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i. Surarr .- i

one of thr most important aspects of the analysis of

dala by regression methods is the examination of residuals.

This implies the careful inspection of the differences,

ei = Yi - Yi, i = 1, 2, ... , n, between the observed values

y. and the corresponding vallues Yi which are predicted by

the fitted model at the n observation sites. There are

many ways of looking at residuals; see, for exampla, Draper

and Smith (1966, Chapter 3) and Woodinq (1969). Important

basic techniques are those of plottintv the residuals against

their corresponding fitted values, or against the corresponding

values of the independent variables, or against the correspond-

ing values of "new" variables, and (in all cases) observinq

the pattern thus formed.

Draper and Smith say that an "ideal" pattern for most

plots, which implies no denial of the regression assumptions,

occurs when the residuals form a "horizontal band." This ;s

always true for the so called "fixed effect" analysis of

variance models. In fitting models with continuous variables, it

is usually true within the practical limitations of most nlots,

but is not 2recisely true theoretically because the residuals

are not independent, nor do they all have the same variance.

The purpose of this note is to point out that there is likely

to be at least a slight pattern of changing magnitude of the

residuals in such plots and that, if such an effect is at all

pronounced (as it may well be, given certain properties of the
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desiqn matrix) then the variance-covariance structure of

the residuals should be taken into account in the analysis.

2. Introduction and Discussion

Suppose the model I

- + -C

is fitted by least squares where y is an nxl vector of obser-

vations, X an nxq matrix of known constants, 8 a qxl vector

of unknown parametersa, nd £ is an nxl vector of randomly dis-

tributed errors. We make the usual assumptions that E(S) = 0

and V(O) = la. The least squares estimate of 8 is given by

b = (X'X)- X' v, and the vector of residuals is

I
: ~(1) l

'I - R) y It R)c (2)

whe:e R X(X'X) X'. Thus the residuals can be regarded as

2• the same linear transformation of the known observations y or L

the unknown errors It also follows that

EWe 0 (s3)

and
2 •

vi q) = (I- Ri)2

I - .
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when the variance assumptions of the model are correct.

Since V(2) = R2, the variances of the n individual residuals

are given by

V(e - 1j = , 2, ... , n (5)

2=(1. - rjj. (6)

where r is the ith diagonal element of R. The pattern of

the variances of the residuals is therefore the complement of

that of the predicted values y. It is evident that

G _z(i - r. .)< 1 (7)

since V(e.) is nzon-negative and rj. is a positive definite

quadratic form. V(eaj is zero ýinly when e. = 0 independent

of y, such as in saturated designs (when n=q) or when the

peculiarities of the design force yj to equal yj exactly.

For example the residual at the center point of certain

second order three-level desicins (see nox and Behnken, 1960)

with one center point, will always be zero, and V(e) = 0 there.

2.1. Residuals for a first order model with a constant term.

In fitting a etraight- line model n = a + Bx we can

recall (Draper & Smith, 1966, p.23) that V(yi increases as

the distance of x from the mean value x of the observed

X'3i; increases. Figure ia shows a typical band of 95%



contidence intervals for the expected values of y, derived

from five equally spaced observations. As a consequence,

residuals at x-sites closer to x will have larger variance

than residuals further away. Figure lb shows the pattern of

the standard deviation of the re-Aduals for 5 equally

spaced observation. Note that we do not extend the "balloon

pattern" outside the ranoe of x for which we have observations

and, actually, the pattern really consists only of individual

verticals intervals at the oints at which we have observations.

These interyals are drawn in Figure lb to be of width

2a [Vie.)I (twice the numbers written on the ordinates of

the observation sites) and the end-points are joined by a

smooth curve simply to show the variation more clearly. The

ratio between the center residual standard deviations and that

of an outside point is 21/2 1.4. Such variation in standard

deviation would usually not be discernible in a typical

residuals plot.

The severity of this "ballooning' of V(ej) depends on

the actual values of the XIs used in the regression and may

or may nnt be important in a practical problem. If the

variances of the residuals varied a great deal, it would be

worthwhile to examine tie eiinstead of the e

in the usual residuals plot-, and to use the more correct

e./{s(l - r..))/2, instead of e /s, as the "normal deviate

form" of the residuals. in many cases, as we shall illustrate

via examples, this refinement is not needed, but in some cases

it may be helpful to avoid possible misinterpretations.
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The ballooning of the residual variance at the center

of gravity of the data will occur in general whenever first

order models with constant terms are fitted, i.e. whenever

we fit

E (y) 0+ IL 0 x.()

We can assume without loss of generality that the xi's are
n

coded so that = IC 0 for i-l, 2, s.., k.
jlI

Suppose we write X = (1, D) where D is the usual design

"mutrix. Then R- 1'/n + D(DID)-I D', and it follows that

V(yj) [1/n + tjj (9)

where tjj is a positive definite quadratic form. Therefore

V(ej) [(n-l)/n- t]2 (10)

and tjj - 0 only if the jth row of D is at the centroid where

xij = 0 for all i. V(e.) must increase monotonically away

from this minimum since it is a true quadratic in the k

Sindependent variables of the first order model. Hence for

these models

0 <V(e1 ) [(n-l)/nf]c 2 . (11)

.....



