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ABETRACT

Numerous research efforts have been conducted Ly different
investigators to alter the characteristics of tae tip vortex
generated by a helicopter blade in oxder to alleviate the blade-
vortex interaction problem as well as the noise prcblem asso-
ciated with impulsive loading. Various approaches have been
taken in these investigations including modificaticns of the
loading distribution by taper and twist and altering the blade
tip by utilizing porous sections. All of these approaches have
not been universally successful for all flight conditions. The
present analytical investigation shows that it should be possible
to significantly alter the characteristics of the trailing tip
vortex for all flight conditions in a beneficial manner by in-
jecting an airstream directly into the forming tip vortex.
Analytical expressions were developed for the initial and final
states of the vortex in order to evaluate the effects of mass
flow injection on the vortex strength, swirl velocity distribu-
ticn, vortex core pressure, vortex core size and the induced
drag on the biade. On the basis of the results that were obtain-
ed, it was shown that the reguired mass flow may be obtained from
centrifugal pumping action by venting the klade and therefore the
desired modification can be obtained apparently without signifi-
cant performance penalties which would be unacceptable.
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LIST OF SYMBOLS

area of nozzle or jet, ft?

tip vortex core radiusg, ft

constant of integration occuxring in solution
for swirl velcaity

radii of the zones of mixing for the swirl and
axial components, ft

(23)"! times the circulation of the fluid,
ft?/sec

chord length of the wing, ft
total ipduced drag of the wing, 1b

total head losses of the fluid flow, ft2/sec?

inertia dyadic about the rotation point,
slugs=-ft«

constant strength of the tip vortex, (pepdikgn-
sional}

mixing lengths for the swirl and axial compgnents.
ft

specific torgue acting on the fluid, ft-1lb

integers occurring in the similarity solution for
the swirling flow

tip vortex core pressure, psf

free-stream pressure, psf
flow rate of fluid, fti/sec
rotating unit vectors

radius of the rotor blade, ft

cylindrical cecordinates
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s' wing semispan; gt
T thrust of the jet, 1b

radial, tangential, and axial velocity com-

r z ponents of the fluid flow
V. free-stream velocity, fps
X, Y: 2 Cartesian coordinates
r circulation of the fluid, ft2/sec
v the coefficient of viscosity
P density of air, slugs/ft?
Imax scale of velocity defect
Srrt %go’ 92z turbulent normal stress components of the fluid
. tensor
Tye’ Yoz’ Tazr turbulent shear stress components of the fluid
tensor
o swirl velocity component, £fps
)dn, w angular velocity of the rotor blade, rad/sec
wg angular velocity of thz vortex core, rad/sec
{—) bars over variables are time averages
") prime denotes the variation of a quantity about

the mean due to turbulence
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INTRODUCTION

while any airfoil develops a trailing tip vortex of signifi-
cant strength, the helicopter blade, becauge of ita loading dis-
tribution, tends to develop a relatively stronger tip vortex than
that developed by a fixed wing of a conventional aircraft. Another
important difference between the vortex-lifting surface relation-
ship of the fixed wing and of a rotating lifting surfacq"is that
with the fixed wing the tip vortex streams away from the lifting
surface after it is formed while with the helicopter, the veortex

‘streaming from a given blade tends to interact with cne or more of

the following blafes. This blade-vortex interaction has been of
considerable concern as regards blade loading and dynamic response
as well as regards noise associated with impulsive loading such as
"blade slap."” These characteristic noise signatures are of particu-
lar importance in detection proklems associated with military opera-
tions and in annoyance prcblems associated with civil operations.

Numerous research efforts have been conducted b various in-
vestigators to alter the characteristics of the tip vortex and
thus alleviate the blade response and noise problem. Several ap-
proachas have been employed including medification of the loading
distribution by taper and twist and by altering the blade tip
gecmetry using porous tips. All of these approaches, while some-
times achieving a moderate degree of success at a given flight
condition have not been universally successful for all flight con-
ditions. It was believed, however, that direct injection of an
airstream into the forming tip vortex, would significantly alter
the characteristics of the trailing vortex at all flight conditions
in a manner that would be beneficial to both the blade dynamic
response problem and impulsive ncise.

