RESEARCH AND DEVELOPMENT TECHNICAL REPORT
ECOM-3246

RADAR RESPONSE OF LONG WIRES

By

F. SCHWERING

MARCH 1970

DISTRIBUTION STATEMENT (1)

This document has been approved for public release and sale, its distribution is unlimited.
RESEARCH AND DEVELOPMENT TECHNICAL REPORT

ECOM - 3246

RADAR RESPONSE OF LONG WIRES

by

F. Schwerin

Institute for Exploratory Research

U. S. Army Electronics Command

Fort Monmouth, New Jersey

MARCH 1970

DA TASK No. 1T0 61102 B31A 01 45

This document has been approved for public release and sale; its distribution is unlimited.
ABSTRACT

Scatter field and radar response of an infinitely long straight metallic wire are derived assuming that the wire is illuminated by an antenna radiating a Gaussian beam of narrow beam width. The scatter field has essentially the same distribution in any plane through the wire axis; it varies from plane to plane by only an amplitude factor. The radar response is at a maximum for vertical incidence - when the beam axis intersects the wire axis at right angles - and decreases exponentially with increasing inclination of the beam axis against this direction. No side lobes are obtained for Gaussian illumination, at least not in the interesting range of small angular deviations from vertical incidence where the radar response has appreciable values. Two cases can be distinguished: (1) the wire crosses the Fresnel region of the antenna and (2) the wire is situated in the antenna far zone. In the former case, the theory is limited to wire radii not exceeding the beam radius at the antenna; in the latter case, arbitrary wire radii are admissible. If the wire is located in the far field region of the antenna, the expression derived for the radar response can be generalized so that it applies to any antenna characteristic. The generalized expression shows that a radar cross section can be assigned to the wire even though it has been assumed to be infinitely long; this radar cross section increases linearly with distance between antenna and wire.
CONTENTS

1. INTRODUCTION 1
2. BACKSCATTER POWER RETURNED TO TRANSMITTING ANTENNA 2
3. PLANE WAVE REPRESENTATION OF INCIDENT FIELD 6
4. CYLINDER WAVE REPRESENTATION OF SCATTER FIELD 14
5. DISCUSSION OF THE SCATTER FIELD 18
6. RECIPROCITY INTEGRAL FOR STRAIGHT METALLIC WIRES 23
7. EVALUATION OF RECIPROCITY INTEGRALS Q_s and Q_* 26
8. BACKSCATTER POWER RETURNED TO ANTENNA WITH GAUSSIAN CHARACTERISTIC 30
9. GENERAL SOLUTION OF RADAR PROBLEM FOR WIRE IN FAR FIELD REGION OF THE ANTENNA 36
10. RADAR CROSS SECTION OF STRAIGHT METALLIC WIRE 42
11. CONCLUSIONS 43

LITERATURE CITED 45

FIGURES

1. Horn antenna radiating in presence of scatter object 3
2. Coordinate systems used in treating problem of straight metallic wire illuminated by horn antenna 7
3. Geometrical relation between angles α, β and directional cosines b_x, b_y, b_z characterizing direction of propagation of elementary plane wave 15
4. Coordinates r and θ used in describing scatter field of straight wire 22
5. Amplitude of functions $F_s(ka,0)$ and $F_*(ka,0)$ plotted versus ka 34
6. Phase of functions $F_s(ka,0)$ and $F_*(ka,0)$ plotted versus ka 35
7. Polarization ellipse and special cases for field incident in direction normal to wire axis 39
8. Deformation of paths of integration with regard to u and v from real axes into complex u- and v-planes respectively 51
APPENDICES

A. APPROXIMATE EVALUATION OF THE RECIPROCITY INTEGRALS
 \(Q_4 \) and \(Q_6 \) (Gaussian Illumination)
 Page 47

B. ASYMPTOTIC EVALUATION OF RECIPROCITY INTEGRALS \(Q_4 \) and \(Q_6 \)
 (Arbitrary Illumination)
 Page 56
1. INTRODUCTION

Helicopters flying at low altitudes must avoid collision with natural and man-made obstructions. The visibility of these obstacles depends, apart from weather conditions, on their geometrical configuration. The geometrical configuration of thin wires with long suspension lengths is particularly inconspicuous, and the question arises whether such wires can be detected at safe distances by the helicopter radar system.

To obtain quantitative information on this problem the scatter properties of straight metallic wires are derived in this paper; the assumption is made that an antenna emitting a time-harmonic beam with a narrow Gaussian radiation characteristic is the source of excitation. The wire is assumed to have circular cross-section and to be long compared to the antenna-beam diameter at the location of the wire. The scatter field produced by diffraction of the incident beam at the wire is derived, and the fraction of the radiated power which in this scatter field is returned to and received by the antenna is calculated.

By means of the reciprocity theorem, a general formula can be determined for the ratio of received and transmitted antenna power. This formula holds for any scatter object and any antenna characteristic. When applied to a straight metallic wire illuminated by a Gaussian antenna, this formula leads to an expression containing triple integrals. A rigorous evaluation of these integrals is mathematically difficult, but with appropriate approximations closed form solutions are obtained for the radar response. The approximations are based on the assumption that the beam width of the incident beam is in the order of 1°.

Two cases can be distinguished, that the wire crosses the Fresnel region* of the antenna and that the wire is situated in the far field region of the antenna. The approximations made in the former case limit the applicability of the results to angles of the beam axis against the normal to the wire axis of up to ~15°. This restriction, however, is of no practical consequence as the backscatter power received by the antenna decreases very rapidly as the beam axis is turned away from the direction of vertical incidence. There may be side lobes at larger angles, but the formulas show that if they should exist, their level would be very low.

If the wire is situated in the far field region of the antenna, a general expression for the received backscatter power which holds for any antenna characteristic can be derived. The Gaussian antenna in this case serves only as a specific example. Similar to the case that the wire is within the Fresnel region, the radar response for a Gaussian antenna does not contain side lobes; it decreases exponentially as the beam axis is turned away from the direction of vertical incidence.

Diffraction by straight metallic wires (as well as by dielectric or dielectric-coated wires) is a subject well-covered in the literature.[1...13]

*For a beam width of 1°, the Fresnel region extends as far as ~100 m at a wavelength \(\lambda = 3 \text{ cm} \), and as far as ~1000 m at \(\lambda = 3 \text{ mm} \).
In particular the "Special Issue on Radar Reflectivity" of the Proceedings of the IEEE,[4] contains a comprehensive bibliography on this subject. The incident field in these publications is usually assumed to be a plane wave. If the wire is of finite length and if it is situated in the far zone of the antenna, the incident field along the wire will indeed approach a plane wave, and knowledge of the plane wave scattering properties would permit immediate determination of the radar cross-section of the wire. The received backscatter power is readily obtained from the radar cross-section if the antenna radiation characteristic is known. However, for very long wires such as are treated here, calculation of the radar response requires decomposition of the antenna beam into its directional spectrum of elementary plane waves, solution of the scatter problem for the individual elementary waves, and superposition of the contributions from all these elementary waves to the received backscatter power. We show in this paper that if the wire is situated in the far field region of the antenna the radar response is still determined essentially by only one plane wave, the elementary wave propagating in the direction which intersects the wire axis at right angles. If the wire crosses the Fresnel region, all elementary waves contribute to the radar response. In this report the radar response is derived and evaluated for Gaussian antennas.

2. BACKSCATTER POWER RETURNED TO TRANSMITTING ANTENNA

Consider a horn antenna radiating in the presence of a metallic scatter object (see Fig. 1). We denote the primary field which the antenna would emit if the scatterer were absent by E_p. Diffraction of this primary field at the scatterer produces a secondary field E_s, E_r. This secondary field generates a tertiary field at the antenna, which in turn is diffracted at the scatterer, etc. The tertiary field and all subsequent field terms are combined into a rest field E_R. The primary, secondary, and the rest fields satisfy the boundary conditions:

$$ (E_p)_\text{long} = 0 \quad \text{and} \quad (E_s + E_R)_\text{tang} = 0 \quad (1a) $$
$$ (E_p + E_s)_\text{tang} = 0 \quad \text{and} \quad (E_R)_\text{tang} = 0 \quad (1b) $$

*Exceptions for instance are papers [12] and [13] in which dipole excitation is assumed.
The sources of the primary field are located at the antenna; the sources of the secondary field at the scatterer. The rest field has sources at both locations. All three fields satisfy the radiation condition provided the scatter object has finite dimensions. The wire-scatterer treated in this paper is assumed to be of arbitrary but still finite length.

The reciprocity theorem states that any two fields \(\mathbf{\hat{E}}_1, \mathbf{\hat{H}}_1 \) and \(\mathbf{\hat{E}}_2, \mathbf{\hat{H}}_2 \) satisfy the relation

\[
\oint_S \{ \mathbf{\hat{E}}_1 \times \mathbf{\hat{H}}_2 - \mathbf{\hat{E}}_2 \times \mathbf{\hat{H}}_1 \} \, d\mathbf{\hat{S}} = 0 \tag{2}
\]

provided the surface \(S \) incloses a space range free of sources. We assign

\[
\mathbf{\hat{E}}_1, \mathbf{\hat{H}}_1 = \mathbf{\hat{E}}_p, \mathbf{\hat{H}}_p \quad \text{and} \quad \mathbf{\hat{E}}_2, \mathbf{\hat{H}}_2 = \mathbf{\hat{E}}_s + \mathbf{\hat{E}}_R, \mathbf{\hat{H}}_s + \mathbf{\hat{H}}_R
\]

and apply equation (2) to the space range outside the antenna and the scatter object. The surface \(S \) in this case consists of three parts: A sphere of radius \(R \to \infty \) which does not contribute to the reciprocity integral since all partial fields satisfy the radiation condition; the surface \(S_2 \) of the scatter object; and the aperture \(S_1 \) and the metallic wall \(S_1' \) of the antenna. Because of boundary conditions (la), the integral over the surface \(S_1' \) is zero. Using boundary conditions (lb), we obtain

\[
\oint_{S_1} \left[\mathbf{\hat{E}}_p \times \left(\mathbf{\hat{H}}_s + \mathbf{\hat{H}}_R \right) - \left(\mathbf{\hat{E}}_s + \mathbf{\hat{E}}_R \right) \times \mathbf{\hat{H}}_p \right] \, d\mathbf{\hat{S}}
\]

\[
= -\oint_{S_2} \left[\mathbf{\hat{E}}_p \times \left(\mathbf{\hat{H}}_s + \mathbf{\hat{H}}_R \right) \right] \, d\mathbf{\hat{S}} \tag{3}
\]

We further apply the reciprocity theorem to the closed surface formed by the antenna aperture \(S_1 \), the inner antenna wall, and a cross-section \(S_1' \) of the
coaxial part of the antenna near the feed point. It can be shown that

$$ \int \{ \vec{E}_p \times (\vec{H}_s + \vec{H}_r) - (\vec{E}_s + \vec{E}_r) \times \vec{H}_p \} \ d \vec{s} $$

$$ S_1 $$

$$ = V_t I_r - V_r I_t = (Z + Z^*) I_t I_r $$

(4)

where V_t and I_t are voltage and current at S_1 associated with the unperturbed transmitter field, and V_r, I_r are the corresponding quantities for the received backscatter field. Z is the input impedance of the antenna (at S_1) to which the receiver impedance Z^* is assumed to be matched. By combining equations (3) and (4), we can express the product $I_t I_r$ by an integral over the surface of the scatter object

$$ \left(Z + Z^* \right) I_t I_r = \int \left\{ \vec{E}_p \times (\vec{H}_p + \vec{H}_2 + \vec{H}_s) \right\} d \vec{S} $$

$$ S_2 $$

(5)

where for all practical purposes \vec{H}_R on the right side can be neglected because the rest field, which is generated by diffraction of the secondary field at the antenna, is very weak at the scatterer.