2.2. Residuals for first order models without constant terms.

When a first order model without a o term is fitted,

the ballooning pattern is replaced by a decreasing V(e)

as the distance from the actual origin increases. Equations

(6) and (7) hold, with the maximum V(e), of value a 2 being
achieved only at the origin. Typically no observations would

be taken at the origin in fitting this model, since they do

not enter into the values of the estimates at all. If they

were taken (e.g. to assist in checking the assumption that

00 - 0), it is clear that relatively larger residuals should

be expected there since yj must always be exactly zero, no

matter where the corresponding yj's lie.

2.3. Residuals for models that. are not first C'te.

When some of the xi's in a regression model are functions

of other xi's, as, for example, in the second order model,i)

k k
S0 + ju i i + Oij xixu + c' (12)

equations (6) and (7) hold but no general statements can be

made �boat the location of may~ima for V We) or their number.

When a constant term is included,the maximum would hypothetically

occur at the point in the k dimensional factor space corres-

ponding to the average of each of the q columns of the X

matrix. But such a point may not, in fact, exist. For example

'4



in a second order model, when the x.i's are at their average
t 2,

value the x s are not. The largest residual variance in a

second order design may not occur at the center point if

the number of replicates there is small enough (see setio,,

3).

2.4. Average value of the variances of the residuals.

Since the average value of the variance of the predicted

values at the observation points is given by

=() n-l.1 V = n-I tr{,(3',) -iI2} a qo 2 /n. (13)

j=1

where X is an nxq matrix, the average variance of the

residuals is

V(e) -n-1  V(ei) = (n-q)a 2 /n. (14)

Even if the residual variance is reasonably constant, it

might still be useful to consider the magnitude of ei relative
1/2

to s/{(n-q)/n} rather than just s (the estimate of a) in

cases where n is not large relative to q.

3. Exammles.

3.1. Straight line in one variable.

In Exercise A, page 35 of Draper and Smith (1966), 11

_ _... . . _ _ _ __ __



observations of a response Y occur at 11 equally spaced

values of a predictor variable X, at X = -5, -4, ... , 4,
5. The model y=8 + ax + c is fitted and the variances of

0

the residuals can be shown to be a 2 times

0.68, 0.76, 0.83, 0.87, 0.90, 0.91, 0.90, 0.97, 0.83, 0.76, 0.66

Thus, the central residual has variance 1.3 times as

great as the extreme residuals. (For standard errors, the

factor is thus 1.2.) From a practical point of view

such variation would not be discernible in an actual residuals

plot. The worst variation in the residual standard error

one could obtain for the same range with 11 points results from

the design with 9 points at the center and one each at +5.

The equivalent ratios here are 2.2 and 1.5, and a correction

might be worthwhile in such a case.

3.2. Straight line through the origin.

Suppose the model y=Bx + c is fitted to obsenrations A

taken at x=l, 2, 3, 4, 5. The variances of the residuals

2are a times

.98, .93, .83, .78, .55

respectively. The steady increase in variance with a

factor of 1.8 (1.3 in standard deviation) between lowest and

highest might be marginally detectable in a residuals plot

and might lead to misleading conclusions unless the possible

danger was realized.
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3.3. First order rotatable desi.ns_

A common design used for fitting a first order model

is a two level factorial or fractional factorial (2 k-P) with

one or more center points. Since the design is orthogonal

and hence first order rotataLle, there are but two kinds of

sites as far as the variance of a residual is concerned. The

variance of b0 is clearly i, where n~n0 + 2 and n0 is

the number of replicated center points. Equation (14) can

then be used as an easy means of calculating V(ef), the var-

iance of the residuals at the 2k-p factorial points. We find

{n (1 I.+ 2 n-(k+l) (15)

or

V(ef) = (n-l) (n-nO)-nk)/{n 2 k-p} (16)

Tbus Ite ratio of the center point residual variance to that

at the factorial points is

V(e k-p
VT = fn-l} (n-n )-nk

When a 2 design with two center points is used, for example,

this ratio is 1.7. The standard deviation is therefore 1.3

times as large for the center point residual as for the

factorial points and this is of marginal importance.

