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AN AXISYMMETRIC
NEAR WAKE ANAILYSIS USING ROTATIONAL

CHARACTERISTICS t

by
Mauro Pierucci

Polytechnic Institute of Brooklyn

N SUMMARY

The near wake of a cone in a hypersonic stream is analyzed
by simultaneously solving the inviscid region and the viscous shear layer ,
The inviscid region is solved by the use of rotational axisymmetric
characterist{cs. It is assumed that viscosity and heat traasfer play an
important role only within a region bounded by streamlines which at the
trailing edge of the ccne are for the most part in the subsonic portion
of the boundary layer, This region, termed the shear layer, lies
between the Dividing Streamline (or cente:l‘;;em?t-}?g Basic Streamline,
The solution to the inviscid region is obtained by specifying conditions
along the characteristic line originating at the shoulder of the cone, and
by specifying the pressure distribution along a free surface (Basic Streamline)

taken to be the streamline which at the shoulder of the cone separates
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the supersonic from transonic and subsonic porticns of the boundary
laver, The pressure distribution along the Basic Streamline is iterated
until the mass flow, momentum, and energy in the shear layer are
consistent with the location of the Dividing Streamline and with the
initial conditions at the edge of the cone,

Profiles for pitot pressure, static pressure and stagnation
enthalpy are presented and compared with experiments at different down-
stream locations., The shape and strength of both the lip and recompression
shock are also shown. Both sets of results are seen to be in very

good agreement with the experimental results available,
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I. INTRODUCTION

The hypersonic wake of both blunt and slender bodies has received
considerable attention within recent years; an overall review of the
problem may be found in references 1 and 2. Many problems associated
with the far wake have been analyzed so that the interest has now shifted
to the solution of the near wake.

Chapman3 analyzed the problem of mixing of a uniform stream with
a semi-infinite stagnant region, However, it was not until later that the
results of this basic mixing study were used to analyze the recirculation
region and the shear layer behind a blunt-based body. In the mixing
process, a dividing streamline is obtained which separates the fluid
initially at rest from that initially in motion; this streamline, when used
in conjunction with the actual body geometry, is assumed to divide the
recirculation from the external flow region in the wake problem. Denison
and Bau.m4 later improved this analysis by solving the same problem with
an initial (Blasiug) boundary layer profile, which more closely approximates
the actual flow conditions.

Few exact solutions have been found to the flow in the entire base
region; one of these is by Viviand and Bergers, which is valid for very
low free stream Reynolds numbers. Their solution was obtained by ap-
plying Oseen's approximation to the complete equations of motion. Exact
solutions for laminar flow at higher Reynolds numbers do not as yet exist.

Lees and Reeves6 have attacked the near wake of a blunt body by the
use of the integral form of the differential equations, as it was done by Crocco-

Lees7, and by reverse flow solutions to the Falkner-Skan equation. The final




form of the differential equations is obtained from the x-momentum and
from the first moment of the x-momentum equation. It is assumed that
mixing takes place at constant pressure so that the equations are sim-
plified into two ordinary differential equations in two unkowns (velocity
on centerline and displacement thickness). Once the calculation is
carried to the rear stagnation point then a new set of ordinary differential
equations is used (pressure is now allowed to change). This new set of
equations is now solved the same way as the previous ones. It turns out
that for a given family of solutions there will be only one set of values
which will enable the calculation to go downstream (past the critical
point). For any other values a second stagnation point or zero pressure
on the centerline is obtained. The inviscid flow field may be assumed to
be governed by the Prandtl-Meyer equations,

Due to the vorticity created by the sudden expansion of the flow at
the base of a blunt based slender body in hypersonic flow, the above
theory cannot be applied to this class of problems. Reeves and Buss8
have analyzed this problem by using the equations of Lees and Reeves
for the region downstream of stagnation point while upstream of it the
Navier-Stokes equations are solved by a double Taylor series expansion
in the stream functian and flow variables about the rear stagnation point.
A seventh degree series is used and the coefficients are determined by
the symmetry conditions along the axis, the boundary conditons and
temperature along the base of the body and the Navier-Stokes equations.
The outer inviscid flow is solved by the method of streamtubes., This

method may be applied to two-dimensional or axisymmetric bodies.
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Rom ® and Rom and Victor10 have used a modified form of the
Crocco-Lees technique and with the help of semi-empirical results have
been able to correlate experimental results. Webb, Golik, Vogenitz and
I..ees11 have also extended the analysis of Crocco and Lees and have ob-
tained results downstream of the rear stagnation point by applying poly-
nomials in a two moment (momentum equation) plus one moment (energy
equation) calculation and also in a three moment plus a two moment
system, This system of resulting equations permits more degrees of
freedom in the choice of the inital profiles.

All the theories discussed above do not lead to detailed solutions but
only give overall characteristics of the flow field (velocity on centerline,
displacement thickness, momentum thickness etc). Weiss12 and Baum
and Denisonl3 are the first ones to have analyzed the flow field in detail.
Weiss' analysis is limited from the trailing edge to the rear stagnation
point while Denison and Baum have attacked the problem by starting at the
rear stagnation point, From trailing edge to rear stagnation point, the
flow is split up in three regions (outer flow, a shear layer, recirculation
region). The outer flow is solved by the method of characteristics. The
shear layer is analyzed by a linear approximation of the boundary layer
equations (Oseen's approximation) while the recirculation region is solved
by the inviscid Navier-Stokes equations in terms of vorticity and stream
function. The solution for the recirculation region is obtainsd by assuming
a temperature distribution from which a velocity distribution is arrived at,
which in turn is used to solve the energy equation for a new temperature
and pressure distribution. Baum and Denison commence thzir analysis

at the rear stagnation point and integrate the equations by an implicit



difference scheme. The equations which are considered are the continuity
equation, the x-momentum and energy equations in the boundary layer
form and the y-momentum equation as applicable to an inviscid flow.

The equations are then integrated in the Von-Mises coordinates. How-
ever, since the resulting equations for the x-derivatives would have a
singular point at u=a and would be unstable for uca, the transverse
momentum equation for u<a is replaced by the statement that p is not a
function of the stream function. (This replacement forces a physically
non-existent saddle point on the solution). Now as soon as any family of
initial profile is picked, only one profile within a given family may permit
us to go through the critical point. Any other profile (as it happens in
Lees-Reeves theory) will give zero pressure or a second stagnation point
somewhere along the centerline. As explained by Weinbaum14 Baum and
Denison wrongly feel that if no eigenvalue to the particular family of pro-
files exist, or if two eigenvalues exist then the problem either is not posed
correctly or the steady state solution as obtained from the unsteady equation
would have to be analyzed.

Weinbaum recently has critically examined the differential equa-
tions (boundary layers) which have been used by previous authors. He has
concluded that the critical point obtained by most investigators is only an
artificial way by which the equations used (boundary layer) manifest them-
selves as not having a dynamic adjustment at the throat (i.e., when
boundary layer equations are used v at the outer edge of the viscous region
cannot be arbitrarily specified, and one has to accept whatever it turns
out to be). Not only is the critical point artificial, but its location may

be varied at will (within bounds dictated by parameters) by suitably choosing



different positions for the edge of the viscous region. The equationg which
he considers are the same as the ones of Baum and Denison, except that
the transverse momentum equation is retained in the subsonic region.

The point u=a now requires special care dlf to the fact that the derivatives

in the x direction will be in an indeterminate form which may be evaluvated

C by 1'Hopital's rule. With this new set of equations no eigenvalue problem
is encountered and any arbitrary set of stagnation point profiles will be
able to pass downstream. The correct solution will then be obtained when
the ambient pressure is recovered at the end of strong interacticn region,
The Rudman--Rul:lin15 equations are similar to the ones used by Weinbaum
with the exception that the x derivative of the pressure term has been
neglected. This minor difference causes a major breakthrough in the
solution, because the singularity at u=a has now disappeared and the
numerical technique used may be simplified considerably.

The flow field described above is not amenable to a single solution
unless the complete Navier -Stokes equations are utilized. A solution
can also be obtained by splitting the problem into the following four
distinct flow regimes: 1) leading to trailing edge of body, 2) expansion
of fluid at the trailing edge, 3) trailing edge to rear stagnation point

' 4) rear stagnation point to downstream infinity. For the sake of sim-
plicity it has to be assumed that no interactions between the different
regions take place.

If the flow is assumed to be laminar from the leading to trailing
edge of the cone, then the solution can be obtained for either of the two
conditions. For large Reynolds numbers the inviscid flow field is solved

by either the method of characteristics or by solving the inviscid conical
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flow equations. Once the inviscid field is known then the thin viscous
layer around the body can be solved by the usual boundary layer tech‘niques.
For low Reynolds numbers the problem is more complicated because no
distinct viscous layer, shock wave and inviscid regions exist and the
viscous layer (even to a first approximation) cannot be neglected with
respect to the inviscid region,

The expansion of the rotational flow at the trailing edge is a prob-
lem which is now being studied. This problem is complicated by the up-
stream influence of the base pressure through the subsonic portion of the
boundary layer. This problem has been investigated by Weinba.urn16 for
incompressible flow, Ba.u.‘rn17 and Weiss and Nelson18 for supersonic
high Reynolds number flows. In all the cases mentioned, no interaction
between the boundary layer and inviscid flow field is assumed.

For the analysis to proceed from the trailing edge to the rear
stagnation point, the recirculation region, shear layer and the outer in-
viscid flow would have to be solved independently remembering that the
boundary conditons connect the three solutions together (obviously for
low densities, this procedure cannot be adapted because of the interaction
problems involved). The recirculation region and the shear layer can
best be analyzed by the methods developed by either Weiss19 or Morettizo.
Weiss' method while not as detailed as the approach used by Moretti,
h.as the advantage of being soluble within a short period of time. In both
cases the inviscid outer flow is solved by the method of characteristics.
Moretti has numerically solved a modified form (viscosity is retained
while for simplicity heat transfer is neglected) of the unsteady Navier-

Stokes equations. Due to the hyperbolic nature of the equations a Lax-



Wendroff technique is used to obtain the solution., The steady state
solution is then assumed to be the asymptotic time limit of an unsteady
flow field. By using these equations, both the recirculation and shear
layer region can be solved. With slight modifications the equations could
also be used for low density flows. However, the usefulness of this
method is offset by the enormous time required to obtain a solution (on
an IBM 7094 the time for an accurate calculation would be of the order of

several hours.)