The power radiated by the antenna in the absence of a scatterer is

$$ N_t = \frac{1}{2} (Z + Z') I_t I_t^* = \frac{1}{2} \int \left\{ \vec{E}_p \times \vec{H}_p^* + \vec{E}_p^* \times \vec{H}_p \right\} d \vec{S} $$

(6)
and the power received from the backscatter field is

\[N_r = \frac{1}{2} (Z + Z') \bar{I}_r I_r \]

The asterisks indicate conjugate complex values. Hence with equation (5), the ratio of received and transmitted power can be written

\[\eta = \frac{N_r}{N_t} = \frac{1}{4} \frac{Q Q^*}{N_t^2} \tag{7} \]

where \(Q \) is the reciprocity integral (5) in which the term \(\hat{I}_P \) has been omitted:

\[Q = \oint_{S_2} \{ \hat{E}_P \times (\hat{H}_P + \hat{H}_S) \} \, d\hat{\sigma} \tag{8} \]

3. PLANE WAVE REPRESENTATION OF INCIDENT FIELD

We formulate the primary field \(\hat{E}_P, \hat{H}_P \) and derive (in Section 4) the secondary field \(\hat{E}_S, \hat{H}_S \) for the problem of a Gaussian beam illuminating a straight metallic wire. Figure 2 shows the geometrical arrangement. For convenience, we shall use a cartesian and a cylindrical coordinate system simultaneously. The common z-axis of the two systems is the wire axis. The x-axis, from which the angular coordinate \(\varphi \) is counted, connects the center of the antenna aperture with the wire axis. The radial coordinate is, as usual, defined by \(p = \sqrt{x^2 + y^2} \). The plane \(x = -d \) is a mathematical surface perpendicular to the x-axis just in front of the antenna aperture.

We split the primary antenna field into two parts, one derived from an electric vector potential and the other derived from a magnetic vector potential. These vector potentials can be assumed to comprise only a z-component which we will denote as \(\Phi_P \) and \(\Psi_P \), respectively. The electric and magnetic
FIG. 2. Coordinate systems used in treating problem of straight metallic wire illuminated by horn antenna.

\[
\cos^2 \gamma_x + \cos^2 \gamma_y + \cos^2 \gamma_z = 1
\]
field strengths are obtained from \mathbf{E}_p and \mathbf{H}_p according to the relations

$$
\mathbf{E}_p = \nabla \times \nabla \times (\mathbf{E}_p \mathbf{z}) - i\kappa \nabla \times (\mathbf{V}_p \mathbf{z})
$$

$$
\sqrt{\frac{\mu}{\varepsilon}} \mathbf{H}_p = \nabla \times \nabla \times (\mathbf{H}_p \mathbf{z}) + i\kappa \nabla \times (\mathbf{P}_p \mathbf{z})
$$

where \mathbf{z} is the unit vector of the z-direction, and $\kappa = 2\pi/\lambda$ is the wave number. Note that $E_z = 0$ for the partial field derived from the potential \mathbf{E}_p, and $H_z = 0$ for the partial field derived from the potential \mathbf{H}_p. Both vector potentials satisfy the wave equation and in the half-space, $x > -d$ can be written as superpositions of elementary plane waves:

$$
\Phi_p(x, y, z) = \int \int f(h_y, h_z) \exp \left\{ -i\kappa \left[h_x(x+d) + h_y y + h_z z \right] \right\} dh_y dh_z
$$

$$
\Psi_p(x, y, z) = \int \int g(h_y, h_z) \exp \left\{ -i\kappa \left[h_x(x+d) + h_y y + h_z z \right] \right\} dh_y dh_z
$$

where

$$
h_x = \sqrt{1-h_y^2-h_z^2} \quad \text{for} \quad h_y^2 + h_z^2 \leq 1
$$

$$
= -i\sqrt{h_y^2+h_z^2-1} \quad \text{for} \quad h_y^2 + h_z^2 \geq 1
$$

In the range where h_x is real the elementary plane waves are of the propagating type, and in the range where h_x is imaginary they are of the evanescent type in respect to the x-direction. The amplitude spectra $f(h_y, h_z)$ and $g(h_y, h_z)$ according to equations (10) are the Fourier transforms of the
distributions of \(\phi_p \) and \(\psi_p \) in the plane \(x = -d \). Applying the inverse transformation we obtain:

\[
\phi_p(h_y, h_z) = \frac{k}{4 \pi^2} \int_0^\infty \int_{-\infty}^{\infty} \frac{\exp\left\{ r i k (h_y y + h_z z) \right\} dy dz}{r^2 + r^2 + z^2} \tag{11}
\]

\[
g_p(h_y, h_z) = \frac{k}{4 \pi^2} \int_0^\infty \int_{-\infty}^{\infty} \frac{\exp\left\{ r i k (h_y y + h_z z) \right\} dy dz}{r^2 + r^2 + z^2} \tag{11}
\]

As stated before, we shall deal specifically with the case that the primary field radiated by the antenna is a Gaussian beam. The reference plane of the beam (waist of the beam) is assumed to be situated in the aperture plane of the antenna. When the antenna is directed toward the wire so that the beam axis coincides with the x-axis (vertical incidence), the reference plane is the plane \(x = -d \) and the field distribution at \(x = -d \) is either

\[
E_z = -\sqrt{\frac{\mu_0}{\varepsilon}} H_y = E_0 \exp\left\{ -\frac{1}{2} \frac{y^2 + z^2}{r_0^2} \right\} \tag{12a}
\]

or

\[
E_y = -\sqrt{\frac{\mu_0}{\varepsilon}} H_z = E_0 \exp\left\{ -\frac{1}{2} \frac{y^2 + z^2}{r_0^2} \right\} \tag{12b}
\]

depending on whether the magnetic or the electric field strength is polarized normal to the direction of the wire axis. The mode parameter of the beam is \(\rho_0 \). Tilting of the beam axis against the x-axis leads to modification of the field distribution in the plane \(x = -d \). The modified field distribution
in the former case ($\mathbf{H}_z = 0$) is approximately given by:

\[
E_x = - E_0 V(y, z) \cos \gamma_r \cot \gamma_z \quad \sqrt{\mu \frac{\varepsilon}{c}} \mathbf{H}_x = + E_0 V(y, z) \frac{\cos \gamma_r}{\sin \gamma_z}
\]

\[
E_y = - E_0 V(y, z) \cos \gamma_r \cot \gamma_z \quad \sqrt{\mu \frac{\varepsilon}{c}} \mathbf{H}_y = - E_0 V(y, z) \frac{\cos \gamma_r}{\sin \gamma_z}
\]

\[
E_z = + E_0 V(y, z) \quad \sqrt{\mu \frac{\varepsilon}{c}} \mathbf{H}_z = 0
\]

and the modified distribution in the latter case ($\mathbf{H}_z = 0$) by

\[
E_x = - E_0 V(y, z) \frac{\cos \gamma_r}{\sin \gamma_z} \quad \sqrt{\mu \frac{\varepsilon}{c}} \mathbf{H}_x = - E_0 V(y, z) \cos \gamma_r \cot \gamma_z
\]

\[
E_y = + E_0 V(y, z) \frac{\cos \gamma_r}{\sin \gamma_z} \quad \sqrt{\mu \frac{\varepsilon}{c}} \mathbf{H}_y = - E_0 V(y, z) \cos \gamma_r \cot \gamma_z
\]

\[
E_z = 0 \quad \sqrt{\mu \frac{\varepsilon}{c}} \mathbf{H}_z = + E_0 V(y, z) \sin \gamma_z
\]

where

\[
V(y, z) = \cos \gamma_r \left[\frac{1}{\varepsilon} \sqrt{\beta^2 \gamma_y^2 + (\gamma_z^2 \sin^2 \gamma_r)^2} - \omega \cos \gamma_r \gamma_z \cos \gamma_z \right]
\]
The angles which the beam axis forms with the \(x, y, z \)-directions are \(\gamma_x \), \(\gamma_y \), \(\gamma_z \) respectively (see Fig. 2); obviously

\[
\cos^2 j_x + \cos^2 j_y + \cos^2 j_z = 1
\]

The phase term in equation (13c) describes the tilt of the phase fronts of the beam against the plane \(x = -d \), and the factors \(\sin^2 \gamma_y \) and \(\sin^2 \gamma_z \) in the real part of the exponent describe the broadening of the amplitude distribution of the beam in the plane \(x = -d \) with increasing tilt angle. It is readily seen that for \(\gamma_x \to 0 \) field distributions (13a) and (13b) approach distributions (12a) and (12b) respectively. For all tilt angles these field distributions satisfy the relations:

\[
\hat{E} = \sqrt{\frac{\mu}{\varepsilon}} \hat{n} \times \hat{H} \quad \text{and} \quad |\hat{E}| = \sqrt{\hat{E} \cdot \hat{E}^*} = E_0 |V| = E_0 \exp \left\{ -\frac{1}{2} \frac{\gamma^2 \sin^2 \gamma_y^2 + \gamma^2 \sin^2 \gamma_z^2}{\varphi_0^2} \right\}
\]

where \(\hat{n} \) is the unit vector in the direction of the beam axis. \(\hat{E}, \hat{H}, \) and \(\hat{n} \) in other words are mutually orthogonal for all \(\gamma_y, \gamma_z \), and \(|\hat{E}| \) as well as \(|\hat{H}| \) does not vary with \(\gamma_y, \gamma_z \) except for a change in the coordinate scale.

Equations (13) are approximations only for the actual distribution of a tilted Gaussian beam in the plane \(x = -d \). However, the smaller \(\gamma_x \) is, the better the approximation. In the following, we shall assume that the antenna radiates a rather narrow beam with a beam width in the order of \(\lambda^0 \). The backscatter power received by the antenna then decreases rapidly as the beam axis is tilted against the direction \(\gamma_x = 0 \) (\(\gamma_y, \gamma_z = 90^\circ \)), and we can restrict our considerations to a small angular range about this direction, where equations (13) describe the actual field distribution with sufficient accuracy.
The radiation characteristic \(R(\theta) \) of a Gaussian beam (12) is proportional to

\[
R(\theta) \sim e^{-\left(k_{0}\sin\theta\right)^2}
\]

where \(\theta \) is the angular deviation of the direction of observation from the beam axis. A beam width of \(10^\circ \) for instance would require \(k_{0} \approx 100 \).

The fields determined by equations (13a) and (13b) can be derived from electric and magnetic vector potentials \(\varphi_{p} \) and \(\varphi_{m} \), respectively whose distributions in the plane \(x = -d \) are given in good approximation by:

\[
\varphi_{p}(-d, y, z), \varphi_{m}(-d, y, z) = \frac{E_{0}}{k^2 \sin \gamma_{z}} V(y, z)
\]

The corresponding amplitude functions are obtained with equations (11):

\[
f(h, h_{z}), g(h, h_{z}) = \frac{(k_{0})^2}{2\pi \sin \gamma \sin \gamma_{z}} \exp \left[-\frac{1}{2}k_{0}^{2}\left[\frac{h_{y} - \cos \gamma_{z}}{\sin \gamma_{z}}\right]^{2} + \frac{h_{z} - \cos \gamma_{z}}{\sin \gamma_{z}}\right]
\]

With \(k_{0} \) in the order of \(100 \), the amplitude functions \(f \) and \(g \) have appreciable values in only a very small \(h_{y}, h_{z} \)-range about the point \(h_{y} = \cos \gamma_{x}, h_{z} = \cos \gamma_{x} \).

Therefore the integration in equations (10) for \(\varphi_{p} \) and \(\varphi_{m} \) and in the expressions obtained with equations (9) for the field strength components can be essentially restricted to a neighborhood of this point. Calculating the field distribution in the plane \(x = -d \) in this manner indeed reproduces the field strength components (13a) and (13b). Hence the vector potentials \(\varphi_{p} \) and \(\varphi_{m} \) obtained by inserting the amplitude functions (15) into equations (10) describe the desired Gaussian beams of variable axis directions, at least in the interesting range of small \(\gamma_{z} \). The electric vector potential characterizes a beam whose magnetic field strength is polarized normal to the wire axis direction \((h_{z} \equiv 0) \), and the magnetic vector potential characterizes a beam whose electric field strength is polarized normal to this direction \((h_{y} \equiv 0) \).
The power W, transmitted in a field (10), can be expressed in terms of the absolute square of the amplitude spectra of the propagating elementary waves.[16]

Fields derived from the potentials ϕ and ψ are mutually orthogonal with regard to the transmitted power. Hence

$$N_c = \sqrt{\xi} + \sqrt{\psi}$$

where

$$N_\xi = 4\pi^2 \sqrt{\frac{\xi}{\mu}} k^2 \int \int f(h_y, h_z) f^*(h_y, h_z) h_x (1 - h_z^2) \, dh_y \, dh_z$$

$$N_\psi = 4\pi^2 \sqrt{\frac{\xi}{\mu}} k^2 \int \int g(h_y, h_z) g^*(h_y, h_z) h_x (1 - h_z^2) \, dh_y \, dh_z$$

For the example of a Gaussian beam, amplitude spectra (15) must be inserted into equations (16). Since kq_0 is a large number, the integration can be performed approximately with the result

$$N_\xi, N_\psi = \frac{4\pi k^2 q_0^2}{\sin^2 \phi_x \sin \phi_y}$$

The relative error is in the order of $(kq_0)^{-2}$. Considering only directions of the beam axis which do not deviate substantially from the direction...
of vertical incidence \((\gamma_x = 0)\), we may further approximate

\[
\cos y_x = \left(\sin y_y \sin y_z - \cos y_y \cos y_z \right) \approx \sin y_y \sin y_z
\]

and hence

\[
N_x, N_y = i \sqrt{\frac{k}{\mu}} \Omega_0^2
\]

