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Gne of the most important aspects cf the anzlysis of

dara by regression methods is the examination of residuals.
This implies the careful inspection of the differences,

e, = Yi - Qi' i=1 2, ..., n, between the observed values

Y and the corresponding values §i which are predicted by

the fitted model at the n obserxvation sites. There are

many ways of looking at residuals; see, for examplz, Draper

and Smith (1966, Chapter 3} and Wooding (19%69). Important
basic techniques are those of plotting the residuals against
their corresponding fitted values, or against the corresponding
values of the independent variables, or against the correspond-
ing values of "new" variables, and (in all cases} observing

the pattern thus formed.

Draper and Smith say that an "ideal" pattern for most
plots, which implies no denial of the ragression assumptions,
occurs when the residuals form a "horizontal band."” This ¥s
always true for the so called "fixed effect" analysis of
varisnce models. In fitting models with continuous variables., it
is usually true within the practical limitations of most nlots,
but is pot precisely true theoretically hecause the residuals
are not independent, nox deo they all have the same vari:nce.
The purpose of this note is to point ont that there is likely
to be at least a slight pattexrn of changing magnjtude of the
residuals in such plots and that, if such an effect is at all

pronounced {as it may well be, givea certain properties of the

T T = ~ SN B T e e e B I E— e e m—— T,
SR

TR TR W ST A AT S s LS ST B o L4

Vp e eh

I A 00 B P et o S S A L SR S OO AW A SRR SR S K RNV AN AU AR U ookt ope s L

2%

Ll B A G R PR

T ——




design matrix) then the variance-covariance structure of

the residuals should be taken into account in the analysis.

2. Introduction and Discussion

Suppose the madel

o]
"
1
™

+
Y

is fitted by least squares where y is an nxl vector of obser-
vations, X an nxq matrix of known constants, 8 a gxl vector

of unknown parameters, and ¢ is an nxl vector of randomly dis-
tributed exrnors. We make the usual assumptions that E(g) = 0
and V(é) = ;oz. The least squares estimate of g is given by

1

b= (X'X) " X'y, and the vector of residuals is

: {1)

={I-R y={I-R ¢ (2)

-1

where R = X{(X'X) X'. Thus che residuals can be regarded as

the same linear transformation of the known observations y or

the unknown errors e. It also follows that

Ef{e) = 0 {3)
and

Vie) = (I - RIo®
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when the variance assunptions of the model are correct.

Since V(y) = gaz. the variances of the n individual residuals

are given by

o
5ot

Vi) = e® - Vi), 3=1,2, .cin (5) i
2
= (1 -r.. 6
{ rjj)o (6)

LA i ot T

whers rjj is the ﬁth diagonal element of R. The pattern of

the variances of the resicduals is therefore the complement of

P o

1AL B A R 52

e D ey Iy 2y, ZY

> that of the predicted values y. It is evident that
b
E g <{]1 ~ r_.r_i)< 1 (73
;2 -l -
7
A since V{e,} i5 non-negative and 5y is a positive definite
| <3 7 )
j quadratic form, V(ej} is Zero unly when e, = { independent
£ 3
35 . B .
£ of y, such as in saturated designs (when n=gq) or when the
o

peculiarities of the design force Yj to equal yj exactly.

h]

For example the residual at the center point of certain

Ly S
At P RA S

second order threce~-lavel desians (see Box and Behnken, 19260)

+
U

i

it

with one center point, wiil always be zero, and Vi{e) = 0 there.

e
ANl

2.1, Residuals for a first ocrder model with a constant term,

i

A

¥

In fitting a straight line model n = B, *+ 8X we can

I3 *‘
b

recall {Draper & Smith, 1966, p.23) that V(§}increases as

ol did

rhe distance of x from the mean value x of the observed
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e x's,. increases. igure ia shows a typical band of 95%
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contidence intervals for the expected values of y, derived
from five equally spaced observations, &ks a consequence,
residuals at x-sites closer to x will have larger variance
than residuals further away. Figure lb shows the pattern of
: the standard deviation of the re-~iduals for 5 equally

spaced observatisn. Note that we do not extend the "balloon

pattern" outside the range of x for which we have cbservations

J e

and, actually, the pattern really consists only of individual

verticals intervals at the points at which wz have observations.