The study was conducted in three steps. The initial work was
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determination of the effectz of mass flow injection on the vortex
strength, swirl velocity distributions, vortex core pressure
changes, vortex core sizes and the induced drag on the blade. The
final gtep was to analyze various means of injecting an airstream
into the forming tip vortex and evaluating its possible effects
on helicopter performance characteristics.
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TECHNICAL DISCUSSION
Discussion of the Relevant

Characteristics of Tip Vortices

A considerable number of studies have been conducted concera-~
ing the structure and formation of wing and rotor-blade tip vorti-
ces. Surveys of work carried out in this area are given in Refer-
ences 1 and 2. Reference 1 is concerned with experiments, while
Reference 2 deals primarily with theoretical developments.

The results of the studies indicate that a complete under-
standing of the problem is still to be obtained. Theoretical
treatments, such as the one in Reference 3, are based on the
assumption that the flow is essentially two-dimensional, with
perturbations in the direction of flight playing only a minor role.
The analysis of Reference 3, which is representative, predicts a
tip-vortex core diameter of 15% of span, with vortices spaced about
3/4 of the span apart, for a wing with elliptic loading. 2a
parallel study in Reference 3 leads to an estimate of from 20 to 30
chord lengths for the distance required for roll-up of the wake
vorticity into concentrated tip vortices. ©On the other hand,
measurements taken behind model wings and full-scale aircraft wings,
as reported in Reference 4, indicate that tip-vortex core diameters
are only about 3% of span, and the vortices are located almcst at
the wing tips, so they are separated by a distance about equal to
the span. Furthermore, the roll-up process is 90% complete within
cne chord length for a moderately loaded wing of high aspect ratjo.

This large discrepancy between theory and experiment could
be due to three-dimensional effects, as indicated by the approxi-~

3 v A RALaum

v Yol 3
¥YSis cutlined in Reference §

Aum ol ot A o mtewn o -

. By ordering termwms in &
manner simil..z to that of boundary-layer theory and making certain

assumptions (the validity of which is difficult to assess) regarding
energy losses, it was shown in Reference 5 that a strong axial flow
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. ' could exist in the core of a tip vortex. This flow would be in the

' same direction as the free stream, leading to a smaller core size

! than would be the case with no axial flow. Presumably, three-
dimensional elfects could also account for the difficulty in pre-—
dicting the separation and rate of roll-up of the tip vortices.

It was felt that it would be beyond tha scope of this study
to develop a method for more accurately predicting tip-vortex
characteristicz. Thus, in analyzing the esffects of injecting an
airstream into a tip vortex, a range of values for core size and {
circulation regresentative of the measured values were used.

i e S ——

Thzoretical Formulation

Problem Definition

i _ Tha flow intc which an airstream is to be injected is defined
ir cylindrical coordinates (r, 6, gz} as sketched below.
Y

[

’ The nominal flow is assumed to be incompressible and axisym-
P metric, with compcnents Ve(r) and Vz(r) in the tangential and axial
directions, respectively. The radial component of the nominal flow
! is taken to be zero, giving a pure swirling flow. A jet of incom-
o pressible fluid emanates from the origin into this flow, directed
;u' along the positive z-axis.
]
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Since the tip vortex may already possess a atrong axial flow

. component, a pure axial jet injected in the same direction as that
= axial flow may cause only a limited reduction in the swirl com—
ﬁﬂ!! ponent of the nominal flow. Thus, it is assumed that the jet also
E;- has a swirl component opposing that of tlL: nominal flow. Since
;;:: variaticn of the tangential flow component due to mixing is to be
analyzed in any case, consideration of a swirling jet rather than
,;;2 a simple axial jet does not appreciably complicate the problem,
E

