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ABLTRACT

Numerous research efforts have been conducted by different

investigators to alter the characteristics of the tip vortex

generated by a helicopter blade in order to alleviate the blade-

vortex interaction problem as well as the noise problem asso-

ciated with impulsive loading. Various approaches have been

taken in these investigations including modifications of the

loading distribution by taper and twist and altering the blade

tip by utilizing porous sections. All of these approaches have
not been universally successful for all flight conditions. The

present analytical investigation shows that it should be possible

to significantly alter the characteristics o! the trailing tip

vortex for all flight conditions in a beneficial manner by in-

jecting an airstream directly into the forming tip vortex.

'7T Analytical expressions were developed for the initial and final
states of the vortex in order to evaluate the effects of mass

flow injection on the vortex strength, swirl velocity distribu-

tion, vortex core pressure, vortex core size and the induced
&:ag on the blade. On the basis of the results that were obtain-

ed, it was shown that the required mass flow may be obtained from

centrifugal pumping action by venting the blade and therefore the

desired modification can be obtained apparently without signifi-

cant performance penalties which would be unacceptable.
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LIST OF SYMWLS

A area of nozzle or jet, ft 2

a tip vortex core radius, ft .

P B constant of integration occurring in solution
for swirl velocity

b b z radii of the zones of mixing for the swirl and
axial components, ft

C (2j) times the circulation of the fluid,
ft 2 /66C

c C chord lepgth of the wing, ft

D total ipduced drag of the wing, lb

total head losses of the fluid flow, ft 2/sec 2

SI0 inertia dyadic about the rotation point,

k constant strength of the tip vortex, (4Q4aj-
sional)•

mixing lengths foar the swirl and axia4 quo•pemnts,•8' £Z ~ft ...- ~

Mz specific torque acting on the fluid, ft-lb

m, n integers occurring in the similarity solution for
the swirling flow

PC tip vortex core pressure, psf

p. free-stream pressure, psf

Q flow rate of fluid, ft 3/sec

R, e rotating unit vectors

R radius of the rotor blade, ft

r, e, z cylindrical coordinates
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S wing semispan; ft

T thrust Of the jet, lb

*r vrvz rdal agnil and axial velocity comn-
i Tothrust of the fluid flo

• vr , Vv, vz radial, tangential, flowil eoct cm

V. , free-stream velocity, fps

x, y, z Cartesian coordinates

r circulation of the fluid, ft2/sec

the coefficient of viscosity

P density of air, slugs/ft 3

* 0maxscale of %elocity defect

Grr, Ge, a turbulent normal stress components of the fluid
S' tensor

Tr%' Tez' Tzr turbulent shear stress components of the fluid
tensor

swirl velocity component, fps

•, • angular velocity of the rotor blade, rad/sec

angular velocity of the vortex core, rad/sec

(--) bars over variables are time averages

(') prime denotes the variation of a quantity about
the mean due to turbulence
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INTRODUCTION

While any airfoil develops a trailing tip vortex of signifi-

cant strength, the helicopter blade, because of its loading dia-

tribution, tends to develop a relativt.ly stronger tip vortex than

that developed by a fixed wing of a conventional aircraft. Another

SK important difference between the vortex-liftinS surface relation-
ship of the fixed wing and of a rotating lifting surface is that
with the fixed wing the tip vortex streams away from the liftiiAg

surface after it is formed while with the helicopter, the vortex
streamiag from a given blade tends to interact with cne or more of
the following blades. This blade-vortex interaction has been of
considerable concern &s regards blade loading and dynamic response

as well as regards noise associated with impulsive loading such as
S• ~"blade slap." These characteristic noise signatures are of particu-

lar importance in detection problems associated with military opera-
2 tions and in annoyance problems associated with civil operations.

Numerous research efforts have been conducted b! various in-
vestigators to alter che characteristics of the tip vortex and
thus alleviate the blade response and noise problem. Several ap-
proaches have been employed including modification of the loading
distribution by taper and twist and by altering the blade tip

geometry using porous tips. All of these approaches, while some-
times achieving a moderate degree of success at a given flight

condition have not been universally successful for all flight con-

ditions. It was believed, however, that direct injection of an

airstream into the forming tip vortex, would significantly alter
the characteristics of the trailing vortex at all flight conditions

AW in a manner that would be beneficial to both the blade dynamic

response problem and impulsive noise.

The study was conducted in three steps. The initial work was

directed at studying the characteristics of tip vortices. The
| ~second phase on which the ruajority of effort was expended, was the •i

S1 I :1



determination of the effects of mass flow injection on the vortex
strength, swirl velocity distributions, vortex core pressure
changes, vortex core sizes and the induced drag on the blade. The
final step was to analyze various means of injecting an airstream
into the forming tip vortex and evaluating its possible effects
on helicopter performance characteristics.

2
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TECHNICAL DISCUSSION

Discussion of the Relevant

Characteristics of Tip Vortices

A considerable number of studies have been conducted concern-

ing the structure and formation of wing and rotor-blade tip vorti-

ces. Surveys of work carried out in this area are given in Refer-

ences 1 and 2. Reference 1 is concerned with experiments, while

Reference 2 deals primarily with theoretical developments. j•-

The results of the studies indicate that a complete under-

standing of the problem is still to be obtained. Theoretical 4

treatments, such as the one in Reference 3, are based on the

assumption that the flow is essentially two-dimensional, with

perturbations in the direction of flight playing only a minor role.
The analysis of Reference 3, which is representative, predicts a
tip-vortex core diameter of 15% of span, with vortices spaced about

3/4 of the span apart, for a wing with elliptic loading. A

parallel study in Reference 3 leads to an estimate of from 20 to 30

chord lengths for the distance required for roll-up of the wake
vorticity into concentrated tip vortices. On the other hand,

measurements taken behind model wings and full-scale aircraft wings,
as reported in Reference 4, indicate that tip-vortex core diameters

are only about 3% of span, and the vortices are located almost at
the wing tips, so they are separated by a distance about equal to

the span. Furthermore, the roll-up process is 90% complete within

one chord length for a moderately loaded wing of high aspect rat4.o.