These interyals are drawn in Figure 1lb to be of width

26"I{Uiei)}2 (twice the numbers written on the ordinates of

" iy
P S—

i the observation sites) and the end-points are joined by &

S smooth curwve simply to show the variation more clearly. The
ratioc between the center residual standard deviations and that
cf an outside point is 21/2 = 1.4, Such variation in standard

L deviation would usually not bhe discernible in a typical

FAe—

residuals plot.

The severity of this "ballooning® of V(ej) depends on

b - a

the actual values of the x's used in the regression and may
or may not be important in a practical prablem, If the

variances of the residuals varied a great Jeal, it would be

worthwhile to examine tie e./{l =~ rjj2 /‘, instead of the .,
in the usual residuals plots, and £ use the more currsct

[

L

stead of e./s, as the “normal deviate

o

- i/2
ej/{s(l rjj)) : 1

T LT TR T ST - y
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form" of the residualzs. In many cases, as we shall

via exampliesg, this refinement is not needed, but in some cases

3

it may bhe helpful to avoid possible miginterpretations.
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The ballooning of the residual variance at the cernter
of gravity of the data will occur in general whenever first
order models with constant terms are fitted, i.e. whenever

we fit

k
E(y) = 8, + |

8, X,. {8)
i1 i 71

We can assume without i03s of generality that the xi’s are

~ a -
coded so that X, = jil xijfn = 0 for i=1, 2, ..., k.

Suppose we write X = (1, D) where D is the usual design

1

m.érix. Then R = 11'/n + D(B'D) ~ D', and it follows that

2

v(;,j, = [1/n + t55] o (9)

where tjj is a positive definite quadratic form. Therefore

2

v(ej) = [(n-1)/n - tjj] o (10}

and tjj = 0 cnly if the jth row of D is at the centroid where

xij = 0 for all i. V(ej) must increase monotonically away
from this minimum since it is a true quadratic in the k
independent variables of the first order model. Hence for

these models

0 <Vley) s [n-l/mlc?.  (n
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2.2. Residuals for first order models without constant terms.

When a first order model without a 8, term is fitted,
the ballooning pattern is replaced by a decreasing V(e)
as the distance from the actual origin increases., Eguations
(6) and (7) hold, with the maximum V(e), of value o2, being
achieved only at the origin. Typically no observations would
be taken at the origin in fitting this model, since they do
not enter into the values of the estimates at all. If they
wers taken (e.g. to assist in checking the assumption that
8, = 0), it is clear tbat relatively larger residuals shouid

be expected there since §j must always be exactly zero, no

matter where the corresponding yj's lie.

2.3. Residuals for models that are not first crder.

When some of the xi's in a regression model are functions

of other xi's, as, for exémple, in the second ordexr model,

3 k
y = B+ B. x: + B,. X.,%X_+ ¢ {12)
° 121 i~ igj ij Ti%e '

equations (6} and {7} hoid but no general statements can be

made about the locaticn of maxima for Vi{e) or their number.

When a constant texm is included,the maximum would hypothetically

occur at the point in the k dimensicnal factor space corres-

ponding to the average of each of the g columns of the X

matrix. But such a point may not, in fact, exist. For example

o sormemamesn S i e 1w 3 20 s
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in a second order model, when the xi's are at their average

value the xi's are not, The largest residual variance in a

second order design may not occur at the center point if
the number of replicates there is zmall enough (see seztion

3).

I B B L R L o Y ST T oA PRs

2.4. Average value of the variances of the residuals.

Since the average value of the variance of the predicted

values at the observation points is given by

Vig) = n1 ] viry = 2l er {22 H 7 562} = god/n. (13

P S

where X is an nxq matrix, the zverage variance of the

residuals is

PP,

; — =1 % 2
; Vie) = n ‘Zl Vieg) = (n-qdo®/n.  {14)
Jﬁ‘

Even if the residual variance is reasonably constant, it

1 e A e
Al AL (g
R

3 might still be useful to consider the magritude of e; relative
to s/{(n-c_z)/n}""2 rather than just s (the estimate of o) in

cages where n is not large relative to q.
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3. Examples.
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3.1. Straight line in one variable.