(17)

For an angular deviation from vertical incidence of, for instance, \(15^\circ\) the relative error is still below \(1/400\).

b. CYLINDER WAVE REPRESENTATION OF SCATTER FIELD

Equation (15) shows that the amplitude spectra \(f\) and \(g\) of a Gaussian beam of narrow beam width are practically zero in the range of evanescent elementary waves. Since furthermore these evanescent waves decrease exponentially with increasing distance from the reference plane \(x = -d\), their contributions to the incident field at the wire can be neglected. In the range of propagating elementary waves, we substitute in equations (10)

\[
h_x = \cos \alpha \sin \beta, \quad h_y = \sin \alpha \sin \beta, \quad h_z = \cos \beta
\]

The geometrical meaning of \(\alpha\) and \(\beta\) is illustrated in Fig. 3. \(\beta\) is the angle which the direction of propagation of any elementary wave includes with the z-axis and \(\alpha\) is the projected angle against the x-direction. Hence
FIG. 3. Geometrical relation between angles α, β and directional cosines h_x, h_y, h_z characterizing direction of propagation of elementary plane wave.
expressions (10) for Φ_p and Ψ_p become:

$$
\Phi_p(\rho, \phi, z) = \int \int f(\sin \alpha \cos \beta, \cos \beta) \exp \left\{ -ik \left[a \cos \alpha \sin \beta + \phi \cos (\phi - \alpha) \sin \beta + z \cos \beta \right] \right\} \sin \alpha \sin \beta \, d\alpha \, d\beta
$$

$$$ (18) $$$

$$
\Psi_p(\rho, \phi, z) = \int \int g(\sin \alpha \cos \beta, \cos \beta) \exp \left\{ -ik \left[a \cos \alpha \sin \beta + \phi \cos (\phi - \alpha) \sin \beta + z \cos \beta \right] \right\} \sin \alpha \sin \beta \, d\alpha \, d\beta
$$

where x and y have been replaced by the cylindrical coordinates ρ and ϕ (see Figure 2).

The elementary plane wave

$$
\Phi_e, \Psi_e = \exp \left\{ -ik \left[a \cos (\phi - \alpha) \sin \beta + z \cos \beta \right] \right\}
$$

when incident upon a straight wire (whose axis coincides with the z-axis) produces a scatter field that can be written as a superposition of elementary cylindrical waves:

$$
\Phi_r, \Psi_r = \sum_{m=-\infty}^{\infty} c_m (\hat{r}, \phi) H_m^2 (k \rho \sin \beta) e^{im(\phi - \alpha)} e^{-ikz \cos \beta}
$$

The expansion coefficients $c_m (\hat{r})$ and $c_m (\Psi)$ are obtained from the boundary
conditions which, for a metallic wire of radius a, are

$$
(\vec{F}_i + \vec{F}_e) \varphi_{se} = C \quad \text{and} \quad (\frac{\partial \vec{F}_i}{\partial \psi} + \frac{\partial \vec{F}_e}{\partial \psi}) \varphi_{se} = C
$$

respectively. Using the cylinder function representation of a plane wave\[17\]

$$
e^{-i k (\varphi - \alpha) \sin \beta} \frac{\tau = r_{\infty}}{r_{\infty}} \sum_{m=-\infty}^{\infty} j_m(k \gamma \sin \beta) e^{-im(\varphi - \frac{r}{2})}
$$

we immediately find that:

$$
C_m = -e^{-imZ} \frac{j_m(k \gamma \sin \beta)}{H_m^{(2)}(k \gamma \sin \beta)}
$$

and

$$
C_m = -e^{-imZ} \frac{j'_m(k \gamma \sin \beta)}{H_m^{(2)}(k \gamma \sin \beta)}
$$

where j'_m, $H_m^{(2)}$ are the derivatives of j_m, $H_m^{(2)}$ with regard to the argument. The total scatter field produced by diffraction of the incident field (18) at the wire is obviously obtained by superposition of the contributions (20)
from all incident elementary waves (19)

\[\tilde{\Phi}_S(\rho,\phi,z) = -\int_{\alpha=\pm \frac{\pi}{2}} \int f(\sin \alpha \sin \beta, \cos \beta) \exp\{-ik [\cos \alpha \sin \beta + \cos \beta]\} e^{i \rho (\phi - \alpha - \frac{\pi}{2})} \]

\[= \sum_{m=-\infty}^{+\infty} \frac{J_m(k \sin \beta)}{H_m^{(2)}(k \sin \beta)} H_m^{(2)}(k \rho \sin \beta) e^{i \rho (\phi - \alpha - \frac{\pi}{2})} \]

\[\tilde{\Psi}_S(\rho,\phi,z) = -\int_{\alpha=\pm \frac{\pi}{2}} \int g(\sin \alpha \sin \beta, \cos \beta) \exp\{-ik [\cos \alpha \sin \beta + \cos \beta]\} e^{i \rho (\phi - \alpha - \frac{\pi}{2})} \]

\[= \sum_{m=-\infty}^{+\infty} \frac{J_m(k \sin \beta)}{H_m^{(2)}(k \sin \beta)} H_m^{(2)}(k \rho \sin \beta) e^{i \rho (\phi - \alpha - \frac{\pi}{2})} \]

In the case of Gaussian illumination, the amplitude functions \(f \) and \(g \) are given by equation (15).

5. DISCUSSION OF THE SCATTER FIELD

First we will discuss the case of a wire situated in the far field region of the antenna. The exponential function \(\exp\{-ik [\cos \alpha \sin \beta + \cos \beta]\} \) in the integrand of equations (23) then varies much more rapidly with \(\alpha \) and \(\beta \) than do the amplitude functions \(f(\sin \alpha \sin \beta, \cos \beta) \) and \(g(\sin \alpha \sin \beta, \cos \beta) \). As a consequence, the integration can be carried out asymptotically using the method...
of stationary phase:

$$
\begin{align*}
I_S(r, \theta, \phi) &= 2\sqrt{2r} \frac{e^{ikr \cos \phi}}{\sqrt{k^2 - r^2}} f(0, \cos \theta) \sin \theta \sum_{m=-\infty}^{+\infty} \frac{J_m(k \sin \theta)}{H_m^{(2)}(k \sin \theta)} e^{im\phi} \\
\eta_S(r, \theta, \phi) &= 2\sqrt{2r} \frac{e^{ikr \cos \phi}}{\sqrt{k^2 - r^2}} g(0, \cos \theta) \sin \theta \sum_{m=-\infty}^{+\infty} \frac{J_m(k \sin \theta)}{H_m^{(2)}(k \sin \theta)} e^{im\phi}
\end{align*}
$$

(24)

where

$$
\begin{align*}
\theta &= (\rho \cos \phi)^2 + z^2 \frac{1}{2} \\
\tan \phi &= \frac{\rho + d}{z}
\end{align*}
$$

Before applying the method of stationary phase, the Hankel functions \(H_n^{(2)}(k \rho \cos \phi) \) in the integrands of equations (23) were replaced by their asymptotic representations. When the immediate vicinity of the wire is disregarded, this is permissible for all \(m \) for which the terms under the summation sign are of appreciable magnitude.

The geometrical meaning of the new variables \(r \) and \(\theta \) is illustrated in Fig. 4. The shortest line which joins the point of observation \(r, \varphi, z \) with the center of the antenna aperture and simultaneously crosses the wire axis consists of two straight line sections, \(r_1 \) and \(r_2 \). Both form the angle \(\theta \) with the \(z \)-direction; their combined length is the variable \(r \). Note that \(r \) and \(\theta \) do not depend on the azimuth angle \(\varphi \).

Points of observation characterized by identical values of \(\varphi \) obviously form conical surfaces (with vertex angle \(\theta \)) about the wire axis, the vertex itself being located at \(z = z_0 = d \cot \theta \). According to equations (24), the distribution of the scatter fields \(I_4 \) and \(I_2 \) along a given surface \(\varphi = \text{const} \) is determined by the values of the amplitude functions \(f \) and \(g \) of the incident

\[\text{i.e., assuming } \rho > 5a \text{ for thick wires and } \rho > 5 \lambda \text{ for thin wires, where } a \text{ is the wire radius and } \lambda \text{ the wavelength.}\]
FIG. 4. Coordinates r and θ used in describing scatter field of straight wire.
beam for one direction α, β only, the direction

$$\alpha = 0, \quad \beta = \theta$$ \hspace{1cm} (25)

In other words, only one of the elementary plane waves of the incident beam contributes significantly to the field scattered by the wire along a cone $\theta = \text{const}$. According to equation (25), the direction of propagation of the wave points from the antenna center towards the wire intersecting the wire axis at the angle θ (line r_1 in Fig. 4).

By inserting amplitude spectra (15) into equations (24), we obtain for the example of a Gaussian beam:

$$\tilde{F}_S(\varphi, \theta) = \tilde{F}_1(\varphi, \theta); \tilde{F}_2(\varphi, \theta); \tilde{F}_3(\varphi, \theta) = \tilde{F}_1(\varphi, \theta) \tilde{F}_2(\varphi, \theta) \tilde{F}_3(\varphi, \theta)$$

where

$$\tilde{F}_1(\varphi, \theta) = \sum_{m=-\infty}^{+\infty} \frac{J_m(k \sin \theta)}{H_m(\sin \theta)} \cos \varphi$$

$$\tilde{F}_2(\varphi, \theta) = \sum_{m=-\infty}^{+\infty} \frac{J_m(k \sin \theta)}{H_m(\sin \theta)} \cos \varphi$$

and

$$\tilde{F}_3(\varphi, \theta) = \sqrt{\frac{2}{\pi}} \frac{(k \rho_0)^2 \sin \theta}{\sqrt{k^2 \rho_0^2 - \rho^2}} \times$$

$$\times \exp \left\{ -i(k \rho + \frac{\pi}{4}) - \frac{1}{2} (k \rho_0)^2 [\cos^2 \gamma_j + \left(\frac{\cos \theta - \cos \gamma_j}{\sin \gamma_j} \right)^2] \right\}$$

$$\varphi$$
Since \(k \rho_0 \) is assumed to be large, the exponential function in the expressions for \(\psi_2, \psi_2 \) decreases rapidly as \(\theta \) deviates from \(\nu \). In other words, the scatter field is concentrated near the conical surface \(\theta = \nu = \text{const.} \). In the neighborhood of this surface we may substitute \(\nu \) for \(\theta \) in the expressions for \(\psi_2 \) and \(\psi_1 \):

\[
\begin{align*}
\Phi_1(\varphi, \theta) & \approx \Phi_1(\varphi, \nu) = \sum_{m=-\infty}^{+\infty} \frac{J_m(k \sin \nu)}{k \sin \nu} e^{i m \varphi} \\
\Psi_1(\varphi, \theta) & \approx \Psi_1(\varphi, \nu) = \sum_{m=-\infty}^{+\infty} \frac{J'_m(k \sin \nu)}{k \sin \nu} e^{i m \varphi}
\end{align*}
\]

With this approximation, \(\Phi_1 \) and \(\Psi_1 \) no longer depend on \(\rho \) and \(z \), and equations (26) represent the scatter fields, \(\Phi_1 \) and \(\Psi_1 \), as products of a function depending only on the azimuth angle \(\varphi \) and a function depending only on the radial and axial coordinates \(\rho \) and \(z \). Hence, in any plane through the wire axis (\(\varphi = \text{const.} \)), the scatter field \(\Phi_1 \) (or \(\Psi_1 \)) has essentially the same distribution except for an amplitude factor which varies from plane to plane according to the function \(\Phi_1 \) (or \(\Psi_1 \)).

