside of the transition regions at the shadow and re-

flection boundaries; however, it is not valid within the transi-

tion regions. Pauli 6 and Oberhettinger7 obtained uniform asymp-

totic solutions which can be used in the transition regions. Both

of these solutions are restricted to the exterior wedge problem,

i.e., they are restricted to wedge angles less than 180 degrees;

furthermore, there is a deficiency in Pauli's solution that im-

poses a further limitation. This deficiency is pointed out in

Reference 9. Felsen 8 has obtained uniform asymptotic solutions

for plane, cylindrical and spherical wave illuminations of the

wedge. His solutions can be applied to both the interior and ex-

terior wedge problems. In addition to wedges with the usual Dirichlet

and Neumann Boundary conditions, Fe'sen has considered wedges with

impedance boundary conditions. Pauli obtained a factor type cor-

rection term which makes his solution valid in the transition region,

whereas Oberhettinger and Felsen have additive type corrections.

These differences result from the different methods used to treat
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the pole close to the saddle point in the asymptotic solutions.

Hutchins and Kouyoumjian9 ,14 generalized Pauli's solution for the

scalar plane wave illumination of the wedge and obtained a factor

type correction for the transition regions, which makes the leading

term in their asymptotic expansion more accurate than those of the

solutions described previously. Their solution corrected the afore-

mentioned deficiency in Pauli's solution. In addition, the relatively

compact form of their solution further adds to its desirability fromI the computational point of view.

The work described thus far has been limited to the case of

scalar waves. The more difficult vector diffraction problem has

been treated by Nomura, 10 who obtained a uniform asymptotic solution

for the problem of an oscillating electric dipole illuminating a

perfectly-conducting wedge. Even though his solution employs a

factor type correction for the transition region, the expressions

for the field possess a rather complicated form and they are not

amenable to easy computation. Tuzhilin 11'12 treated the scalar

and vector wedge diffraction problems; his results possess additive

type correction terms for the transition region which involve com-

plicated integrals for the cylindrical and spherical wave illumi-

nations. Recently Bowman and Senior13 unified and simplified the

results of Tuzhilin and others by treating the case of a conducting

half-plane excited by ari oscillacing electric dipole. An asymptotic

representation for the Hertz potential was presented with an ad-

ditive type correction for the transition region. The results of

Reference 13, although simpler than those oi References 11 and 12 and
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others, still lead to cumbersome expressions for the fields obtained

from the space derivatives of the Hertz potential. In summary, none

of the electromagnetic solutions described in References 10 through

13 appear to be in a form suitable for the derivation of a compact

dyadic diffraction coefficient.

It was decided to derive the dyadic diffraction coefficient for

several types of edge illumination. Although the diffraction coeffi-

cient is independent of the type of edge illumination outside of the

transition regions, it differs with the type of edge illumination

within the transition region. Let the edge of the wedge lie along

the z-axis. In the case of plane and cylindrical waves incident on

the perfectly-conducting wedge, the field components are readily

found from Ez and Hz, the z-components of the electric and mag-

netic fields, respectively. In turn, the solutions for E z and Hz

reduce to the ordinary scalar diffraction problems. The incident

spherical wave may have z-directed electric or magnetic current

dipoles as its source. The electric and magnetic fields, due to

these dipoles, can be obtained from FZ andA z , the z-components of

electric and magnetic vector potentials, respectively. Again, the

solutions for Az and Fz reduce to ordinary scalar diffraction

problems.

In Chapter ii asymptotic solutions of the scalar diffraction

problems are obtained by the modified Pauli-Clemmow method of

steepest descent. The wedge illuminated by a line source is treated

first and an integral representation of the field is obtained from

its eigenfunction expansion. By letting the line source recede to

4



infinity this integral representation is transformed into an integral

representation for a plane wave incident on the wedge. The integral

representation for the field of the point source illumination is de-

duced from the integral representation for the field of the line

source illumination by a Fourier transformation involving the z-

coordinate. After asymptotically evaluating these integrals, the

scalar diffraction coefficients and their correction factors for

the transition regions are obtained. These diffraction coefficients

are of interest not only in the case of scalar diffraction, but also

in the case of vector diffraction, where they appear in the dyadic

diffraction coefficient.

In Chapter III the diffraction of electromagnetic waves by a

perfectly-conducting wedge is treated. The plane and cylindrical

wave solutions of Chapter H are generalized to oblique incidence,

so that in the place of an incident cylindrical wave one has an

incident conical wave whose source is a traveling wave electric or

magnetic current line source. Starting with E and 1z one then

determines integral representations for all of the field components.

These integrals are then evaluated asymptotically.

In order to simplify the expression for the diffracted electro-

magnetic field, special coordinate systems for the incident and

diffracted fields are introduced. These coordinate systems are

suggested by the law of edge diffraction and they are fixed in the

Incident and diffracted rays. When the components of the incident

and diffracted fields are written in this coordinate system, and

5



only the leading term in the asymptotic solution is retained, the

resulting expression for the dyadic diffraction coefficient reduces

to a sum of two dyads. If, instead, a simple edge-fixed coordinate

system were used, the resulting dyadic diffraction coefficient would

appear as a sun of seven dyads; thus, the importance of introducing

the special ray-fixed coordinates can hardly be overemphasized.

The case of a spherical wave obliquely incident on a perfectly-

conducting wedge is treated in a similar manner; in this case, the

field components are found from Az and Fz.

6



CHAPTER II

SCALAR WAVE DIFFRACTION

This chapter deals with the scalar wave diffraction by an im-

penetrable wedge; both Dirichlet and Neumann boundary conditions

are treated. Plane wave, cylindrical wave and spherical wave

illuminations of the edge are considered. The relationship of

these problems to the electromagnetic problem is indicated.

A. Cylindrical Wave Illumination

Consider a z-directed, uniform line source of unit strength

radiating cylindrical scalar waves in the presence of an impenetrable,

infinite wedge as shown in Fig. 1. The total field, which consists of

y
OBSERVATION

POINT

/

IMPENETRABLE
2-D WEDGE

Fig. 1. The 2-D wedge and line source in the

circular cylindrical coordinate system.
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the incident and scattered components surrounding the wedge~is given

by a two-dimensional scalar Green's function G (P,') where

(V2 + k2) G= -6(1p- -PI)

h

V2 = the two-dimensional Laplacian operator in circular cylindricalt

coordinates, and 6(j - ' 1) is the Dirac Delta function. k = wave

number of the linear, homogeneous and isotropic medium surrounding the

wedge. G s(,p-') satisfies the following boundary conditions at the

wedge surface:

(2) Gs ( ,*') = 0 at 0 = 0, nv;

(3) .- Gh( , ') = 0 at o = 0, nit.

Boundary condition (2) corresponds to the acoustic case for a soft

wedge whereas (3) corresponds to the acoustic case for a hard wedge.

In mathematical terminology, (2) corresponds to the homogeneous

Dirichlet boundary condition and (3) corresponds to the homogeneous

Neumann boundary condition.

Furthermore, GR ( ,-') also satisfies the Sommerfeld radiation
condition15 and the Meixner edge condition,16 respectively. Thus

the solution for G,(',-') is unique.

The above problem, depicted in Fig. 1, represents the basic

canonical problem in this report, It will be used to deduce the

solutions of the other canonical problems.

8



The Green's function Gs(T,-') for this canonical problem is
h

given by a convergent eigenfunction expansion as
(4)G5(~5')= 5  = -j 0 r

(4) G , G Gs(p',) 0 m Jm(kP) H(2)(kp') •

h h m= n n

[cos 2- (- ) cos -

where

0 < < nn

0< p < p, <,

and

cm :1,m O

=2, m 0.

Jm(kp) and H(2)(kp') represent the cylindrical Bessel function of

n n
the first kind and the cylindrical Hankel function of the second

kind, respectively. A time dependence of the e+jWt type is

assumed and suppressed. G represents the modal description of

the waves existing in the presence of the wedge structure excited

by a line source at (p'90'). Gs as given by (4) converges for all
h

pq, ,' and n (interchanging p and p' in (4) yields Gs for p > pl)o
h

It is easy to see that the total electric field (z-directed)

is proportional to Gs if the line source is electric, whereas

the total magnetic field (z]directed) is proportional to Gh

if the line source is magnetic. Thus, the scalar problem is

useful in the treatment of the electromagnetic problem of a uniform

electric or magnetic cu,'rent line source illuminating a wedge which

is perfectly conducting.

9



If the line source is electric, then the total electric field, Ez

is given by

(5) Ez(-) = -jP IGs,

where a, is the angular frequency and p is the permeability of the

medium surrounding the wedge.

If the line source is magnetic, then the total magnetic field,

Hz is given by

(6) H(-p-) = -i w MGh,

where e is the permittivity of the medium surrounding the wedge and

T and M are the strengths of the electric and magnetic current line

sources respectively.

An integral representation for the product, Jm(kp)Hm2)(kpl) is
4

n n

(7) J (kp)H(2)( i. - 1 rjc-Jw -t-k 2 (p2+p' 2 ) t-lJ im (kpp dt

n n 0 n

O , m-> -1 and IPI < lP'l- m @
n

I (k ' ) represents the modified cylindrical Bessel function

of the first kind. A useful integral representation for Im ( )

is given by
4

2t 1 Iy'+ 'jC k cs +Jm
(8) a L e t n d.)

n y+j-

10



where - < y' < 0,

< y <2.

Thus,

2 __ Cs j-
(9) Im( ) = -L e n d,

n L

or k92-2 cos j- _C
1_ -- f etn d ,

n L

where the contours L and L' are indicated in Fig. 2. Replacing the

cosine terms in (4) by exponentials, and utilizing (7) and (9) in

(4), interchanging the orders of sumatio and integrations, and

k 2 )choosing the L' contour representation 'for Io t (corresponding

to m = 0), allows one to write (4) as

(10) G s- = G(-,P-;a-) T G(q; ;+)

h
where

(11) G(P"";B') = 8 c-JO2 e [t'k 2 (p2+p' 2 )t 1 l "1

0

2,e t d 1dt

L[ + e L e- d T"
jM=0

and

(12) .