In Exercise A, page 35 of Draper and Smith (1966), 11
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observations of a response Y cccur at 11 equally spaced
values of a predictor variable X, at X = -5, -4, ..., 4,
5. The model y=8_ + BX + ¢ igs fitted and the variances of

the residuals can be shown to he 02 times

.68, 0.76, 0.83, 0.87, 0.96, 0.9%, 0.90, 0.87, 0.83, 0.76, 0.66

Thus, the central residual has variance 1.3 times as

great as thre extreme residuals. (For standard errors, the
factor is thus 1.2.}) From a practical point of view

such variation would not be discernible in an actual residuals
plot. The worst variation in the residual standard errcr

one could obtain for the same range with 11 points results from
the design with ¢ points at the center and one each at 45.

The equivalent ratios here are 2.2 and 1.5, and a correction

might be worthwhile in such a case.

3.2. Straight line through .the origin.

Suppose the model v=8x + ¢ is fitted to observations
taken at x=1, 2, 3, 4, 5. The variances of the residuals

2 ..
are o times

.98, .93, .83, .78, .55

respectively. The steady increase in variance with a

factor of 1.8 (1.3 in standard deviation) between lowest and
highest might be marginally detectable in a residuals plot

and might lead to misleading conclusions unless the possible

danger was realized.
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3.3. First order rotatable designs.

A common design used for fitting a first order model
is a two level factorial or fractional factorial (2¥°P) with
one or more center points. Since the design is orthogoral
and hence first order rotataiLle, there are but two kinds of
sites as far as the variance of a residual is concerned. The
variance of b is ¢learly %, where n=n°v+ Zk-p, and n_ is
the number of replicated center points. Equation (14) can
then be used as an easy means of calculating V(ef), the var-

iance of the residuals at the 2k-p factorial points. We find

1 _ 1l . k-p _ n=(k+1)

n{no(l n! + 2 V(ef)} = —a (15)
Qr

Vleg) = [in-1) (n-n )-nk}/{n 2X7P}, (16)

Thus “ne ratio of the center point residual variance to that

at the factorial points is

Vie, 5.0 2K"P (1)

V(ef) - xn-l)(n—no)-ni .

(17)

¥hen a 23 design with two center points is used, for example,
this ratio is 1.7. The standard deviation is therefore 1.3
times as large for the center point residual as for the
factorial points and this is of marginal importance.

The simplex design, which is z k+1 point orthogonal
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design in k variables, provides perhaps the worst example
for a symmetrical design. By the same procedure as used above

it is =asy to show that

V(ec. ) (k+1}(k+n°)

~—7~—$*— “ {18)
v ef no

Here when k=3 and n°=2 the ratio is 10 and one should

not be surprised by very large residuals at the center points.
{This iz an extreme example, however, because the residuals

would alse be highly correlated since the reaidual mean sguare

has only 2 4.f.)

3.4. Second order designs.

3.4.1. Central composite designs.

In fitting a second order model {equation 12) commonly
used experimental designs are the central composite designs

of Box & Hunter (1957). For a k - factor design these consist

of the following points,

o 3 k
+1 +1 21 ves 11 2¥ or 2*® zactorial points
ta o o ces ]
0 3& ﬂ L N J 0
. . . . 2k axial points (19;
0 0 6 .o ta
0 0 0 e 0 n, center points

[r—
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as Z(k'p)/4, V(iy) is a

If the value of a is chosen
function only of the distance of the poinc in the factor
space from the center of the design. Designs with this
property are called rotatable designs and lead to, at most,
three different V(ej), one for all the factorial points, one
for the ;xial points and cne for the center points. In
some cases the axial points and factorial points lie on the

same hypershere and have the same V{e.). For the three- and

four-factor designs the following results are obtained.

s < vie,)
Tactors (k) No. of Center Points Factorial Ei}aI Center

Sl . .39 .01
3 2 .33 .39 .5C
3 .33 .32 57
6 .33 .35 .83
4 1 .42 .42 0
2 .42 .42 .50
3 .42 .42 .67
7 -42 .42 .86

The recommended numbers of center points are 6 (for k=3} and
7 {for k=4). Only with these higher numbers of replicates
do the center puint residual variances become large relative
to the othersy; the ratios of the standard deviation of 2
residual at the center to that at a factorial point

location are 1.6 {(for k=3} and 1.4 (for k=4).