In the case the wire crosses the Fresnel region of the antenna, the exponential function \(\exp\left[-ik(\rho \cos \varphi + z \cos \beta)\right] \) in the integrand of equations (23) varies with \(\alpha, \beta \) at a rate comparable to the rate of change of the amplitude functions \(f \) and \(g \), and an asymptotic evaluation of the integrals is no longer permissible. Inspection of the location of the stationary points of exponential function and amplitude spectra shows that for a Gaussian beam, however, the expressions \(\Phi_1 \) and \(\Psi_1 \) can be simplified so that the scatter fields can
still be written in the product form (26) where \(\theta_1 \) and \(\phi_1 \), as before, are approximately given by equations (27) and

\[
\Phi_n^{(2)}(\phi, \theta) = e^{i \frac{\kappa \phi}{2}} \frac{\sin \frac{\kappa \phi}{2}}{\sin \frac{\kappa \theta}{2}} x^2 \left[e^{i \frac{\kappa \phi}{2}} \frac{\sin \frac{\kappa \phi}{2}}{\sin \frac{\kappa \theta}{2}} x^2 \right] + e^{-i \frac{\kappa \phi}{2}} \frac{\sin \frac{\kappa \phi}{2}}{\sin \frac{\kappa \theta}{2}} x^2 \left[e^{-i \frac{\kappa \phi}{2}} \frac{\sin \frac{\kappa \phi}{2}}{\sin \frac{\kappa \theta}{2}} x^2 \right]
\]

The Hankel functions \(R_m^{(2)}(k \sin \theta) \) in the integrand were again approximated by their asymptotic representations and the beam axis angles \(\gamma_y \) and \(\gamma_z \) were assumed to be in the vicinity of \(90^\circ \) (nearly vertical incidence). The result obtained for a wire in the antenna far zone—that the scatter field in any plane through the wire axis has approximately the same distribution—therefore holds for a wire in the Fresnel region of the antenna as well. However, the field distribution along a surface \(\theta = \text{const} \) is no longer determined by only one elementary plane wave of the incident beam, but as one would expect, by the entire elementary wave spectrum, or at least a substantial portion of it.

6. RECIPROCITY INTEGRAL FOR STRAIGHT METALLIC WIRES

We formulate the reciprocity integral \(\mathcal{Q} \), equation (8), for a straight metallic wire. Integration in equation (8) is performed over the wire surface \(p = a \) (see Fig. 2); the surface element is accordingly given by \(d\sigma = ad\phi dz \). Using equations (9), the field strengths \(E_p, H_p \), and \(R_p \) occurring in the integrand of \(\mathcal{Q} \) can be expressed in terms of the vector potentials \(\hat{e}_p, \hat{h}_p \) and \(\hat{e}_n, \hat{h}_n \) respectively. For a field derived from the electric vector potential, we obtain

\[
\mathcal{Q} = i k a \sqrt{\frac{\mu}{\varepsilon}} \int_{a}^{\infty} \int_{a}^{\infty} \left\{ (\hat{e}_p \frac{\partial \hat{e}_p}{\partial z} + \frac{\partial \hat{e}_p}{\partial z}) \frac{\partial \hat{h}_p}{\partial z} - (\hat{e}_n \frac{\partial \hat{e}_n}{\partial z} + \frac{\partial \hat{e}_n}{\partial z}) \frac{\partial \hat{h}_n}{\partial z} \right\} d\sigma dz \quad \text{(39a)}
\]
and for a field derived from the magnetic vector potential, we obtain:

\[
Q_{\gamma} = \kappa a \int_{-\infty}^{\infty} \int_{\gamma = c}^{\gamma = a} \frac{1}{\mu_0 \lambda^2} \left[k_x^2 \left(\frac{\partial \psi}{\partial \rho} + \frac{\partial \psi}{\partial z} \right) + \frac{1}{\lambda^2} \left(\frac{\partial \psi}{\partial \rho} + \frac{\partial \psi}{\partial z} \right) \right] \ d\varphi \ dz \quad (29b)
\]

If the field is characterized by both vector potentials, the reciprocity integral is the sum of expressions (29a) and (29b) since there is no interaction in regard to \(Q \) between fields derived from the potentials \(\phi \) and \(\psi \):

\[
Q = Q_\phi + Q_\psi \quad (29c)
\]

We insert \(\phi_p, \psi_p \) and \(\phi_b, \psi_b \) according to equations (18) and (23) into equations (29). Using the orthogonality properties of the functions \(e^{iM} \), the \(\varphi \)-integration can be performed. The \(z \)-integration moreover leads to a \(\delta \)-function:

\[
\frac{k}{2\pi} \int_{-\infty}^{\infty} \frac{1}{c} \left[k_x (\cos \beta + \cos \beta') \right] \ d\beta = \lambda(\cos \beta + \cos \beta')
\]

so that

\[
\int_{\gamma} F(\varphi, \beta) \ S(\cos \beta' \cos \beta') \ d\varphi, \ d\beta' = \ F(\varphi, \beta) \quad \text{for } \ 0 \leq \beta \leq \pi \quad (30)
\]

where \(F(\beta) \) is any given function of \(\beta \). Hence we obtain for the reciprocity
With a later application in mind, we note that expressions (30) for the reciprocity integral \(Q \) still hold in general, i.e., for any incident field. In deriving these equations only one approximation has been made; the contribution of the evanescent elementary waves to the incident field at the wire has been neglected. If the distance between antenna and wire is sufficiently large, this omission is obviously justified. For the example of a Gaussian incident beam we obtain by inserting the corresponding amplitude functions (15)
into equations (30)

\[
Q_{\text{ex}} = \frac{2}{\pi} \sqrt{\frac{\varepsilon}{\mu}} k_{0}^{*} \exp\left\{-ik_{0}^{2}\left(\cot^{2} \theta_{1}^{*} + \cot^{2} \theta_{2}^{*}\right)\right\} \times
\]

\[
Q_{V} = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \exp\left\{-ik(\cos \alpha + \cos \beta) \sin \beta - \left(k_{0}^{2} \frac{\cos^{2} \beta}{\sin^{2} \beta}\right) \right\}
\]

\[
\times \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \exp\left\{-ik(\cos \alpha + \cos \beta) \sin \beta - \left(k_{0}^{2} \frac{\cos^{2} \beta}{\sin^{2} \beta}\right) \right\}
\]

\[
= \frac{1}{2}\left(k_{0}^{2} \right)^{2} \left[\frac{\sin^{2} \theta_{1}^{*} \sin^{2} \theta_{2}^{*} \sin^{2} \phi_{1}^{*}}{\sin^{2} \phi_{1}^{*}} - 2 \frac{\sin^{2} \theta_{1}^{*} \sin^{2} \theta_{2}^{*} \cos \phi_{1}^{*}}{\sin^{2} \phi_{1}^{*}} \right]
\]

\[
\sum_{m=\infty}^{\infty} \left(-1 \right)^{m+1} \int_{-\infty}^{\infty} \frac{1}{\sin \beta} \frac{1}{\sin \alpha} e^{im(\alpha - \beta)}
\]

\[
\times \left\{ \sum_{m=\infty}^{\infty} \left(-1 \right)^{m+1} \frac{\sin \beta \cos \alpha d\alpha d\beta}{\sin \beta} \right\}
\]

7. EVALUATION OF RECIPROCITY INTEGRALS \(Q_{\text{ex}} \) AND \(Q_{V} \)

With the assumptions that the beam width of the incident beam is in the order of \(1^\circ \) (\(k_{0} \) in the order of 100) and the beam axis does not deviate substantially by not more than about 15° from the direction of vertical incidence, the reciprocity integrals (31) can be evaluated approximately so that closed form expressions for \(Q_{\text{ex}} \) and \(Q_{V} \) are obtained. The method of integration is explained in Appendix A; the result is:

\[
\mathcal{E}_{E_{1}, E_{2}} = 4 \sum_{m=\infty}^{\infty} \frac{1}{\sin \beta} \frac{1}{\sin \alpha} k_{0}^{2} \left(\frac{\varepsilon}{\mu} \right) \frac{3}{4} \frac{1}{\sin \beta} \frac{1}{\sin \alpha} (k \alpha, \tau) \times
\]

\[
\exp\left\{-2ikd \sqrt{1 - \omega_{0}^{2}} - \left(k_{0}^{*} \right)^{2} \left[\left(\frac{\mu_{0} - \varepsilon_{0}}{\mu_{0} + \varepsilon_{0}} \right) r \cos \phi_{1}^{*}\right]\right\}
\]

\[
\times \frac{1}{\sin \beta} \frac{1}{\sin \alpha} \left(\frac{1}{\sin \beta} \frac{1}{\sin \alpha} r \phi_{1}^{*}\right)
\]

26
with \(\tau = k_0 \frac{\alpha}{d} \) and

\[
P_{x,y}(\tau) = i \frac{1}{2} \frac{\tau}{2 \pi} \left(1 + \frac{\tau}{r_0 \xi} \right) \cot \left(\frac{\tau}{r_0 \xi} \right) \omega \left(I_{n+1} \right) \]

\[
\approx \frac{1}{2} \frac{\tau}{2 \pi} \left(1 + \frac{\tau}{r_0 \xi} \right) \omega \left(I_{n+1} \right) \]

The parameter \(u_0 \) is determined by the equation

\[
\lambda \left(\frac{1}{2} \frac{\sin \frac{\pi}{2}}{\sqrt{1 - u_0^2}} \right) = \cos \frac{\pi}{2} \]

which in Appendix A is solved by a series expansion. Using this expansion, the exponent in equation (32) can be developed into a series of ascending powers of \(\cot \gamma_\alpha \). Neglecting 6th and higher order terms, we thus obtain

\[
Q_{q_k} = 4 \sqrt{\pi} \sqrt{\mu} k_0^3 \left(\frac{\tau}{r_0 \xi} \right)^{3/2} \tilde{F}_{q_k}(ka, \xi) \frac{I}{\sin^2 \gamma_\alpha \sin \gamma_\alpha \left(\psi_\gamma, \psi_\delta \right)} \]

\[
\times \exp \left\{ -i 2k \left[\frac{1}{2} \frac{\tau}{r_0 \xi} \cot \gamma_\alpha - \frac{1}{2} \frac{\tau}{r_0 \xi} \left(4 + 5 \xi^2 \right) \cot \gamma_\alpha \right] \right\} \]

\[
\times \exp \left\{ -(k_0^3)^2 \left(\cot \gamma_\alpha \frac{1}{r_0 \xi} \cot \gamma_\alpha \frac{1}{r_0 \xi} \left(2 + 5 \xi^2 \right) \cot \gamma_\alpha \right) \right\} \]

The function \(F_{q_k}(ka, \tau) \) which determines the dependence of the reciprocity integrals on the wire radius is given by

\[
\tilde{F}_{q_k}(ka, \xi) - \frac{1}{m} \sum_{m=1}^{\infty} (-1)^m m^2 \frac{H_m^{(2)}(ka)}{H_m^{(2)}(ka)} \exp \left\{ - \frac{\tau}{2 \pi} \left(\frac{m}{k_0^3} \right)^2 \right\} \]

(34a)
for a field derived from the electric vector potential \(\psi \) and by

\[
\bar{F}_{\psi}(k\alpha, \tau) = \sum_{m=-\infty}^{+\infty} (-1)^m \frac{J_m(k\alpha)}{H_m^{(2)}(k\alpha)} \exp \left\{ -\frac{i\tau}{\rho_0} \left(\frac{m\alpha}{\rho_0} \right)^2 \right\}
\]

(34b)

for a field derived from the magnetic vector potential \(\phi \).

Equations (32) to (34) hold for wires sufficiently thin to satisfy the condition

\[
\frac{\tau}{\sqrt{1 + \tau^2}} \left(\frac{\alpha}{\rho_0} \right)^2 < 1
\]

(35)

This condition, however, does not impose a severe restriction as it admits wire diameters \(2\alpha \) of several wavelengths. If, for instance, \(k\rho_0 = 100 \) and \(\tau = 1 \), wire diameters up to \(35 \lambda \) are permissible. The functions \(F_\phi \) and \(F_\psi \) depend weakly on \(\alpha \) and \(\rho_0 \). This dependence practically disappears as the wire radius \(\alpha \) is decreased. If

\[
\frac{\tau}{\sqrt{1 + \tau^2}} \left(\frac{\alpha}{\rho_0} \right)^2 \ll 1
\]

(36)

the exponential factors on the right-hand side of equations (34) can be replaced by unity in all summation terms with \(|m| < 2k\alpha \), this means, in all terms of appreciable magnitude. Hence

\[
\bar{F}_{\phi}(k\alpha, \tau) = F_{\phi}(k\alpha, 0) = \sum_{m=-\infty}^{+\infty} (-1)^m \frac{J_m(k\alpha)}{H_m^{(2)}(k\alpha)}
\]

(37a)

and

\[
\bar{F}_{\psi}(k\alpha, \tau) = F_{\psi}(k\alpha, \zeta) = \sum_{m=-\infty}^{+\infty} (-1)^m \frac{J_m(k\alpha)}{H_m^{(2)}(k\alpha)}
\]

(37b)

For the above example where \(k\rho_0 = 100 \) and \(\tau = 1 \), condition (36) requires that \(2\alpha < 10 \lambda \).
If the wire crosses the Fresnel region of the antenna, \(\tau = kp_0^2/d \) is in the order of or greater than unity. If the wire is situated in the far field region of the antenna, \(\tau \) is small compared to unity. Hence, according to equation (32c), \(u_0 \to 0 \) and

\[
Q_{x,y} = -\frac{\sqrt{i} e^{-i(\frac{2}{k} \sqrt{\gamma'_{x,y}})}}{\left(ku_0 k_{\gamma'_{x,y}} \kappa_{\gamma'_{x,y}} \right)^{\frac{1}{2}}} \left\{ e^{i(\frac{2}{k} \gamma'_{x,y})+\frac{i}{2} \frac{2}{k} \sqrt{\gamma'_{x,y}}} \right\} (38)
\]

\(F_\gamma(ka,0) \) and \(F_\gamma(ka,0) \) are given by equations (37) which in this case (\(\gamma \ll 1 \)) describe the dependence of the reciprocity integrals on wire radius not only for sufficiently thin wires but according to condition (36) for all \((ka)^2 \ll kd \).