This large discrepancy between theory and experiment could

be due to three-dimensional effects, as indicated by the approxi-
mate analysis outlined in Reference 5. By ordering terms in a

maimer simil r to that of boundary-layer theory and making certain

assumptions (the validity of which is difficult to assess) regarding

energy losses, it was shown in Reference 5 that a strong axial flow

3



c could exist in the core of a tip vortex. This flow would be in the

same direction as the free stream, leading to a smaller core size

than would be the case with no axial flow. Presumably, three-

dimensional e.fects could also account for the difficulty in pre-

"dicting the separation and rate of roll-up of the tip vortices.

-'0 It was felt that it would be beyond the scope of this study

to develop a method for more accurately predicting tip-vortex

characteristics. Thus, in analyzing the effects of injecting an

airstream in.to a tip vortex, a range of values for core size and

circulation representative of the measured values were used.

Theoretical Formulation

Problem Definition

I i The flow into which an airstream is to be injected is defined

in cylindrical coordinates (r, 0, z) as sketched below.

r

z

The nominal flow is assumed to be incompressible and axisym-

metric, with components Ve(r) and V (r) in the tangential and axial

directions, respectively. The radial component of the nominal flow
is taken to be zero, giving a pure swirling flow. A jet of incom-

pressible fluid emanates from the origin into this flow, directed

along the positive z-axis.

4



Since the tip vortex may already possess a strong axial flow

component, a pure axial jet injected in the same direction as that

axial flow may cause only a limited reduction in the swirl com-

ponent of the nominal flow. Thus, it is assumed that the jet also

has a swirl component opposing that of tha nominal flow. Since

variation of the tangential flow component due to mixing is to be

analyzed in any case, consideration of a swirling jet rather than

a simple axial jet does not appreciably complicate the problem.

In light of the objective of the present study, and since the

jet would undoubtedly be turbulent for any practical application,
it was decided to treat the case of turbulent mixing in order to

insure that realistic results would be obtained. It is noted that

the analysis of turbulent flows in general is somewhat less satis-

factory than treatment of laminar flows, because a certain degree

of empiricism is always necessary in obtaining a solution. How- I
ever, the theory for turbulent free jets has met with considerable

success, particularly when compared with analyses of other types
of turbulent flows, such as in boundary layers, apparently because
the assumptions applied to turbulent free jets are fairly realistic.
For the present stily, therefore, it was decided to develop the

equations for a steady, axisymmetric, incompressible, turbulent

flow created by injection of a swirling jet into a swirling stream.
The general equations governing such a flow were derived by follow-

AMMW ing a procedure analogous to the one used in Ref. 6 for formulating

the equations for a turbulent flow referred to Cartesian coordinates.
Thus, the radial, tangential, and axial flow components and the

pressure can be written in the form

SVr (r,e,z,t) = r (r,z) + vr(r,e,z,t)

v,(r,&,z,t) ,v(r,z) + v,'(r,e,z,t)

v, (r8,,zt) = v (r,z) + v' (r,e,z,t)

p(re,z,t) = pr, z) + p' (r,ezt)

5
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The quantities with bars over them are time averages and the
primed quantities are variations about the mean due to turbulence.
These expresaions were substituted into the Navier-Stokes equations
for incompressible flow referred to cylindrical coordinates (Ref. 6),
the time average taken and suitable manipulations performed using
the continuity equation. Assuming the flow is axisymmetric, the
governing equations were found to be

av 3Uz rV ]rz 'Tz 1+ rz

vrr" -- - 'S-r + 2 ( ----
r r r V 5 3 P r 32 r rr e'

a + V~ +KV 're -ez + 2 e
V rTr r z 3z p Lar +a r (1)1

V - : - -

rz 
rz]rar z 3 a z r

+ 0
4.

where

0rr r ar

e r r

-3V

p - ; 12 + Z2
zz z a

p- -e +v V r B+vre
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arv + V +

in which v is the coefficient of viscosity. The averages of terms

involving turbulent fluctuations represent the turbulent shear.
The ordinary viscous terms, i.e. those multiplying v, can generally

be dropped, as they are usually much smaller than the turbulent
shears. The general problem formulation is completed by specitica-
tion of the boundary conditions:

v 0

e V W(r)
and/or z * -

V V (r)W

z z

Equations for Solution - The Boundary Layer Approximation

The analysis of turbulent free jets, either two-dimensional
or axisymmetric, generally proceeds by simplifying the governing

equations according to assumptions analogous to those employed in
boundary layer theory (Ref. 6). Specifically, it is assumed that
dependent variables change much more rapidly in the transverse
(i.e., radial) direction than in the downstream, or axial direc-
tion. In addition, the transverse, or radial, flow component is

assumed to be small compared with the axial component.

The boundary-layer type of approximation was assumed to be
valid for the solution of Eqs. (1), with the additional assumption
that v and vz are of the same order and that ordinary viscous

8 .
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terms can be dropped in favor of turbulent shears. The resulting

equations governing injection of a swirling jet into a swirling

stream are:

- .~(2.1)

Par r

v 3 r3~ 2- (.2
r r- (rv.) + ?z- m 1T + 2r- (2.2)

-- a + z+ - 1 rzz+ (2.3)

T. (rv.) + L (rvz) 0 (2.4)

where, now,

-=- v' ',(.5
P re (2.5)

rrz-- = V v ' ( 2 . 6 )

The solution of Eqs. (2) is aided by the following considera-

tions. First, there are two quantities which are invariant with

axial distance from the origin, involving the unknown flow com-

ponents. These quantities are calculated by momentum considera-

tions in the following way.