3.4.2. Three leve. second order desgigns.

The three level designs of Box and Behnken {1960} have
only two different kinds of sites as far as residual variancas

is concerned, center points and factorial points. Since a




[ ——

=12~

center point regsidual always has variance (no-l)oz/no,
equation (14) readily provides the factorial point residual
variance V(e.) as

o2 Vieg =1 - k(k+3)/(2n (20)

f)'

whece ne is the number of factorial points. The design

for three facturs consisting of the points

5 X2 5

+1 1 0

1 0 +1 ) 12 factorial points
0 +1 3
o ] ¢ n_ center points

(o]

yields the following results:

o~2 vie.)
Pactors (k) No. of Center Points (no) Factorial 1E'éhter
3 1 .25 0 §
2 .25 .5
3 .25 .67
4 «25 .75

The ratio of the standard deviations is 1.6 for n, = 3,

ané 1.7 for n, = -

The three level desigr for four factoers is

o ——————— s
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z 2 3
£1 =3 ¢ 0 -
0 0 21 1 )
1 ¢ 0 3 |
0 +1 21 0 }» 24 factorial points
1 0 +1 1]
0 1 0 +1
0 0 0 0 n_ center points

(o]

This design, however, is a rotation of the four factor
central composite design viven above in Sectionm 3.4.1 and
hence has identical variance values. It is interesting to
note that, for all three level desiqgns, V(ef) is indspendent
of n,, as equation {20) shows,

The above designs can be regarded as incomplete three
level factorial designs. It is also possible to use com-
plete 3k designs. These designs produce k+1 nzzinally
different kinds of sites; we shall list the V(ej) for the

cases k=2 and k=3 to illustrate the patterns.

-2
Factors Typical Coordinate o V(ej)
2 {1, 1) .19
(1, 0) .44
( Ol 0) .44
3 (:1, 21, 1) .49
(1, 1, O} .66
(+1, o0, 0) .74

(o0, G, 0) .74
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K It would appear from these examples that the variation
%t in the standard deviations of residuals from the 3k levels

is not large.

B3 3.5. Some undesigned data examples.

One might expect considerable variation amony the V(e§3
when data are taken witﬁout following symmetrical experinanzal
z; designs. Two such exumples, taken from Draper and Smith (1376;
will be considered next, to provide some insight into what
ff actually does occur.

Exanple 1. This axample (p. 366) uses data previously given
< by Hald. Here, only the wariables Xe ang Ene vhich are
adequate for representation purposes as described in Draper

k;
2
3 and Smith (1966, p. 165}, are considered. Table 1 provides

the x~coordinates, the residuals from a fitted f£irst order

model y = 52.577 + 1.463x; + 0.662x,, the variance of the

Ay "
N ALY
AN LI

residuals divided by 32, and two columns of standardized

i T
it v

residuals, The first of these, ej/s hag, as denominator, “he

1/2

root mean square errxor s={(5.79) . taken from the analysis

. of variance table; the second is obtained from

1/2

gt ej/{Estimated V(ej)} = éjjs(ej), where the denominator is

¥« obtained by substituting s> = 5.79 for o2 in (V{(e.}}*2. The
3 >

E - pattexn of points {xy, %x,) is shown in Figure 2 with the scale

lghosen’sc,that the spread of the data points is roughly the
fii , . game iu‘both‘xl and x, directions. We sece that the data