In light of the objective of the present study, and since the
- jet would undoubtedly be turbulent for any practical application,

it was decided to treat the case of turbulent mixing in order to

insure that realistic results would be obtained. It is noted that
= . the analysis of turbulent flows in general is somewhat less satis-
:q factory than treatment of laminar flows, because a certain degree
of empiricism i3 always necessary in obtaining a solution. How-
ever, the theory for turbulent free jets has met with considerable
= success, particularly when compared with analyses of other types

_ of turbulent flows, such as in boundary layers, apparently because
ff the assumptions applied to turbulent free jets are fairly realistic.
-~ For the present striy, therefore, it was decided to develop the

equations for a steady, axisymmetric, incompressible, turbulent

e flow created by injection of a swirling jet into a swirling stream.
-4 The general equations governing such a flow were derived by follow-
e ing a procedure analogous to the one used in Ref. 6 for formulating
-y the equations for a turbulent flow referred to Cartesian coordinates,
’ Thus, the radial, tangential, and axial flow components and the
pressure can be written in the form
. v (r,8,z,t) = v_(r,2) + vi(r,6,z,t)
vglrie,z,t) = Ge(r,z) + vilr,0,z,t)
P v (r,8,2,t) = v _(r,z) + vl (r,6,z,¢t)
| oo plr.8,z,t) = pir,z) + p'(r,8,z,t)
[
i
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The quantities with bars over them are time averages and the

primed quantities are variations about the mean due to turbulence.
Thege expresaions were substituted into the Navier-Stokes equations
for incompressible flow referred to cylindrical coordinates (Ref. §),
the time average taken and guitable manipulations performed using
tha continuity equation. Assuming the flow is axisymmetric, the
_governing equations were found to be

- ‘2 - - -
o Ve, Me 1T, w1 L5
T ar x z 3z p |oF 32 r ‘rr 89
: 3Ve+vavr+‘_f 39-l 31r9+3162 2;
r °r r z 32 p lor 3z r ré (1)
: avz : avz.l arrz_'_aqzz_'_}_;
r 3rx z 32 p lor FY3 r 'rz
) - 3 - _
-a?(rvr)-r-a—z-(rvz)-o
where
a\'rr
= .2 _ =2 _xr
Opr = " P = pV.T ¥ 2v o3
- - -2 ’2
Ogg = = P = PVp° + 22V,
_ _ —, an
c:zz=-p--pvz -0'2\.!——3z
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in which v is the coefficient of visccsity. The averages of terms
involving turbulent fluctuations represent the turbulent shear.

The ordinary viscougz terms, i.e. those multiplying v, can generally
be drcpped, as they are usually much smaller than the turbulent
shears, The general problem formulation is completed by specifica-
tion of the boundary conditions:

Ve * 0

§, > v, () as r > e
and/or z + - =

v

v, * Vz(r)

Equations for Solution - The Boundary Layer Approximation

The analysis of turbulent free jets, either two-dimensional
or axisymmetric, generally proceeds by simplifying the governing
equations according to assumptions analogous to those employed in
boundary layer theory (Ref. 6). Specifically, it is assumed that
dependent variables change much more rapidly in the transverse
(i.e., radial) direction than in the downstream, or axial direc-
tion. In addition, the transverse, or radial, flow component is
assumed to be small compared with the axial component.