A semi-empirical approach which can be worked out with the aid of
the method of characteristics and the equations used by Weinbaum and
C:arvine21 or the ones originally analyzed by Rudman and Rubin will
now be outlined. The main tool to be used in this analysis will be the
method of characteristics. Application of the method of characteristics
to the near wake was first suggested by M, H, Bloom in a presentation

at an I, D. A, Confe:ence* in 1963, Calculations showing the importance

of radial pressure grauaients and the thickening of the shear region

(after the expansion of the surface boundary layer) immediately downstream
of the shoulder oi an axisymmetric body were also shown by Bloom

and Vaglio-La.urin?"2 The first published results of this method applied

29,23

2
to the near wake problem are by Weiss,1 Weinbaum and Weiss

and Weinbaumz4. In reference 12, the base region of the flow over a
wedge is treated and anapproximate solution is obtained by matching the
free shear layer, recirculation, and inviscid flow regions. The assumptions
of both Chapman, and Denison and Baum that the stagnant (recirculating)

region is semi-infinite is no longer necessary and thus the effect of finite

* The proceedings ol these meetings are unpublished,
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base diameter is obtained,

In reference 29 the variation of the entropy within the boundary
layer was studied and in reference 23, preliminary analyses for characteristic
calculations are initiated, It is also shown that for high "inviscid" Mach
numbers (Me>8), less than half the total free stream expansion occurs
in the centered expansion at the corner. The remainder of the expansion
is produced by the reflected waves, To show this, the problems of
interaction of a slip stream with a weak expansion wave and also the
interaction of a shear layer with a wake expansion fan are solved, In
reference 24, preliminary calculations from the characteristics program are
presented,

The present paper presents a method which combines the rotational,
axisymmetric characteristics with a viscous inner region, to determine
near wake profiles. Imbedded shocks are considered in the characteristics
solation, The surface boundary iayer profiles at the separation point provide
the initial conditions for the characteristics program in the supersonic
region, while the subsonic part of the boundary layer is taken into account
by dividing this portion of the boundary layer into strips and considering
each strip to be governed by the one-dimensional flow equations including
viscosity and thermal conductivity, The heat transfer and shear a:ting on
each streamtube are computed from the average values cf temperature and
velocity in each strip, Details of the recirculating flow region are not
considered in this analysis. The present analysis is useful to evaluate
the flow field with reasonable accuracy to a few base diameters downstream
of the body. At this location, the profiles could then be used as initial

data to the available far wake analyses,
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II. INVISCID ROTATIONAL FLOW FIELD

In order to analyze the near wake (cf. Fig. la) short of using
the complete set of fluid mechanical equations available (Navier-
Stokes), certain simplifying assumptions are made. For the present
analysis they are:

l. A steady state solution is assumed.

2. No interaction from the subsonic part of the boundary layer

(this alters the initial profiles and can be readily included if a
more accurate determination of this effect is known. )

3. Expansion of the first streamline (Basic Streamline) takes
place by means of a Prandtl-Meyer fan (A-B in Fig. lb).

4. Basic Streamline (originally this streamline has a Mach
number equal to M1 at the trailing edge of cone) is a free
streamline and its shape is determined by assuming a specified
pressure distribution along it.

With the above assumptions, once all the variables are specified
along a first family characteristic line emanating from the point of
boundary layer separation on the cone, where the Mach number in the
boundary layer M = M1 > 1,0, the inviscid flow field may be analyzed by
the method of rotational axisymmetric characteristics including imbedded
shocks. The manner in which the pressure distribution along the basic
streamline is specified will be described later.

As the flow near the shoulder expands, it will separate from the
base of the cone and a Basic Streamline (B. S) is formed which will separate
the inviscid outer flow from the viscous layer which is obtained by expanding

the subsonic portion of the boundary layer. As the external streamlines

——rr
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progress downstream, they will reach a point where their velocity will be
in the direction of the axis. After this point is reached, the streamlines
will again start curving outward and the compression waves formed by their
divergence will coalesce into a trailing shock which may be weak or strong
depending on the cone angle and flow conditions,

The details of the shoulder expansion region are better shown in
Fig. (lb). Note that a lip shock may be formed by the concave curvature
of the B.S. It is also noteworthy to mention that in order to solve for the
entire supersonic region one would have to reflect the incoming expansion
waves from the sonic surface. However, this is not done due to the
complexity involved in the determination of the sonic surface which is
imbedded in the viscous region, therefore;, a streamline with an initial Mach
number M, (Basic Streamline) is used as the reflection surface.

The problem is mathematically well-defined once all the conditions
along the initial characteristic line, the point about which the Prandtl-Meyer
expansion occurs, and the subsequent basic streamline, are specified.

The analysis may then be subdivided into four separate unit problems:

1. Evaluation of an interior point (3) once values at (1)
and (2), are known (see Fig. 2).

2. Reflection of a second family characteristic line from a pressure
surface whose pressure is a given function of x, (Fig. 3)

3, Evaluation of conditions at a point which is obtained as a result
of two characteristic lines of the same family intersecting (Fig. 4).

4, Extension of a shock wave once conditions at a point behind the
shock are known (Fig. 5) (i.e., how to obtain C once A and B

are known),

To solve the first unit problem the following equations are available:

10



along, g';{t =tan (6 + M) (first family characteristic)

Jsinf sind cosusin®y  3S 1 cosu dH

cotyu
v— dV -de - Ycos(p + W) C YRcos(8+d) JN dX - xe cos(B+y) SN s g 0(1)

dy
along, IR = tan (8-4) (second family characteristic)

cotid _ Jsinfsind cosusin®d 3S 1 cospy dH _
v dV + de Ycos o) dx-_R_(é_)v <os(5-) SN dx+-vg <os(6-1) de-o o

along, g;{r = tan § (streamline)
S = const. (3)
H = const. (4)
and also

M

v -
VZ IW+;§

All the variables may be nondimensionalized as follows:

S-Sy v Y

H - _ X -
ittt VTV R YCR

the differential equatiornis are then reduced to a form amenable to solution

by a computer, and they are

X = N -Yalt b, cxg (5a)
ba - &
= -%) - + y,b
. (sb)
(h, - h Jm_px
h, =h, -= L2 (5¢)
n, AX +M, 8%,

- (s3 -8 )myA
LR oy (5d)

1l
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(85 -8, )

V3 = A1V1 +A3V= - (91 -93)+B1Ax1 +d3 AXQ‘ +n1Ax1+mab‘3 [Cgmamg -clnle'l]
(h, - hy ) t; AX 2. A hy 7 -!
s b - i+ ] B
h
9 = 83 - Ag ("ME'-V“) +d 5 0% + (-0 ) ARER T - (b - by g rerms,

(5£)
All coefficients are defined in the List of Symbols.

The equations for the reflection of an expansion line from a pressure
surface are derived by assuming that the B.S. passes through a point (1)
(see Fig. 3 ) and conditions at a point off the streamline (2) are known; the
continuation of the streamline is desired and this is done by locating point (3).

A second family characteristic line from 2 to 3 and a streamline from

1 to 3 are used. The equations available are then:

x, = 2a—Y2 +"}b‘:1 - X3 by (6a)

€

¥a & 'Y.lbi - e? by (X -X '
Ya e -0y (6b)

83 = 8 (6¢c)

he=h, yo1 (64)
5.2 Yo+ lae) (B '

Me? =y (0 M) () (6e)

—_—M

Va =
M ? +ﬁ2
Y-

B + A (va - Vs, [2) +datty - cp 8 - 85) - T2 (R f2)  (66)

8a

where all the functions are evaluated in the above order.
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In the case of two intersecting characteristic lines of the same
family (AC and BD "a Fig. 4) a shock is assumed to form at the inter-
section point E. By using the values at E_(on line AC) and E+ (on line BD),
the strength of the shock is found. Since it turns out that the shock is a
very weak one (i. e., —23- < 2-3%), the line BD is extended by using the
first family characteristic line in front of AC as the line from which a

second family is eminated.
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III. SHEAR LAYER

The portion of the boundary layer whose Mach number is subsonic
before the expansion at the trailing edge cannot be analyzed by the method of
characteristics since the shear and heat conduction effects may belarge in this
region; in addition, a portion of this layer remains subsonic even after )
expansion at the corner. It is therefore analyzed by conserving mass
momentum, and energy in individual stream tubes wherein the flow is assumed
to be one dimensional, including the effects of shear and heat conduction
between different stream tubes. This procedure also determines the pressure
distribution along the outer most stream tube which is adjacent to the
characteristic field. By matching the two regions, therefore, the analysis
can proceed downstream in a consistent manner.

The subsonic part of the boundary layer is divided into ''n" strips andit is
assumedthat each strip expands inviscidly and adiabatically from P, to Py,
as if it were one dimensional. As soon as this corner expansion is completed,
each streamtube 18 followed by using the one dimensional equations with shear
and heat transfer as given, for example, by Shapiro Zs(see Fig. 6). The

energy, momentum, and continuity equations in nondimensional form are

dhi Me Pe
Eaiil b ol CR AR FER /) (7)
[of
dMi9 3 y-1 3 dpi 1 dhi fTi (8)
T UM (A= M) [_INP_ypi z ( 'a?’i.ohi = Y -yi_l]
@+ (v-1) Mi"’) ¢

dx. (1-M.2) dp. dh, T.

i x 1__1_+(1+y-l M’)l i, i
ax i 3 Z- i R dx ¥: - 7i1 (9

Y piMia dx

14



Where e A S 77
C = C - C
fr. 0 hn
a AVy (i Vi
oz S TR YT M oTY, TMTY oY)

The unknowns in the above equations are Ki' Mi’ hi' The pressure
pi(x) is assumed to be known and is equal to the value as given by the
inviscid characteristic program.

Zero heat transfer is assumed along the basic streamline and a
mild stagnation temperature variation is assumed in the recirculation
region. Internal diffusion takes place by virtue of lieat transfer and
shear across the strips. Since, for a given pressure distribution p(x),
the basic streamline has been obtained from the characteristic program,

this line is used as a reference line from which the radial dimension ot

the n strips is measured when the '"correct' pressure distribution is
used along the basic streamline. The boundary line of the inner most
pressure distribution used to determine the characteristic field and the
location of the basic streamline is therefore iterated on to obtain this
condition before the analysis proceeds to the next streamwise calculation
of the matching flow fields. In this manner, the dividing streamline and
the rear stagnation region can be obtained once the base pressure Py

is specified.
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IV. RESULTS

Few detailed experimental profiles of flow parameters in the near
wake of blunt based cones are available in the literature. Most experimental
papers dealing with this subject present results in terms of variables which
do not describe the details of the flow field. For example, there is a
significant amount of information available on base pressure, heat transfer
to base or rear stagnation point location while detailed measurements of
the flow field are not presented.

Two recent papers which present local profiles of pressure, temperature,
etc., at various downstream stations are by Schmidt and Cresci 26 and
Bauer 27. The free stream Mach number, Reynolds numbers and other
pertinent test conditions are presented below for the two experiments.

Table (1) Experimental Test Conditions

Pb T

T, |T% |p— | X| Re, |[Ret
oo

M 8 D | P

8.0| 10°] 8 | 100psi [1700°R [544°R| 0.40 | 3.d 2x15°]| 19

3.0 | 12.5) 1" | 8.26psi | 532°R |532°R] 0. 24 2.11 13 x 10°| 20

The above conditions were used as inputs for the characteristics program.