11



I.P
L COMPLEX " PLANE

I CI I

I I
II

Fig. 2, The and L' contours for the integral representation of

Im(kt) in the complex g plane.

n

Eq. (11) may be further simplified by noting that

j I (g+ s) - J I- ( + o

Z1 e n m e -1,

and

e n
m=O ±j(L )

(13) 1 -e

Also
Sj 2 m)

V -!= -4- cot( +B) --
'adm:O " 2n 2

and

ej 21(m cot ( )+
m=O e 2

12



Therefore, (11) may be written via (13) as

(14) G(p,p';a) =  - .. 1 e [t-k2(p 2+p, 2 )t-l
87r 2np

0

e t [ cot( +
-~p 5 cot(.)-1 d( dt

f J2 o [j 2j+ e,- cot " - + - E

which on interchanging the orders of integration, gives

(15) G(p,p';a) f 5 dg - cot( -•

8iff2n 2j 2

L
j~oo dt e [t-k 2(02+p 2)t-1 + k2  cos -

0

- 1 Co
87r nl L' 1.
*h tj.i~ -~ tk 2 (p2+P12)t-1] + k2 ' Cos g

0

It can be shown that
4

t z2

(16) " . f t KJz),
Jc-jCO

where K (jz) is the modified cylindrical Bessel function of the

0

second kind, of order zero and argument, jz. Utilizing (16) in

(15) gives

13



12 _ ,p o S ) -1 d
G(p,p';-) f Ko(Jk p- cot

Ko(J k /P2+p,2.-2op, cos ) 27cot( + deId,
47r2n , U YF5 2

or, on combining terms one obtains

(%17)

G4PP2 L-L' Kok /P co +"

Let k /p2 + p 2  2pp' cos - z(E)

then,

n 1. Ko(Jz(C))d 2o(jz(E))dK ----

1 JL-L L4n

12 f Ko(Jz(E))d -f Ko(Jz(-E))d(-,) } O
8rn L -L

since z() = 4-0.

Finally, (17) can be written as

(18a) G(p,p,;+) - f djI cotK cos) .

47r2n L-L' I2n d J

Equation (18a) directly leads to a complex contour integral repre-

sentation for G (,-') = G(p,p';-) T G(p,p';O+). The integral

representation is still an exact form of the solution.

14



If Iz( )l is large with respect to the order of K040),

one may use the large argument approximation
(j() -.1 e-jz( g)  kp2+ cos

Ko(JZ( )) " 2jz ) ), where z( ) k '2-2pp' cos

and -7r <arg (jz) <I•

In the asymptotic solution described later it will be seen that Izi

remains large in the neighborhood of the saddle points. Therefore,

(18a) may be written as

(18b) G(p,p ; ) 1 E d f o s

8-,r2Jn L-fL' J2jk(p2+p'2-2pp' cos

cot E+ + ,jk p+ 2 2p o

Furthermore, the exponential may be approximated as

(19) e-jk/ p2+p 2 2pp 'cos = e (p+p')2 2ppl(cOs  + 1)

-jk(p+p') {1 - (pP - (1 + cos 0)

The above approximation will be justified a little later in the

chapter.

Let

11 ~ppl
F8( ) = 

2jn 2jk( 2+p'2 -pp' cos F)' cot( \2n e

and

f({) = j [1 + cos -j

15



Thus,

(20) G(P"-'; ' ) f d F(, eKf()

L-L'

is a compact notation for the expression in (18b) but containing the

approximation of (19).K = kf I and is assumed to be large. Thus,

Eq. (20) is in the proper form for an asymptotic evaluation of the

integral via the met.iod of steepest descent. The steepest descent

paths (SDP) selectic for the asymptotic evaluation of (20) are those

which pass throug, the saddle points of f() at s = - for the

following reason.

The saddle points of f(g) occur at

however g, ± -are the only ones chosen because the steepest descent

paths through gs = ± allow one to close the (L-L') contour, thereby

facilitating the use of the Cauchy Residue Theorem. Figure 3 indicates

the locations of the steepest descent paths through the pertinient saddle

points at. s = ±iT. It is easily seen that the required integral in

(20) ,.s given by:

(21) L dE F(,8+) ef d) eKf(d) dF -
L-L' SD ( 7

edI((g,) d +"SDP(-7r)

+ 2.1j sum of the residues of F,, ) enclosed +rbetween L-L' and SDP(±_)

+ (branch cut contributions, if any)

16



The saddle points are the roots of

=f'() = -jsin s =0.
dss Cs

Thus, it follows that

Es " T, where z = 0, 1, 2, 3,

As indicated earlier, only the case corresponding to z = 1 is of

interest here.

iv COMPLEX PLANE

1 S L

Ct=b-37 F / 2w

2 27
' =u+jv

Cb D SI DPr) b

BRANCH CUT

Fig. 3. Steepest descent paths (SDP±t) and the

complex & plane topology.
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In order to ensure convergence of the integral in (18b), one must

have Re f(d) < 0 as lIm &I . The portions of the complex g plane

for which Re f(E) < 0 as tim J I are shown as shaded vertical

strips in Fig. 3. The SDP equations are found from the condition

that

Im f( ) = Im f( S)

or

cos u cosh v = -1, where g = u + jv.

The above equation is valid for &s ±7 and the paths chosen are

depicted in Fig. 3, the choice, as mentioned before, being governed

by the fact that Re f( ) < 0 on the SDP(±u) as lIm E l (where

Im g = v), and that these paths blend in with the L - L' contours as

JIm J - , thereby allowing one to obtain a closed path of in-

tegration. (The paths corresponding to the images of SDP(±r) about

Re g = ±n also satisfy cos u cosh v = -1 but are paths for which

Re f( ) > 0 as JIm gI

It is desirable at this juncture, to study the singularities

of F(,C ) in the complex t plane.

+ c ( /+ +) e-jk(p+p')

I i82jn 2jk(p2+p'2-2pp' cos )c -

F(E,a±) has branch point singularities at 9 = 9b which are the roots

of
2 ,2 , =p + p - 2 pp cos b 0

18



For the case where p p', it follows that p' + p 2 > 2pp', and

therefore

02 + .2
Eb 2 ±j cosh 1 2p" -+ , where 1 = 0, ±1, ±2,= 2p p -

The branch points and the branch cut locations are indicated in

Fig. 3, where it is seen that the branch points are not in the

vicinity of the saddle points at s= ±7r, and the branch cuts lie

outside the closed path formed by L - L' and SDP(±n), so that the

closed path is unaffected by the branch cuts. The integrand is

single valued on and within the closed path, and since no deformations

of this path are necessary for single valuedness, the branch cut

does not contribute to the integral.

The pole type singularities of FI() occur at = p, where p

are specified by

p + + 2nNir, N = 0, ±1, ±2,

The residues corresponding to Cp are evaluated for 1Ep 1ir as only

+these poles lie within the closed path of integration since a

T i *', (it is easily seen that p is a real quantity). It can

be shown that p are simple poles.

For sufficiently large K, the major contribution to the in-

tegrals evaluated over SDP (±n) occurs only from the "immediate

vicinity" of the saddle points (s = ±n); hence it follows that the

approximation of (19) is justified, as J(1 + cos )J is small for

:s"

The first order saddle point approximation for a pole not close

to the saddle point is given by

19



IT/
(22) J, ) Kf d~d F(1tu,a3) ek-f(±A/ -27-r e 1y

in wih e bis asoiae wit g rand e (~with gs=-r

The residue contribution to the integral over the closed path,

where c = (L -L') + SDP(W + SDP(-n), and P(g,s'* and Q(.r,$ are

both analytic functions of the complex variable, g.

and

Q=, + 8 rj sin 2

with

Ql~g = 4n2j cos &+ )
The residue at E =- + 2nNir is thus given by

(23) - t '.ff 4 k(P 2+P,2 _2pplcos[-o +2nNT1) 2

20



which may be recognized as the asymptotic form of

If {ff 4 o P -I22pp I cos [-+2lNvr1 U [7r-1-0 +2nN-rIJ
and therefore represents the geometrical optics contribution in terms

of the line source fields due to the source or it's image (the total

geometrical optics contribution being a superposition of the incident

and the reflected fields).

(t , if t< 0
1, ift>0.

U(O) = ensures the Cauchy principal value when the pole singularity

lies on the closed contour c. The function U(T--0+2nNTI) auto-

matically restricts the geometrical optics contributions to aspects

defined by 1-0+ + 2nNrI < 7, so that the contributions from poles

outside the closed contour, c, are not included.

Thus, for the N = 0 case, one obtains for the geometrical optics

contribution, Gs  the following field
5
h

(24) Gg' 0  {2i424 J Ik(p 2+p, 2_2pp, cos ( .,,1) )

e-jk(p 2+p ' 2 "2pp ' cos( '@ )) U (I-

€o i*e ~ +P_+ O(+

3-3
e-Jk(p2+p' -2pp'cos(O+ ')) U

21



(The minus (plus) sign between the two terms on RHS of (24) cor-

responds to the soft (hard) boundary condition). 'The first term on

the right of (24) is the direct source (at p', ') radiation at the

observation point (at p,p), whereas the second term represents the

reflected wave contribution at the observation point (at p,o) which

appears to emanate from a virtual line source (at , The re-

flection occurs from the wedge face, 0 = 0. In general, the incident

field is described by N = 0 and s = @-d'. The reflected field from

the surface 0 = Oresulting from the incident field, -is described

by N =0 and = + 0'. Other values of N describe fields which

may be reflected either from the surface 0 = 0 or the surfaces 0 = nir.

Since the total field is composed of the geometrical optics field

and the diffracted field, it follows that the saddle point o, 'ri-

butions must yield the diffracted ray field in accordance with

Keller's theory. The first order saddle point results for large

(kpp')/(p+p') as obtained from (22) is given as

011

G d= f-, B Kf(E ,a)d + ( K~ef(E,07)E TGs =.

h D() SDP(-v)

' Fl(r'+)e f(' + J Fj( ',+)e Kf(E'+)]d}

or, SD SDP(-7r)

d ejk(p+p') jz c tF

h

ej [ cot (T) + e cot(4)}

22



i e.,

)1 ejk(p+p') sin sin
s T'rjK " o
h cos cos 0 Cos Cos

nt nj

For N = 0 case, the total field surrounding the wedge is given asymp-

totically by superposing the results of (24) and (25) as indicated

by (21).