The boundary-layer type of approximation was assumed to be
valid for the solution of Egs.(l), with the additional assumption

that ;e and Gz are of the same order and that ordinary viscous

rpspneapmpsamen TW - By
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terms can be dropped in favor of turbulent shears. The resulting
equations governing injection of a swirling jet into a swirling
‘ stream are:
. o2
{ hong v . i
i 12p . T8 ;
! o 3r T (2.1) !gj
v v a1 {
r 3 = - 6 _ 1 re ., 2 - :
T V) Ve <o [ar *:T:e] (2.2)
v v = 3T T ]
et Z = z __9% .1 rz rz
Vr 3T T Yz 3z z o [ar 3 J' (2.3)
3
2 (xv.) + X (xV) =0 (2.4)
ax b 4 az 4 * -
) where, now,
1
T
I8 _ oo "
0 Ve Ve {2.5) g
l
- 1 g
T g
X2 - -V v i .
I
- ?
= The solution of Egs.(2) is aided by the following ccnsidera- :
]
ticns. First, there are two quantities which are invariant with '
. axial distance from the origin, involving the unknown flow com- '8
ponents. These quantities are calculated by momentum considera- ,' 
PR tions in the following way. | 3
|

Let T denote the thrust acting on the nozzlie injecting the
fluid jet. Integrating over a cylindrical control surface con-
taining the origin, it is found that

. o 2%[=
o 2- E -
. 5 J J L) (r,z)

T

(r,~=) + 5% {r,;z) - 5: (r,-w{]r de dr .
0 9
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But, from the first of Egs.(2),

p, - plr,z)

- d
> -] vg(E.z) -4

¢

dg
(g) 3

where, of course, p_ = lim p(r,z), a constant. Also,
yrw

;z (r,==) = Vz(r) .
Substituting these relations back in the expression for T, and
integrating the pressure terms by parts, it is found that

2%'_5. f {Gg {r,z) = VI (x) + %[\73 (xr,2) - V3 (r)]}rdr (3)
0

In an analogous manner . the torque acting on the nozzle due to
the swirl which it imparts to the jet is calculated from considera-
tion of the flux of angular momentum frum a cylindrical control
volume. If the shear acting on the contrel surface is discarded
in favor of the remaining terms, consistent with the ordering
approximations imposed on the differential equations, the torque,
denoted Mz, is found to be given by

M »
7%; = J [?z {r,z) ;e (r,z) - vz {x) Ve(ri]rzdr . (4)
0

The expréssions for both T and Mz, i.e.; Egs. (3) and (4}, must be
invariant with z.
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The other consideration aiding the solution of Egs. (2) involves
calculation of the turbulent shears o and Tzt In the case of
free turbulent flows, Prandtl's hypothesis is generally employed for
this purpose (Ref. G). For the problem at hand, this hypothesis
is formulated according to

’ (5)
T'rz i 3\-72
T = \Jz (z) '5?' ]
while
ve(2) = kg by(2) E_’emax = Vg “’e"]
{6)
vz(z-) = Kz bz (Z) [vzmax - Vz (bz)j

where Kg and «_ are constants, be and bz are the radii of the zones

z
of mixing for the swirl and axial components, respectively, and
vemax and Vomax 3F€ the maximum values of Vo and Vg respectively,

in the mixing zone.

As can be seen from Egs. (5) and (6), Prandtl's hypothesis
asserts that the shear is proportional to rate of change of strain,
just as for laminar shear, and that the constant of proportionality,
or apparent kinematic viscosity, is invariant over the radial ex-
tent of the mixing zone, but that it does vary axially in the manner
of Egs, {6). The apparent kinematic viscosity is assumed here to be
diffarent for mixing of the axial and swirl components, but each is
taken tC cbey Prandtl's further agsertion (Eqs. (6)) that they vary
in proportion tc the size of the mixing zone and the maximum differ-
ences in the mean flow.
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The relations given in Egs.(2) through (6) constitute the for-
mulation of the problem of a steady, axisymmetric, incompressible,
free turbulent flow as created by the injection of a fluid jet into
a swirling stream. It was believed unlikely that an exact solution
could be obtained, either analytically or numerically tco this set
of nonlinear partial differential equations within the constraints
of this study. Therefore, it was necessary to determine and apply
rational approximations in these yrelations to gimplify the problem.