In both cases, the =xperimental values of the base pressure were used

in conjunction with the axisymmetric, rotat 'nal program. Since this
information can be obtained from empirical correlations (cf. Ref. 28, for
example) for different flow conditions, no generality is lost by this assumption.
Once the base pressure is known, the pressure distribution from the

base to the rear stagnation point can be determined if the maximum Mach
number (minimum pressure) is specified. As explained in the previous

sections, the location of the rear stagnation region is obtained by matching

1&¢



the viscous shear layer with the inviscid characteristic program. The
viscous shear layer from the cone base to the rear stagnation region

was found to be governed principally by the effect of heat transfer from

the recirculation region while downstream of the stagnation region, internal
shear produced the largest effect. The temperature of the layer adjacent

to the shear layer was assumed to be either (i) a constant or (ii) vary from
the cone surface temperature at x = 0 to the recirculation region temperature
at the rear stagnation point. As seen from Fig. (9-a) the effect due to this
variation appears to be negligible. For the Mach eight conditions, profiles
at different x stations are obtained and values of pitot pressures, static
pressure and stagnation enthalpy are plotted and compared with the experi-
mental results in Figures (7) through ( 9). The stagnation enthalpy profiles
are seen to agree very well, especially in the region close to the rear
stagnation point, The accuracy of the analysis decreases in the downstream
direction as the region dominated by diffusive effects grows into the flow
field computed by characteristics, thereby invalidating the basic assumption
of an inviscid outer flow. The pitot pressure profiles are seen to be in

good agreement up to x/D =3.25. In contrast to the other two sets of
profiles, the static pressure profiles are less accurate close to the rear
stagnation point. This is believed to be due to two effects. First, it is
much more difficult to accurately measure static pressure in the recirculation
and stagnation region due to probe interference, and second, the theory is
able to determine the local pressure distribution at every point downstream
of rear stagnation point in a self-consistent manner, while in the rear stagnation

region the uniqueness of the static pressure distribution is not guaranteed.

17



It is also seen that at each x station, the location of the lip and
recompression shock can be predicted with good accuracy. In Fig, (10)
one sees the flow field for this case. The light lines indicate the various
first family characteristics emanating from the basic streamline (for clarity,
second family lines are omitted), while the two darker lines show the
.ocation and shape of the lip and recompression shock.

In Fig. (l1) pitot pressure profiles for the Mach 3.0 case are presented.
Due to the few results published by Bauer, the only variables which were
compared were the pitot pressure profiles; again comparison between theory
and experiment is reasonably good and the location of the lip shock is
predicted within experimental accuracy.

One may note that the Crocco-Lees type of singular behavior doesn't

appear in this analysis since the critical region is not analyzcd in detail.
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V. CONCLUDING REMARKS

The present analysis of the near wake is able to predict {with
reasonable accuracy) flow conditions and shock shapes at different locations
without the necessity of analyzing the recirculation region in detail. The
advantage of this is immediately evident in that the problem of the recir-
culation region is formidable due to the complexity of the differential
equations which govern the flow and the specification of boundary conditions
along an undetermined boundary. It may therefore be infel;red that unless
one is interested in the recirculation region per se, the detailed solution
to this region will not play an extremely important role in the downstream
flow. The complete solution of the recirculation region has been replaced
by the specification of several conditions in this region: 1) the base pres-
sure (ref. 23), 2) an average temperature of the recirculation region
(ref. 24), 3) maximum Mach number (minimum pressure) along the center-
line ( ref. 25). Since these parameters empirically have been correlated
under different flow conditions in the referenced papers, these conditions
can be readily obtained.

The following conclusions may be drawn: 1) stagnation enthalpy
profiles are relatively insensitive to the shape of the initial profiles and
to the heat transfer from the recirculation region, 2) while this is also
true for the inviscid portion of the stagn.ation and static pressure profiles,
the shear layer is quite sensitive to these conditions,

As a result, further refinements and/or extensions to the present
work should deal with 1) detailed analysis of the initial expansion of a

compressible shear layer, 2) analysis of the rear stagnation region, and

19



3) a better representation of the heat transfer and shear between the shear

layer and the recirculation region.

The freedom in inputs of the present theory will allow for calculations
of near wake of more general shaped bodies (spheres or blunt bodies). The
only modification involved would be the alteration of inputs along the character-

istic line emanating from the separation point.
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APPENDIX A

DESCRIPTION OF CHARACTERISTIC PROGRAM

The program is capable of analyzing the trailing edge expansion
and the near wake for any given cone angle, Mach number, and free stream
stagnation conditions. It consists of 13 different sections; eight of these
are function subroutines for the different coefficients, the remaining five
are MAIN, CINPUT ( Calculate INPUT ), CHAR ( CHARacteristic ), CSHOCK,
( Cone SHOCK ), DIVST ( DIViding STreamline ), subroutines. A flow chart
for each of these is provided by Figs. A-1to A-5,

At the start, the MAIN program directs the computer to the CINPUT
subroutine. The function of this subroutine is to evaluate and store in the
memory of the computer the initial characteristic line and the conditions
along a streamline which origin.ates from a point where the Mach number is
equal to M1 . The conditions along this streamline change by means of a
Prandtl-Meyer expansion procedure. Iu order to evaluate the initial first
family characteristic line, the ''viscous' part of the line is solved and
matched with the "inviscid" region. The inviscid or potential characteristic
line is read in to the computer from Sims' tableszz. This line is then
shifted a little upstream and/or downstream until the two lines match to
the desired degree of accuracy. To evaluate the viscous part of the
characteristic line, the only inputs which are necessary are various values
of Mach number varying from M1 to Me' Once the Mach number is known,
the velocity u/ue can be found (all the values at the edge of the boundary
layer are assumed to be equivalent to the inviscid values on the cone and are
obtained from Sims' tables). Once u/ue is known, corresponding values of

x and y, may be found by using Blasius solutions for a cone or by assuming
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any desired boundary layer profile. More features of this and subsequent
subroutines may be obtained from the flow diagram, and the program.

From the CINPUT, the MAIN program calls the CHAR subroutine which is
used to evaluate conditions at a third point once the conditions at two other
points not on the same characteristic are known (i. e., this is just a rotational
axisymmetric characteristic program where the rotationality comes from

the boundary layer profile).

Once all the points along a given expansion line are known, the shape
of the shock originating from the tip of the cone may be found; this procedure
is carried out in the CSHOCK subroutine.

When the expansion fan is completed the program goes on to the DIVST
subprogram. This subroutine evaluates conditions on the dividing stream-
line by using previous first family characteristic lines that the computer has
evaluated. This having been done, the computer goes back to the CHAR
program to evaluate the next point on this new first family line.

After the expansion fan is completed, it will be seen that characteristic
lines of the same family will tend to cross each other. Whenever this
happens the location of the intersection is found and checked to see whether
the assumed shock is strong or weak. If the shock is strong enough, formation
of an imbedded shock is postulated, the necessary values upstream and down-
stream are evaluated and the program goes on to the next characteristic
line in the flow. If it is weak shock (as determined by the 48/s criteria)
evaluation of the characteristic line is continued with a new reference line
used to evaluate the rest of the points on this line.

After every characteristic liné is completed, at given values of x,

M, p/poo, H, /ptoo, and y are evaluated so that profiles of these valuesvs.

Pt
y may be plotted at different downstream locations.
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MAIN PROGRAM

READ: MAXN]
N & FOR ROWI
V,0,1,8,%,Y,

o

WRITE :
OUTPUT ROWI
V,0,M,8,1,Y,

NE

INTERPOLATE
IN EACH ROW
TO FINO ¥, M
0,8, H, WP,

TO GIVEN Xg

0 On TO
NEXT
PRESSURE
PUNCTION

COMPUTE FIRST TIME
VALUES OF
ARST PONT
IN EACH
FOR THIS @
:"o",‘m" PRECEDING
ROWS RETAIN
ONLY  PRE -
DETERMINED
NO. OF PTS,
CALL
CHAR

FIG. (A-1) INVISCID PROGRAM
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SUBROUTINE  CINPUT

//READ |

BLASIUS sOL.
FREE- STREAM
CONE VALUES

ﬁ?‘.’%ﬂm&

(A (] ?IOR %
COMPUTE .

AND WRITE .
WLVUES CDGE

TS CORRES- x.¥

x,Y 1 nes

MATCH wml
WITH INVISCD

CHARACTERIST. RETURN
TO OFLSIRED T MAN
ACGURACY

FIG. (A-2) INVISCID PROGRAM
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SUBROUTINE CHAR

FUNCTIONS
TO COMPUTE
COEFFICIENTS,

COMPUTE
X, Y, 8, H,m
v, @

FIND VALUES

COEFFICIENTS CHANGE

AT THIS PONT INDICIES . GO fo
THEN AVERAQH

WITH VALUES TO NEXT

PREVIOUS POINT

POINT

A
SHOCK START cfub X
THIS POINT.
EVALUATE
WALUES IN
FRONT AND
OEMIND IT RETURN
TO MAIN
[
USE NEW
LINE AS A
REFERENCE

FIG. (A-3) INVISCID PROGRAM
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SUBROUTINE  CSHOCK

FUNCTIONS TO
COMPUTE
ORIGINAL,
COEFFICIENTS

,A,8,C,G,F,
F' a,b,c

COMPUTE :

X,Y, €,0,
V,S,H, M

[FRST
TIME
ONLY

FUNCTION TO
COMPUTE

COEFFICIENTS
AT NEW
POINT

AVERAGE
COEFFICIENTS
OF NEW POINT

WITH
ORIGINAL
COEFFICIENTS

FIG. (A-4)

SECOND
TIME

OR X TOO LARGE

NEGLECT

RETURN
TO MAIN

=

THIS POINT

INVISCID PROGRAM
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COMPUTER PROGRAM FOR CHARACTERISTIC CALCULATION

COMMON VI(S5470Q) o THETA(S,»70) yANM(5,70)3S(5,7C) 4 X(5,7C) 4 Y(5,7C),NL(5)
1 +yEPL(547J)yAH(5,7])4PM(5,70),LOC(S5)4XP(5,73),%XX(5,150),
1 GAM,RSyAMI Nyl 4JyVyJAM,ALP,TBET APy KA MAXNyMN,MNCy IV ,ANPT,LFSH,
LLLyTLoPLyEML,y YT IDELsIRED,KKyAL A4yB4+C4sC4sE4L F4,IR,ChySR,PST, TSI

DIMENSION UGUE(41),ETA(4]1),X2(10)

DIMENSICN P2X(12),P2P(1D)

KREWIND1

REWIND2

READ(5+370)GAM,RSyAMI ,ALP,TBET

READ(5,383) IN

READ(5,3810) INF

READ(5,3£0) Pl,EM]

READ(5,340)IREC, ICEL

READ(5,529) YT

READ(5,520) XT

READ(5,380)JAM

READ(5+35C) LL,TL

READ(5,389) LN

READ(5,490) (XZ(K),K=1,LN)

READ(5,389)LPSH

READ(5+380) KK

IF(IN.EQ.1) GO TO 10

READ(5,380)N

READ(549380)MAXN

READ(59390)(VI(1,4J)yTHETA(L,J)yAM{]1,4J)4S(1yJ) s X(1yJ)y¥Y(1,J)yEPI(],J
1 )'AH(I'J)'J=1vN)

GO TC 20

CALL CINPLUT

MAXN=N+KK=-1

INN=N

IMAX=MAXN

DO 30 J=2,N

PM(1,J)=(Y(1sJ)=Y(1,yJ=1))/(X(1yJ)=X(1yJ=1))

G2=(GAM=1.)/2.