The value of the incident wave at the edge is given by, ui where

- *( 2 )(,p')'- - j2'- e-jkp,

for large kp'. Therefore, in accordance with the geometrical theoryGd
of diffraction, Gs may be written as

s
h

(26) Gd d u.i  2 ' e jkp' DS - ,

S L 4  7 kp hh h /

for large kpp'i(p+p'), where Ds is the wedge diffraction coefficient

h
associated with either the soft or the hard boundary condition ate-Jkp
the wedge surface. The factor - describes the variation of

the amplitude and phase of the field of the diffracted rays emanating

from the edge and traveling in the positive p direction.

Comparing (25) with (26) it is seen that

(27) Ds = e-WT14  sin sn

h cos L - cos Cos - Cos(

The reul. ,,,u,.-.u i', i ,u;gm,.a, to thatdueuuced by

Sommerfeld.5 This result fails at the shadow and reflection bound-

aries where -±- = L- + 2Nu, and it is evident that at the shadow andn n
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reflection boundaries the diffraction coefficient becomes singular.

As mentioned earlier, @ + 7r (N=O) defines the shadow

boundary; however a shadow boundary does not occur if the exterior

wedge angle nn < u or if nit - w <I ' < w in the case where nu - it> 0.

A reflection boundary associated with the wedge surface = 0 occurs

at = r - ' (N=O); if nn > t - '. Other reflection boundaries

may result from the reflections at the two surfaces.

In the transition regions of the shadow or a reflection boundary

a pole is close to the saddle point. Later, we will be interested

in the pole closest to the i saddle point, and the pcle closest to

the -ir saddle point. The values of N associated with these poles

are defined to be N+ and N-, respectively. The value of N± is

decided by the integer which most nearly satisfies the equation:

l2nN_+ . 8 = -+

where 8 : 8 - + '.

Whenevcr the poles of the geometrical optics fields lie in the

vicinity of the saddle points which happens when the observation

point is in the transition region, the ordinary steepest descent

method is not applicable and a more sophisticated approach is

necessary. This approach accounts for the pole singularity of

F () when it is in the vicinity of the saddle points of f(g); and

this method will be referred to as the "Pauli-Clem mow modification of
.&,." ,,,it.,9 9, steepest -..... e-,,s9,14st_...e_.
te .ethod of I * s muul, ,eu sLepest descent

method has been presented for a general case with sufficient details in

Appendix I. Hence, no formal derivations will be presented for
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the different problems corresponding to the different source il-

luminations considered in this report. Only theresults will be

presented for the sake of brevity. A summary of the details in

Appendix I may be stated in the following manner.

The modified steepest descent method essentially involves

replacing the integrand by a product of two functions, one of

which is singular with a simple pole and describes the effect of

the pole near the saddle point in question; the other factor is

analytic in the neighborhood of the pole and the saddle point

in question. The analytic portion of the integrand is then ex-

panded in a MacLaurin series about the saddle point and the

resulting series is integrated termwise. In all of the results

presented in this report, only the first term of the MacLaurin ex-

pansion is retained for simplicity. Thus, the results presented

here correspond to a first order asymptotic approximation, Equation

(25) is corrected through the modified steepest descent method of

Appendix I, from where Gd (diffracted fields) for large K = (kpp')/(p+p')SIh s

is directly given 
by

d V e -Jk(P+P') I  2, + "'TeJ 'f+8-N +

(28) Gd - 8-2in+ ___k__'_'__. cot F[Kas 82 2jT P +P' jiKP P
h 8l Un

- e-4cot m0- F[Ka')]t e cot (T ) F[Ka+(O+)]-

5cot( F
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(Note: '). As before, Gs may be re-expressed for inter-
h

pretation in terms of the GTD as follows.

(29) G [i - kp Ds e.
h h

where, ui represents the line source field incident at the edge. The

new diffraction coefficient, denoted by D is given as

h

(30) Ds = {d+ (an) F[Ka+(O-)] + d'(B",n) F Ka'(O')]} T
h

T {d+ (o+,n) F[Ka+ (+)] + d-(+,n) F[Ka'(e+)]}

where

(31) d-((,n) . . cot( +)n 2k (- co --2nj

(3 = b6 -= ', K = kpp'/(p+p')

and

(32) F[Ka(8)] 2j Ka ( ) e 1 e' t dt,
J

Ka-(o)
where the positive branch of the square root is taken, and

(33) a+(o) = {1 + cos(-a + 2nN-7r)}

(The superscript + (or -) refers to the saddle point at Cs

(or E f).)

It can be shown that for Ka-() .> 10 Eq. (30) reduces to

Eq. (27), This is due to the fact that F[Ka+(0)] 1 1 as Ka+($)
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but for practical purposes Ka-(0) > 10 is a sufficient condition

to replace the F factor by unity.

The result of (28) or (29) yields a uniformly asymptotic repre-

sentation for the total field so that the diffracted field properly

compensates for the discontinuity in the geometrical optics fields

across the transition boundaries, thereby yielding a total field

(geometrical optics plus the diffracted fields) which is continuous

everywhere. This c~n be verified by taking the limit of Eq. (28)

or (29) as one approaches the transition boundaries from either side.

Further, the total field obtained via the limiting process on either

side of the boundary exactly equals the "Cauchy principal value"

resulting from U(O) , as explained earlier, i.e., the Cauchy

principal valut yields one half the residue contribution associated

with the pole corresponding to geometrical optics incident (nr

reflected) wave when it happens to fall exactly on the saddle

point in question thereby defining the total field on the shadow

(or reflection) boundary. This continuity of fields at the shada

and reflection boundaries will be described in the following para-

graph.

It may be easily verified that the diffracted field just within

the lit side ( -,' = n-c; c>0) of the shadow boundary gives in the

limit (e-+O) the following:

(34)1 { e-j [k(p+p '-/4]71 4

whereas the diffracted field just within the dark side of the shadow

boundary (7-c' = i+c, c>0) yields in the limit (c.+O) the following:
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(35) ~ -F-' .. e- i [ k ( p + p ' ) - ,r/ 4 ] }

The incident ray field which is visible just within the lit side

( r- ; as c-*O and c>O) of the shadow boundary is

S 2 e.[k(p+p') ii

(36) 4 p+P y e.

(Equation (36) is just the large argument approximation for the line

source field, -j/4 H(2)[k(p+p')]). The total field just within the

lit side on the shadow boundary is given by the sum of the results

of (34) and (36) and it is seen to equal the total field just with-

in the dark side of the shadow boundary given by (35). Thus, the

total field is continuous across the shadow boundary and equals one

half*the geometrical optics incident ray field, which as indicated

earlier is exactly the Cauchy principal value associated with the

incident wave pole for the shadow boundary, and is given by

(37) 1 4, ik :+ eit(PP'1T4]}

Similarly, the total "scattered" field on the refl-ction boundary

is one half*the geometrical optics field of the r:, ,_,ced ray (just

within the reflection boundary). The incident ray field is of course

continuous across the reflection boundary. The total field (in-

cident plus scattered) is thus continuous across the reflection

boundary.

It is of interest to note that the solution presented above

for the canonical problem involving a perfectly conducting wedge

excited by a line source (electric or magnetic) is the same as

*In this discussion kpp'/p+p' is assumed to be large.
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that conjectured by Rudduck and Tsai 18 except that the results of

Reference 18 employ the Pauli result for the plane wave diffraction

coefficient instead of the generalized Pauli result given in

References 9 and 14.

B. Plane Wave Illumination

The plane wave incidence case is treated in this section. The

result for the plane wave case may be obtained by letting p' 4 - in

the line source case of Section A so that kpp'/(p+p') 4 kp in the

expression for k. However, we shall treat this problem in detail

for the sake of completeness. In going from Eq. (18a) to (18b) the

large argument approximation for K0(jz( )) was used. if instead,

an approximation corresponding to kp' >> kp is used, one may then

write

K(Jkp2+p2-2pcos - 2 -J(kp' Jkpcs ,

0 (j e Pr/[2+;eikplcosj-- 2r
as given in Reference 4. Thus (18a) becomes

(38)

2;ecot 4 k + jk41[n4j Wk -,I i ( 2zn cs{

41T2nL L-L '

if one suppresses the "line source factor " appearing in brackets,

outside the integral of (38), then the resulting expression which

may be denoted by gP(p,a¥) is used to obtain total field, gP(p, ;w')

du to a plane wave noiaI, , y incident on Lhe edge of the wedge.

gP is given by
h
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(39) gpPpo;W) = gP(o,C-) T gP(pa+),

h

where for a plane wave of ujnit amplitude and zero phase at the edge,

(40) gp(p, +)_ I cot ( -  .) ejkP cos dc
" 4-jn 2n ""

L-L'

Moreover, gP satisfies the 2-D, homogeneous scalar Helmholtz equation,
h

(41) (V2 + k2) gp(p, ; ') = 0,
h

the Dirichlet (s) and Neumann (h) boundary conditions on the surface

of the wedge, and the Meixner edge condition. Thus, for an electric

plane wave field A incident on the wedge, the total electric field

is given by

(42a %  ^ E i gP

whereas for a magnetic plane wave field zHi incident on the wedge,

the total magnetic field is

(4 H= Z H' gP'

The integral appearing in (40) has been extensively treated in

Reference 14 where the generalized Pauli plane wave wedge diffraction

coefficient was obtained via the method outlined in Apper.dix I. One

might note that the integral over L-L' is evaluated exactly as done

earlier for the canonical problem, where the SDP(+w) closes the

L-L' contours thereby facilitating the use of the Cauchy Residue
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Theorem. Only the results for the diffracted fields (SDP(±n) con-

tributions) will be listed here, the geometrical optics terms being

evaluated via the Residue; of the integrand. Thus, the diffracted
d

field gs is given in terms of the scalar plane wave diffraction
h

coefficient, Ds as
h

(43) g d% D e-jkp

h h P

and is obtained for a largness parameter K = kp.

(44) Ds = {d+ (-,n) F[Ka+(a')] + d'( _,n) FEKa(I)
h

{d+(a+,n) FEKa+( +)] + d-(o+,n) FKa(B )]1

where

d-(a,n) = e i _cot( ) t,

Also,

(45) FEca (a)] 2fKa1()IeJa+( e.j d,

where K = KpIand

(46) a±(s) = {1 + cos(- + 2nN+ir)}

'orC+o +^ ±/II4 4 +

Ka ) > 10. When F -+ 1 in all of the four terms in (44), DS reduces
S

to the form given earlier in (27). h
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One obtains (44) by utilizing the results of Appendix I for evalu-

ating
f F(E,B+) e K

fQ ) d

L-L'

via the modified steepest descent method, where F(),B and f( )

are taken to be

F = 4Lj---n- cot (
j1.o) 4rrjn '2nT

and

f(.) = j cos E,with x = kp.