Let T denote the thrust acting on the nozzle injecting the

fluid jet. Integrating over a cylindrical control surface con-

taining the origin, it is found that

T J 2w (rz) - (r,-oa) + _2 (r~z) -! (r,--l)r de dr

8(0



But, from the first of .qs.(2)t

p(r,z)- ,)

r

r

where, of course, p. = lir p(r,z), a constant. Also,

Vz (r,--) - V3 (r)

- Substituting thebe relations back in the expression for T, and
integrating the pressure terms by parts, it is found that

T z2 (r,z) - V2 (r) + 1 2 -

In an analogous manner< the torque acting on the nozzle due to

the swirl which it imparts to the jet is calculated from considera-
tion of the flux of angular momentum from a cylindrical control
volume. If the shear acting on the control surface in discarded
in favor of the remaining terms, consistent with the ordering
approximations imposed on the differential equations, the torque,
denoted M., is found to be given by

F f z (r,z) ve (rz) - Vz (r) Ve(r r2dr . (4)

The expressions for both T and Mz, i.e., Eqs.(3) and (4), must be
invariant with z.

9
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The other consideration aiding the solution of Eqs. (2) involves

calculation of the turbulent shears Trr and TrZ" In the case of

free turbulent flows, Prandtl's hypothesis is generally employed for
this purpose (Ref. G). For the problem at hand, this hypothesis

is formulated according to

T re (Z) 5e

(5)
•rz avz

- z (z)

while

Ve (z) = Kc b (z)[Vomax- V8 (bo)]

V(Z) = K b~ (Z) )I aVz (bz)

where Ke and Kz are constants, be and bz are the radii of the zones
of mixing for the swirl and axial components, respectively, and

S.emax and Vzmax are the maximum values of v 0 and vz, respectively,
in the mixing zone.

As can be seen from Eqs.(5) and (6), Prandtl's hypothesis

asserts that the shear is proportional to rate of change of strain,
just as for laminar shear, and that the constant of proportionality,

or apparent kinematic viscosity, is invariant over the radial ex-

tent of the mixing zone, but that it does vary axially in the manner

of Eqs. (6). The apparent kinematic viscosity is assumed here to be
different for mixing of the axial and swirl components, but each is

taken to obey Prandt!'s fui-t4her assertion (Eqs. (6)) that they vary
in proportion to the size of the mixing zone and the maximum differ-

ences in the mean flow.

10
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The relations given in Eqs. (2) through (6) constitute the for-

mulation of the problem of a steady, axisymmetric, incompressible,

free turbulent flow as created by the injection of a fluid jet into

3 a swirling stream. It was believed unlikely that an exact solution
O could be obtained, either analytically or numerically to this set

of nonlinear partial differential equations within the constraints

of this study. Therefore, it was necessary to determine and apply

rational approximations in these relations to simplify the problem.

Limiting Cases (Similarity Solutions)

Problems involving turbulent flows are generally very compli-

cated in nature and to examine such problems from an analytical
viewpoint requires the aid of semi-empirical hypothesis. In the

present analysis, Prandtl's hypothesis is employed for this pur-

pose as is often done with good results in analyzing free turbulent

": flows. This hypothesis states that the shearing stress is propor-

tional to the shearing strain (velocity gradients) but the propor-

tionality constant must be determined experimentally.

In analyzing the injection problem of the free turbulent jet,

two limiting cases have been considered which enable explicit

results to be obtained. Besides the governing differential equa-

tions of motion, the flow of a swirling jet is further specified by

., two invariant quantities; the linear and angular momentum.

ý=N It is possible to introduce two similarity scales depending on
whether one controls the flow by linear or angular momentum, that

is, depending on if one has a strong axial jet with weak swirl
A •or a weak axial jet with strong swirl. Chervinsky [7] has shown

recently that in a study of the flow field in a turbulent swirling

jet far from the orifice that similar solutions of the components

of the velocity exist for these two limiting cases. Also,

Chervinsky [7] obtained good similarity for the tangential and I
axial velocity profiles in a series of experiments on swirling

lei



jets issuing from a round orifice. The similarity scale for the

swirl component is assumed to be given by

1/4 (7)
iZ

and for the axial component, one has

z (8)

It is also assumed that the initial flow field for both limit-

ing cases before i jection is specified by the following boundary

conditions:

r0

z=0,V 6 (r) 7 Vz =V =constant (9)

which assumes the generation of a potential vortex at the origin

where r 0 is the circulation in the initial vortex.

Since the present analysis is based on the existence of similar-

ity solutions, then the interest here is focused on steady, time-

averaged, axisymmetric flow fields which admit the customary boundary-

layer-type approximations in which the axial gradients are of small

magnitude compared with the radial gradients, that is,

L L,~r «(10)rx- Vr <Vz (0

where r is the radial component of the velocity and Vz is the

axial component.

Similarity Solutions for Direct Linear Injection

For the case of a strong axial jet with a weak swirl component,

the control of the flow field will be by linear momentum. However,

due to turbulent mixing, the injected mass of air will develop a

" ij 12
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swirl component far downstream, where it is iurther assumed that 1

the usual boundary-layer-type approximations are asWlenent, ...

the condition that, ..

IV- v. << v (11z7
A characteristic feature of a steady trailing line vortex from

one side of a winq, or rotor blade is the existence of a strong

axial flow near the axis of symmetry. The coupling of the axial

and swirl velocity components occurs through the pressure term for

a steady line vortex and any change in the tangential velocity

component with distance z downstream produces an axial pressure

gradient and consequently an axial acceleration or deceleration.

The process of contraction or expansion of a vortex core depends

upon the axial acceleration of elements of fluid entering the core

as pointed out by Batchelor [5] who showed the influence of a posi-

tive axial pressure 5radient arising from the centrifugal force on

the decay of the axial component of the velocity. Of course, the

change in diameter of a vortex core would also depend on the wing

geometry.