The restriction stated at the beginning of this section, that the direction of the beam axis does not substantially deviate from the direction normal to the wire axis has to be imposed only in evaluating the reciprocity integrals for a wire crossing the Fresnel region of the antenna. Even in this case it is not an essential limitation as \(Q_\alpha \) and \(Q_{\beta} \) decrease rapidly with increasing deviations of \(\gamma_y \) and \(\gamma_z \) from 90°. If for example the beam width is 1° and \(\tau = 1 \), and the beam axis deviates from the direction of vertical incidence by not more than \(\Delta \gamma_y = 90° - \gamma_y = 2^\circ \) (while \(\Delta \gamma_z = 90° - \gamma_z = 0 \)), the reciprocity integrals \(Q_\alpha \) and \(Q_{\beta} \) are already more than 50 dB below their maximum values; if \(\Delta \gamma_z = 2^\circ \) (while \(\Delta \gamma_y = 0 \)), they are more than 100 dB below these values. The received backscatter power, which is proportional to \(QQ^* \), decreases correspondingly by more than 100 dB and 200 dB if the beam axis is turned by \(\Delta \gamma_y \) or \(\Delta \gamma_z \) against the direction of vertical incidence.

In the case that the wire is situated in the far field region of the antenna, the reciprocity integrals can also be evaluated by a different and more direct method than the one used in Appendix A; an asymptotic evaluation can be performed using the method of stationary phase. This method can be applied to \(Q_\alpha \) and \(Q_{\beta} \) in the general form of equations (30) where a particular characteristic of the antenna beam has not yet been specified. The calculations are performed in Appendix B with the result:

\[
C_{x,y} = -\kappa_{\gamma'_{x,y}} e^{-\frac{i}{\kappa_{\gamma_{x,y}}}} k_{\gamma'_{x,y}} \left(kw_0 \kappa_{\gamma'_{x,y}} \right)^{\frac{1}{2}} \frac{i^{\frac{1}{2}+\frac{1}{4} \frac{2}{k} \sqrt{\gamma'_{x,y}}}}{\left(kd\right)^{\frac{3}{2}}} \int_0^{\frac{2}{k} \gamma'_{x,y}} f^2(z, \zeta) (39a)
\]
where $F_\#$ and $F_\#$ are given by equations (37). Note that $Q_\#$ and $Q_\#$ are determined by the values of the amplitude spectra f and g for one direction α, β only, the direction of vertical incidence $\alpha = 0$, $\beta = 90^\circ$. In other words, only a narrow bundle of elementary plane waves of the incident beam, those travelling in the direction normal to or nearly normal to the wire axis, will significantly contribute to the reciprocity integrals and, hence, to the backscatter power returned to the antenna.

For the example of a Gaussian beam, $f(0,0)$ and $g(0,0)$ are found from equations (15). Inserting these equations into (39) reproduces equations (38) which were obtained by the method of Appendix A for the reciprocity integrals of a wire in the far zone of a Gaussian antenna. Deriving equations (38) by means of the method of stationary phase has the advantage that no restrictions have to be imposed on γ_y or γ_z. These equations, therefore, hold for small as well as for large angular deviations of the beam axis from the direction of vertical incidence and the admissible γ_y, γ_z-range is limited only by the approximations which were made in Section 3 to derive the plane wave representation of a Gaussian beam of arbitrary axis direction.

8. BACKSCATTER POWER RETURNED TO ANTENNA WITH GAUSSIAN CHARACTERISTIC

By inserting expressions (33) for $Q_\#$, $Q_\#$ into equation (7), the ratio of received and transmitted power for a Gaussian antenna illuminating a straight metallic wire is obtained; for $N_\#$, $N_\#$ we use equations (17). Hence

\[
\xi_{\#} = -16e^{2kz^2/\sigma^2}e^{i\theta} f_\#(k\sigma, \zeta) \frac{e^{-i(2\pi z/\lambda)}}{\lambda^2} G^*(\xi, \zeta)
\]

(39b)
Equations (40) hold for a wire in the Fresnel region as well as for a wire in the far field region of the antenna. In the former case, \(\tau \) is in the order of or greater than unity; in the latter case, \(\tau \) is small compared to unity so that equation (40) can be simplified to:

\[
\frac{\pi}{\tau} \approx 1
\]

with \(\tau \approx \frac{k_s}{d} \)

In either case, the power ratio \(T \) is at a maximum for vertical incidence - if the beam axis intersects the wire axis at right angles - and decreases exponentially as the beam axis is turned away from this direction of incidence. No side lobes are encountered for a Gaussian antenna, at least not in the interesting range of small angular deviations from vertical incidence where \(\eta \) has appreciable values. Note that the dependence of \(\eta \) on the antenna axis angle \(\gamma_z \) is the same for a wire in the Fresnel and in the far field region, while dependence on the axis angle \(\gamma_y \) varies with \(d \). In other words, turning of the beam axis in the plane containing the wire axis leads to a variation in \(\eta \) which is essentially independent of the distance between antenna and wire. Turning of the beam axis in the plane normal to the wire axis, on the other hand, produces a variation in \(\eta \) which becomes less and less rapid as
the spacing between antenna and wire is decreased.

The dependence of η on distance d between antenna and wire for vertical incidence ($\gamma_y, \gamma_z = 90^\circ$) is given by

$$\eta_{E,W} \sim (kd\sqrt{1+e^2})^{-3} \equiv \frac{(kd)^2 + (k\phi)^2}{3e^2}$$

for $\gamma_y, \gamma_z \approx 90^\circ$

Hence $\eta = \eta(d)$ remains essentially constant near the antenna ($\tau \gg 1$); and in the far zone ($\tau \ll 1$), decreases with d^{-3}. The deviation from the usual d^{-4} dependence in this region is due to the fact that the scatter object in this case is a wire infinitely extended in one dimension. In the preceding section we saw that only a narrow bundle of elementary plane waves of the incident beam contributes significantly to the radar response of a long wire situated in the far field region of the antenna. The directions of propagation of these elementary waves form a small solid angle about the direction of vertical incidence $\alpha = 0, \beta = 90^\circ$. We denote this solid angle by $\Delta\Omega = \Delta\alpha \Delta\beta$, where $\Delta\alpha$ is the angular width of the wave bundle in the plane perpendicular to the wire axis and $\Delta\beta$ is the angular width in the plane containing the wire axis. The method of stationary phase by which this result was derived shows furthermore that $\Delta\Omega$ becomes smaller and smaller as distance d between antenna and wire is increased. We have $\Delta\Omega \sim 1/d^2$ and hence

$$\Delta\alpha, \Delta\beta \sim \frac{1}{\sqrt{d}}$$

The portion of the wire lying within the solid angle $\Delta\Omega$ can be termed the "effective length" of the wire, since this portion essentially determines the backscatter field received by the antenna. The effective length is obviously given by $l = d\Delta\beta$ and consequently increases with \sqrt{d}; its contribution to the field strength of the scatter field near the antenna is proportional to

$$E_{\infty} \sim \frac{l}{d}$$

where

$$E_{\infty} \sim \frac{1}{d}$$
denotes the incident field strength at the wire. The received backscatter power is obviously proportional to $\hat{E}_0\hat{E}_0^*$ and, hence, $\eta \sim d^{-3}$ in accordance with relation (4.4).

The dependence of η on wire radius a is determined by the functions $F_\varphi(ka,\tau)$ and $F_\varphi'(ka,\tau)$, equations (34). For sufficiently thin wires which satisfy condition (36), when the wire is situated in the far field region of the antenna, this condition is satisfied for all wire radii; these functions can be approximated by $\varphi(ka,\psi)$ and $\varphi'(ka,\psi)$ as given by equations (37). In Figs. 5 and 6, the amplitude and phase of the latter functions are plotted for the range $0 \leq ka \leq 15$. For small ka, F_φ and F_φ' differ substantially. This has to be expected as the backscatter properties of thin wires depend strongly on the polarization of the incident field. A field derived from the electric vector potential \hat{E} comprises a strong electric field component parallel to the wire axis. The ratio of scattered to incident power for this type field therefore will be substantially higher than for a field derived from the magnetic vector potential \hat{H}, which contains only electric field strength components normal to the wire axis. In both cases, of course, the scattered power approaches zero if $ka \to 0$.

A series expansion for small ka yields

$$
F_\varphi(ka,\psi) \approx \frac{1}{1 - \frac{2}{\pi} \ln(ka)} \quad \text{and} \quad F_\varphi'(ka,\psi) \approx -\frac{\rho^2}{\rho'}(ka)^2
$$

for $ka < 0.5$

where $\ln c = 0.5772\ldots$ is the Eulerian constant. Hence, for small ka the received backscatter power varies with $(\ln ka)^{-2}$ for fields derived from the electric vector potential, but with $(ka)^4$ for fields derived from the magnetic vector potential.

With increasing wire radius, the dependence of η on polarization of the incident field diminishes. In the range where the wire diameter is in the order of one wavelength, F_φ increases monotonically with ka, while F_φ' shows "ripples" whose amplitudes decrease with increasing ka. For sufficiently thick wires ($ka > 10$), the functions F_φ and F_φ' approach each other. An asymptotic expansion yields:

$$
F_\varphi(ka,\psi) \approx F_\varphi'(ka,\psi) \approx \frac{2}{\pi} \frac{\rho}{\rho'}(ka)^2
$$

for $ka > 10$.
FIG. 5. Amplitude of functions \(F_{\phi}(ka,0) \) and \(F_{\psi}(ka,0) \) plotted versus \(ka \). The dotted curve indicates the asymptotic amplitude \(1/2\sqrt{mka} \). For \(ka > 8 \), the amplitude of \(F_{\phi} \) is in good agreement with the asymptotic curve while the amplitude of \(F_{\psi} \) still oscillates noticeably about this curve.
FIG. 6. Phase of functions $F_\phi(ka, 0)$ and $F_\psi(ka, 0)$ plotted versus ka. The dotted curve indicates the asymptotic phase $2ka - 5\pi/4$. For $ka > 6$, the phases of F_ϕ and F_ψ are in good agreement with the asymptotic curve; $\arg F_\phi$ is slightly below and $\arg F_\psi$ slightly above $2ka - 5\pi/4$.
and the received backscatter power increases linearly with ka in both cases.

In the interesting range of small deviations of γ_y, γ_z from 90°, the incident beam derived from the electric vector potential is polarized nearly parallel to the wire axis; the incident beam derived from the magnetic vector potential is polarized normal to the wire axis (see Eqs. (13) and (14)). Expressions (40) for $\bar{\eta}_1$ and $\bar{\eta}_3$ accordingly yield the ratio of received to transmitted power for these two directions of polarization. If the polarization direction of the incident beam forms an angle Θ with the wire axis other than 0 or 90°, the beam is described by superposition of two fields derived from an electric and a magnetic vector potential

$$\dot{\bar{E}}_p = \bar{E}_p \cos \Theta \quad \text{and} \quad \dot{\bar{H}}_p = \bar{H}_p \sin \Theta$$

respectively where the distribution of $\bar{E}_p = \dot{\bar{H}}_p$ in the antenna plane $x = d$ is, as before, given by equation (14). The power ratio $\bar{\eta} = \bar{\eta}(\Theta)$ in this case is still described by the right-hand side of equation (40) if we replace the function $F_1(ka, \gamma)$ by

$$\bar{F}(ka, \gamma, \Theta) = \bar{F}_e(ka, \gamma) \cos^2 \Theta + \bar{F}_m(ka, \gamma) \sin^2 \Theta$$

This result is obtained by modifying expressions (31) and (32) for Q_1, Q_4 and expressions (17) for N_1, N_4 by appropriate factors $\cos^2 \Theta$ and $\sin^2 \Theta$, and by inserting the modified expressions into equation (7). One merely has to observe that fields derived from the electric and magnetic vector potentials do not interact in regard to Q or N.