It can be shown that the complex &-plane topology is the same as in

Fig. 4 with L-L' and SDP(±_+) contours unchanged. The integrand of

(40) however has no branch point singularities.

C. Spherical Wave Illumination

Up to this point, only 2-D geometries have been treated. Con-

sider now the case of a scalar point source illumination of the wedge.

Let the point source be placed at s'(p', ',z'). The point source

generates scalar, spherical waves. For a source of unit strength,

the total field due to spherical waves incident on the impenetrable

wedge is denoted by gs(p,,z;p'W,',z'), where gs satisfies
h h

(47) (v2+k2 )gs(-s,S') - 6(p-P')64-4') (Z t- =-(IS-S'I).
h P

h

gs(S-,S') is the scalar point source Green's function for the wedge,
h

relating the field at s-(p,,,z) due to a unit strength point source

at s'(p' , ',z').
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s(,~e) satisfies the Sommerfeld radiation condition, the

h
Meixner edge condition and the boundary conditions:

gs (T,-) = , and 0.
N=Ot en than "

Note that v2 =V2 + is the 3-D Laplacian operator. This 3-D
problem may be reduced to a 2-D problem through a Fourier integral

transformation. The z-variation may be removed via a Fourier

transform on the z variable.

Thus,

(48) gsj(p, ,h;p', € ' , z I) =Jgs(-S-')e'hz dz

h h

and by the uniqueness of the inverse transformation,

(49)2"-f gs ( p O' h ; p ' , ' , z ) dh.

h-CO h

The existence of the transform pair is assumed. Thus, Fourier

transforming (47) yields

(50) (Vt + k)gs(p,O,h;ptq',z') = - eJhz
h p

where

k2 = k2 - h2.

Rewriting the above result as

(51) 2 + k --9SePh

h
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allows one to interpret g (p, ,h;)e' as being identical to
hGs (,p-') (2-D scalar line source Green's function of Eq. (4)) with

te exception that k must now be replaced by kt in Eq. (4). Thus,

gs e may be replaced by Gs(-, P; kt).
h h

The integral representation for G p k t) is known, as it

is equal to Gs (p, p- ;k) with k replaced by ks, and is given by

h

(52) G s(T," ;k t ) = G(p,p';a ;kt) T G(p,p' ;kt)
h

or jhz' ()h (g+Jhz,
g se  =(~ oo

h

where

(53)

ru jhz' 1+
g(j )e = G(p,p';6';k) - 2 j 1cot( +y-0 + ) K0(jzz())d

4n n L L

as given by (18a), with z(g) being

(54) z(g) = k/2 - 2pp' cos = p'2-2pp' cos .

From the inverse Fourier transform relation,

(55) gs(S') = 9(p,Z;p',Z';-) T g(p,Z;p' +';6+
)

h

where

g(paZ;p',Z'; ) : LL I cot( + Ko(jz())e-h(z'-z)d dh,COLL-L I8 j

or
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(56)

g(pZ;p',Z';): d cot
32,2n LfLt

J dh H02)( k2-h2 {p2+p'2 -2pp'COS 0} )e-jh(z' z)

-00

where
-3 2 H(2)(z)

K(jz) j eV 2V

has been used to obtain (56) from the preceeding equation. Further,

it is known19 that

f Ho2) ( k-2_h{2eJz'z

dh H 0 h2[p2+P'2-2pp' cos 1} ) -jh(z'-z)

-jk/. 2+P,2_2ppcos (zl2

/p2 + p,2 _ 2pp' Cos E + (ZZ)
2

Utilizing the above result in (56) yields:

(57)

'_____ r ( e~~ jk4/ 2+ps2 2ppcOsE+(zz')2

g(p,z;p,z;$) = J d cot e
16'a2jn1 r /2+p , 2_2p o (zz 2

L-L' k -2 p c I z )2

The usefulness of the above point source scalar problem in

the treatment of the vector electromagnetic problem is seen if

one considers the case of either an electric or magnetic dipole

moment (e+jwt time depe;dence assumed) which is z . rected, and

radiates in the presence of a wedge. The magnetic vector potential,
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a' at s (observation point) for an electric dipole moment of strength,

ZPe6(iT "' I) located at s', is given by

(58) (s) = zupe gs (°,)

whereas the electric vector potential, Tat s for a magnetic dipole

moment of strength, zp m(i--'I), is given by

(59) F(s) Zm gh(s-').

Also,

(60) We =P and E-m

where the subscripts e and m are used to denote field quan 'ties

resulting from an electric dipole moment or a magnetic dipole

moment, respectively. Thus, H'e = magnetic field intensity due to

ZPe (i-'I) whereas E. = electric field intensity due to

Zpm( s-s I). An arbitrarily-polarized spherical wave can be

generated by a superposition of the fields of these two dipoles.

Figure 5 depicts the geometry involving a point source at

T' and the observation point at ' , for the source radiating in the

presence of the wedge which is impenetrable. A coordinate transforma-

tion is now introduced. One is referred to Fig. 5 for details.

Let p' = s' sin O and p = s sin a .. Hence, l(z-z')I=(s'+s )cos 0

and

(61)

S2+0'2_2pplcos + (z-z') 2 = (sI+s )2 sin 2 o "

-2s's sin 2ao (1+cos g)+(s,+s )2cos2  0

(s+s )2 1 2s 's si l2a°
= (S -- 2 (1 + Cos

s' + s )2
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Incorporating the above result in (57) yields

(62) g(p,z;p',z';O) -d cot
l6Tr in L-L' •

s )s 2s! s sin2zo

jk(s+ - (1 + Cos E)

e 
(2+ )

J (s' +s)2-2 S'S si (1 + cos

As before, the integral over L- L' is evaluated asymptotically for

Ss 2
large k s* sin2so , and the SDP(±.n) again close the L-L' contours

allowing the use of the Cauchy Residue Theorem. The location of the

SDP through saddle points at S = ± and the complex E plane topology

is once again unchanged except that the branch points of the integrand

are now given by
12+s2 + 2sscSo

= 2z ± j cosh -1  s s = 0,_+,+2, ...
2s's sin2 o

and one is referred to Fig. 4 for details.

The asymptotic evaluation of the integral as in (62) is per-

formed via the modified steepest descent method outlined in Appendix

I, with Fl(E) and f(E) now given by

-jk(s' + s)
F(K) = z162ncot( K 'Qi2  e

2 Ps' +S )22s' s sin2ao(1+cos

and

f(E) : j [1 + cos E]

where the approximation
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-jk(s' +s )2sS sin 0 (1 + Co
( 6 3) e s )2 2
(63)~~ S sin 2 a'

-jk(s' +s )'1 0 s +s) (1 + CosE

has been used i n (62) for reasons identical to those involved in the

approximation of Eq. (19).

FIELD
POINT

s(p'c/,z) "O oS

SOURCE S 0
POINT/

z (2-n)1T

CD 4 Q SIDE VIEW)

QE IS A UNIQUE POINT ON THE
EDGE FOR A GIVEN SOURCE
AND OBSERVATION POINT.

Fig, 4, Geometry for a point source illumination
of the wedge.
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The residues corresponding to the poles of FI() at = p=

-0 + 2nNn (N=O, ±19 +2,...), yield the geometrical optics fields

(Note that I&,p < - The saddle point results yield the dif-

fracted ray field component.

As before, the diffracted fields may be denoted by gd(-')

where

(64) gd( ,s") = gd(p,z.p' ,z';O") T gd(p,z;p' ,z';+),
h

with

g d(P,;P",;$ = ( ,')e" ) -f j aTelfd

SDP() SDP)

(Note that K = k v+ sin 2  o in tiis case).

No derivations are presented, but it can be shown by using the results

of Appendix I, that 7 .

-jk(s' +s )
-, F1(U,B)e f(d)d e 2 e

SDP(±n) 16i2jn(s' +s ) Ks s sin

2n

which may be re-written as:
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f(~) F e-jkS' e 4 I±
(65) - j Fl(&,•)eK f()d& e 4 cot As- us' nv k 427 ko 2 sina o "

SDP() L

+ s (' -j ks

F Ka-+ B) j s (s' +s )

One is now able to interpret the asymptotic result in terms of the

GTD, through a diffraction coefficient, Ds . Thus

h-ikss IC
d'i e JJs'sI -jks

(66) gs U = 47s 0 s' +s) e
h h

where

u = field of the unit source incident at the edge, and is

given by

-jks'
ui e , (and is equivalent to the point source, scalar

Green's function in the absence of the wedge).

(67) Ds = [(d+(,n)FCKa+ (C)] + d-(6",n)FEKa(-)j}

h
- + 1

${d+(a+,n)F[ca+(a+)] + d-(a+,n)FF-Ka (a )])]

with

1%68) d-,$,n) e-e'/4 cotW8cot0
n f 2 

, 2 2 n 
n 2= 

R

F~rca+(a)] :2j' l+ 1 "e<a-±(a) Fa-j 2 dT0
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in which
:ks's 2

(69) a-(o) = (1 + cos(- + 2nN-IT)}, K = sill 009

and N denotes the poles closest to each of the two saddle points.

Once again, F may be looked upon as a transition region correction

factor which tends to unity away from the transition boundaries or

whenever K a- (a) > 10. The geometrical optics contribution may

easily be shown to comprise of terms of the type

-( Ip 2+p: 2-2PP cos[-0+2nN+-r] 7] r( 7 0 ) e U L . _ + _ i

41TJp 2+P 2-2pp'cos[-+2nN n]

If F I in (67), then Ds of (67) reduces to D as given in (27).

The (sin o )_ factor associated with Ds in (67) indicates a
h

conical spreading of the rays in space as schematized in Fig. 5.

This conical spreading of the diffracted rays is a consequence of

Fermat's principle.

Suminarizing the results derived thus far, one observes that

the canonical problem of a line source wedge illumination

(cylindrical wav., incidence) is useful in treating the subsequent

scalar problem. involving plane wave and spherical wave illuminations

of the wedge. Separating the line source factor out from the in-

tegral formulation of the canonical problem yieldsthe solution

for the plane wave incidence case, whereas a Fourier transformation

related the spherical wave incidence case to the cylindrical wave

incidence case.