In light of these considerations, a similarity solution for

the flow in a trailing line vortex far downstream from the point

of injection was developed analogous to Batchelor's solution but

of course retaining the assumption that the flow is turbulent.

The resulting asymptotic solution for the axial velocity field is

given as follows:

CSzVC2 BV2

V VW -- log - Qi (W) + Q 2 Q(i) 8v•z e- (12)

where V r 2  (13)

=4v e

13
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i and Q! (n) and Q2(n) are known functions. The apparent kinematic

viscosity V e was assumed constant as a first approximation. This

S~approximation has been employed by other investigators for free
& turbulent flows with good success (i..e., see Newman 18] ). In
i addition, this assumption was employed by Eskinazi in investigating
i the viscous decay of a steady, two-dimensional viscous vortex. It
F was found that the various experimental velocity distributions in
S~the vortex were in good agreement with a linearized, axisymmetric,
S~laminar, incompressible, viscous vortex theory due to Newman when

an apparent kinematic viscosity of eight to ten times the laminar
S~kinematic viscosity was used. This result illustrates the fact

that ordinary vorticity diffusion is stronger than that based on a
purely laminar case and therefore the flow should be characterized
as turbulent.
Velocity Fiel(

Par downstream, where the boundary-layer-type approximations
3/az 4< a/ar and v- << vz are supplemented by the approximation

S~rz

IV z- V.1 << v ,

the equation of motion (2.3) reduces to

S i + 2;;Z ••-- (14)
V . IZ -- p Z [Br

I and the equation for the swirl component becomes

V ae [•7•o i•E) 5
V z r2 rr r21

This latter equation may also be written as

V. i= •r 2- ) (5

14
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The solution of this equation for C or ve as a function of r at any

value of z may be written down explicitly. As is well-k.p•w4, t•

asymptotic form of the solution as z+- is

C = rve = C0 fl - B exp(-n).

where -

V r 2

n=- • and
4v 6 z

C0 is the (non-zero) value of C at large r. Hence the resulting

velocity field after injection for the azimuthal component of the

flow field becomes

- CO
yeV= 7 {l - e CXp (-n)) {1•)

The arbitrary constant of integration B which occurs in the

above solution for the azimuthal velocity must be evaluated. For

this purpose, the momentum integral theorem is employed, with a

- control surface eiciofang the nozzle at the origin in the form of

a right circular cylinder with generators parallel to the z-axis

and of which A is the area of each end face. The upstream end

face and the curved surface of the cylinder are both at a suffi-

ciently large distance from the jet, so that conditions there are

-pproximately as in the free stream. Therefore, it follows that

the thrust produced by the jet is given in the usual way as

TV + }dA (17)

where

(p - p) dA = resultant normal force on the end faces and T

denotes the thrust of the jet. For steady flow the magnitude of

the thrust produced by the jet is given by

15



F ~T (-PA5 Vf(l

where vj is the exit velocity of the injected airstream leaving the
nozzle and A. is the area of the nozzle. It has beLn shown pre-

viously that the pressure termr is given by

P : -dr (19)
dr3

r

where

C =rv .

Far downstream, the trailing vortex is approximately cylindri-
cal, and the pressure in the core is determined by the balance with
centrifugal forces where the pressure is given by equation (19).
Solving (19) for p, and inserting it into (17) and performing

integrations by parts yields

T 0 1C 2  rV
T--- + V(V - vz)r - log-- dr (20)2 4z 2 Dr Vj

0

in which, consistent with Batchelor's approximations, v (V. - v

has been approximated by V_(V. - vz) and therefore the integrand
can be taken zero outside the vortex core. Also, it is noted that

= -=(1 - Be-n) (21)

which follows from equation (16). Introducing the change of variable

V rW (22)rVeZ

into (20) and performing the quadratures yields the following

16
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-- . -= n- w t -- - - -- *

quadratic equation for the constant of integration B in terms of

the thrust T,

14zV
-4-. -4

where j V

A = V - ý)rdr = Vz(V - v rdr
-•0 0 1 -v

The value of the integral A can now be estimated via energy argu-

ments, and B can then be calculated at a given downstream loLation

for a given thrust injection. The velocity vz is usually greater

than V. in the core and appzcoaches V. with increasing downstream

"locations. Outside of the vortex core v. = V. (free stream velocity).

It is also possible to examine the effect of an injected air-

stream on the axial velocity assuming that the injection process

_ is of sufficient magnitude to induce turbulence and the swirl

component decays independently of the axial velocity b- again

using the momentum integral theorem in conjunction with Batchelor's
form of solution for the axial velocity.

In the case of flow in a tip vortex shed from a ro-.or blade or

wing in an infinite body of fluid, all streamlines originate in a

region where the pressure is uniform and equal to p. and the fluid

velocity is uniform with components (VW, 0, 0). Some streamlines

will pass through the boundary layer at the wing where viscous forces

are appreciable, and the Bernoulli function at any point in the vor-

tex may therefore be written as

p 1P. + 1 (;72 + ;ý2 + ý,2) =ý +% V2 
-H

p 2 r 0 z p 2

17
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Batchelor has shown that the magnitude of the axial velocity (in
Sthe absence of total head losses H-=0)),in the vortex core is given

! by (for a vortex core of radius a• which rotates rigidly with angu-

• _ ~lar velocity Wc)

=z V., forr a

* _--a-

(24)

. ={V2 + 2W2 2a - r2))I1/2 for r -ac

'1:1

The interesting feature of this equation is that it shows there is

an excess axial velocity in the core of the vortex. Outside the

core, vz = V., (free stream velocity); but inside the core v z > V..
This result, however, is in disagreement with the linearized analysisof Newman which predicts an axial velocity deficiency (V < V in

the vortex core. At present, the question of whether there is angie

axial velocity defect in the vortex core has not been resolved eitherag

experimentally or theoretically.