UN1=1.4G2#AN]aa2

PX=GAM/ (GAM~-1.)

KA=1

IR=1

N=INN

MAXN=IMAX

NRED=5

MC=0

NP=1

M=0

READ{5,48C) A4,B4,C4,D4+E4,F4

DL=AL/.0174532925

TOC=TSI#Gw

SRT=12,#SR

PSID=PS1/144.

WRITE(6443)) AMI,TSI,PSIC

IF(JAM,EN.Ll) WRITE(6,410) DL

IF(JAM.EQ.J)) WRITE(6,42%) DL

WRITE(6,430) SRTZTCC,A4,EM]

I=1

MN=2)

IM=KK=1
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51 WRITe(6,445))
WRITZ(by,4€0) IR
WRITE(G69y4T ) (VT od) s THETA(L W J) 9 AMIT 3 J) oSTI o) o X(Isd)sY(IyJd)yAl
l(I'J)9J=l'N)
WRITZ(64442) EPI(I,4N)
WRITZ(64512)
CC 30 LX=1sLN
IFIXZ(LX)eLTaXU I41)) 50 TS 80
00 6¢ LJ=1,52
IFIX( T4LJ)aZ2Qeds) GC TO 87
IF(XZ(LX)eLTax( IoLJ)) GC TC 72
60 CONTINUE
10 FL=(XO ToLJ)=XZ(LX))Z(X0 T4LI)=X{ I4LJI=1))
FH=(XZ(LX)=X( T4LJ=10)/7(X( T4LU)=X{ T4LJ-1))
TV=THETA( T,LJ-1)#FL+THEETA( ToLJ)=FF
AMV=AM( T,LJd-1)#FL+ANM({ [,LJ)#FH
TEMP = (l. + AMVes2/5,)
SV=S( T,LJ=1)2FL+S( I,LJ)%Fh
Vv=V( Ll,LJ=1)eFL+V( TI,LJ)*FH
YV=Y( T,LJ-1)#FL+Y( I,LJ)*FH
Hv=AH({ T,LJ=1)#FL+AH( [,LJ)*FH
PV=(UN1/(1,4G2#AMVe#2) )sePXeEXP(=-SV)etVeepX
SIG = PV#TEMPayVeYVECOS(TV)/SQRT(FV)
PT2=((GAM+1,)/2.2AMVE22/UN]1)aaPX2((GAN+]1,)/2./7(CANRANVEEZ=-(2))
1l #e(l./7(GAM=1,) )PV
WRITE(64520) XZ(LX)yIRgyYVySICoyAMV,VV,,SV,PV,PTZ,HYV
WRITE(2)XZ(LX) IRy YV,SIGyAMV,VV,SV,PV,PT2,HV
89 CONTINUE
IF(X(I41)eGTaXT) CALL EXIT
NU(T)V =N
I=1+1
IR=TR+]
IF(1.GT.3) GC TG 2352
9 J=1
N=N+]
IF(NJGT,MAXN) GO TC 15%
17 IF(IR.GT.KK) GC TC 16
IFCINF EGLL) GC TC 28,
IF{I.GT.2) GC TC 11
CM=GAaM-1,
GP=GAM+1,
TF=THETA(1,1)
AMF=AM(1,1)

AMK =SURT(o/CVe((TM1ea aGM/2 .41, )8((PL1/A4)ee(GVM/CANVM))=1,.))
CNUL=SQRT(GP/GM)#ATAN(SGRT(GN/GPe(ANKe#2-1,)) )-ATAN(SCRT(AVMKnezZ,
1 =-1.))

CNUF=SCERTUGP/GM ) #ATAN(SGURT(GN/GPe (AM(] ,1)#%2=-14)))=-BTAN(SCRT
1 (AM(]1 ,1)ee2,-1,))
TKK =CNLF4THETA(L,1)-CNUL
XKK=KK=1
SAT=SCRT(GP/GM)
11y X{I41)=X(1,1}
Y(I,1)=Y(1,1)
S(I,1)=5(1,1)
AH(TI,1)=AF(1,y1)
EPI(Ls1)=%PI(1,y1])
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0! v

120
139
140
150

169

173

180

190

20v

AM(101)=ANF
XIk=[R-1

THCTA(I 1)=TF+(TKK=-TF)aXIK/XKK

CNU=CNUF+TF=-THETA{T,1)
0C 129 KI=1,12¢C
CNW=SAT#ATAN(SCRT ((AM(]
-10))

v1)222-1,)aGM/CP))-ATANISCRT(AM(]

AM(T 41)=AM(] ,41)42.#(CNU-CNh)

IF{ABS{CNL=CNW).LE..CUCCL) GC TC 12C

CONTINUE

VII 41)=SQRT(ANF(] ,1)eag/(2./GM+AM(]

CALL CHAR
GO TO 5.

N=MAXN
MN=1

GO 7C 19"

IF(NRED.EQ.C) GO TC 179
CALL OIv ST

IFI(N.EQ.1) GC TO 4C
IF(N.EQ.2) GC TO 279

GO TO 140

IF(IRED.LE.N) GO TC 180
IRED=IREC~-IDEL

GO TO 170

ILP=IR-3

REWINDI

L=5

LB=®

DO 250 ILCOP=1,ILP
READ(1)Iw,NL(5),L0C(5)
NUI=NU(5)

yl)ee2))

sl)ue2

READ(L) (VIS o) o THETAIS sJ) s AM(54J) 9S(S59J) o XU54J) s Y(SsJ)sEPI(Sed)y

AH{S54J)9PNM(54J) e XP(59J),

J=1,AUT)

READ(LI)(XX(S,IX)yIX=1yIW)

BACKSPACEL

BACKSPACEL

BACKSPACEL

K=1

DO 200 J=1,IREC,ICEL
v (LyK)=V (Lod)
THETA(L,K)=THETA(L¢J)
AM (LyK)=AV (LoJd)

S {LyK)=S {(LyJ)
X (LyK)=X {(LyJ)
Y (LyK)=Y {Leyd)

AH (LyK)=AH (LyJ)
EPI (LyK)=EPI {LyJ)
K=K+]

INEX=IREC+]

N=NU(L)

IF(INEX.GT4N) GC TC 22:
00 210 J=INEXsN

v {LsK)=V (LsJ)
THETA(LK)=THETA({L,,J)
AM {LyK)=AM {LyJ)
S (LyK)=S {LyJd)
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[aN]

26

270

283

&9

X (LyK)=X (LyJ)

Y (LoX)=Y (LsJ)

AH (LyK)=AF (LyJ)

EPI (LyK)=EPI (LeJ)

K=k+1

NU(L)=K=-1

N=NU(L)

DC 230 J=2,N\
PMILyJ)I=(Y(Lod)=Y(LyJ=1))/(X(LyJ)=X(LosJ=1))
DC 24y IX=1,1IW

XX(LyIX)=10C,F410

IF(L.EG.S) GC TO 260

CONTINUE

LB=Lb+1l

L=LB

IF(L.LT&3) GC TC 19%

NRED=1

MAXN=N

I=3

GO TC 1é0

WRITZ(1)IwWyNU(S),LCC(H)

WRITE(L)(VISyJ) oy TEZTA(S U yAMIS3d)ySTE2J) o XUE3d) s YISeJ)eEFI(EWd)y
AH(543J) 4y PM(543J) 4 XP{S5sd)ed=1yN )
WRITE(L)(XX(SeIX)yIX=1yIW)

GC TC 25¢C

IF(MC.NELC) CALL SHOCK

IF(NPT.EQ.1) CALL CHAR

GO TC 54

READ(54390) V(Ioy1)oTHETA{T 1)y AM{T41)wSUIol) o X(Is1l)sY(Isl)EPI(I,
1)yAR(I,41)

GC TO 14C

Iw=IR=-3

NUI=NU(1)

WRITE(Ll) IwyANUILLCC(1)

WRITE(L)(V(LyJ) o THETA(LyJ)9ANMILyJ)oSTLad) o XULed)eY(1,y3J)EFI(L,d),
AH(Y3J)yPM(L1yJ) e XP(1sJ)ed=1yNUT)
WRITZ(L)(XX(LyIX)gIX=1yIW)

o 310 I1=1,2

N=NU(TI+1)
DC 303 J=1N
Vv (IyJ)=V (1+1,J)

THETA(I+J)= THETA(I+1,J)
AM (I,J)= AM (I+1,J)

S (I,J)= S (I+1,J)
X {IyJ)= X (I+1,J)
Y (I,J)= Y (I1+1,J)

EPI (I,J)= EPI (I+1,J)
AH (I,J)= AH (I+1,J)
pM 1vd)= PM tI+1,0)
XP(I4J)=XP(I+14J)
LOC(I)=LOC(I+1)
NUCT)=NU(T+1)

Iw=IW+l

BC 310 IX=1l,1IW
XX(IoIX)=XX(I+2yIX )

DO 320 IX=1,IR
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330

340
350
369
3719
380
390
400

410
420
439

442
453

460
470
480
499
500
510

XX(3 'IX)=OQ

I=3

N=NU(3 )

00 33) J=1,N

Vii,J)=C.

THETA(I,J)=0,

AM(I,J)=0,

S(I,J)=0C,

X(I'J)=OQ

Y{l,J)=0C.

AH(I'J)=0.

XP(!,J)=0,

PM{1,J)=C,

EPI(I,J)=C.

GO TO 99

FORMAT(215)

FORMAT(]I3,E13,6)

FORMAT(2E18.8)

FORMAT(5EL15.6)
FORMAT(]12)
FORMAT(4E18.8/4E18.8)

FORMAT(///777/+1Xy25HFREE STREAM MACH NUMBER =,F18.84//,1Xy2¢6HFREE
1STREAM STAGNATICN TEMPERATURE =,F18.8¢y3Xy15HCEGREES RANKINE,//1X,
1 33HFREC STREAM STAGNATICN PRESSURE =, F18,8,3X,3FPSI, /)

FORMAT(1X,2CFHALF ANGLE OF CCNE =,F18.8,3X,7THCEGREES, /)

FORMAT(1X,21FHALF ANGLE OF WEDGE =,F18.8,3X,7TFCEGREES, /)

FORMAT(1X24HRADIUS OF BASE CF CCNE =oF1B848¢3Xy6FINCFESy//y1Xe2lH
LTEMPERATURE CF CONE =4F18.893Xy 15HCEGREES RANKINE//71X,30FFRESSLRE
1 BASE / PRESSURE INF =4F1l8.8,4//¢1X,49KINITIAL MACKE NUMEER CF TRAIL
1ING EDGE STREAMLINE =,Fl8.8)

FORMAT (170X, 10FEPSILCN = ,E18.8)

FORMAT(//74+124H v THETA d
1 S X Y

1H )

FORMAT(///8H ROW ,12777)

FORMAT(TE18.8)

FORMAT(6EL13,6)

FORMAT(19F7.3)

FORMAT(2X92HX=yFT7e341X912,4X,8EL12,4)