41



The asymptotic approximation in each of the problems treated

results in a solution which can be interpreted in terms of the

geometrical theory of diffraction, and as expected, outside of the

transition regions of the shadow and reflection boundaries, the

diffraction coefficient is independent of the type of edge il-

lumination. Within the transition regions, where strictly speaking,

ray optics is no longer valid, the geometrical theory of diffraction

can be used formally if one corrects the diffraction coefficients in

the following simple manner. The scalar diffraction coefficients

may be written as the sum of four terms, and each of these terms

is multiplied by a function FCKa], see Eq. (32) for example.

IF(Ka)I < 1;

outside of the transition regions, where Ka > 10. FEKa] 4 1.

It is very interesting that F[Ka] has precisely the same form

for the different edge illurinations. The only difference for the

different types of illumination occurs in it's argument; if we

write Ka = kLa, then

p for plane wave illumination

L = --- -for cylindrical wave illumination

-- sin 2  for spherical wave illumination.

To ensure the validity of the asymptotic soiution, kL should be large.

It is indeed renarkable that the complex field behavior in the

transition regions can be described in this compact, simple way.
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In the next chapter we shall show how these scalar (acoustic)

problems are related to the electromagnetic problem of a perfectly-

conducting wedge illuminated by an arbitrarily polarized, plane,

conical, cylindrical or spherical wave. It will be seen that the

scalar diffraction coefficients developed in this chapter play an

important role in the dyadic diffraction coefficient of the

electromagnetic problem.
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CHAPTER III
ELECTROMAGNETIC WEDGE DIFFRACTION

In Chapter II, the plane waves and the cylindrical waves

associated with the uniform line source are normally incident

on the edge of the wedge. The solutions of these scalar problems

can be directly related to the corresponding electromagnetic prob-

lems, see (5) and (6) for the line source case and (42a,b) for the

plane wave case. In this chapter the normally-incident waves of

Chapter II will be generalized to obliquely-incident electro-

magnetic plane waves and obliquely-incident conical electromag-

netic waves whose sources are traveling-wave line currents.

In addition, the scalar spherical wave excitation will be gen-

eralized to an electromagnetic spherical wave. Arbitrarily-

polarized, plane, conical and spherical waves may be treated by

properly superimposing solutions of the electric and magnetic

type. Asymptotic solutions to these more general problems and

their interpretation in terms of the geometrical theory of dif-

fraction form the material of this chapter.

However before taking up these problems, a ray-fixed co-

.rdinate system will be introduced. It will be seen that when

this oordinate system is used, the resulting dyadic diffraction

coefficient may be written compactly as t~e sum of two dyads,

or alternatively, it may be written in matrix notation as a

2 x 2 diagonal matrix.
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A. Coordinate Systems

The circular cylindrical coordinate system (p, ,z;p' ,',z')

which we have use., to treat wedge diffraction is an edge-fixed

coordinate system. On the other hand, the rays incident and

diffracted at QE in Fig. 4 are more convenienly described in terms

of spherical coordinates centered at QE Let the position of the

source of the incideit ray be defined by the coordinates (s','w)

and the point of diffraction, by the coordinates (Sao,¢) as shown

in Fig. 5. The orthogonal unit vectors associated with these
A % t A Acoordinates (s'lo',o'; soo' are ray fixed in contrast with the

A A 1% A Aunit vectors ' ¢',z';p,0,z).

The plane containing the incident ray and the edge of the

wedge will be referred to as the plane of incidence, and the plane

containing the diffracted ray and the edge of the wedge, as the
AA

plane of diffraction. The unit vector I = -s' is in the direction

of incidence and the unit vector s is in the direction of dif-
AA

fraction. It is apparent that the unit vectors and are

parallel and perpendicular, respectively, to the plane of inci-

dence, and the unit vectors a and ^ are paralle and perpendicular,
AA

respectively, to the plane of diffraction; moreover, = ' x I
A A A

and o  x s. It will be shown later that when the incident

field is resolved into its parallel and perpendicular ccmponents

and the diffracted field is resolved into its parallel and per-

pendicular components, the diffraction coefficient can be ex-

pressed as a 2 x 2 diagonal matrix, and in this sense the ray-
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Fi g. 5. Geometry for the ray coordinate system
for electromagnetic wedge diffraction.

46



!I
fixed coordinate system is a preferred coordinate system.

In the following sections the diffracted field components

will first be determined in the edge-fixed coordinate system

and then transformed to the ray-fixed coordinate system.

B. Plane Wave Illumination

The case of an arbitrarily-polarized, electromagnetic plane

wave obliquely incident on a perfectly-conducting wedge is treated

first. The geometry of the problem is depicted in Fig. 5. The

incident electric field i may be decomposed i.nto a component

parallel to the plane of incidence Ei : • i  and a component

perpendicular to the plane of incidenceE2 = ' i. Thus,
^, €,i ad Hi €,

E ' + E, and 0 H. ' + I. The z components of

E and E' are

(71) Elz =z • = ( .- ) sin o  and E2i = 0.

The z compokients of the magnetic fields associated with the

parallel and perpendicular components of the incident electric

field are

(72) Hi: 0 and H i =: (, .1 sinII Z .I.Z '

j AA

(Note: H * and Hi = o

The tota't electric field intensity T and the total magnetic

field intensity IT in the region surrounding the wedge may be de-

composed into total transverse (to z) ilds $it / and total

axial fields (E ,Hz), respectively. Thus,
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(73) rt + z Ez and IT= ITt + z Hz.

Let G°(p,4,z; ') represent the total field due to a "scalar"h

plane wave obliquely incident on an impenetrable wedge. G0 (p,i,z;')

satisfies

(V2 + k2)  ,,z; ') = 0.(v )Gs(P,@z )=O
sh

A traveling wave dependence- in z allows one to express G°(p;4') as

=g(.,-jk zZ
GO(5; ') gP(-; ';kt) e , where

hA

(74). kz = k cos o, (V2 + k2 ) gP(p, ; ;kt 0 ,
0 t + t

h
and kt = k sin 0 .

gP(p, ;',k t ) is identical to the expression for gP

in (39) with k replaced by kt.

It follows that

f = EiEgezz zg

(75) *and

H z = Hi 9p e-k

If one knows the solutions to the axial fields Ez and Hz2

then one can evaluate Ct and Ht in terms of the axial fields from

the results of Appendix II, given by the folowing relations
A

-jk E zx VtHz
t z " k -k2 + jwu k2 _ k2

(76) v H x

IT -kv t H z -j z x VtE z

IT : _jk 2 - -k( k2 - k2Z
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The above expressions are valid for problems which possess cy-

lindrical uniformity in structure and fields.

The solutions for Ez and Hz are already known from Chapter II.

The z components of the diffracted fields Ed and Hd may be
z Z

written in terms of the diffraction coefficient D of (44), but

with k replaced by k The total axial field is of course a

superposition of the geometrical optics field and the diffracted ray

field. Since this report is primarily concerned with the calculation

of diffracted fields, only the results for the diffracted field will

be presented here. It is a straight-forward matter to obtain the

geometrical optics contributions via the residues at the poles as-

sociated with the incident and reflected fields, as was done in

Chapter II, or, alternatively, the geometrical optics contributions

can be deduced directly from physical considerations.

For the diffracted ray contribution to the axial fields,

gP(p,; ';kt ) is replaced by gpd as in (43) (but with k replaced
h d

by kt). gd is in turn expressed in terms of Ds of (44), but with
h

k replaced by kt. Thus,
"JktP _jkz

Ed 'E' n-ao Ds e

(77) and -JktP _ikz
Hd  HI s ino 0oDh e  e z

where El, H are evaluated at 0,, the point of incidence on the edge,

(78) Ds  sin [{d+(o3,n)FEca+(r)] + d'(a',n)FKa'(')J}

h 0 {T (d +( ,n)F[Ka+ (+)] + dU( +,n)F[Ka_(a+)J}]
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with K ktp = kp sin aof

d+(B,n) = -e-3

co

FKKa(8)] = 2i JKa I e3' a+(B)  e-JT  dE,

4" _ )I

and a = 1 + cos(.-B + 2nN±-), a a- + . One may refer to

Chapter II for the definition of N. From Fig. 5 it is evident that

p = s sin ao. Also,

e'J(ktP+kzZ) = e ' j k s  (with QE as the origin).

To evaluate ft and Ht, one may take the vector vt and z x vt operatcrs

within the integral

g ';kt) J ejkt p C O t d:1p ; r o 2 n
L-L'

where gP(p,; ';kt) = gP(p, ; ';k) gP(p, ; ';kt)
h

(Note: as before, gPI =0, and ghl 0).
=O,nn I =O,nir

Thus, Ei e kz JKtP COS E
vtEz 

' jn f jk t cos e
t E z 4bjn l-L t

I [ot sf) cot(L-e-) n~l l
(79) cti e2kzz ( 

4
V tr H z 41Tin I I jrt IVa C'e~ t

cot k, + co d ,. . o
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whr i an i "i akna

where El and H are, respectively, E sn Po and H' sin otken atQE

The approximation involved in (79) is such that only those terms

are retained, which on asymptotic evaluation yield terms of 0

Higher order range dependent terms are neglected;,this is a valid

approximation if kp is sufficiently large. The diffracted field con-

tribution to vtEz and vtH z (denoted by v tEdz and vt H respectively) is

obtained from the asymptotic approximation of (79) via the modified

method of steepest descent described in Appendix I; one finds thatV i -ktp j
(80) Jv d1' p (-jk sin 3/2 3 ) D e -e kZ

( tz H' h P

with D in the above equation being identical to that of D in (78).
A h

One may re-write (77) and (80) in terms of the parallel and

perpendicular components of the incident field as

{ Ed E. e jks

(81) Z sin

d f HI

Hz  ElT

(82) {vtE } p (-jk sin20 Ds ek

IA A

Utilizing the above equations in (76), noting that p = s sin a +

AA AA A A

00 cos ao, z = s cos o - 0o sin a. and z x p = , one obtains the

following expressions for the diffracted fields (Ed,-) expressed
"in f' rm of , ,f ,a 4, 4 .. -

items o.f tdIAt systemn fixed in the diffracted ray
d1 e -jks i -jks

(83) d= +~d - Z i D k - E2 Dh

4-;
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egd _-jks(84) R' + ZH p, -o I D h H DS

The relations HIj -p El and 4 -E' have been used

to express the above results for and qd in terms of (E ,E) and

(Hi,Hi) respectively.