Circulation
l At a given location downstream, the tdngential velocity is a

S~function of r only, and the circulation in a circular region of

S~ radius r is

• =V , frr-

z •A v = V2 r 2u~(ar - r2)}1/2 for (2a5)

" T Spreiter and Sacks [3o have shown that the induced drag of the

awing in terms of the vortex core radius for the rolled up vortices
far behind the wing, assuming that the vortex cores are circular

ain shape and rotating as solid bodies has the form
exer m 2s'-o t i

Ata v C l t de t

e c
fna

raisri P i~ 0v(~ 2)ii

* 2

D 2s~c) ,,,-.



where ac denotes the tip vortex core radius and s' denotes the
semispan of the vortices. Therefore, knowing the vortex core

size which can be obtained f'om the graph of the tangential velo-
city distribution in the radial direction, the vortex core drag

can then be computed from equation (26).

Similarity Solution for Swirl Injection

The problem to be solved for this case is formulated as

follows (bars over the time-averaged quantities have been

omitted):

w p=J02(&,z)d& I
-r v- =( z (2 7 )

r

Vr ? rv) + Vz0z rve (28)

-z rz aO (z) Br 6r---

- v av 1  ~ (z)v __ + Z z 1 _+ (29)
-r •-r- z ýz p 3z r (r 2r9

1 a r + z= 0 (30)
SZ-r (r- r + -•-

where by Prandtl's hypothesis

ve(z) = be(z) vemWx -V9 (b 8 )jl (31)

z (Z) = zbz (z) IVzmax V Vz(bz j (32)
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in which be and bz are the radii of the mixing zones and 46 and

K are the constants. In order to deduce similarity and satisfy

the boundary conditions a solution of the form

v (r,z) = V (r) + a(r,z) (33)

vz(r,z) = Vz (r) + u(r,z) (34)

is assumed. For the case of a weak axial jet with strong swirl, it

is assumed that

<< V (i.e., weak axial jet)

while a is of order Vz and V0 . The governing equations for the

swirl case then reduces to

[V + ý(C,Z)] 2 d- (35)

p 1 e
r

v • -v VzW•=• z~ vz + z _•
Z W7r zr a- (Vz + Vz) (37)

r ir + z pr az r ar ar Z I

rar r) + z_ 0 (38)r " (r" r az

V(Z) =" 0be(z) WOmaxa (39)

V z(z) = Kzb (z) IVzmaxI (40)
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and from (3) and (4)

= {2VZv+ (+ 2 + 2V,3)} rdr (41)

M C

Z rd=(4

z r2Vz (r)a(r,z) dr. (42)=z
0

In problems involving free turbulent jets it is usually assumed

that the mixing length is proportional to the width of the jet,

that is,

be S = constant.

It may be shown that the mixing length I associated with the

swirl component is

t e • z1/4 (43)

and the scale of velocity defect

C max (44)

and therefore the apparent kinematic viscosity may be seen to be

-1/2 (45)
ve(z) • Le

0 max

Equation (36) characterizes the fact that via the assumptions
employed, the swirling motion of the fluid has been uncoupled from
the axial and radial motion and may therefore be determined inde-
pendently. In order to solve this equation for a, it will now be
assumed that the free stream axial velocity component is constant,

that is,
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V z(r) = constant = V . (46)

Thus, we are required to solve Equation (36) under the stipulation

that

M

2 z constant = r2a (rz) dr, (47)

where V is given in (46). It is now assumed that a similarity

solution exists. Introducing the notation

E(r,z) - z (48)

and

n(r,z) = rz-P (49)

then it follows that

Oea BC 3CF3 + 20az= 34 a0 n az'

*a

anan
ar a3 r an ar ~p an

and

32= 1 32o

ar 2  42P an 2

It is further assumed that the V0 will be such that

S(rV o (50)
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for every such r and therefore the differential equation to be

-i solved becomes:

aa k 2  la
az V r 2  r ar rz 3r

It may be noted that Equation (50) does not place any restrictions
of particular note on the problem since one often encounters the

boundary condition that

r 0
V8 = at z = 0 (52)

where r0 is the circulation in the initial vortex (assumed potential)
generated at z=0, and therefore for this important case, e.g. (50)

is identically satisfied.

From (49), it follows that

r = &P

and inserting this change of variable into the differential equa-

tion yields

-2p+1/2 (53)

In accordance with the assumption that a similarity solution exists,
it is further assumed that the swirl component of the velocity is
given by the following expression

- (n,) = ýmf( ) . (54)

From the requirement that the net angular momentum must be con-

-• stant, i.e. Equation (47), we have the result
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Ar IIz
Z = r 2 3(rz)dr = zm r2f dr

2 1rpVz

=z jnjZiiui

0 0

Zm+3p 2f(55)

a th fo (n)dn

Since it is required that this quantity be invariant with respect
to z, one then obtains the following equation for m and p:

m + 3p = 0 (56)

Inserting (53) into (54), one finds the equation of motion can be

written as

ac

mf - Pnf' fg (57)

where i

f,=df

and upon inspection of (57) it can be seen that

1P 4 •(58)

and hence from (56)

3 (59)

"Finally, the differential equation for which f must be a solution

is

( v f3Vz 1
fer + + jff + - -f 0(60)
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and if the notation X = n[• is introduced in (60) then

d2f + [ !i-+ 3 - f = 0 (61)

A solution of Equation (61) which may be verified by direct substi-

tution is given by

f1() = ALe-/2 (62)

This solution satisfies the two boundary conditions:

(i) f is finite at the origin,

(ii) f is zero at infinity (i.e., lir f(M) = 0)

The general solution for the swirl component of the velocity field

is therefore given by:
r2Vz

* o(r,z) !ex

S(r,(z6) r ep (63-- P 8k,/•] 63

To determine the constant of integration, (63) is inserted into

(42) which gives us ii

M -r-V
-CM-=- r 2 exp - (rdr) =-k C. (64)

2rV Z 8k/v7VL ~0
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Thus, the constant of integration is then

S= _ _ (65)
641pk 2

and the general solution has the form

a(r,z) = - Z exp 8j (66)

w.aere the free stream axial velocity Vz has been denoted by V.