FORMAT(///¢11Xe3HROW s 10Xy 1HY 311X 3FSIG,y 11X, 1HVM,12X,2FVV,11X,

1 2HSV 410X o 4HP/PI 49X, THPT2/PT1 47Xy 2FFHV)

520 "FORMAT(EL18.8) T ’

END
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29
o

49

SUBRCUTINE CINPUT
COMMON VISo 7o) o THETA(S 9700 ANMIS 4750 9S(59TO) o X{543T7C)oY(5437C)oNL(S)
1 yEPT(S5,370) s AHIS 477 )4 PMIS53TI)oLOCIS) o XP{5,70) XX (5,15C),
1 CAMGRS yANT yNy T 4 J oV o JAMGALPyTEET AP KAZNAXNyMAZMCyI¥4yAPT,LFSK,
LLLyTLoPLyEML o YTy ICEL W IRCD KK g ALy AG B4y C4yClyTa9F4IRyChySRHEST LTSI
CIMINSICN UCLZ(41),FTA(41)
READ(S5,197) (ETA(T)4LOUE(T),I=1,41)
READ(5,247) AP
REAC(5,222 1Y
GM=GAv-1,
GP=GAN+].
XL=SR/SIN(AL)
PI=1.4GN/2., AN ]ae?
PE=14+GNM/ 2. #FMERE?
TE=TSI#TCT/P1]
RE=RCR/PI#a(]1,/GVM)ePSI/(R=TSI)
UE=AM]SeSCRT(GMN/GP«2 ,«CPP&TST)
EU=2.27E-8#TE#x]1.5/(19c.64TE)
REL=REsUE#XL/EL
XL=XL/SR
AJA=JAM
RR=2,#XL/SQRT((2.#AJA+1,)#EL)
UEO=cME/ANT#SQRT(PI/PE)
WRITL(6,23C) ReLyRE9EUGXL UL $UEC
READ(5,22°) NC
READ{S5,24C)(AM(14J)yJ=1,4NC)
READ(5,223) NL
J1=NC+1
J2=NL+NC
REAC(S53 2100 (X (Y3 J Yy Y(19J) o THETALLWJ) oS 1yJ)sAF(143J)0AN(1,4),J0=Jd],
1 J2)
DC 1¢C J=Jl,J2
EPI(lsd)=".
VI14yJ)=SCRT(GM/GP)«AN{]1,J)
AM(1,J)=SCRT((2./GMeV(]1,4J)*22)/(1le=V(1yJ)es2))
READ(5,243) EPI(Y1,J2)
VE=SQRT(l./(1.4+2./GM/ENERE2))
WRITE(69297) Gw,yVE
D0 82 J=1,NC
EPI(1,d)=2,
VI19J)=SCRT(1e/(1e42./GM/AN(1yJ)ae2))
VEV=(VE/V(1lyJ))ee2
UU=((1e~GW)+SCRT((1e-GCiw)eu244,2GneVEV))/(Z2,#VEV)
WRITc(6,2495) UL
IF(IY.EC.1) GG TC 18N
IF{UULLT.UCUE(1)) CGC TO 3r
IFlUU.GTUGLELS4L)) GO TO 35
DO 29 1=1,41
IF{ULLEC.LCLEL]
IF(UULLTLUCUE(I
CCNTINUE
WRITE(H,257) LL
CALL EXIT
TA=FTA(])
GO 1C 60

GO TC «¢C
GO TO 5C

— —

)
)
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50
60

70

80
90

130
119

120

130
140

150

160
170

18V

190
200
210
220

1

TA=ETA(I=-1)4(ETA(I)-ETA(I-1))/(UCUE(I)-UCUE(I=1))®(UL=UCLE(I=-1))

FX=1l.-EXP(=-TA)
EXX=1e=-EXP(=2.%TA)

AY =RR#* (GWoPE#TA+PE® (1.-GW)#(TA-CI®EX)={PE-1s)o(TA=2,.2CI®EX+

Cles2/2,%EXX))

Y(1,J)=AY#CCS(AL)+1.0

AH(1,J)=GH+(1.=Gh)eUU

THETA(1,J)=AL

S(1y§)==2,9GAM/GMe (ALOG(AV(1,J)/EVE)=ALOG(LU
UX=U(AM(1,J))

AFF=AF

AF=COTAN(THETA(1,J)+UX)

IF(J.EC.1) GC TO 170
X(1pJ)=X(19J=1)4(AF+AFF) /2.8 (Y{14d)=Y(1,J=1))
CONTINUE

IF(X(1,ND).GT.X(1,J2)) GO TO 160

DO 100 J=J1,J2

IF(X(1,ND).LT.X(1,d)) GO TC 110

CONT INUE

BE=Y(1,ND) - 2K

WRITE(6,270) BE

00 120 J=Jl,J2
Y{l,J)=Y(1lyJ)®(1.4BE)
X(1leJ)=X(19J)®(1.4BE)
IF(ABS(BE).GT..C3CCO005) GC TC 90
00 130 J=Jl,J2
IF(X{14J)eGToX(1sNC)) GO TO 140
CONTINUE

L=Jl-1

00 150 K=J,J2

L=L+]

X(1l,L)=X({1,K)

Y(lsL)=Y(1,K)

V(1,L)=v{]1,K)

S(1,L)=S(1,K)

AH{1l,L)=AH(],K)

AM(1l,L)=AM(]1,K)
EPI(1,L)=EPI(]1,K)
THETA(l,L)=THETA(]l4K)

CONTINUE

N=ND+J2-J+1

IF(IY.EQ.0) WRITE(6,30C) NC
IF(IY.EQ.1l) WRITE(6,31G) NC
RETURN

WRITE(6+4260) X(1sNC) o X(19Jd1)yX(19d2)
CALL EXIT

X(1ls1)==-AYRSIN(AL)

))+S(1,J1)

IK=Y(1od=1)¢(Y(19J)=Y(1lyd=1))/(X(1yJ)=X(1yd=1))u(X(1sNC)=X(1yJ=1))

IF(IY.EQCel) X(1ly1l)==(UUnnAP®,066#SReENE#®,824)/REL##,116

GO TO 89

Y(leJ)=(LLewAP® ,066#SReEVE®®,824)/REL5®,1162COTAN(AL)+]1.C

GO T0 79
FORMAT(F6.44E13.6)
FORMAT (4E18.8)
FORMAT(3E18.8)
FORMAT(12)
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233

24y
250
263
270
289
<90
3909

310

FURMAT(1H1.IX."HREL=.E15.8.SFRH0E=.ElS.&,4HMLE=.ElS.E.2hL=.515.8.
3HUE=,E15.84y6HLE/UI=4E15.8)
FORMAT(E1B.8)
FORMAT(1Xy9KHL CVER UE,E1848y12HCLT CF RAMGE)
FORMAT(1Xs15HLAST CARK PCINT,E18.8,24FKNCT RETWEEN LIGFT PCINTS,
2€18.8)
FORMAT (ZX43+HBE=yE18.8)
FORMAT (2X,3HUU=9E18.8)
FORMAT(/.1X.3HGN=.518.8.3PVE=o518.8.//)

FORMAT(/////,41Xy 26HLAMINAR BOUNCARY LAYER =--=,15,16F PCINTS ARE
USED)

FORMAT(////7/+1Xy28HTURBULENT BOUNCARY LAYER =---,1%,16F PCINTS ARE
USED)

END



SUBROUTINE CHAR
COMMON V(59 TC) 2 THETA(S,70)AM(S470) sS(5,70)+X(5470)4Y(5,7C)4NL(5)
P EPT(S5y70) o AF(5470) o PM{5470)9LOC(S) o XP(S5,70) 4 XX(5415C)»
GAMsRSyAMT 4Ny Iy J oMy JAMJALP s TBET yNP o KAJNAXN ¢MNyMC o IM NPT ,,LFSH,
LLeTLePYlsEML YT IDELIRED'KK ALy A44B4,C4,D4,EG,F4,IR
T(XXyYY)=COSIXX)/CCS(YY+XX)
Z(XXsYY)=COS(XX)/CCS(YY=XX)
WRITE(6,52C) (XXx(I-1,12),12=1,1R)
IF(NPT.EQC.1) GO TO 140
GQ=0,
LIM=N=-1+M
IF(MC.GT.0) LIM=LINM=-1
INTEGERP
DO 330 J=2,LINM N
10 IF(GCeECe] e ANCoXP(I,yJ-1).EQ.Q0.) GC TC 120
IF(GO.NEs1.) GO TO 130
1Q=11
IF(II.LT.(IR=2)) GC TO 40
IF((IR~II).ECs2) IX=1
IF((IR-II).EQ.1) IX=2
20 1Q=1Q-1
IF(IQ.EC.C) GO TO 400
IF(XX(I,I1)eGTaXX(IXyIQ)) GO TO 20
IX=1Q
II=1X
IF(I1.LT.(IR-2)) GC TO 50
IF((IR-II).EC.2) IX=1
IF((IR-IT).EQ.1) IX=2

e

30 P=J+1
IF{IIeLTeKK) P=P+II=KK
GO TO l40

40 IWHE=1
GO TO 69

50 IWHE=2

60 LBACK=0
70 BACKSPACE!L
BACKSPACEL
BACKSPACEL
READ(1) ISsNU(5),LOC(5)
IF(II.EQ.IS) GO TO 80
BACKSPACEL
LBACK=LBACK+1
GO TO 7¢C
80 NUI=NU(5)
READ(1)(V(54K) yTHETA(S5:K) yAM(5,K)4S(5, K’oX(S K)o Y(54K)EPI(S59K)¢
1 AH(S5,K) 4PM(5,K) s XP (54K} sK=14NUI) =
READ(L) (XX(54IX)sIX=14sIS)
IF(LBACK.EQ.Q) GO TO 100
DO 90LBA=1,LBACK
READ(1)ITT4NU(4),LOC(4)
NUI=NU(4)
READ(1)(V(44K) gy THETA(49K) yAM{44K)S(4, K).X(4.K).Y(4 K)+EPI(44K)y
N1 AH(G K)o PM(4,K) 9 XP(%4K) o K=1yNUI)
90 READ(L)(XX(4yIX)IX=141ITT)
100 Ix=5
IF(IWHE.EC.1) GO TC 20
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115