In equations (83) and (84) the incident-field is resolved into

components parallel and perpendicular tu the plane of incidence. Now

if the diffracted fieId is expressed in terms of its components parallei

and perpendicular to the plane of diffraction,

Yd EIj' 0 -+

d A + H d

one may rewrite the above expressions in the form of the geometrical

theory of diffraction,

and
= e -jks

T~ ' o(QE) DH D s

where the dyadic diffraction coefficients D ' o and H ,  0

are expressed in the following simple form

5 DE(€" ) ='00 Ds( ',"o) -' Dh('"o)

UH( ' "100) ='6o Dh(M 100) " '0 ,0o)
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where Ds(,'0 , ) is given by (78).
h

Expressing the diffraction coefficients in matrix notation

[1l [ "] L (QE) ejk
h. Eli(QE). IFS

(86)

[Hd i.[h[H(Q 1 sliI [i. 0 erk5k'J [ -Ds I -'

The diffraction coefficient reduces to a 2 x 2 diagonal

matrix, because we have expressed t'e field components in the proper

coordinate system, namely, the ray-fixed coordinate system, and

because we retained only the range dependent terms of 0(1/./r).

Keller and Lewis have obtained the dyadic diffraction coefficient for

a wedge in an edge-fixed coordInate system, where the incident and

diffracted fields are expressed in terms of their cartesian com-

ponents. They obtain a 3 x 3 matrix with 7 non-vanishing elements.

Furthermore, unlike the results given here, their diffraction coeffi-

cient is not valid in the transition regions at the shadow and re-

flection boundaries. We have transformed our dyadic diffraction

coefficient to the edge-fixed cartesian coordinate system. Outside

of the transition regions, where the correction factors may be

replaced by unity, our dyadic diffraction coefficient is identical

with that of Keller and Lewis, which shows that the degree of ap-

proximation in the two asymptotic solutions is the same. In-

dependently of our work, L.J. Kaplan* has shown that the Keller

*L.J. Kaplan, private communication.
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and Lewis diffractior. matrix can be reduced and diagonalized by a

suitable matrix transformation.

C. Conical Wave Illumination

Consider next the diffraction of a conical electromagnetic

wave by a perfectly-conducting wedge. At the edge the direction

of incidence, which is normal to the conical wavefronts, is
4. A A

given by the unit vector I; I • z = cos so, where /2- Bo is the

half-angle of the conical wavefronts. Conical waves may be gen-

erated by the electric and magnetic traveling-wave line currents
A -jkzz' A -jkzZ'
zI e and zM e , respectively, where I and M are complex

constants and kz =kcos o.  -jk z

The axial (z-directed) incident electric field due to ie

and the axial incident magnetic field due to Me may be shown

to be,

(87) Ez = 4 ie kzZ 4 [. Ho)(ktp,) , and

H " e kzZ H(2)(ktp) respectivelyHz =W 0 -G

with k2 k 2 k sin

The primes are used to denote a source-fixed coordinate system.

.Next let us examine the conical wave behavior; the electric

current line source will be treated. The fields of this source are

E =r " le 4 H (ktP,) H = 0

jk z= Ho ' H
(8 8)andt AH E

4 k z
t t
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For ktp' large, the Hankel function may be replaced by its asymptotic

approximation, so that
-i=_- + '9 E),i etJt

* kt - 'kz + .e,

(89) (-kt _ J(ktp "- jf )-JkZ '

ktp' + kza= k(p' sin 8o + z' cog a) = constant describes a conical

surface and I • Ei and I W0 both vanish; consequently, for ktP'

large enough for the Hankel function of order zero to be replaced

by it's asymptotic approximation, the electromagnetic field of a

traveling-wave electric current line source is a conical wave with

it's field vectors tangent to the wavefront, i.e., perpendicular

to the associated rays. The electromagnetic field of the traveling-

wave magnetic current line source has the same properties. In the

case of the electric current line source, the incident electric

field lies in the plane of incidence, whereas in the case of the

magnetic current line source, it is perpendicular to the plane of

incidence.

The total axial fields (Ez and H z) excited by electric and

magnetic traveling-wave line sources can be shown (see Appendix

III) to be 2
k t -jkz z

(90) Ez = . le Gs(Y-,';kt), and

I k~t  -ikzz

Hz = - Me " Gh(p-,p' ;kt), respectively.
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The special Green's function Gs(P-, p ;kt) is the same as that of (4)
h

with k replaced by kt. As before,

-- + kt)
(91) Gs(P ' ;kt) = G(o,p';o-;kt) T G(p,o'; ,

h

where the integral representation of G(p,p';B ;kt) is given by (18b)

with kt used in place of k. Also, the approximation of (19) is

utilized in the exponent of the integrand in (18b). Specifically,

(92) pp;$;2co
t in 2 +kt(p+p '-2pP'cos )) )

_Jkt(p+p,){1 - P (1 + cos

e (P,+ dg

The diffracted ray contribution to (91) is known from the result

of (28) in Chapter II from which the axial diffracted fields may be

written as

d -jk z 2j(ktP'-- - jktP
E ", i e Z -i t )D sin -,

(93)

and

k -jk z 2 "J(ktp' " ek
id k2 M. z( - )Dj\Is

1HZ 4 .---- k e h in- 0

where D is identical to that of (78), but with K equal to

ktPP' k

s in

In terms of El and Hz which are the fields incident on the edge at QE'

it is easily seen that (93) can be written as
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(E z} {1'J .ik tP .jk z
eH z

(94) 1 s n s

The transverse components of the diffracted fields may be ob-

tiined via (76) in the manner similar to that of the plane wave case

treated earlier. The vector vt and z x vt operators are taken within

the integral of (92) before carrying out the asymptotic evaluation.

"jktP .jkz
At~z -pkE Ds sin3 / 2

o ew e ,

f95vt~~Pkz5 ~A -iktP -jk z
d Dsi3/2 eo

tEdz -pjk E sin - e
kj p

where D is identical to that of (78) but with K = sill

h
In deriving (95), terms of O(1/fp) are retained; all higher

order range dependent terms are negligible for ktP sufficiently large.

One might observe that (94) and (771 possess identical forms as do

(95) and (80), respectively.
Sic E adi i i=

Since Ee andHm = H,' in this problem, Ez =Ee sin o

Ei sin a., and Hi = r a .i . Also, Ei H'iand11 - I I S-j (ktp+kzz)

E' =.i-j'l '. Utilizing these results and the fact that e

e jks , (see Fig. 5), one may express (94) and (95) respectively as

Ds sin 0  r- , and(96 I d  IH.' h js '

(Note: the subscripts e and r on E e and W respectively denote the fields

of electric and magnetic traveling-wave line sources.)
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v .Hd  HI h 0 i

Equations (96) and (97) are similar in form to (81) and (82),

respectively.

Following the procedure indicated for the vector plane wave in-

cidence case, one may utilize (96) and (97) in (76) to obtain the

total diffracted fields in the ray-fixed coordinate system. Then

(Ed and Td) may be written in the form of the geometrical theory of

diffraction as

-d £e-jks

(98)

Se-jks

Here, DE are the dyadic wedge diffraction coefficients for a conical

H.
wave excitation.

~E : ° ' h
H h s

and
- = +- {d+(-,)F[Ka+(&')] + d(Bn)F[Ka(B-)J "

D sin a a"

h 0

T fd (s+,n)F[,ca++)] + a(O+  - +

where the d+(an) terms are identical to the d-(a,n) given in (78)

for the plane wave case. The form of F[Ka-(B)] is the same as in
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(78) for the plane wave incidence case, except that K in the cor-

rection factor F[Ka] is equal to : sin B in this case. As the

line source is removed from the edge p' w, the local illumination

is plane wave and K - k sin so, as it shouild.

When 0= i/2. which corresponds to uniform line source ex-

citation (cylindrical wave incidence), then D are given by (30).
h

Finally. as the arguments of the transition region correction factors

become large, i.e., when Ka > 10, the diffraction coefficients are equal

to the D given by (27) multiplied by (sin a0

The matrix representation for (98) is given by (86).

D. Sphericvl Wave Illumination

The final vector wedge diffraction problem treated here is the

diffraction of a spherical electromagnetic wave incident at QE along
AA

the direction I with an arbitrary field polarization transverse to I.

Such a spherical wave may be created by superimposing the fields of

z-directed electric and magnetic dipoles at s', see Fig. 5. The idea

being that a general field may be constructed through a superposition

of the TE (to z) and TM (to z) waves with the vector potentials r

and T, respectively[19]. The same principle was used in the pre-

vious problem of conical wave diffraction, where a superposition of

electric and magnetic traveling-wave line source fields generated

an arbitrarily-polarized conical wave.

As pointed out in Chapter II, Section C, T and f are given by

(s) = Aipegs (S,S") and V(s) = cpmgh(,T'), respectively.

The electric dipole moment, zpe6(Is-s'l) and the magnetic dipole

moment, zpm6(IT--' 1) generate the fields
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-V x T and Em -.V x F, respectively.

The Green's function g(S-,S') relates the field at s" due to a source
h

at s',

Sgs(TTI) = g(p~z;p'z;B-) Tr g(p,Z;p',Z;a8+)

h

where g(p,z;p',z';a +) is given by (62). Now,

TFs -~ I A A
e -e(9- (: =') -z x V teg S,),

and si,.ilarly

Em(S) = z x VtPmg h (s s ' ) .