The solution for the tangential velocity is then given by the sum

of Equation (66) and (52).

Circulation

At a given location downstream, the tangential velocity is a

function of r only, and the circulation in a circular region of

radius r is given as follows:

2 71

o(r)rde = C , r aC
0

where a(r) is obtained from Equation (66).

Dral

The induced drag created by the vortex is calculated by

Equation (26) by substituting in the vortex core size obtained

from the graph of the swirl velocity distribution.
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DISCUSSION OF RESULTS

The equations for the azimuthal and axial velocity components,

circulation, vortex core drag, and vortex core zize for both the

linear and swirl injection cases were developed to investigate the

effects of mass injection on a tip vortex. The results of various

representative cases are presented in Figures 1 - 6.

The theoretical values of the tangential velocity for one to

fifteen chord lengths downstream for the linearized solution are

depicted in Figure 1 for three different values of the thrust parame-

ter.

It may be noted in Figure 1 that the tangential velocity distri-

bution at one chord length downstream has not been significantly

altered under mass flow injection rates considered whereas for

eight chord lengths downstream, the swirl velocity component of the

tip vortex has been considerably reduced from that of the cla3sical '1

(non-injected) case. Reducing the swirl component of the vortex

core is important since this corresponds to a reduction in the

strength (circulation) of the tip vortex. The reason the tangen-

tial velocity distribution has not changed to any appreciable ex-

tent at one chord length downstream is that the trailing line vor-

tex has not had sufficient time to modify the injected airstream

by imparting some of its rotational kinetic energy of the vortex

core to the injected mass. While the theory developed is not ade-

quate to accurately predict the near field flow effects (i.e., less

than three or four chord lengths downstream), it does show that

the mass injection is beginninr to reduce the swirl. At 8 or 10

chord lengths downstream, the tip voctex has had sufficient time to

entrain the injected airstream, thereby reducing its rotational

velocity. it may also be noted that there is a definite growth

in the vortex core as it progresses in the downstream direction.

This is to be expected since it is in agreement with the experi-

* mentally observed fact that the core of a viscous vortex increases
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in size with time (i.e., with downstream direction) and there is

a corresponding decrease in the rotational velocity at a given
radius inside the vortex core. Physically, the results observed
in Figure 1. are quite plausible and in fact offer an explanation

of the mechanism by which tle noted changes of the vortex core can

take place with mass injection.

It is known that the tip vortex consists of a finite central

viscous core of fluid rotating like a solid body surrounded by a

potential free vortex region. When an airstream is injected into

the vortex core; the tip vortex will do work on the injected air-

stream by attempting to impart a rotational velocity component
to the injected fluid. Furthermore, there will be a vigorous

mixing action taking place (i.e., a free turbulent flow) between

the tip vortex core and the injected mass which will cause the rota-

tional velocity component of the tip vortex to be reduced through

an exchange of momentum between the tip vortex core and the in-

jected airstream. Thus, the normal viscous decay of a vortex has

been greatly amplified by injecting the airstream into its core
which creates a free turbulent flow and thereby greatly increases

the viscous dissipation of the vortex core. As may be noted in

Figure 1, the linear momentum of the injected fluid is of suffici-

cient magnitude after a few chord lengths downstream to completely

overcome the tangential velocity of the tip vortex near the axis

of symmetry.

At a given location downstream, the tangential velocity v8 is a

function of only r,and the circulation in a circular region of

radius r is

F 27r(r - r0 )v.

As may be seen from this equation, the circulation will decrease

(or increase) as the swirl component of velocity decreases (or

increases). Since the theoretical values of the velocity
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distribution ve are known, values of the circulation (strength) in
the core of the tip vortex were calculated from the above equation

and the results plotted in Figure 2 for both the injected and non-

injected cases. The results shown indicate that injection of the
airstream into the tip vortex core not only causes a decrease in

the magnitude of the maximum circulation but also alters signifi-
cantly the distribution of the circulation in the core because of

the change in the swirl component of velocity.

A tip vortex usually remains fixed in size and strength for

quite some time after its generation. It is precisely for this

reason that the blade-vortex interaction problem has been of con-

cern in helicopter dynamics where the helicopter blades must

operate in each other's wakes. Figure 3 reveals that the direct

injection of an airstream into the forming tip vortex can be of

importance in helping to alleviate the blade-vortex interaction

problem. While the ordinary vortex for the non-injected case
will remain relatively fixed in size and strength, the injected

vortex core will increase in size and thus lose strength.

It can be noted from Figure 3 for the case of 15 chord lengths

downstream, the tip vortex for the injected case is roughly double

that of the non-injected case for a thrust parameter of .11. How-

ever, as the thrust parameter increases from .11 to .20 there is
very little additional increase in the growth of the tip vortex

core. This indicated that it is not the velocity at which the
airstream is injected but rather the amount of mass which is in-

jected that is an important parameter. Furthermore, it illustrates

the fact that there is an optimum amourt of mass which can be in-

jected for any given tip vortex strength.

It may also be observed from Figure 3 that direct injection is

favored over reverse thrusting (i.e., suction) since direct injec-

tion will create a less concentrated tip vortex whereas suction
can create a ore= concentrated vortex (i.e., small vortex core size)
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by removing mass from the vortex core. ilso, the reverse thrust-

ing (suction) will cause a parasitic thrust on the rotor blade.

An interesting feature of steady axisymmetric flow fields is

that strong axial flows occur near the axis of symmetry. As

Batchelor [5) has shown, the coupling between the azimuthal

(swirl) and axial (downstream) components of the motion in a

steady line vortex is provided by the pressure. The radial pres-

sure gradient will balance the centrifugal force field, and any
change in the tangential (swirl) motion downstream creates an

axial pressure gradient and consequently an axial acceleration or

_1 deceleration of the fluid.