12-

13y

l4y
150
16¢

170
180

190

200

210
220

230

P

s,

GO TC 3¢
IX=1 -1
II=IR-1
G0 T0 170
P=P+1
GO TG 140
IX=1 -1
II=1IR-1
P=J+NP-1
L=0
WRITE(6,51C) IR J,(1I,P
L=L+1
IFINPT.EQ.1l) GC TC 1190
IF(L.EQ.1) GC TO 450
HG=HX=GX
XCIod)=(Y (I oJd=1)=Y{IXyP)+HXRX(IX P)=GX2X{],J=1))/HG
YL o J)={GXaHX®(X{IXgP)=X{IygJd=Li)+HX*Y(I4J=1)=GX2Y(IX,P))/FG
DELX=X{1,J)=X(IX,P)
DELZ=X(14J)=X(1,J-1)
XN=DELZ#ANX
XM=DELX#SMAX
SS=S{IX 4P)=S(I,J=-1)
DELH=AH({IX ,P)=AH(I,J-1)
XNM=SS/(XN+XM)
DX=DW#DELX
$3=S(1,J4)
S{I,J)=S(I,J=-1)+XNM=XN _
AH{I 4 J)=AH(I,J=1)+{(BELH/ {XN+XM) )#XN)
S1=V(I,yJ)
IF(AK(T9J)elTeOe) AHLIJ)=(AF(I=1,J)+AH(I=1,J¢1))/2.
VIIyJ)=(AXSV(I o J=1) +AWRV(IX,PI+THETA(IX,P)=THETA(I,J=-1)+BX#DELZ
+DX+SS# {CX#DELX#SMAX=DELZ#ANX#CH)/{XN+XM)+DELH/ (2. (XN+XNM) )= (TX=»
DELZ/{AH{TyJ=1)eV(1,J=1)282)~ZWaCELX/ (AR{IX,P)aV(IX,P)u22)))/LAX
#SQRT(AH(I yJ)/AH(TI 4 J=1))+AWeSQRT(AR(I,+J)/AR(IX,P)))
S2=THETA(I,J) _
THETA(I yJ)=THETA(IX,P)+AWS(V({IXyP)=SCRT(AH{I J)/7AH{IXyP))aV(IpJ))
+DX+C XXM XNM=ZW#DEL X#DELH/ (2 #V(IX P)au28AH{IX,P)%(XN+XVN))
IF{S2.NE«Qs+ANCsL.EQ.1) GC TC 250
IF{V(I4+J)elTe0eeORVIIZJ)eGTele) GC TC 390
AM{T4J)=SQRT{2./(GAM=1,))#S5QRT{V(I,J)%u2/(le=V(I,J)nu2))
IF(ABS{(V (1,J)=S1)/V (I,J)).LT.TL) GC TC 240
EPI(I,J)=0.
PM{T 2 J)=(Y(I 4 J)=Y{I,4J=1))/(X(IyJ)=X(I,4=1))
IF(IR.LE.KK) GO TO 220
IF{L.GT.LL) GO TG 429
IFCAM{I 4 J)elTele) AM(IJ)={AN(I=1,J)4AM(I~-1,J+]1))/2.
IF(L.EQ.1) GO TO 4¢0
UX=U{AM(I,J))
AX=o58 (AZ+A{LX V(I J)))
AW=o58 (AY+A(UX V(I J)))
DW=e5#(DY+D(JAMyUX, THETA(LyJ)sY(1I,J)))
BX=oe5#(BZ+B{JAMLUX,THETA(T 4 J) oY (I,J)))
CW=.5#(CY+C(UX,GAM,RS))
CX=e5#(CZ+C{UX,GAM,RS))
TIWN=.58(Z2Z+Z(UXyTHETA(I,J)))
TX=o5#(TZ+T(UX,THETAII,J)))
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244

25v¢

269

270

GX=e5# (GZ+TAN{THETA(I yJ)+UX))
HX=oS5# (HZ+TAN(THETA(TIJ)=UX))
IF(IR.LE<KK.ANC.L.GT.LL} GO TO 310

GO TO 150

IF(V(I,J)e.GFualas) GC TO 210
IF(ABS({(THETA(I4J)=S2)/THETA(I4J))eGETLORLABS((S(I4J)=S2)/S(1,J
))«GELTL) GC TC 21¢

IF(Y(I9J)elTeOeeCRY{I,4J)uLT.TBET) GC TO 400

PMIT oJ)=(Y(T19d)=Y {I4Jd=1))}/(X(1,J)=X(1,4J=1))

IF(L.EQ.1) GC TC 269

IF(IR.LE.KK) GO TC 310

IF(PM{I,4J)eGTPMIIX 4P )) GC TO 260

GO TO 310

YPM = (PM(I4J)eY{IX 4P=1) = PM{IX 4P)aY(1,J=1) + PN(]1,J)n

PMUIX 4PY#(X{I4Jd=1) = X{IX 4P=1)))/7(PM(I,J) =PM({IX ,P))

XP(IoJd)=X{IgJd=1)+0(X{Iod)=X{14J=1))/7(Y(I4Jd)=Y(1yJ=1)))u(YFM=-Y{]}J

-1))

IF(L.EQ.1) GC TC 270

IF(XP(I4J)elToaX(IX 4P)) GO TC 270

XP(1,J)=90.

GO TO 310

WRITE(6,480)IR,J,YPM

LOC(I)=6+L2

IF{L2.LE.Q) L2=1

MC=2

IF(XP{I+3)elLTaX({IyJ=1)) GO TC 370

WRITE(64490) IRyJyXP(I,J)

XX{Io11)=XP(1,J)

YA=Y (] 4J=1)=Y(IX,P-1)

YB=Y(IXy,P)=Y{(IXsP=-1)

YC=YPM=Y(IX,P=1)

XA=X(IXyP)=X{IX,P=1)

X8=X(I,J-1)-X(IX,P-1)

XC=XP({IoJ)=Y{IX,P=1)

DEN=XA#YA-Yi'#XB

DFXT=((THETA IX P)=THETA(IXP=1) ) #YA=YEB#(THETA(1,J-1)-THETA(IX,
P=-1)))/DEN

DFXH=({ (AH({IXsP)=AH(IX,P=1))aYA=-YB# (AH(],J-1)=AH(IX,P=1)))/CEN
DFXV={(V (IXsP)=V (IXeP=1))aYA=-YBe(V (I,4J=-1)-V (IX4P=1)))/CEN

DFXS={{S (IX4P)=S (IXyP=1))#YA=YB#(S (I,J-1)-S (IX,P=-1)))/DEN

DFYT=({XA® (THETA(I yJ=1)=THETA(IXyP=1))=XB#{THETA(IX,P)-THETA
(IXs,P=1)))/CEN

DFYH= (XA# {AH(] 4J=1)=AH(IXyP=1))=-XB#{AH(IXsP)=AK{IX,P=1)))/CEN

DFYV={XA®(V (I¢J=1)=V (IXP=1))=-XBe{V (IXeP)=V (IX,P=1)))/0EN

DFYS={XA#(S (I4J=1)=S (IXeP=1))=XB#{S {(IXeP)=S {(IX,P=-1)))/CEN
THETA(IX,P)=THETA{IX,P-1)+DFXTo#XC+CFYT#YC

VIIX4P)=V(IXsP=1)+DFXVaXC+CFYV#Y(
S({IXeP)=S{IXP=1)+DFXS#XC+DFYS#YC

AH(IXsP)=AH(IXyP=1)+DFXH#XC+CFYH#YC

AM(IX 4P)=SCRT{2.7/7(GAM=1,))#SORT{V(IX ,P)##2/(1e=V(IX ,P)un2))

YA=Y(1,J)=Y{],J=1)

YB=Y({IX,P=1)=Y(I,J-1)

YC=YPM=Y(1,J-1)

XA=X{IXyP=1)=X{1,J=1)

XB=X{I4J)=X{[4J=1)

XC=XP(IsJ)=X{],J-1)
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(e <]
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299

31
32¢
33

34y

35,
360
37
3a¢

385

39)

1

P gt Pt

DEN=XA#YA-YB#XB

DFEXT=((THETA(IXyP=1)=THETA(I 4J=1))#YA=(THETA(I yJ)=THETA(I,J~1))#
YB)/CEN

DEXV=((V (IXyP=1)=V (T9J=1))aYA=(V (I,J)=V (1,J=-1))eYR)/CEN
DFXS=((S (IXyP=1)}=S (I1,4J=-1))#YA=(S (I4J)=S (I1,4J=~1))eYB)/CEN
DFXH=( (AH(IXyP=1)=AH(I4J=1))aYA=(AR(I4J)=AH(]IyJ=-1))aYB)/CEN
DFYT=(XA#(THETA(I yJ)=THETA(IyJ=1))=(THETA(IX,P~1)-THETA(I,J~-1))#XB
) /DEN
DFYV=(XA®(V (I,4J)=V (I4J=1))=(V (IX:P=1)=V (1,J=1))eXB)/CEN
DFYS={XA®(S (I,J)=S (I,4J=1))=(S (IXyP=1)=S (I,J=1))#XB)/CEN
DFYH=(XA® (AH( [y J)=AH(T4J=1))=(AH{IXsP=1)~AHIT,J=-1))eXB)/CEN
THETA(T yJ)=THETA(IyJ=1)+CFXTo#XC+CFYT#YC

v (1¢J)=V (14J-1)+0FXVaXC+CFYVaY(C

S (I4J)=8 (14J-1)+CFXSoXC+CFYS#Y(C

AH (IyJ)=AH (IyJ=1)+CFXH#XC+CFYH#YC

IF(V(I4J).GTels) GC TO 440
AM(T,4J)=SQRT(2./(GAM=14))#SQRT(VII,J)#02/()=V(],J)an2))
Y{I,J)=YPV

X(14J)=XP(14J)

PMIT» 1) =(Y(I9Jd)=Y(IyJ=11)/(X{14Jd)=X(1yJ=1))

GP=GAM+1,

GM=(GAM-1,)/2.

AM2=AM(IXyP)ne2

OL=1.,
IF(AM(T 4J)n%2=1,.LTs0e) AM(I,4J)=1.2
ANS= GM/ (GAM®AM2)+GP/ (2. #GAVRAN2)#{(1.4GMR2M2)/

(le+GMeAM (T J)#a2) )n(GAM/ (GAM=]1,))#{]l.~(GAM®ANM(],J)%n2)/
SQRT(AM(T,J)#e2=1,)#DL+DL##22GAMBAN(] ,J) #2024 (GPoANM(],J))%84~4 8 (AM
(ToJ)o22=1,) )/ ((AN(TyJ)uu2=]1,) %2284 ,))0EXP(S(IX,P)=S(I,J}))
IF(ANS.LT.0e) GO TC 430
EPI(I9J)=ARSIN(SQRT(ANS) )+THETA(IX,P)
ABC=ABS((S(IyJ)/S{IXyP)=-1.)#100.)
IF(ABC.LT.YT) GO TC 4190
GO TC 370
GO 7O (327,33C), KA
IF(X(I4J).GTLALP) GO TO 36C
CONT INUE
IFC(NUCIX)=1)oeGTuN) GO T2 47C
DO 3401J=1,11
XX(I141J)=10.E+10
NPT=9
IF(MC.GToZ) CALL SHQOCK
IF(NPT.EQ.1) GC 1T 19
IF(M.GT.C) GC TC 35¢C
IF{MN.GT.0) GO TO 350
CALL CSHGCK
RETURN
KA=.
N=J
M=l
MAXN=N
LI=11-1
DO 3851J=1,L1
XX(1414)=12.E+10
GC 10 381
AM(Td)=(AM(I=1,J)+AM(]I-1,J+1))/2,.
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GO T0O 200
400 N=J-1
GO 70 38¢C
41y MC =0
WRITE(6,500) ABC
GO0=1.
G0 TO 310
420 IF(IR.LE.KK) GO TO 400
WRITE(6,4530) IR,J