9. GENERAL SOLUTION OF RADAR PROBLEM FOR WIRE IN FAR FIELD REGION OF ANTENNA

If the wire is located in the far zone of the antenna, a general expression for the power ratio $\bar{\eta}$ can be derived which holds for any antenna characteristic. By inserting Q_1, Q_4 and N_1, N_4 in the general form of equations (39) into equation (7), we obtain:

$$\bar{\eta} = \frac{\frac{1}{D} \sum_{\nu=0}^{N-1} \sum_{\mu=0}^{M-1} \frac{1}{\nu+\mu} \frac{1}{\nu+\mu+1} \frac{1}{\nu+\mu+2} \cdots \left[F_1(ka, \gamma) \right]^{\nu+\mu+1} \left[F_2(ka, \gamma) \right]^{\nu+\mu+2} \cos^2 \Theta + F_3(ka, \gamma) \sin^2 \Theta}{\sum_{\nu=0}^{N-1} \sum_{\mu=0}^{M-1} \frac{1}{\nu+\mu} \frac{1}{\nu+\mu+1} \frac{1}{\nu+\mu+2} \cdots \left[F_1(ka, \gamma) \right]^{\nu+\mu+1} \left[F_2(ka, \gamma) \right]^{\nu+\mu+2} \cos^2 \Theta + F_3(ka, \gamma) \sin^2 \Theta}$$

$$\bar{\eta} = \frac{\frac{1}{D} \sum_{\nu=0}^{N-1} \sum_{\mu=0}^{M-1} \frac{1}{\nu+\mu} \frac{1}{\nu+\mu+1} \frac{1}{\nu+\mu+2} \cdots \left[F_1(ka, \gamma) \right]^{\nu+\mu+1} \left[F_2(ka, \gamma) \right]^{\nu+\mu+2} \cos^2 \Theta + F_3(ka, \gamma) \sin^2 \Theta}{\sum_{\nu=0}^{N-1} \sum_{\mu=0}^{M-1} \frac{1}{\nu+\mu} \frac{1}{\nu+\mu+1} \frac{1}{\nu+\mu+2} \cdots \left[F_1(ka, \gamma) \right]^{\nu+\mu+1} \left[F_2(ka, \gamma) \right]^{\nu+\mu+2} \cos^2 \Theta + F_3(ka, \gamma) \sin^2 \Theta}$$
where $F_k(ka,0)$ and $F_0(ka,0)$ are defined by equations (37) and plotted in Figs. 5 and 6. N_Φ and N_Φ can be expressed in terms of the amplitude spectra f and g according to equations (16). Both vector potentials, ϕ and θ, are in general required for description of the field of an antenna.

The amplitudes $f(0,0)$ and $g(0,0)$ can be related to the value of the radiation characteristic of the antenna for the direction normal to the wire axis. In an obvious generalization of the definition of the directivity gain, we describe the radiation characteristic of the antenna by the gain function

$$G = \frac{4\pi r^2 S_t}{N_t}$$

where S_t is the radial component of the Poynting vector in the far zone of the unperturbed antenna field, $N_t = N_\Phi + N_\Phi$ is the total radiated power, and $r = [(x + d)^2 + y^2 + z^2]^{1/2}$ is the radial distance from the center of the antenna aperture (see Fig. 2); kr, of course, is assumed to be a large number. The electric and magnetic field components in the far field region of the antenna can be determined by an asymptotic evaluation of equations (10) in connection with equations (9). For the direction of vertical incidence which we shall indicate by the superscript (z), we obtain

$$E_{x}^{(z)} = 0 \quad \sqrt{\frac{\mu}{\varepsilon}} H_{x}^{(z)} = 0$$

$$E_{y}^{(z)} = + g(0,0) U(r) \quad \sqrt{\frac{\mu}{\varepsilon}} H_{y}^{(z)} = - f(0,0) U(r)$$

$$E_{z}^{(z)} = + f(0,0) U(r) \quad \sqrt{\frac{\mu}{\varepsilon}} H_{z}^{(z)} = r g(0,0) U(r)$$

where $U(r) = 2\pi k \frac{e^{-kr}}{r}$

and consequently

$$S_{t}^{(z)} = 4\pi r^2 \frac{\mu}{\varepsilon} \sqrt{\frac{\mu}{\varepsilon}} [f(0,0) f^*(0,0) + g(0,0) g^*(0,0)] + 2 \pi kr$$
The partial fields derived from the electric and magnetic vector potentials apparently yield asymptotic electric field strengths which, for the direction of vertical incidence, are tangential and normal to the wire axis, respectively. The phases of the two partial fields will in general be different with the result that the total asymptotic field will be elliptically polarized. We introduce a polarization angle $\Theta(x)$ for the direction of vertical incidence by writing:

$$E_y^{(x)} = E_y^{(x)*} \sin \Theta^{(x)} , \quad E_x^{(x)} = E_x^{(x)*} \cos \Theta^{(x)}$$

(50)

where $\xi^{(x)}$ is the phase difference between $E_x^{(x)}$ and $E_y^{(x)}$, and

$$| E^{(x)} | = \left\{ E_y^{(x)} E_{y}^{(x)*} + E_x^{(x)} E_{x}^{(x)*} \right\}^{1/2} , \quad \arg E^{(x)} = \arg E_y^{(x)}$$

The meaning of $Z(x)$, $\Theta^{(x)}$, and $\xi^{(x)}$ is illustrated by Fig. 7 where a polarization ellipse and its special cases are shown. (The superscript (x) has been omitted in this figure.) In the case of linear polarization, ξ is zero, E is the total incident field strength, and Θ is the polarization angle measured against the wire axis. Circular polarization is characterized by $\xi = \tau \Phi^0$ and $\Theta = \pm \Phi^0$; the actual field strength is $E/\sqrt{2}$. In the general case of elliptic polarization, Θ and ξ are related to the angle ζ which the major axis of the polarization ellipse forms with the wire axis and to the axial ratio $x = E_{\text{max}}/E_{\text{min}}$ according to

$$\begin{align*}
tg \Theta &= \frac{\kappa^2 \tau t g \zeta^0}{1 + \kappa^2 \tau^2 \zeta^0} \frac{1}{2} , \quad \cotg \xi = \frac{1 - \kappa^2}{2 \kappa} \sin 2 \xi
\end{align*}$$

With equations (47) to (50), we can now express the products ff^*, gg^*, and fg^* at $\alpha = 0$, $\beta = 90^0$ in terms of $g(x)$, $\Theta(x)$, and $\xi(x)$

$$f(c,c) f^{(x)}(\cdot,\cdot) = \frac{1}{\kappa c^3} \frac{1}{\sqrt{\varepsilon}} \frac{1}{\kappa^2} \frac{1}{N_{\text{max}}} \zeta^{(x)} \cos^2 \Theta^{(x)}$$

(51a)

38
FIG. 7. Polarization ellipse and special cases for field incident in direction normal to wire axis. The direction of incidence is the x-axis; the wire axis coincides with the z-axis.
\[g(0,0) = \frac{1}{16} \frac{1}{\varepsilon} \frac{1}{\kappa^2} \frac{1}{N} \frac{1}{\varepsilon} I \frac{\partial^{\xi \xi}}{\partial x \partial y} \tilde{G}^{(\xi)} \tilde{C}^{(\xi)} \]

\[f(0,0) = \frac{1}{16} \frac{1}{\varepsilon} \frac{1}{\kappa^2} \frac{1}{N} \frac{1}{\varepsilon} I \frac{\partial^{\xi \xi}}{\partial x \partial y} \tilde{G}^{(\xi)} \tilde{C}^{(\xi)} \]

By inserting these expressions into equation (46), we finally obtain

\[\eta = \frac{1}{4\pi} \frac{G^{(\xi)^2}}{(kd)^3} \left| F_x(ka,0) e^{i\xi} \cos^2 \Theta \cos^2 + F_y(ka,0) e^{-i\xi} \sin^2 \Theta \right|^2 \]

Since \(\eta \) is determined by the value of the radiation characteristic of the antenna for only one direction - the direction normal to the wire axis - only the power transmitted by the antenna in this direction will significantly contribute to the energy which is returned to and received by the antenna after scattering at the wire. The received backscatter power depends on the polarization properties of the antenna far field. This dependence obviously stems from the fact that the backscatter properties of a straight wire are different for incident fields polarized parallel to and normal to the wire axis. If the radiation characteristic and the polarization properties of the far field of a given antenna are known, equation (52) permits determination of the ratio of received to transmitted power for any orientation of the antenna in respect to the wire. One merely has to insert into equation (52) the values of \(G, \Theta, \) and \(\xi \) which are associated in each case with the directions normal to the wire axis. We discuss three special cases:

1. If equation (52) is applied to the example of a Gaussian antenna, one should obtain equation (41), which is indeed the case. This is evident if one considers that for a Gaussian antenna (as characterized by equations (13)) the value of \(G(x) \) becomes:

\[G^{(\xi)} = \frac{-k \chi \tau}{\sin^2 \theta_0 \sin^2 \frac{\beta}{2}} \exp \left\{ - \frac{k \chi \sigma^2}{2} \right\} \]
Equation (52), however, leads to a more general expression for η since it is
this expression applies to linearly as well as elliptically polarized incident fields
while equation (41), even if generalized according to equation (45), is limited to linear
polarization.

(2) The right-hand side of equation (52) has a particularly simple form when the
incident field is linearly polarized and the wire radius is so large ($ka > 10$) that F_ϕ and F_θ can be replaced by their asymptotic representations (44). Since in the
asymptotic range these two functions do not differ, η becomes independent of the polarization direction of the incident field:

$$\eta = \frac{1}{k} \frac{\sin \alpha}{\cos \alpha}$$

Hence, measuring η while turning the antenna yields the radiation characteristic
of the antenna or, more precisely, the square of the gain function G.

(3) The right-hand side of equation (52) becomes zero if

$$tg^2 \Theta(\kappa) = \left| \frac{F_\phi(ka,\alpha)}{F_\theta(k,\alpha)} \right| \quad \text{and} \quad 2\kappa \Theta(\kappa) = \pi - (\arg F_\phi(ka,\alpha) - \arg F_\theta(ka,\alpha))$$

For sufficiently thick wires ($ka > 10$), the functions F_ϕ and F_θ do not appreciably differ and requirements (54) reduce to

$$\Theta(\kappa) = \frac{\pi}{4}, \quad \kappa \Theta(\kappa) = \frac{\pi}{2}$$

i.e. to the conditions for circular polarization of the incident field. The
explanation in this case is obvious: if $F_\phi = F_\theta$, the backscatter properties
of the wire are the same for fields polarized tangential to and normal to the
wire axis so that an incident field which for the direction vertical to the
wire axis is circularly polarized will lead to a backscatter field which is
also circularly polarized with the same direction of rotation, but the
opposite direction of propagation. Seen in their respective directions of
propagation, the two fields, therefore, rotate in opposite directions and an
antenna emitting the incident field cannot receive the backscatter field.

Actually η will not become zero, but will be very small since the an-
tenna will still receive backscatter power from directions of incidence
other than 90°. Mathematically speaking, the right-hand side of equation (52)
is the first term of an asymptotic expansion of the power ratio η for large kd. If this term is zero, η is determined by the second asymptotic term which decreases with $(kd)^{-4}$ as opposed to the $(kd)^{-3}$ dependence of the first term. Since kd is supposed to be a large number, the received backscatter power will decrease rapidly as conditions (55) are approached.

These considerations imply that the receiving antenna is identical with the transmitting antenna. If the receiving and transmitting antennas on the other hand are matched to circularly polarized fields with opposite directions of rotation, the full available backscatter power will be received and η, as in the case of linear polarization, is given by equation (53).