The variation in the axial velocity across the vortex core for

two different downstream locations (one chord length and ten chord
lengths downstream) for the injected cases has been evaluated for

"McCormick's data [4] and the results are shown in Figure 4. The

interesting feature of Figure 4 (top curve for one chord length
downstream) shows that there is an axial velocity, and a large one,

in the core of the tip vortex. Outside the core, where the circu-

lation is constant, the axial velocity vz = V., the free stream

AV velocity; but inside the tip vortex core vz > V and increases to-

ward the axis of symmetry up to a value of 2.72 times the free

stream velocity (V). The data used for computing these curves

was taken from Reference [4] obtained by wind tunnel tests of a

rectangular semi-span wing having an 18-inch span, a 5.85-inch

chord, and a free stream velocity of 100 feet per second. Since

such a model is similar to full-scale helicopter blades, the

theoretical results presented in Figures 3, 4 and 5 will be equally

applicable to full-scale rotor blades. Since mass injection into
I -• the forming tip vortex will create a continual slowing-down of the

[ tangential motion by viscous mixing of the injected fluid in the

downstream direction and consequently leads to a positive axial
[ opressure gradient with continual loss of axial momentum, it might

- -,be expected that the axial velocity in the vortex core will be4
33
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closer to the free stream velocity as the vortex progresses in a

downstream direction. The bottom graph in Figure 4 depicts this

situation with the maximum vz = 1.03 times the free stream velocity
at 10 chord lengths behind the wing. This result seems to be in

agreement with the physics of the dissipation of a tip vortex and
shows that direct injection of an airstream into the tip vortex

core does create a faster dissipation of the trailing line vortex.

The induced drag associated with the tip vortex core has been

considered by expressing the drag as an integral over a transverse

plane which is independent of z, the downstream location. This
drag is related to the vortex core size and thus depends on the

thrust of the injected airstream. The effects of direct injection

and suction on the induced drag of the wing have been computed for

McCormick's wind tunnel test data and the results are presented in
Figure 5. The theoretical values for the drag show a decrease of

the induced drag for the injected case, while the drag remains

constant for the non-injected case. A reduction in the induced

drag on the wing should occur for the direct injection case since

there is a corresponding reduction of the induced velocity on the

wing. Since the present calculations neglect the three-dimension-
ality of the resulting flow field, the resulting percentage de-

crease as given in Figure 5 for the induced drag (i.e., approxi-

mately 20 per cent) are believed to be too high. A reduction of

the induced drag of about three to five percent would seem more
reasonable. The results presented in Figure 5 also show that

suction will create a slight increase in the induced drag since

suction generates a more concentrated tip vortex with a higher

induced velocity field. Thus, suction is unfavorable in comparison

with the direct injection case.

From Figure 6, the tangential velocity distribution across the

vortex core is presented for various downstream locations for the

reverse swirl case. The initial value of the circulation was

chosen to be 350 ft 2 /sec (about twice as high as would be
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encountered for a realistic rotor blade) and a free stream velocity

of 600 feet per second (comparable to tip speeds encountered in

actual helicopter flight regimes). The results shown are based on

the assumption that reverse swirl is injected into the forming tip

vortex core.

As may be noted from the results presented in Figure 6, the

effect of injecting an airstream with reverse swirl is not favor-

able since it does not create a rapid dissipation of the tip vor--

tex core even for relatively large amounts of injected fluid.

It is noted that a reverse flow field in the tip vortex core is

possible since the angular momentum of the injected fluid can be

sufficient to overcome the angular velocity of vortex core in a

neighborhood of the axis of symmetry. To investigate the effect

of initial circulation strength on the results, a circulation

strength of about 100 ft 2 /sec was used. The results obcained,

however, were very similar to those of the higher circulation in

that the injection of a reverse swirling flow into the tip vortex

* core did not significantly dissinate the vortex core.
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MEANS FOR OBTAINING THE REQUIRED MASS FLOW

Since it has been determined that it was theoreti,,,ally possible

to achieve significant, beneficial modifications of the vortex

core size, axial and swirl velocity distributions, vortex core drag

and vortex strength in all flight regimes by injecting a given mass

flow into the core of the tip vortex, it remains to be estimated
how much of the required mass flow mighc be obtainable froia centri-

fugal pumping and/or from utilization of the low pressure in the

vortex core and thus how much must be supplied by other means. It

is necessary to investigate these sources of obtaining the required

mass flow, since they could very well result in performance penal-

ties that might be unacceptable.

Basic Equations Governing Pumping Process

The following assumptions were made in the analysis:

1. The helicopter blade was replaced by a horizontal pipe AB

of length R which is pivoted about a fixed support at A.

2. Suction and viscous drag forces associated with the pipe

flow were neglected.

The blade was assumed to be always full of air and for

dynamic purposes was regarded to be a thin rod of mass M.

ew V B wxr Rw

B
A

V = - = -f

Free Body of Blade

Let R and W be rotating unit vectors along and perpendicular

to the pipe AB and k is the fixed unit vector forming a right-
handed system with R and T. The angular velocity of the blade
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The absolute velocity of the air leaving the nozzle is given by

vf = - ve

f f.