It can be verified quite easily that

• ^ rjkP e(SI-S cosE) {+.B(99) -z x V % I p --- sin %cot

L L' L161 Tjn O

S's sin (1 + COS

e k(s'+s) 2

(s'+s)2 - 2s's sin2ao (1 + cos

where one retains only terms contributing a range dependence of

O(1/p). In deriving (99), it is convenient to use the Green's

function in (57) rather than (62) so that the ^/ap and the I/p 3/9@

operators of vt can be applied directly. Following this operation,

the transformation p = s sin ao and p' = s'sin ao may be used

along with the approximation of (63); then, refining the proper

order of the range dependent terms, one obtains (99).
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The complex 4 plane topology for f(&) J i(1 + cos 9) is similar

to that indicated in Fig. 3; however, the integrand.of (99) has no

branch cut singularities in the complex g plane. The diffracted

rays corresponding to le may be obtained via the saddle point ap-

proximation of the integral of (99). Following the procedure

outlined in Chapter II, the diffracted field, Ha may be expressed

in terms of I( ), where
f jkPe  (s'-s cosg)sinaoeJk(s+s')

*I&W) =-* 0 o
ID=162Pin (s'+s)2-2ss'si 2o0 (l+cos6, 2LnJ
SDP(7)

Iis's sin 2 0 (1+cosE)
0e sd+s 0 -

A ( jkPe (s'-s cos )sinoeJk(s+s) 0 (W

Mrjn (s,+s)22ss'sin2e (1+cosg) n

e st sin 200 (1 + cos d

then

(100) le 0 M+

where

I(o ) is of course evaluated via the modified steepest descent method

outlined in Appendix I. The geometrical optics component is again

obtained from the residues at the poles of the integrand of (99).

One may write I(o ) as follows
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Ai1 ;I' ( i¢ kPe~ 41' i e - s'_oo s-__

A e-jks k -

kpe  sin ) n eO cot(V . ss'+s)

-jksFKa(W]

where

F[tca(O)]= 2ic t)t e-JKa() f e-iT dr, and K = -ss sin 2

Rearranging terms in (101), and utilizing (100) allows one to write

(102) e-jks ' sin o)D -jks
e (JkPe 4 s i D s -sT e

where Ds is given by (67). e-Ed d
In the ray optics a-proximation, one may use = x H e

A

where s again denotes the direction of the diffracted ray. Using
A A
S X4.:,= - 0

-jks'
One may recognize that the term (jiwpe -- - sin o) represents the

A
-0 o component of the incident electric field radiated by the electric

dipole moment evaluated at the point QE on the edge,

Again, ie o - n E U1

eo,, - -o 'o s -+s
(0).2 e j ks
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From duality, one may obtain - via (100) on interchanging by

-E Pe by pm' and Ds by Dh) respectively.
p e.-Jk s s

(105) - $(j kP TFsr sin ao) D ss'+4 s e jk

where Dh is identical to that of (67). Alternatively, (105) may be

obtained from ( 1 v x F), where it is understood that only the dif-

fracted field contribution of 1 _ v x F) leads to (105).

Finally, H x m in the ray optics approximation,

so that

(106) U (jW e-ks sin a ) D4 S e-jks.

e -jks'

One may recognize (jkp, -47-r sin 8) in (105) to be Ei ='E1  m.

e-jks' i .
Similarly, (jwepm * sin ) may be recognized to be -HI =--H .

, Also ejks " i A,.

6; s(jkPe - sin aO) in (102) is equal to -H = -H e

Far-zone conditions for both the source and the field point are as-

sumed in the above analysis; this is consistent with the desired

ray-optical approximation. One may re-write (102), (104), (105)

and (106) as

Ee AV 0 '-ii 5S StS)A
0 A i . S e

Id 1 HI -jks
m - S(ED +S e

(107) - HI-H ) Is S- e

Hd HiD S' e- jks
-m 0B HD h ]- S;-+S7
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The total diffracted electric and magnetic field intensities

are respectively

E=E+ E and

e m

In terms of the dyadic diffraction coefficient D

d i~i(Q E) • E ~ e-jks, and

(108) Ld R -i(QE) .Js :7+ ejk, where

E= - 0 oDs - ' Dh -
H h s

In the convenient matrix notation, (108) is given by

d] -Ds ED' [ (QE s-iks

(109) O

[H dl [ -Dh!Q
)d 1 ss+s e k

[H] d 0 -DJ . ~s

As an example of the utility of the above results, let us con-

sider the diffracted electric field of an arbitrarily-oriented

electric dipole moment, u'pe (IT-s-)-
A A A A

Let U'Pe =Pep PC + p e ' + Pez'z , where pep'5 Pe¢' and
AA A AtA-eC,. -

Pez' are the components of u'Pe in the p , , and z u1

respectively. Table I gives E and Ei for these components.
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TABLE I

electric .o"

dipole orientation " _ "

Pep~' -jkPep ,  - Cos 1o  0

h ,kp e-jks'
A 'k'

pezIZ -jkpez , TIkS' sin 10o

The diffracted electric field is readily found by substituting

El, 1 into (109).

The preceding results were derived for 0 < < nw. If the analyses

are repeated for 0' = 0, nn, i.e., for grazing incidence along the sur-

face of the wedge, in each case the diffraction coefficients Dh are

multiplied by a factor of 1/2 and the diffraction coefficients Ds = 0.

This also may be deduced by considering grazing incidence as the limit

of oblique incidence. At grazing incidence, the incident and reflected

fields merge, so that 1/2 of the total field propagating along the

face of the wedge toward the edge is the incident field and the other

1/2 is the reflected field.
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CHAPTER IV

DISCUSSION

It has been shown that when electromagnetic plane, cylindrical,

conical and spherical waves are incident on a perfectly-conducting

wedge the resulting diffraction can be approximated asymptotically

in the form of the geometrical theory of diffraction. Summarizing

the results of Chapters II and III, the diffracted electric field

(110) E(s) =i(Q) • ES,I)A(s)e-ks

where Ei(Q E ) is the incident electric field at the point of

diffraction,

A(s) is the spatial attenuation which describes how the field

intensity varies along the diffr&cted ray,

L for plane, cylindrical, and conical wave incidence

(s is replaced by p in the case of cylindrical wave

incidence),

(111) A(s)

(s'+s)" for spherical wave incidence,

E( s I) is the dyadic diffraction coefficient,

A A A

(112) Dc= - D ' -6
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(113)* D, a d---(s- ,d (&n)FF-a(()-)
(11a1" [{d+(o",n)FEKa+(a-] +d ( -n)E a ( ']

h 0

${d+(O+,n)F[Ka+(O+)] +

+ d-(O+,n)F[Ka'(O+)] }] where

(114) d-(n) n k cot 2 in which B B

and

(115) FEKal(8)] 2jIf~-+()I ei f(e) J dr.

JKa ± w

The parameters which appear in F[Ka-(0)] are defined below

(,16) a+-(s) : 1 + cos(-0 + 2nN+-w)

in which N is the positive or negative integer or zero, which most

nearly satisfies the equations

2nN" -a = -n ,
(117) +

2n N+ - = 7r.

K = kL is the largeness parameter in the asymptotic evaluation of

the pertinent integrals involved in the formulation of the dyadic

diffraction coefficient. The quantity L (appearing in K = kL) may

be viewed as a distance parameter which depends upon the type of

edge illumination; it is given by

s sin2 o for plane waves,

(118) L ._ . ,, ,ylindicl wLve=s

sis sin 2 o0
-S + 'for conical and spherical waves.

*or grazing 'ncioence (1'=O,nn),see discussion at the end of Ch. III.
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When the ray-fixed coordinate system is employed, the dyadic dif-

fraction coefficient may be expressed as the sum of two dyads. One

of the dyads involves Ds, the scalar diffraction coefficient for

the Dirichlet boundary condition, and the other, Dh, the scalar

diffraction coefficient for the Neumann boundary condition. In

turn Ds, Dh depend upon trigonometric functions which appear in

d+(s,n) and F[a+(i)], which involves a Fresnel integral. The

latter may be regarded as a correction factor to be used in the

transition regions of the shadow and reflection boundaries.

Outside of the transition regions where, ia+(B) = kLa+-() > 10,

F is approximately equal to one. Even within a transition region,

usually only one of the four correction factors in (113) is signifi-

cantly different from unity. Curves of the magnitude and phase of

F as a function of kLa are presented in Fig. 6.

Two important approximations have been made in deriving (110).

In accordance with the geometrical theory of diffraction, it has been

assumed that the high-frequeicy diffracted field propagates along it's

ray path in the same manner as the geometrical optics field. Con-

sequently, the diffracted electric and magnetic fields in our

asymptotic solution are perpendicular to their direction of propa-

gation. This approximation does not introduce serious error if both

the source point ani the field point are far from the edge. Secondly,

in deriving (110) it has been assumed that kL is large. However,

based on the extensive numerical study of asymptotic solutions of

this type presented in Reference 9, it would appear that generally
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speaking this approximation introduces serious error only when kL < 1.

It should be noted that the accuracy of (110) depends on both approxi-

mat-ons, and a study of the error introduced by the two approximations,

when either the source point or the field point (or both points) are

close to the edge has not been carried out.

The preceding discussion has been restricted to the diffraction

by wedges with straight edges; however the geometrical theory of

diffraction may be used to treat the diffraction from curved edges.
1'2

The diffracted ray paths are determined by the generalized Fermat~s

principle for edge diffraction, and the conservation of power flow

in the resulting astigmatic bundle of rays, see Fig. 7a, leads to

the general spatial attenuation factor

(119) A(s) Pc - s)

where the caustic distance Pc shown in Fig. 7a is given by

(120) 1 n1 n • - s)
Pc S' Pe sin 2 o

for spherical wave illumination of the edge.21 In the equation above

Pe is the radius of curvature of the edge,

n is the unit vector normal to the edge,
AA

I I,s are unit vectors in the directions of incidence and dif-

fraction respectively.

Bo is the angle between I and e, the tangent to the edge at

the point of diffraction - see Fig. 7b.

The expression for A(s) given in (119) reduces to that given in (111),

if Pe is set equal to infinity for the straight edge; furthermore,
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Fig. 7. Diffraction at a curved edge.
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for plane, cylindrical and conical wave illumination of the straight

edge, pc = 0 "

The diffraction coefficient is assumed to be independent of

Pe to a first approximation; this is a reasonable assumption because

it is independent of the curvature of the incident wavefront to this

approximation, as has been demonstrated here in Chapters II and III.