The simplex design, which is a k+l point orthogohal

__ _NO
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design in k variables, provides perhaps the worst example

for a symmetrical design. By the same procedure as used above

it is easy to show that

V(e ) (k+l)(k+n )
- no 0 (18)

Here when k=3 and n=2 the ratio is 10 and one should

not be surprised by very large residuals at the center points.

(This is an extreme example, however, because the residuals

would also be highly correlated since the residual mean square

has only 2 d.f.)

3.4. Second order designs.

3.4.1. Central composite designs.

In fitting a second order model (equation 12) commonlyused experimental designs are the central composite designs

of Box & Hunter (1957). For a k - factor design these consist

of the following points,

X 1  x 2  x 3  ... k

±1 ±1 ±1 ... 2 r 2k-p factorial points

0 0 0 ... +

0 0 0 ... 0 n center pointsN0



SIf the value of a is chosen as 2 (kp)/4, V(y) is a

function only of the distance of the poinc in the factor

space from the center of the design. Designs with this

property are called rotatable designs and lead to, at most,

three different V (e., one for all the factorial points, one

for the axial points and one for the center points. In

S some cases the axial points and factorial points lie on the

same hypershere and have the same V(e,). " For the three- and

"four-factor designs the following results are obtained.

Si ~V(e)

Factors (k) No. of Center Points Factorial Axial Cente

3 2 .33 .39 .5C
3 .33 .39 .67

6 .33 .39 .83

4 1 .42 .42 0
1 .42 .42 .50
3 .42 .42 .67

7 -42 .42 .86

The recomumended numbea of center points are 6 (for k=3) and

7 (for k=4). Only with these higher numbers of replicates

do the center puint residual variances become large relative

to the othersl the ratios of the standexd deviation of a

residual at the center to that at a factorial point

location are 1.6 (for k=3) and 1.4 (for k=4).

3.4.2. Three levt.l second order designs.

The three level designs of Box and Behnken (1960) have

only two different kinds of sites as far as residual variance

is concerned, center points and factorial points. Since a
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center point residual always has variance (n 0 -l)2 /no,

equation (14) readily provides the factorial point residual

variance V(ef) as

-2
SV(ef) I - k(k+3)/(2nf), (20)

where nf is the number of factorial points. The design

for three factors consisting of the points

:ixl x x3
1 2_3

±1 ±1 0

2±1 0 ±1 12 factorial points

0 _+ _+1

'Ii 0 0 0 no center points

A'i yields the following results:

-2
Factos (k)V(e)

No. of Center Points (nO) Factorial Center

13 1 .5
2, .25 5

3 .25 .67
4 .25 .75

The ratio of the standard deviations is 1.6 for n V 3,

and 1.7 for n0 = 4.

The three level design for four factors is

___________ -- ___________----- -
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x l x2 x 3 x 4

01 I 0 00

+ 0 0 ±1

0 ±1 ±1 0 24 factorial ooints
±1 0 ±1 0

0 ±1 0 +1

0 0 0 0 no center points

This design, however, is a rotation of the four factor

central composite design given above in Section 3.4.1 and

hence has identical variance values. It is interestinc to

note that, for all three level, designs, V(ef) is independent

of no, as equation (20) shows.

The above designs can be regarded as incomplete three

level factorial designs. It is also possible to use com-

plete 3 k designs. These designs produce k+l ",ý,Ina1ly

different kinds of sites; we shall list the V(ej) for the

cases k=2 and k=3 to illustrate the patterns.

-2
Factors Typical Coordinate a V(e)

S2 (±1, ±1) .19
(51, 0) .44

(0, 0) .44

3 (±1, •1, il) A49

(±1, ±1, 0) .66
(±1, 0, 0) .74

( 0, 0, 0) .74

ii
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It would appear from these example3 that the variation

in the standard deviations of residuals from the 3 k levels

is not large.