10. RADAR CROSS SECTION OF STRAIGHT METALLIC WIRE

We saw in the last section that the radar response of an infinitely long wire situated in the far field region of the illuminating antenna, is determined by the value of the radiation characteristic of the antenna for the direction of vertical incidence only. Hence the wire can in principle be replaced by a finitely bounded scatter object with an appropriate radar cross section placed at the point where the direction of vertical incidence intersects the wire axis. Comparison of equation (52) with the well-known radar range equation:

$$\eta = \frac{N_r}{N_t} = \frac{\lambda^2}{(4\pi)^3} \frac{Q^2}{\sigma} \quad (56)$$

where G is the value of the antenna gain function for the direction under which the antenna sees the scatter object, immediately yields for the equivalent radar cross section

$$\sigma = \frac{\chi(k, \ell)}{l} \left| -i \frac{C(k, \ell)}{C(k, \ell)} e^{i \theta} \right|^2 \left| F_{\psi}(k, \ell) e^{i \phi} \right|^2 \sin^2 \theta \quad (57)$$

and we obtain in particular for the case of a linearly polarized incident field if the direction of polarization at vertical incidence is parallel to the wire axis ($\phi(x) = 0$)

$$\sigma = \frac{\chi(k, \ell)}{l} \left| F_{\psi}(k, \ell) \right|^2 \sin^2 \theta \quad (58a)$$
and if the direction of polarization is normal to the wire axis \(\theta(x) = 90^\circ \)

\[
\sigma = \frac{4d}{k} \frac{r}{r_0} \left(\sum \frac{r}{r_{0,\ell}} \right)
\]

(58b)

For sufficiently thick wires \(k \alpha > 10 \), \(F_\alpha \) and \(F_\beta \) can be approximated by their asymptotic representations \(e^{44} \), and equations (58) reduce to

\[
\sigma_{||} \approx \sigma_\perp \approx rad d
\]

The radar cross section of a long wire according to these equations increases linearly with distance \(d \) between antenna and wire. This is consistent with the earlier obtained result that the "effective length" of the wire, i.e., the portion of the wire which significantly contributes to the backscatter field near the antenna increases with \(\sqrt{d} \). Since the quantity proportional to the effective length \(l \) is the received field strength and the quantity proportional to the radar cross section \(\alpha \) is the received power, we have \(\alpha \sim l^2 \) where both \(\alpha \) and \(l^2 \) are proportional to \(d \).

11. CONCLUSIONS

The scatter field and radar response of an infinitely long straight metallic wire have been derived under the assumption that the source of excitation is an antenna radiating a Gaussian beam of narrow beam width in the order of \(1^\circ \). Two cases can be distinguished, that the wire crosses the Fresnel region (near field region) of the antenna and that the wire is situated in the far field region of the antenna. In the former case, the theory is limited to wire radii \(\alpha < \rho_0 \) where \(\rho_0 \) is the beam radius at the antenna; in the latter case, wires of arbitrary diameters are admissible. The following results have been obtained:

1. The scatter field produced by diffraction of the incident beam at the wire has essentially the same distribution in every plane through the wire axis; it differs from plane to plane only by an amplitude factor. If the wire is located in the far field region of the antenna, the scatter field is concentrated near a conical surface (about the wire axis) whose aperture angle is equal to the angle which the axis of the incident beam incloses with the direction of the wire axis.

2. The fraction \(\eta \) of the radiated power which after scattering at the wire is returned to and received by the antenna is at a maximum for vertical incidence - when the beam axis intersects the wire axis at right angles - and decreases exponentially as the beam axis is turned away from the direction of incidence; no side lobes are encountered in case of Gaussian illumination, at least not in the interesting range of small angular deviations (< 15\(^\circ\)) from vertical incidence where \(\eta \) has appreciable values.
(3) The expression derived for the radar response of a wire situated in the far field region of the illuminating antenna can be generalized so that it holds for any antenna characteristic. This generalization shows that \(\eta \) is proportional to the square of the value of the radiation characteristic of the antenna for the direction intersecting the wire axis at right angles. In other words, only the energy radiated by the antenna in the direction of vertical incidence will contribute significantly to the backscatter power returned to the antenna. A consequence of this result is that a radar cross section can be assigned to the wire, even though it is assumed to be infinitely long. This radar cross section increases linearly with distance between antenna and wire.

(4) The radar response of a wire in the far field region of the antenna decreases with the inverse third power of distance \(d \) between antenna and wire. The deviation from the usual \(d^{-4} \) relation is due to the fact that the scatter object, the wire, is infinitely extended in one dimension. If the wire crosses the Fresnel region of the antenna (and the antenna radiates a Gaussian beam) the radar response for vertical incidence decreases with distance \(d \) according to

\[\eta = \left(\frac{c}{kd} \right)^2 + \left(k \rho_0 \right)^{-3} \]

where \(\rho_0 \) is the beam radius at the antenna.

(5) The dependence of the radar response \(\eta \) on wire radius \(a \) is essentially the same for a wire crossing the Fresnel region and for a wire situated in the far field region of the antenna. The received backscatter power in general increases with \(a \), and for thin wires (\(ka < 1 \)) shows a marked dependence on the polarization of the incident field. An incident beam polarized parallel to the wire axis produces a substantially stronger response than an incident beam polarized normal to the wire axis. With increasing wire radius, the dependence of \(\eta \) on polarization diminishes and practically disappears when \(ka \approx 10 \). For \(ka > 10 \), the radar response increases linearly with \(a \) for either polarization.

The theory was derived assuming that the incident beam, and therefore also the field scattered by the wire, are strictly time harmonic. The results consequently hold for CW-radar systems, but can be applied also to radar systems employing pulsed fields provided the frequency spectrum of the pulses is sufficiently narrow. The quantities \(kd \) and \((k \rho_0)^{-3} \) can then be treated as constants and the expressions derived for \(\eta \) under the assumption of time harmonic field will be valid approximations for the ratio of received to transmitted energy per pulse.

ACKNOWLEDGEMENT

The author wishes to thank Dr. G. Goubau of the Institute for Exploratory Research, ECOM, for helpful discussions relating to the subject of this paper.
LITERATURE CITED

M. G. Andreasen, Scattering from cylinders with arbitrary surface impedance, pp. 812-817.

APPENDIX A

APPROXIMATE EVALUATION OF THE RECIPROCITY INTEGRALS Q_Φ AND Q_Ψ (Gaussian Illumination)

We evaluate the reciprocity integrals Q_Φ and Q_Ψ, equations (31). The evaluation procedure uses approximations based on the three following assumptions:

1. The beam width of the incident Gaussian beam is in the order of 1°. This means $k_p \rho_0$ is in the order of 100. The quantity k_d is in the order of $(k_p \rho_0)^2$ when the wire crosses the Fresnel region of the antenna, and is large compared to $(k_p \rho_0)^2$ when the wire is situated in the antenna far zone.

2. The wire radius does not exceed the value $\frac{c}{k \rho_0}$. The summation over a in the integrand of equations (31) can then be limited to terms with $|m| < 2(k_p \rho_0)^4 + (k_d)^2 \frac{d}{\rho_0}$, this means to terms varying with a, a', β slowly as compared to the exponential part of the integrand. The condition $a < a_{\text{max}}$ does not impose a severe restriction. For a wire crossing the Fresnel region of the antenna, this condition essentially requires $a < \rho_0$; therefore wire diameters of several wavelengths are admissible. The diameter of a wire in the antenna far zone is practically not limited by this condition.

3. The beam axis angles γ_y and γ_z are close to 90°; their deviations from this value do not exceed 1.5°. We may restrict ourselves to considering a small γ_y, γ_z-range as Q_Φ and Q_Ψ decrease rapidly with increasing deviations of γ_y and γ_z from 90°, and for a deviation of 1.5° already are exceedingly small (see equation (A.14)).

Substituting in equations (31)

\[
\sin \alpha = u, \quad \sin \alpha' = v, \quad \cos \beta = w \quad (A.2)
\]
we write

\[
Q_{\xi,\varphi} = \frac{2}{\pi} \sqrt{\frac{\varepsilon}{\mu}} \frac{k_0}{\alpha} \xi \varphi \frac{\varepsilon}{\sqrt{\gamma^2 - \varepsilon^2}} \sum_{m=-\infty}^{+\infty} \int_{\mu, \nu, \omega = 1}^{+\infty} \frac{e^{i\mu_m(u, \nu, \omega)}}{dudv} \]

where

\[
\mu_m(u, \nu, \omega) = -\frac{kd}{2} \left(\sqrt{1 - \omega^2} + \sqrt{1 - \nu^2} \right) \sqrt{1 - \omega^2} \quad -im(u - \nu)
\]

\[
-\frac{1}{2} (k_0^2) \left[\left(\frac{\nu \sqrt{1 - \omega^2} - \cos \beta \gamma}{\sqrt{\gamma^2 - \nu^2}} \right)^2 + \left(\frac{\nu \sqrt{1 - \omega^2} - \cos \beta \gamma}{\sqrt{\gamma^2 - \nu^2}} \right)^2 + \frac{2 \omega^2}{\sin^2 \beta \gamma} \right]
\]

\[
\tilde{H}_{(m)}^{(1)}(u, \nu, \omega) = (-1)^{m+1} \frac{\tilde{H}_{m}(kd, \sqrt{1 - \omega^2})}{H_{m}(kd, \sqrt{1 - \omega^2})} (1 - \omega^2)^2 \exp \left[+im \left[(u - \omega \sin \nu) - (\nu - \omega \sin \nu) \right] \right]
\]

\[
\tilde{H}_{(m)}^{(2)}(u, \nu, \omega) = (-1)^m \frac{\tilde{H}_{m}(kd, \sqrt{1 - \omega^2})}{H_{m}(kd, \sqrt{1 - \omega^2})} (1 - \omega^2)^2 \exp \left[+im \left[(u - \omega \sin \nu) - (\nu - \omega \sin \nu) \right] \right]
\]

Since kd and \((k_0^2)\) are large numbers, the exponential functions \(e^{i\mu_m(u, \nu, \omega)}\) in the integrands of equation (A.3) change rapidly with \(u, \nu, \omega\).
while the functions $A_{k'}^{\pm}$ vary only moderately. To evaluate the integrals, we use a method which is in essence the method of steepest descent.

Differentiation with regard to u, v, w shows that the exponent $\mu_m(u,v,w)$ becomes stationary at the point

$$u = u_m, \quad v = v_m, \quad w = c$$

where u_m and v_m are solutions of the (fourth order) equations

$$u_m (1 + \frac{\sin^2 \gamma}{\kappa^2 u_m^2}) = c_m, \quad v_m (1 + \frac{\sin^2 \gamma}{\kappa^2 v_m^2}) = c^*_m$$

(A.6)

$$with \quad c_m = \cos \gamma \mp \frac{i u_m}{\kappa^2 \gamma^2} \sin \gamma, \quad \tau = \frac{k \rho^2}{d}$$

u_m and v_m have the power series expansions:

$$u_m = b_1 c_m + b_2 c_m^3 + b_3 c_m^5 \ldots, \quad v_m = b_1 c^*_m + b_3 c^*_m + b_5 c^*_m \ldots$$

(A.7)

$$with \quad b_1 = \frac{i \tau'}{1 + i \tau'}, \quad b_2 = -\frac{1}{2} \frac{(i \tau')^3}{(1 + i \tau')^4}, \quad b_3 = \frac{3}{5} \frac{(i \tau')^5}{(1 + i \tau')^8}$$

and \quad $\tau' = \frac{\tau}{\sin^2 \gamma}$, \quad $\tau = \frac{k \rho^2}{d}$

For $kd \ll (k\rho_0)^2$ and $kd \gg (k\rho_0)^2$, u_m and v_m approach real values. In the first case, $u_m = v_m = \cot \gamma \sqrt{2}$; and in the second case, $u_m = v_m \to 0$. In the intermediate kd-range, u_m and v_m are complex; their real parts lie between 0 and $\cot \gamma \sqrt{2}$, and their imaginary parts are small compared to unity.

49
The paths of integration with regard to \(u \) and \(v \) are now shifted, as indicated in Fig. 8, so that they transverse the points \(u = u_m \) and \(v = v_m \) respectively. Thus modified, the range of integration of each summation term in equation (A.3) includes the corresponding stationary point \(u = u_m \), \(v = v_m \), \(w = 0 \). Since the exponential functions \(e^{\mu_m(u,v,w)} \) at these points have maximum amplitude and zero phase change and in moving away from these points decrease and oscillate rapidly, only the immediate neighborhood of the points \(u = u_m \), \(v = v_m \), \(w = 0 \) will appreciably contribute to the values of the integrals in equation (A.3). In these neighborhoods, the functions \(A_m(u) \) and \(A_n(v) \) do not vary noticeably, and the exponents \(\mu_m \) can be replaced by second order approximations.

\[
\mu_m(u,v,w) \approx \mu_m(u_m,v_m,0) + \frac{1}{2} \left\{ \frac{\partial^2 \mu_m}{\partial u^2} \Delta u^2 + \frac{\partial^2 \mu_m}{\partial v^2} \Delta v^2 + \frac{\partial^2 \mu_m}{\partial w^2} \Delta w^2 \right\}_{u_m,v_m,0} \tag{A.8}
\]

where

\[
\left(\frac{\partial^2 \mu_m}{\partial u^2} \right)_{u_m,v_m,0} = + \frac{ikd}{(1-u_m^2)^{3/2}} - \frac{c_k}{\sin^2 \theta_y}
\]

\[
\left(\frac{\partial^2 \mu_m}{\partial v^2} \right)_{u_m,v_m,0} = + \frac{ikd}{(1-v_m^2)^{3/2}} - \frac{c_k}{\sin^2 \theta_y}
\]

\[
\left(\frac{\partial^2 \mu_m}{\partial w^2} \right)_{u_m,v_m,0} = + ikd \left(\sqrt{1-u_m^2} + \sqrt{1-v_m^2} \right)
\]

\[
- (k_F)^2 \left[\frac{2}{\sin \theta_y} + \frac{(u_m+v_m) \cos \theta_y}{\sin \gamma_y} - \frac{u_m^2 + v_m^2}{\sin \gamma_y} \right]
\]

and \(\Delta u = u - u_m \), \(\Delta v = v - v_m \), \(\Delta w = w \)

*The mixed second order derivatives \(\frac{\partial^2 \mu_m}{\partial u \partial v} \), \(\frac{\partial^2 \mu_m}{\partial v \partial w} \), \(\frac{\partial^2 \mu_m}{\partial w \partial u} \) are zero at \(u = u_m \), \(v = v_m \), \(w = 0 \).
FIG. 8. Deformation of paths of integration with regard to u and v from real axes into complex u- and v-planes respectively.
Note that the deformations of the paths of integration in u and v, as indicated in Fig. 8, have been chosen so that Δu and Δv near $u = u_m$ and $v = v_m$ are essentially real. Since the v-integration follows the real axis, Δw, of course, is real.