GO TO 4CO

430 EPI(I,J)=THETA(I-1,J+1)
GO 70 3CO

440 AM(I 4J)=(AM(IX,P-1)+AM(IX,P)})/2.
GO TO 280

450 UX=U(AM(T,4-1))
UW=U(AM(IX,P))
AX=A(UX,V(IyJ=-1))
AW=A(UR,V(IX,P))
BX=B(JAMUX s THETA(IyJ=1),Y(1,4-1))
ANX=AN(UX,THETA(I,J~-1))
CW=C(UX,GAM,RS)
SMAX=SMA(UW, THETA(IX,P))
CX=C(UW,GAM,RS)
OW=D(JAM UW THETA(IX,P) o Y(IX,P})
IN=Z(UWZTHETA(IX,P))
TX=T(UXy THETA(I,,J-1))
LX=TAN(THETA(I,J-1)+UX)
HX=TAN(THETA(IX,P)=UW)
GO TO 180
469 AZ=AX
AY=AW
BZ=BX
CY=CW
CZ=CX
DY=DW
12=1IW
TZ=TX
GZ=GX
HZ=HX
GO TO 230
4790 LIM=LIM+]
J=L1IM
N=N+1
MAXN=N
GO T0 10
480 FORMAT (10X, 4HYPM(413,1H,13,1H) E20.8)
490 FORMAT(10Xy4HXPM(,13,1H,13,1HK),E20.8)
500 FORMAT(20X,E18.8)
510 FORMATI(5X,4110)

520 FORMAT (1X,13E10.4) Gt Y PP P
530 FORMAT(1X,29HWE HAVE NOT CONVERGEC FOR ROW.1545HPOINT,15)
END
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31C

320

330

SUBROULTINE CLHCCK
COMMON VIS, 7U) 3 THFTA(S 3 72) 3 ANM(S370)eSIE,70)9X{5,7C)sY(5,7C)yNLI(5)
1 JyEPI(S470)yAH(S 7L )19PM(5972)9L0C(S) s XP(5,77)9XX(5,15C),
1 GAMyRSyAMIgNo I 9 J oV o JAMGALP o TBET NP yKAZMFAXNyMN yMCHyIM NPT, LFSk,
1 LLyTLIPLyFEMYy YTy ICEL s IREC KKyALyA4,B4,C4,C4,E4,F4,IR
J=N

UX=U(AM(T,J=-1))
AX=A(UXyVIIyJ=1))
BX=B(JAMyUX, THETA(],,J=1),Y(I,J-1))
CXx=C(UXyGAM,RS)
GX=TAN(THETA(I,J=1)+LX)
FX=TAN(EPI[(I-1,J-1))
GMI:GAN-IQ
AMIS=AN]#a?
GM=GM1/2.#aMIS
GP1=GANM+].
BET=EPI(I=1,J-1)=THETA(I=-1,J-1)
SA==V(I=-1,J=1)#SIN(BET)*CCS(BET)#(FX/TAN(BET)+TAN(BET)/FX~
1 (2.#GM1)/GP1)
COM=(AMI#SIN(EPI(I-1yJ=1)))ua?
COMS=(CCVM=1.) %2
SB==SIN(2#THETA(I=-14J=1))/SIN(Z.#EPI(I=1yJ=1))+((GPLleAt a2
1 «COMaSIN(THETA(I=1,J=-1))%22)/CONMS)
SC=RS/FXaCOMS/ ((CCVM={GML1/(2.aGAM)) ) (COMR(CM1/2.)41.))
L=23
L=L+1
FG=FX-GX
X(IeJ)=(Y(IyJ=1)=Y(I=1yJ=1)+FXaX(I~1yJ=1)~CX #X(I,J=-1))/FC
Y(IyJ)=(FXGCX#(X(I=1yJ=1)=X(1yJ=2))¢FXaY(]yJ=1)=CXeY(I-1,J-1))/FG
DELX=X(I4J)=X({1,J=1)
EPI{IyJ)I=EPI(I=1yJ=2)+(AXS(V(IyJ=1)=V(I=1yJ=1))=THETA(I,J=-1)4
1 THETA(I-19J=1)4CX%(S{I4J=1)-S(I=1,J=-1))+BX#DELX)/(SARAX~-SE+SC=CX)
SEP=SIN(EPI(I,J))
EM=AN]S«#SEP 42
THETA(I,»J)=ATAN((ANMIS#SIN(2.#cPI(1,J))~2.#CCS(EPI(I,3))/SEF)/
1(2.+AMIS#(GANMSCCS(2.#EPI(I,d)))))
VI=le={(4.n(EM=1,)a(GCAMeEM+],.)))/(CPlan2aAM]SaEN)
IF(VV.LT«eZs) GC TC 3C2
VIIyJ)=SCRT(GM/(1,4GM))«SCRT(VT)
IF((2.#GAVM+EN).LTL.GM1) GO TC 300
S(I4J)=RS/GML1ALOG((2.#GAMEM=GMY)/GPY)~GAMaRS/GNM ]
LALOG(GPLl*#EVM/ (GM1#EN+2,))
AH(T,J)=AH(I-1,J-1)
IF(V(IyJ)eGTale) GC TO 349C
AM(1,J)=SCRT(2./GM1)#SQRT(V(IyJ) a2/ (1la=V(IyJ)ua2))
IF(L.EC.Y) GC TG 340
IF(S(T9J)elBeleDelRaX(IyJ)eLEL.2.C) GC TC 370
IF(AM(I4J)eLTL1.) GO TG 3CO
IF(Y(I4J)elTeNeoGRaY(I,J)uLT.TBET) GC TO 3€0
PMITyJ)=s(Y(TyJ)=Y(I,,d=1))/(X(TyJ)=X{TI,J=1))
IF{X{I,J).GT,ALP) GC TN 337
RETURN
M=l
MAXN=N
RETURN
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300 N=J=1
GO TC 339
340 AZ=AX
BZ=BX
CZ2=CXx
GZ=6X
FZ=FX
350 UX=U(AM(T,J))
AX= 58 (AZ+A(UX,V(I,J)))
BX=.5#(BZ+B(JAM,UXZTHETA(I,J)yY(iyJd)))
CX=.5#(C2Z¢C{UX,GANM,RS))
CRX=, S5 (FZ+TANIEPI(IZU)))
GX=u5#{GZ+TAN(THETA(I J)+UX))
~GO Y0 310 i -
END
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1

SUBRQUTINE CIV ST

COMMON VI(S5,70) 4y THETA(S4T72)yAM(5,7C) 4SIE470)4X{S,7C)yY(E47C)NL(5)
2EPT(Ss 770 )y AH( 5377 ) 4 PM{5,7C ) LOCIS) 4 XP{5,T0) 4 XX(5,15C),
GAMyRSyAMI yN9 T o J oMy JAMZALP s TRET JNP o KAZNAXNGMAN G NC oy IN NPT ,LFSH,
LLyTL WPl ySMY YT IDEL W IRECyKKyALyAG B4 ,C4,044E44F4,IR
J=1

UX=U(AM(I=-1,2))

AX=A(UXV(I=1,42))

CX=C{UXyGAM,RS)

DX=D(JAVN JUX o THETA(I-142),Y(I-1,2))

HX=TAN(THETA(I-1,2)-UX)

EX=TAN(THETA(I-1,1))

N=N=NP+MC
M=1
NP=2

GM=GAM~1,
L=0

110 L=L+1

115
12y

1306

1

1
1

S{I+1)=S(I-1,1)

AH{I,1)=AK(I=-1,1)

DEN=EX-HX

X1=X(I,1)
X{Iol)=(Y{(I=192)=Y(I=1,1)4EXaX(]=1,1)-FXaX{I=-1,2))/CEN
DELX=X{I,1)=X(I-1,2)
Y{I,1)=(EXeHX®(X(I=141)=X({I=1,2))4EX®Y(]I-1,2)-tX*¥Y{I-1,1))/0EN
XQ=X({I,1)
AM{T 41 )=SQRT(2./CMu((EML#224GN/ 2, +1,.)#((P1/P2{XCyA4,B4,C4,C4,E4,F4
))aa (GM/GAM) )=1,))

VIIy1)=SQRT(AM(I41)#a2/(2./GVN+AM(],1)%42))

T1=THETA(I,]1)

THETA(T 31 )=THETA(I=142)~AX#(V(I,1)#SCRT(AH(TI,1)/AKH{I-1,2))-V(I-1,

2))+DX#DELX=CX#(S(I-141)=S(I-142))+AX®{AH(I,1)~-AK(I=-1,2))/
(V(I-1,2)#{AR{I,1)+AH(I-1,2)))
EPI(I,1)="
IFCABSUIX1=X(T92))/X(Is1))alTaeCOCCleANCLABS((TL-TFETA(I,L1))/

THETA(IHZ1)).LT.CC0L) GO TO 120

IF{L.GT.52) GO TO 115

IF{L.NE.1) GC TO 1A4a¢

AZ=AX

Cl=CX

DZ=DX

HZ=HX

EZ=EX

UX=U(AM(T,1))

AX=,5#(AZ+A(LX,V(I,1)))

CX=.5#(CZ+C{LX4GAVN,RS)) e e e——-
DX=o5# (CZ+D{JANM UX THETA(TIS1)yY(Is1)))

HX=, 0 (HZ+TAN{THETA(I,1)=-UX))

=, 5% (S7+TAN(THETA(I,1)))

GO T0 11.

WRITE(6,4162)

IF(Y{I91)elTeOueoORY{I, 1) .LT.TBET) GC TC 130

IF{N.EQ.1) GC TC 137
RETURN
WRITE(6,14¢C)1
WRITE(E 915 3IVIToJ)yTHFETA(TI 3 J) s AMIT 1 0)3S{T4J) o X(14d)yYLIVJ),
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1AH (1,J)
N=1
RETURN
14, FORMAT(///8H ROW ,12,15H TEST STQP/77)
150 FORMAT({7€E18.8)

160 FORMAT(40X,40HWE HAVE NOT CONVERGETL GCN THE FIRST POINT)
END
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APPENDIX B

PROGRAM FOR VISCOUS REGION

-+ Once the sq:bsonic portion of the boundary layer is subdivided

into n strips, the flow in each strip is assumed to be governed by the one-
dimensional equations with friction and heat transfer. The resulting system
of equations consist of '"3n'' nonlinear, ordinary differential equations.
These equations are connected through the boundary conditions on heat
transfer, q, and friction, g (Fig. 6). Once the starting conditions,
pressure distribution, and shape of basic streamline are known, the
equations are solved simuitaneously by the Runge-Kutta method.

At every station station x it is therefore possible to find an area
consistent with the flow conditions in each stream tube in the flow field.
Since the basic streamline and the area for the viscous layer are now
known, the location of the Dividing Streamline can be obtained. The point
at which the Dividing Streamline intersects the axis is the location of the
rear stagnation point.

Downstream of the vrear stagnation region the inviscid characteristic
and viscous layer analyses must be such that the basic streamuine is located
at radial location where the outer streamline of the viscous layer exaccly
coincides with the inner streamline of the inviscid flow field. If at any
x station this condition is not satisfied, then the assumed pressure along
the basic streamline is changed until the above condition is satisfied.