Furthermore, the validity of this assumption has been confirmed in

numerous applications of the geometrical theory of diffraction to

structures with curved edges. Thus in accordance with the postulates

of the geometrical theory of diffraction, (110) becomes
A( ) ^/ c e-jks

(121) (-S) (Q') * UE(s , T e

where DE is given by Eq. (112). Alternatively, if the incident and

diffracted electric fields are resolved into components parallel

and perpendicular to the planes of incidence and diffraction,

respectively, one may write (121) in ternms of matrix notation as

(122) [ ejks(12) F- + s) •

LEd  0 -Dh  Ei

By introducing the proper ray-fixed coordinate system the

polarization effects of high-frequency scattering may be greatly

simplified, whether this involves the reflection from a smooth

curved surface, the diffraction from an edge, or the diffraction

from a smooth curved surface. Specifically, the polarization of

the scattered field may be related to the polarization of the in-

cident field by a 2 x 2 diagonal matrix. In the case of reflection
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one resolves the incident and reflected fields into components

parallel and perpendicular to the plane of incidence, as is well

known, and in the case of diffraction by a smooth curved surface,

one resolves the incident and diffracted fields into components

parallel and perpendicular to the planes of incidence and dif-

fraction, respectively, where the plane of diffraction in this

case contains the normal to the surface at the po;nt of diffraction

and the diffracted ray.
2

In summary, employing the modified Pauli-Clenmow method of

steepest descent and introducing a ray-fixed coordinate system,

a compact, dyadic diffraction coefficient has been found for the

perfectly-conducting wedge. This diffraction coefficient is valid

in the transition regions of the shadow and reflection boundaries

for a variety of edge illuminations. From a practical viewpoint,

this diffraction coefficient is of value in applying the geometrical

theory of diffraction to antenna and scattering problems involving

three-dimensional structures with edges.
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APPENDIX I
MODIFIED STEEPEST DESCENT METHOD

FOR A POLE SINGULARITY NEAR THE SADDLE POINT

Given

(A-I) I(K) : J FI ( ) ef() d ,

C

and the contour c is a path of integration in the complex plane such

that thc integral converges. The following procedure outlines the ap-

proximate evaluation of I(K) for large K, where K is real.

Let f(E) possess a saddle point at C = gs (i.e., df/dE = 0 at

= Es), and furtherlet FI(E) possess a simple pole type singularity

at = E . The procedure to be outlined allows for p to lie in the

vicinity of y

The contour c is deformed so that it passes through Es along the

steepest descent path (SDP). If any singularities oIf the integrand

are traversed in the deformation of c to the SDP, their contributions

must be properly accounted for in the evaluation of the integral.

The SDP in the complex plane is given by the equation

(A-2) Im f(&) = Im f( s), (subject to Re f( ) < 0 for I -I

The SDP in the plane may be mapped into a straight line along the

Re p axis in the complex v plane via the transformation

(A-3) f() = f(Es) -2 .

Further, the descending part of the SDP is mapped onto the positive P

axis (this determines the choice of the branch of vi in Eq. (A-3). Thus
Kf(r s ) IB 2

I(K) e F dP, -A <P < B.

-A

74



Assuming that u is analytic in the nbhd of let

(A-4) F.(p) = FI(.) * [f( ) -

F,(ii) is now analytic in the nbhd of E and Cs" Thus,

(A-5) F2 ) c m ,
W-0

and is a valid representation for F,(j) about the saddle point. Let

(A-6) f() _ f(&) f(Cs) f(p) 2 2 + ja).

where

(A-7) a B E ) - p

Using (A-4), (A-5), and (A-7) in I(K) yields

2
Kf({s) rB Fa (u)e-Kl Kf( s)

(A-8) I(K) = -e 2 + ja du z-e
-A +j

2
B -K

2 du

-A P + ja

if one retains only the first term in the MacLauren expansion for F,(V).

This leads to the first order saddle point result. In the asymptotic

approximation one may extend the limits of integration from -- to

since the dominant contribution to the integral is from the immediate

nbhd of the saddle point at p = 0 when K is sufficiently large, and

elsewhere the integrand falls off extremely rapidly, contributing

negligibly to the integral. Therefore, (A-8) becomes:

(A-9) I(K) '-e co  d2 +

_0 J2 + ja
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From the relation f(C)-f(Cp) - (2+ja) of (A-6) it follows that

I T
so that

0 :2 ( -2 y (-ja).

The choice of the p;-Der sign on d is deteyinined by the directiondp,=0

of integration along the SOP in the a-plane. It caCa be shown that
e",2 do = 2e3 ICa  J e-iT2  d-

o )2 + ja fa

Thus, it follows that (A-9) can be finally written as

(A-10) I(K)N e f(Cs) Fl(;s)J j e FKa

where s accounts for the argument of J7T/- %'), and where

(A-11) F[ica] 2 lyKale e' " d-,

FEKa] may be viewed as a factor which accounts for the effect of the

pole of F,() which may lie in the vicinity of the saddle point. When

Ka + m, F[KaJ-. 1, and for Ka > 10, F[Ka] --1. Thus, when the pole

singularity is sufficiently far removed from the saddle point, F[Ka]

may be replaced by unity, and (A-.10) becomes

(A-12) I(K) , e F ( s)2

which is the well known first order asymptotic result for the case of

pole not close to the saddle point. The techniques developed in this

appendix may be referred to as the "Pauli-Clemmow modification of the

method of steepest descent".
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For those who are interested, the mapping of the & plane onto

the i plane is shown in Fig. 8. Although there are two isolated, first

order saddle points in the P, plane (see Fig. 3), it should be noted

that only a single saddle point can occur in the p plane, Thus only

a finite region of the c plane, adjacent Lo a given SDP, is mapped

ontto the i plane. In the present case there are two 3DP's and thus

there are two finite regions to be mapped in the plane; one is

defined by (0 < u < 2n, -- < v < -) and it maps onto thelp plane

as shown in Fig. 8a; the other, defined by (-2n < u <0 ; -0 < V < cc)

maps onto the i, plane as shown in Fig. 8b. In carrying out the

transformation shown in Fig. 8a, the positive branch of u =

Jf(&) - f(&s) is used, whereas in carrying out the transformation

shown in Fig.B b, the negative branch of l= If(g) - f(s) is used.
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APPENDIX II

FIELD RELATIONS FOR SYSTEMS WITH NO VARIATION ALONG THE

z- (AXIAL) DIRECTION IN CYLINDRICAL COORDINATES

Let v = vt + z a , where vt is the component of the 3-D

Laplacian operator v, which operates on the cylindrical coordinates

transverse to z.

Let = E+ and F = - + z, where E and H respectively

are electric and magnetic field intensities satisfying Maxwell curl

equations:

(A-13) v x T = -jwp If and v x -= j E.

E t and Ht are the transverse (to z) field components and E7 , Hz are

the axial fields (along z).

For systems uniform in z, one may separate out the z-dependence
F by asuin -nJkzZ

in E and H by assuming an e dependence. Next, equating the

transverse components of the Maxwell curl equations gives:

(A-14) Vt x Ez + v z x E t = -jwp It

V t x Hz + vz x H t = jw Et

(where vz = a

-jk~z
Finally, using the e £ dependence in E and T allows one to solve
for ITt via (A-14) as follows

k2H t jwc Vt x Ez+ Vz X vt x z+ Vz x Vz X Ft
or 2

k2Ht  jWc Vt x jk vt Hz + k Ht
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i.e.,

Vt H v x E z

z' ~ ik2-k 2 + z Jc) k2

z z

In a similar fashion, one may obtain:

vt Ez  Z x Vt HZ

(A-16) Et "jkz k2 - k2 + j -lj k2 _ k2

z z

(Note that vtx z = -z x vtEz in (A-15).)

Thus, (A-15) and (A-16) allow one to calculate It and Wt from

a knowledge of Ez and Hz alone.
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APPENDIX III

THE AXIAL FIELDS OF TRAVELING WAVE ELECTRIC AND MAGNETIC

LINE SOURCES IN THE PRESENCE OF A PERFECTLY CONDUCTING

INFINITE, 2-D WEDGE-

-jk.zz'

Case 1 (Traveling wave electric current, le 
L )

The magnetic vector potential T- associated with the electric

A -jkzz'

current z le satisfies:

(A-17) T = z Az, and

(V +k)A = -p fe 6(ple')6( -,')(z-z') dz'

P
-jkzZ

Let A = az e z (since the source and the field Az must havez
the same z-dependence for (A-17) to be true). Thus, (A-17) becomes

(A-18) {2+ (k 2_k 2)}az -P
t z P

Let

2Ag k2  k2
(A-19) k =  z

The fields associated with Az are given as:

(A-20) R = magnetic field = v x z Az, and
intensity

A v(V Azz)
(A-21) T = electric field = -jw z A, + .

intensi ty

The boundary conditions on Az are the following:
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I 2 3Az :O

(A-22) El 0 implies
p *=Onir 0mi jW)eC ap z =O,n

and

a °2Az

Ez~,on~-0 implies jwA +
(A-23) Ezl =O,nn = 0 mle m z + 11E az2 1=O,nw

For (A-22) and (A-23) to be simultaneously true, one gets

(A-24) Az% =O,nw - 0

(and therefore azi =O,nn = 0).

In addition, Az satisfies the radiation condition (for a time dependence

of the type e+jwt) and the Meixner edge condition. It follows that

(A-25) az = pl Gs (p,O;p',';kt) where

(Vt + k2)G (p, ;;',&;kt) -_ t

and Gsl=O'nw = 0. Also Gs satisfies the radiation condition and the

Meixner edge condition.

Finally, k 2 "Jkz

E~ -:k-Ez =3  (k2 +A z = - a e Z HZ = .

2or

k2  -jkzz( A -2 6 ) E z = .- - e G s ( o .& : n ' , ,i ; .t ) H z = n
JWE 8
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-ik z'
Case 2 (Traveling wave magnetic current, Me Z

The vector electric potential " associated with the magnetic

-jkzZ'
current zM e satisfies

(A-27) F = z Fz, and
dz

(V2 + k2)Fz = -e Me zZ' 6(p-P'16(,,€ (z-Z') dz'
f P

-kz

Writing Fz = fz e as before,

one obtains:

(A-28) (v2t + k2t)fz = -M(t t P

Thus,

(A-29) fz =-cM G h(P,@;P"', ;kt)

where

(A-30) (v2 + kN)Gh(P,,;p',';kt) - (O-0 )

t t P

The boundary conditions on Fz (and hence fz and Gh are identical

and are obtained from

,nff = 0 and ..2 Onr

where

F= -],F+ , and E=-lvxfF.

It follows that Fz, fz and Gh satisfy:
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aGh 0 and 11 0.0- 11 o4,nw v ofl

Finally the radiation condition and the Miexner edge conditions must

also be satisfied. One may then write
2 -jk z

(A-31) Hz 't e- G k)z 0 .
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