The velocity of the air relative to the nozzle is given by

v (v +
f f B B

and therefore

Vf (Rw - (vf)B)G (69)

The redistribution of mass with respect to velocity for a rigid

body rotating about a fixed axis about 0 is given by

dm0 o dm.r 0 xF = d -0 + dn- (rxv0 ) xv0) (70)

wh-ere

1. = inertia dyadic about the rotation point

= angular velocity of the rigid body about 0

vj = absolute velocity of the center of gravity o± utgoing
mass

v= absolute velocity of center of gravity of incoming mass

A = area of nozzle or jet

For the present case, r. = 0, r 0 = RR and

4 Q = (.Q: out= (mass pEr unit time flowing) (71)

where, t", q the flow rate or dlisýAarge rate out of the nozzle. Since
is constant in magnitudirection, and rxF (resultant torque

on system) is equal to zero, then Equation (70) becomes

0 = PQR(R-) (72)

(vf)B =f A"

Thcz•.fore, fr.)m Equation (71) it follows that

Q = A(Rw) = A(vf)B (73)
f B

...
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I• and thus the discharge velocity at the exit (point B) is Rw. As

a check on this result, consider the sum of forces on a fluid ele-
ment in the radial direction, that is,

m(r - r, 2 ) 0 (74)

where

r d 2  d -dv (75

dt 2  dt (V) v-r

and r = position vector from the origin at 0 to the fluid particle.

inserting (75) into (74) and performing the integrations yields

V 2  R 2 ,,i2

2 2

or

(vf)B = r = Rw (76)

which is in agreement with the result Equation (73) found from the

moment of momentum equation. If a helicopter blade has the follow-

ing parameters:

R = 30 feet

S= 30 rad/sec (cruise condition)

A = 5.5 x 10- 3 ft2 (1' diameter nozzle)

then from Equation (73) the discharge rage will be

Q = A(Rw) = 4.95 ft 3/sec

which would be sufficient to cause the beneficial modifications of

the tip vortex core as previously noted (see Figure 1) since this

corresponds to a thrust parameter of .11.

41



In addition to centrifugal pumping, it may also be possible to

utilize the low pressure in the vortex core by means of a "pressure

pump" effect. By applying the Bernouilli energy equation from the

entrance to the exit of the pipe and neglecting head losses,

vA PA v pB(r)
2 + - = + ¥(77)

2g Y 2-g Y

and, therefore

PO - Pc = 1 (vf)2 - (Rw) 2] (78)

where

W = angular velocity of the blade

Po = stagnation pressure at entrance to pipe

PC = tip vortex core pressure pressure at pipe exit.

Solving for (vf)B yields

(V ( 2(PO- j 7/2

For a circular vortex, the pressure in the tip vortex core as

given by Milne-Thomson [10] is

= - k 2p I r--] (80)a2 L 2aI

Wa2 C C

where k 2 - strength of circulation. Defining the average
SLpressure in the vortex core as
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S j2i• jaPC rdrde

0 0

PC (81)
C ~ ra2

and inserting (80) into (81) yields

PC - + !•c- 2 (82)

-' If AP = P0 -- p' then it follows thatP C

AP 3k2p
4a2

C

S$ Substituting the expression for k 2 yields

"3pw2 a 2

"Ap 16c

and, thus

I. 3 ac 2(C 2 (83)
pR 2 w 2  8 R 8)

where wc = angular velocity of the tip vortex core.CK Inserting (83) into (79) yields

(vf)B (Rw) { + {2 __ (84)

The second term in the parenthesis of Equation (84) represents

the increase in the discharge velocity due to the low pressure in

the vortex core. Note that if PC = p 0 (stagnation pressure) in
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Equation (79) then

(vf)B Rw

which is in agreement with Equation (76).

To cstimate the order of magnitude of this effect, consider
the expeximental data of McCormick [4]:

V = 100 feet per sec
R = 1.5 feet = 18 inches

Rw = 100 feet per sec

S= 66.6 rad/sec

chord - 5.74 inches

ac = vortex core radius = .72 inches at one chord length

Wc 2400
- C -37.0,W 66.6 " '

and (vf)B = 133.5 feet per second, the percent increase in the
discharge velocity would be

Vnew-V old 133.5-100- 33% increase
vold 100

assuming that all of the low pressure core could be effectively
utilized.
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CONCLUS IONS

The following is a summary of the effects which may be expected

from the modification of a tip vortex by the injection of an air-
stream into the tip vortex 'ore generated by a lifting surface:

1. Significant beneficial modifications of a tip vortex core
may be achieved by direct inject 4 on of an airstream into

the tip vortex core shed by a rotor blade.
2. Appreciable reduction of the swirl (tangential) velocity

; / component of the tip vortex is possible under quite

reasonable mass flow injection rates.

"3. The beneficial modifications of a tip vortex by direct

Sinjection were not dependent on theIree stream velocity
and therefore should be obtainable over the complete

flight regime of the helicopter. This represents an
important improvement over other methods of circulation

control.

4. Modifying a tip vortex by direct injection shows that it

is the amount of mass which is injected into the tip
vortex core that is import-nt and not the velocity at

which it is injected. Furthermore, there is an optimum
mass injection rate above which very little additional

K1  benefits can be obtained.

5. The effect of direct injection is beneficial as regards

rotor performance since it slightly reduces the induced

drag on the helicopter blade which generates the tip

vortex.

6. The advantages resulting from the injected airstream will

be greater for those helicopters which have the smaller
,3.lues of circulation per blade. Thus, for a given mass

F !flow rate and a particular type of helicopter blade, the

advantages of injection may be increased by adding more

blades per rotor or by itherwise reducing the total circu-

K I lation per blade.
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7. The effects of injecting a reverse swirl into the forming

tip vortex core and also withdrawing fluid from the tip

vortex core by suction did not show significant beneficial

modifications of the tip vortex core over a wide range of
mass flow rates and therefore cavnot be reconmended as a

possible means of modifying a tip vortex.

8. It has been estimated that the required mass flow for

aerodynamic injection could be obtained from centrifugal

pumping action of the blade.
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RECOMMENDATIONS

Since it has been shown, theoretically, that significant
beneficial modifications of a tip vortex are possible by means

of direct injection of an airstream into the forming tip vortex,

it remains to be seen if these changes may actually be obtained

on a full-scale rotor system. It is therefore recommended that an*
experimental wind tunnel program be implemented using a scale

model to verify that the theoretically predicted changes are
actually possible.
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