Extending the range of integration in Δu, Δv, Δw to infinity, which is permissible as no noticeable error is introduced by this modification, the integrations can be carried out in closed form:

\[
\prod_{m=1}^{\infty} \int_{(u,v,w)} H_{m,v}^{(m)}(u,v,w) \, du \, dv \, dw = \infty
\]

\[
= \prod_{m=1}^{\infty} \int_{(u,v,w)} H_{m,v}^{(m)}(u,v,w) \, du \, dv \, dw = \infty
\]

\[
= \prod_{m=1}^{\infty} \int_{(u,v,w)} H_{m,v}^{(m)}(u,v,w) \, du \, dv \, dw = \infty
\]

\[
= \prod_{m=1}^{\infty} \int_{(u,v,w)} H_{m,v}^{(m)}(u,v,w) \, du \, dv \, dw = \infty
\]

\[
= \prod_{m=1}^{\infty} \int_{(u,v,w)} H_{m,v}^{(m)}(u,v,w) \, du \, dv \, dw = \infty
\]

\[
= \prod_{m=1}^{\infty} \int_{(u,v,w)} H_{m,v}^{(m)}(u,v,w) \, du \, dv \, dw = \infty
\]

\[
= \prod_{m=1}^{\infty} \int_{(u,v,w)} H_{m,v}^{(m)}(u,v,w) \, du \, dv \, dw = \infty
\]

and we obtain with equations (A.3), (A.4), and (A.9):

\[
A_{\bar{q}, \bar{v}} = 4 \sqrt{2} \sqrt{-E_{\mu}} \, k \, e^{i}, \quad \bar{k} \neq 0
\]

52
where

\[\rho^{(m)}(y, f) = \left(\frac{-\Delta d}{(1 - \varepsilon^2)} \right)^{1/2} \left(\frac{-\Delta d}{(1 - \varepsilon^2)^2} \right)^{1/2} + \frac{(\kappa_0)^2}{\tau_f} \right]^{1/2} \]

\[\times \left[\tan \left(\frac{\gamma}{2} - \frac{\gamma^2}{4} - \frac{\gamma^3}{4} \right) \right] \left(\frac{2}{\eta_2} \right)^{1/2} + \frac{\cos \gamma_0}{\sin \gamma_2} \right] \]

and

\[H^{(m)}(u_m, \varepsilon_m, C) = (-1)^{m-1} f^{(m)} \exp \left[\mu \left[(u_m \arctan \varepsilon_m) - (\varepsilon_m \arctan u_m) \right] \right] \]

\[H^{(m)}(u_m, \varepsilon_m, C) = (-1)^{m-1} f^{(m)} \exp \left[\mu \left[(u_m \arctan \varepsilon_m) - (\varepsilon_m \arctan u_m) \right] \right] \]

This result can be simplified further. An estimate based on the assumptions stated at the beginning of this appendix shows that the functions \(p^{(m)}(y, f) \) can be replaced by second-order approximations in \(\cot y \) and \(\cot f \); the approximate expressions become independent of \(m \):

\[p^{(m)}(y, f) = \sqrt{2} (-\Delta d)^{1/2} (1 + d) \rho(y, f) \]

where

\[\rho(y, f) \approx 1 + \frac{\Delta f}{2} \left[\cot y_2 + 2 (1 - \frac{7}{4} \frac{\Delta f}{\Delta y}) \cot y_2 \right] \]

\[\approx 1 \text{ for } y, f \approx 90^\circ \]

53
In the exponential functions, furthermore, we can approximate

\[-ik_d \left[\sqrt{1-u_m^2} + \sqrt{1-v_m^2} \right] - \frac{i}{2}(k_p_0)^2 \left(\frac{u_m \cos \theta}{\sin \gamma} \right)^2 - \frac{m^2}{i k_d - (k_p_0)^2} \]

where \(u_0 \) is the value of \(u_m \) and \(v_0 \) for \(m = 0 \). Finally, the terms \(\text{im}(u_m - \text{arc} \cos u_m) \) and \(\text{im}(v_m - \text{arc} \cos v_m) \) in the exponent of the functions \(A_n, m \) are small compared to \(\pi \) and therefore can be neglected. Hence

\[
\begin{align*}
A_{n, m} &= 4 \sqrt{\mu} \sqrt{k_p_0} (\frac{ic}{1 + c})^{\frac{3}{2}} \bar{f}(k_0, \tau) \times \\
&\quad \exp \left\{ -2ik_d \sqrt{1-u_0^2} - (k_p_0)^2 \left(\frac{u_0 \cos \theta}{\sin \gamma} \right)^2 + \frac{m^2}{i k_d - (k_p_0)^2} \right\} \\
&\quad \sin^{\frac{3}{2}} \gamma \sin \theta \quad \text{p}(\gamma, \theta)
\end{align*}
\]

with

\[
u_0 = \frac{ic'}{1 + c'} \cos \frac{\gamma}{2} \left(\frac{ic}{1 + c} \right) \cos \frac{\gamma}{2} + \frac{3}{8} \left(\frac{ic}{1 + c} \right)^2 \sin \gamma
\]

\[
\tau' = \frac{T}{\sin \gamma}, \quad \tau = \frac{k_p_0}{\alpha}
\]

and

\[
\bar{F}(k_0, \tau) = \sum_{m=-\infty}^{+\infty} (-1)^{m+1} \frac{i_m(k_0)}{j_m(k_0)} \exp \left\{ -\frac{i \tau}{1 + c} (\frac{m}{k_0})^2 \right\}
\]

\[
\bar{F}(k_0, \tau) = \sum_{m=-\infty}^{+\infty} (-1)^m \frac{j_m(k_0)}{i_m(k_0)} \exp \left\{ -\frac{i \tau}{1 + c} (\frac{m}{k_0})^2 \right\}
\]
Expanding the exponent in \((A.12)\) into a power series in \(\cotg \gamma_y\) and neglecting 6th and higher order terms we finally obtain

\[
G_{\xi,\mu} = \frac{\sqrt{\pi}}{\sqrt{\mu}} \frac{E}{\mu^2} \left(\frac{\xi}{1 + \xi^2} \right)^{\frac{3}{2}} F_{\xi,\gamma}(\xi u, \xi) \frac{1}{(\mu + 1) \mu^2} \exp \left\{ -i2k \ln \left[\frac{\mu}{4} \frac{1}{(1 + \xi^2) \gamma_y} \left(1 + \frac{\xi^2}{1 + \xi^2} \right) \right] \right\}^{\mu}
\]

\[
\exp \left\{ -i \frac{2}{k} \ln \left[\frac{1}{(1 + \xi^2) \gamma_y} \left(\frac{1}{1 + \xi^2} \right) \right] \right\}
\]

\[
\exp \left\{ -i \frac{2}{k} \ln \left[\frac{1}{(1 + \xi^2) \gamma_y} \left(1 + \frac{\xi^2}{1 + \xi^2} \right) \right] \right\}
\]

\[
(A.14)
\]
APPENDIX B
ASYMPTOTIC EVALUATION OF RECIPROCITY INTEGRALS Q_4 AND Q_4 (Arbitrary Illumination)

Assuming that the wire is located in the far field region of the antenna, we evaluate expressions (30) for Q_4 and Q_4 asymptotically using the method of stationary phase. For large kd, the exponential function

$$\exp(-ikd (\cos \alpha + \cos \alpha') \sin \beta)$$

varies rapidly with α, α', β, and all other terms in the integrands on the right-hand side of equations (30) can be regarded as slowly varying when compared to this function. Differentiation with regard to α, α', and β shows that the exponent has the saddle point within the range of integration* at

$$\alpha, \alpha' = 0, \beta = 90^\circ$$

Since kd is assumed to be very large, only the immediate neighborhood of this stationary point will contribute appreciably to the value of the integrals Q_4 and Q_4. In this neighborhood, all terms of the integrands apart from the exponential function remain essentially constant; for the exponent, we use the second order approximation

$$ikd (\cos \alpha + \cos \alpha') \sin \beta \approx i2kd - ikd (\frac{\alpha^2 + \alpha'^2}{2} + \Delta \beta^2)$$

where $\Delta \beta = \beta - \pi/2$. Without sacrificing accuracy, the range of integration can be extended to $-\infty < \alpha, \alpha', \beta < +\infty$. Using the relation

$$\int_{-\infty}^{+\infty} e^{ilu^2} du = \sqrt{\frac{i\pi}{l}}$$

*On the boundary of the range of integration, the exponent has further saddle points at $\alpha, \alpha' = \pm\pi/2, \beta = 0, \pi$. These stationary points, however, do not yield an asymptotic contribution to Q_4 and Q_4 as the slowly varying part of the integrand at $\beta = 0, \pi$ becomes zero.
we thus obtain for Q_e and Q_{ψ}

$$Q_e = -16 \varepsilon^{3/2} \sqrt{\frac{\varepsilon}{\mu}} k^2 F_e(ku_0, \theta) \left(\frac{\varepsilon}{kd} \right)^{3/2} f(0,0)$$

$$Q_{\psi} = -16 \varepsilon^{3/2} \sqrt{\frac{\varepsilon}{\mu}} k^2 F_{\psi}(ka_0, \theta) \left(\frac{\varepsilon}{kd} \right)^{3/2} g(0,0)$$

where $F_e(ka_0, \theta)$ and $F_{\psi}(ka_0, \theta)$ are given by equations (A.13) with $\tau = 0$.

57
Scatter field and radar response of an infinitely long straight metallic wire are derived assuming that the wire is illuminated by an antenna radiating a Gaussian beam of narrow beam width. The scatter field has essentially the same distribution in any plane through the wire axis; it varies from plane to plane by only an amplitude factor. The radar response is at a maximum for vertical incidence - when the beam axis intersects the wire axis at right angles - and decreases exponentially with increasing inclination of the beam axis against this direction. No side lobes are obtained for Gaussian illumination, at least not in the interesting range of small angular deviations from vertical incidence where the radar response has a recognizable value. Two cases can be distinguished: (1) the wire crosses the Fresnel region of the antenna and (2) the wire is situated in the antenna far zone. In the former case, the theory is limited to wire radii not exceeding the beam radius at the antenna; in the latter case, arbitrary wire radii are admissible. If the wire is located in the far field region of the antenna, the expression derived for the radar response can be generalized so that it applies to any antenna characteristic. The generalized expression shows that a radar cross section can be assigned to the wire even though it has been assumed to be infinitely long; this radar cross section increases linearly with distance between antenna and wire.
Scatter field of long metallic wire
Radar response of long metallic wire
Radar cross section of long metallic wire
Long metallic wire with Gaussian illumination
Wire crossing Fresnel region of Gaussian antenna
Wire in far field region of Gaussian antenna

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.24 and Armed Forces Industrial Manual. Enter the group number. Also, whenever applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capital letters immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year, if more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. & 8c PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system number, task number, etc.

8d. ORIGINATOR'S REPORT NUMBER(S): Enter the official or "contract" number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

8e. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers, enter those also. (Use this column.)

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."
 (2) "Foreign announcements and dissemination of this report by DDC is not authorized."
 (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through"
 (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"
 (5) "All distribution of this report is controlled. Qualified DDC users shall request through"

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (funding for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (*). (3) (S) (C) or (F).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical content. The assignment of links, rules, and weights is optional.

UNCLASSIFIED

Security Classification