5 points are fairly well spread but the point (21,47) is

e ——— Wk

L

[
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isolated. Nevertheless this causes no difficulty with this

il etk it il it e LRt Mt

particular set of data and it is clear from Table 1 that the

L

ej/s(ej) &nd ej/s nlots will not be sufficiently different

to require use of the former rather than the latter. It is

clear however that the relative scaling of the normalized
residual for point 10 by a factor of 1.4 compared to that for
point 5 could change ones interpretation of a residual plot

if large residuals had been obtained at these points,
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i TABLE 1. Hald datz example.
-2
7 3 Xy Xy g V(ej) ey ej/s ej/s(ej)
l 7 26 .75 -1.6 -066 '-0.77
2 1 29 .73 1.0 .42 0.48
3 11 56 .88 -1.5  -.82 -0.66
3 11 31 .76 1.7 -7 ~0.81 .
5 7 62 .32 -1.4  -.58 -0.61 53
5 11 55 .88 4.6 1.66 1.77 %
i
7 3 71 .64 -1.3  -.54 ~0.68 :
3 1 31 .75 -2.1 -.87 -1.00 5
! 9 2 54 .82 1.8 .75 0.83 %
i f
i 10 21 47 .45 1.4 .58 0.87 ;
: |
3 11 1 40 .82 3.3 1.37 1.52 g
aé 12 11 66 .80 0.9 .37 0.42 ’
3 13 10 68 .79 -2.9 -1.20 -1.36 ,
: P
| s
3 !
[
'
-
, |
i P
| %
'j;
| §
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Exarple 2. The data for this example are selected fronm

p. 204 of Draper and Smith (1966). The fitted model

-~

y = =50.359 + 0.67lx1 + 1.295x, has been used, and the unsym-

=etrical spread of the design points {xiﬁ' xzé) is shown in

Figure 3. The appropriate residuals calculations are shown
in Table 2, Note, particularly, that although

o 2 v(§j) (=1 - o2

V(ej)} varies a great deal {e.g. 0.06
for pecint & to 0.28 for points 1, 2, and 21), 52 V{ej) is
quite stable. Although exceptions can exist, it seem§
reasonable to assume that, as-q/n gets small, implying a
higher average residual variance, the stability of the residual
variances will tend to improve.

Proper standardization of the most suspicious residual,
point 21, gives a t-value of -2.73 as compared to -2.32 when
s alone is used. The corresponding two tailed percentage
points are .014 and .032; although the .9032 probability is

about halved, the conclusions one would draw are not measurably

affected.
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TABLE 2.

praper and Smith (1966,

p. 205) example.

Xy Xy s~ * v(ej) ey ej/s ej/s(ej)
80 27 .12 3.69  1.14 1.34
80 27 .72 -1.31 -~ .40 - .48
75 25 .83 4.64 1.43 1.58
62 24 .87 5.66 1.75 1.87
62 22 .94 -1.75 -~ .54 - .56
62 23 .92 ~-3.04 =~ .94 - .98
62 24 .87 -3.34 -1,03 -1.14
62 24 .87 -2.34 - .72 - .80
58 23 .86 -3.36 -1.04 -1.12
58 18 .87 2.11 .65 .70
58 18 .87 2.11 .65 .76
58 17 .80 2.41 .74 .83
58 18 .87 - .88 - .27 - .29
58 19 .92 -1.18 -~ .36 - .38
50 18 .88 1.48 .46 .49
50 18 .88 .48 .15 .16
50 19 .88 .19 .06 .06
50 19 .83 .19 .06 .06
50 20 .84 - .11 - .03 - .08
56 20 .94 1,87 .58 .60
70 20 .72 -7.53 -2.33 -2.73
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3.6. Conclusions.

P R A R Y31

In making residual plots to check on the validity of

model assumptions it appears that, in many situwations, 1li’tle

TRV —

is lost by failing to take into account the differences in

the variances of the residuals. However, it is a ggtential

problem and, since most large regression programs already
provide the estimated V(§j), it is a simple matter to add
the calculation of the estimated V(ej) 83 well and we recommend

this as a routine procedure. The normalization of the

residuals by their estimated standard deviations can casily

E be performed as an additional option.
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