For details of the viscous layer program, one may consult the flow

chart (Fig., B-1) and the program.
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SUBROUTINE  VISCOUS

:STRIPS,,

Xmax |

READ:

TEMP OF RECIRG,
REGION
\BIASI.UES ALONG

I

/' READ:

(FOR EACH
STRIP) M, A,H
AT Xs X,

INTEGRATE
EQS. TO Xs=

Xo+ A X BY
RUNGE — KUTTA

ﬁ

WRITE .

L LET
M,A,H

X =X

IS X LESS
THAN XMAX

CALL
EXIT I

FiG. (B-1) VISCOUS PROGRAM
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COMPUTER PROGRAM FOR SHEAR LAYER

SUBRUUTINE RK(X)
DIMENSION S(2D)F(20)4H{20)4,P(20),U(20)4,A(50),BlLGI)R(22)4SH(2])
1 +DON(29),Q(21) sRX(2J) ¢+ XR(20)+TX(20),AH(80),AS(80) +AF(8BQ),C(23),
2 CF(20)yFF(20) yHF(2D),V(20),CCF(20)
DHX1(HyF4C)==DX#( (AME*SQRT(H)#6,2831853)#PE/(SQRT(F)#PFaC)a(CHF=»
1 SF=QLF#RF)) '
DCX(HyFyC)=DX#(Co((l=F)2UF/(GAMaPFaF)+(HX/H)#(]l.+GMDaF)
1 +((1.+GM#F)aCFT /ABS(SF=RF))))
DFX({HyF4C)=DX#(~Fu(1ls+GMDeF)a(2,.8UF/ (GAMPFaF ) +HX/H+CFT#2,/A8S(SF
1 =-RF)))
READ(5,150) NOQ
READ(5,170) AME ,REL,ALP,GAM,PE, TH
READ(5,155) DX,AXX,ELl9E2
READ(5,155) VL,SHO,VO
1=0.
NQD=NQ/ 3
READ(5,170) (C(I),I=1,NQD)
READ(S5,170) (F(I),1=1,NQD)
READ(54170) (H(I)sI=1,NQD)
READ(5,150) 1Y
IF{IY.NE.DQ) GO TO 147
WRITE(S,270)
5 READ(5,150) SAME
LIM=5=NQD
IF(SAME.NE.D.) GO TO 7
LIM=5
NX=1
7 READ(5,170) (A(I)4+I=1,LIM)
LI =2+LIM
READ(S,172) (B(I),I=1,L1I )
READ(5,150) IXR
READ(5y179) (XRUI)yRX(ID)yTX(I)yI=1y1IXR)
WRITE(6,250) El,E2
WRITE(6,255)A(1),B(1),B(2),B(2)
WRITE(6,260) (A(I-1),A(]),B(2%]~1),B8(2%]),B(22]),1=2,LIM)
WRITE(6,265) (XRUI)oRX(I)oTX(I)yI=1,IXR)
NQDP=NQD+1
NODM=NQD-1
NW=NQD#4
NX=NQD#5
PH=3,14159265
PCF=2,+PE#COS(ALP)/SIN(ALP)/REL
S(NQD)=1.
CCF(NQD)=0.
GM=GAM-1.,
GMb=GM/ 2.
HN=1,+GMD®*AME®=2
EL=2./(REL=*SIN(ALP)=*(HN))
XM==-1,
IXF=0
AB=COS( TH)
11 DO 111 I=1,IXR
IF(X.LE.XR(I)) GO TO 112
111 CO" TINUE
I=IXR
GO TN 113
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112

113
114

12

25

70

95
100

110

120

1

IF{X.EQeXR{I)eORXeLT.XR(1)) GO TO 113

RELI=RX(I=1)+(RX(I)=RX(I=1))/(XR(I)=XR(I=1))@{(X=XR(I=1))
TTHETX(I=1)+(TX{I)=TX(I=1))/{XRTII)=XR(I=1))e(X=XR(I=1))

R(1)=R(1)/COS(TTH)

GO TO 114

RE1)=RX(I)/COS(TX(I))

TTH=TX(I)

IF(XM.GT.0.,) R(1)=0,

IF(IY.NE.O) R(1)=0,

XT=X

iW=]

DO 12 I=1,NQD

CF(I)=C(I)

FF(I)=F(I)

HF(I)=H(I)

1F=2

IF(XM.LT.0.) GO TO 141

IF(X.EQ.0,) Z2=0,

SHINQDP)=E1+E2e2

DO 70 I=1,NQD

IF(HF(1)«LT<0.) RETURN

IF(FF(I).LTe0.) RETURN

SH(I)=HNeHF(I )/(1.¥GMDeFF{I ))

VII)=SQRT(FF(I)eSH(I))/AME

DN(I)= S(1)=R(I)

IF(IY.NE.O) SH(NQDP)=SHO

QUI)=EL®SQRT(SH(I=1) ) (SH(I)=SHII=1))/(ON(I=1)+DN(]))

Q(NQDP)=EL*SQRT(SH(NQD) )#{SH{NQDP )=SH(NQD) )7 tDN(NQD) «2,)
IF(XM.GT.0.) Q(NQDP)=0,

IF(IY.NE.O) Q(NQDP)=0.0

IF(IY.NE.O) Q(I)==Ql1])

QIl)=EL@SQRT(SHO)*(SH(1)=SHO)/(DN(1)e2,0)
IF(IY.NE.O) Q(1)=0.0

IF(IXF.LT.1) GO 70 1391

IF(IN.EQ.3) GO TO 120

K=]

Z=ZF+DXeCOS(TTH)

L=0

DO 100 I=1,NX,5

L=L+]

IF(Z.LE.A(I)) J=K

IF(All JolLVTeZoANDoZoLEALLI+])) JUmK&2

IFLA(I+1)oLToeZ.ANDeZLE.AL[42)) JU=K+4

IF(A(I+2) o LTo2.,AND.Z.LELALI®3)) JaK4HS

IF(A(I+3) oL TeZoANDeZLEJA(I+4)) JnK+8

P(L)=B(J)+B(J+1)eZ

UlL)=B(J+1)

K=K+10

IF(SAME.NE.O.) GO TO 120

DO 110 I=2,NQD

PLI)=P(1)

Utri)=u(l)

IF(IY.NE.O) VL=VO

DO 125 I=1,NQDM

CCF(I)=PCFaSH(I)oal So(V(iIaV(I+&))/(P(I)eV(I)ee2e,50(R(I)=R(]+2)

))
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130
132

133

134

135

136

138

CCF(NQD)=PCFeSH(NQD)#e]l, SO(V(NQD) VL)I/(P(NQD)#V(NQD)«
{RINQD)=R(NQDP)))
I=q
DO 130 J=IW.NW,4
I=1+1
CCFO=PCFeSHOw#e]l,5¢(VO-V(1))/(P(1l)eVvOeu2e(R(1)=R(2) })
CFT=+CCF(I)=CCF(I-1)
IF(I.EQ.1) CFT=+CCF(1)~-CCFO
IF(IYoNESQ) CCFO=0.0
IF(IY.NELO) CFT==CFT
PF=P(1)
QHF=Q(I+])
QLF=Q(1I)
RF=R(1I)
SF=S(1])
UF=U(T)
IF(FF{I)elLTo0.) RETURN
AH(J)=DHXL(HF (T ) FFCI) 4 CF(I))
X=AH(J) /DX
AS(J)=DCX(HF{I)FF(I),CF(I)
AF(J)=DFX({HF(I),FF{I) CF(I
CONTINUE
GO TO (132,413541364138),1IW
IW=2
X=XT+0X/2.
IF(XMeGT40s) R(1)=0,
J=1
D=2,
DO 134 I=1,NQD
CF(I)=AS(J)/D +C(I)
FF(I)=AF(J)/D +F(I)
HF(I1)=AH{J)/D #+H(I)
TC==CF(I])
IF(IY'NELO) TC=CF(I)
IF((TC/PH+R(I)##2).LT«ls) RETURN
S(I)=SQRT(TC/PH +R(I)w#e2)
R(I+1)=S(1])
J=zJ+4
GO TO 25
Iw=3
J=2
GO TO 133
IW=4
X=XT+DX
IF{(XMeGTo04) R(l) Je
J=3
Dsla
GO TO 133
J=1
DO 139 I=1,NQD
CLIN=CUI)+(AS{JU)+2.,8AS{J+]1)+2.,#AS(J+2)+AS(J+3))/6.
HII)=H{T)+{AH(J)+2. 0 AH{J+1 )42, 0AH(.1+2)+AH(J+3)) /6.,
F(I)-F(I)+(AF(J)+2.0AF(J+1)+2.0AF(l+2)+AF(J+3))/6.
TC==C(1)
IF(IYGNE.D) TC=C(I)
RT=TC/PH+R(1)#x2

)
))
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1385

139
1391

140

141

142

143

144
147
150
155
170
180
210

250
255

260

265
2790

275

IF(RT.GE«Ns) GO TO 1385
X=500.
GO TO 139
S{I)=SQRT(RT)
R{I+1)=S(I)
J=J+4
IXF=2
X1=X#COS(TTH)
WRITE(64210) Xs2Z
00 140 I=1,NQDP
IF(F{I).LT.0.) RETURN
FS=SQRT(F(I))
WRITE(6,180) CUI)sH{I)oSH(I)sQ(I)4FS HCCF(I),R(I)
CONTINUE
IF{Z.LT.AXX) GO TO 11
RETURN
D0 142 I=1,NQD
TC==C(1)
IT=TC/PH+R(1)we2
IF(ZT.LT.0.) GO TO 143
S(I)=SQRT(ZT)
R{I+1)=S(1)
G0 T0 25
XM=1,
AB=1,
DO 144 I=1,NQD .
S{I)=S(1)=COS{TTH)
R{I+1)=S(1)
C{I)=PH#(S(I)#a2-R(])#a2)
GO T0 11
WRITE(6,275)
GO TO 5
FORMAT(I?2)
FORMAT(5E15.8)
FORMAT(6E13.6)
FORMAT(3X,7E18.8)
FORMAT(///7+2Xs2HX=92E1589/12X3s1HC, 17Xy 1HH, 16Xy 2HSHy17X,1FQ,16X,
3HSQF 4 16X 32HCF 416X ,s1HR)
FORMAT{ 10X 4 2HH=3E1548¢1H+,E15.842H®Xy//)
FORMAT(26X,8BHIF Z LE 4E13.695H P=3E1346+1H¥,EL3.699H®Z AND U=y
E13.6)
FORMATI(SX y2HIF4EL3.6414HLT Z AND Z LE +E13.6,+5H Pxy3E13.6,1H+,
E13.6,9H#Z AND U=,E13.6)
FORMAT(/// 921X 9 1HX 919Xy 1HRy 17X y5SHTHETA,/,(10X,3E20.8))
FORMAT(1H1,25X,72HWE ARE WORKING FROM TRAILING EDGE OF CCNE (Xs0)
TO REAR STAGNATION POINT,///)
FORMAT(1H1,35X, 56HWE ARE WORKING DOWNSTREAM OF REAR STAGNATYION

"POINT (X=0)4/7/)

END
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