3.5. Some undesigned data examples..

A ~One might expect considerable 'iarlation azno~nq the V(eA

when data are taken without following sym7etrical exrinaital

designs. Two such examples, taken from Draper aid Smith {1n6

will be considered next, to provide some insight into what

actually does occur.,

Exal . This example (p. 366) uses data previously given

by Hald. Here, only the variablos x. and x2 , which are
.22.

adequate for representation purposes as described in Draper

and Smith (1966, p. 1651, are considered. Table 1 provides

the x-coordinates, the residuals from a fitted fIrst order

model y - 52.577 + 1.468xI + 0. 6 6 2 xZ, the variance of the

residuals divided by a2, and two columns of standardized

residuals. The first of these, e /2 has, as denominator, the

root mean square error s=(5.7) 1/2, taken from the analysis
III .of variance table; the second is obtained from

eC/{Estimated V(e.)} 1 / 2 = ejis(eA), where the denominator is

obtained by substituting s = 5.79 for 2 ain Me}I/2 The

pattern of points (xl, x2 ) is shown in Figure 2 with the scale

chosen so that the spread of the data points is roughly the

same in both x1 and x2 directions. We see that the data

point3 are fairly well spread but the point (21,47) is

S _ . . - -j~- - -~ n ~- - '- o - - ~ - - - - _ _ _
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isolated. Nevertheless this causes no difficulty with this

particular set of data and it is clear from Table 1 that the
ej/s~ej) and e pIs plots will not be sufficiently different

to require use of the former rather than the latter. it is

clear however that the relative scaling of the normalized

residual for point 10 by a factor of 1.4 compared to that for

point 5 could change ones interpretation of a residual plot

f if large residuals had been obtained at these points.

(

J
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TABLE B. llald data example.

x x V(e) ej ej/s ej/s(ej)

1 7 26 .75 -1.6 -. 66 -0.77

2 1 29 .73 1.0 .42 0.48

3 11 56 .88 -1.5 -. 62 -0.66

4 11 31 .76 -1.7 -. 71 -0.81

5 7 12 .92 -1.4 -. 58 -0.61

6 11 55 .88 4,3 1.66 1.77

S7 3 71 .64 -1.3 -. 54 -0.68

8 1 31 .7 -2:1 -. 87 -1.00

,9 2 54 .82 1.8 .75 0.83

10 21 47 .45 1.4 .58 0.87

ii 1 40 .82 3.3 1.37 1.52

S12 11 66 .80 0.9 .37 0.42

13 10 68 .79 -2.9 -1.20 -1.36

Ii

*1

_ -

1~t



Exair~p.le 2. The data for this example are selected from

p. 204 of Draper and Smith (1966). The fitted model

y = -50.359 + 0.671x1 + 1.295x2 has been used, and the unsym-

:.trical spread of the design points (XiI 2 ) is shown in

Figure 3. The appropriate residuals calculations are shown

in Table 2. Note, particularly, that although
V(yj) [= I - "2 V(ej)] varies a great deal (e.g. 0.06

for point 6 to 0.28 for points 1, 2, and 21), j2 V(ej) is
quite stable. Although exceptions can exist, it seexM

reasonable to assume that, as-q/n gets small, implying a

higher average residual variance, the stability of the residual

variances will tend to improve.

Proper standardization of the most suspicious residual,

point 21, gives a t-value of -2.73 as compared to -2.32 vthen

s alone is used. The corresponding two tailed percentage

points are .014 and .032; although the .032 probability is

about halved, the conclusions one would draw are not measurably

affected.
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TABLE 2. Draper and Smith (1966, p. 205) examp3le.

2 -2 V(ejl ej ej/s ej/s(ej)

1 80 27 .72 3.69 1.14 1.34

2 80 27 .72 -1.31 - .40 - .48

3 75 25 .83 4.64 1.43 1.58

I4 62 24 .87 5.66 1.75 1.87

5 62 22 .94 -1.75 - .54 - .56

6 62 23 .92 -3.04 - .94 - .98

7 62 24 .87 -3.34 -1.03 -1.14

8 62 24 .87 -2.34 - .72 - .80

9 58 23 .86 -3.36 -1.04 -1.12

10 58 18 .87 2.11 .65 .70

11 58 18 .87 2.11 .65 .70

12 58 17 .80 2.41 .71 .83

13 58 18 .87 - .88 - .27 - .29

14 58 19 .92 -1.18 - .36 - .38

15 50 18 .88 1.48 .46 .49

16 50 i8 .88 .48 .15 .16

17 50 19 .88 .19 .06 .06

18 50 '19 .83 .19 .06 .06

19 50 20 .84 -. 1 -. 03 - .04 ,

20 56 20 .94 1.87 .58 .60

21 70 20 .72 -7.53 -2.33 -2.73

Is __ _ -_-_--- ' ~- 77~ 7
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3.6. Conclusions.

In making residual plots to check on the validity of

model assumptions it appears that, in many situations, li'.tle

is lost by failing to take into account the differences in

the variances of the residuals. However, it is a potential

problem and, since most large regression programs already

provide the estimated V(yj), it is a simple matter to add

the calculation of the estimated V(e ) as well and we recommend

this as a routine procedure. The normalization of the

-4 residuals by their estimated standard deviations can easily

be performed as an additional option.
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