Limiting Cases (Similarity Solutions)

Prcblems involving turbulent flows are generally very compli-
cated in nature and to examine such prcblems from an analytical
viewpoint requires the aid of semi-empirical hypothesis. 1In the
present analysis, Prandtl's hypothesis is employed for this pur-
pose as is often dcone with good results in analyzing free turbulent
flows. This hypothesis states that the shearing stress is propor-
tional to the shearing strain (velocity gradients) but the propor-
tiocnality constant must be determined experimentally.

In analyzing the injection problem of the free turbulent jet,
two limiting cases have been considered which enable explicit
results to be obtained. Besides the governing differential equa-
tions of motion, the flow of a swirling jet is further specified by
two invariant quantities; the linear and angular momentum.

It is possible to introduce two similarity scales depending on
whether one controls the flow by linear or angular momentum, that
is, depending on if one has a strong axial jet with weak swirl
or a weak axial jet with strong swirl. Chervinsky [7] has shown
recently that in a study of the flow field in a turbulent swirling
jet far from the orifice that similar solutions of the components
of the velocity exist for these two limiting cases. RAlso,
Chervinsky {7] obtained good similarity for the tangential and
axial velocity profiles in a series of experiments on swirling

11
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jets issuing from a round orifice. The similarity scale for the
swirl component is assumed to be given by

aewzl/u ’ (7)
and for the axial component, one has
et (8)

It is also assumed that the initial flow field for both limit-
ing cases before i jection is specified by the following boundary
conditions:

To
V_ = V_ = constant _ (9)

2=0, V) =557V, w

which assumes the generation of a potential vortex at the origin
where I'y is the circulation in the initial vortex.

Since the present analysis is based on the existence of similar-
ity solutions, then the interest here is focused on steady, time-
averaged, axisymmetric flow fields which admit the customary boundary-
layer-type approximations in which the axial gradients are of small
magnitude compared with the radial gradients, that is,

<< g_r P VL <<V, {10)

o] o
N

where Gr is the radial component of the welocity and Gz is the
axial component.

Similarity Solutions for Direct Linear Injection
For the case of a strong axial jet with a weak swirl component,

the control of the flow field will be by linear momentum. However,
due to turbulent mixing, the injected mass of air will develop a

12
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swirl component far downstream, where it is further assumed that
the usual boundary-layer-type approximations §¥§,§Eppl§§g§§§q%§¥%;%7
the condition that, . z .

v, - V| << v, . T Q1)
A characteristic feature of a steady trailing line vortex from

one side of a wing or rotor blade is the existence of a strong

axial flow near the axis of symmetry. The coupling of the axial

and swirl velocity components occurs through the pressure term for i
a steady line vortex and any change in the tangential velocity ¥
component with distance z downstream produces an axial pressure ii
gradient and consequently an axial acceleration or deceleration.

The process of contraction or expansion of a vortex core depends i
upon the axial acceleration of elements of fluid entering the core

as pointed out by Batchelor [5] who showed the influence of a posi-~

tive axial pressure gradient arising from the centrifugal force on
the decay of the axial componenc of the velocity. Of course, the
change in diameter cf a vortex core would also depend on the wing

L. B o I

geometry.
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In light of these considerations, a similarity seclution for v
the flow in a trailing line vortex far downstream from the point ; {
of injection was developed analogous to Batchelor's solution but o
of course retaining the assumption that the flow is turbulent.
The resulting asymptotic solution for the axial velocity field is

-

given as follows:

o s i b s ania deol p Rt e i airamua . -

_ 4w, s i |
v, = v, - vz log T Q;(n) + vz Qs {n) - 3oz © (12) .
3] 0 0 8 %
where 2 i
L (13) '
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and Q; (n) and Q,(n) are known functions. The apparent kinematic

viscosity v, was assumed constant as a first approximation. This s

approximaticn has been employed by other investigators for free

turbulent flows with good success (i.e., see Newman [8]). 1In

addition, this assumption was employed by Eskinazi in investigating

the viscous decay of a steady, two-dimensional viscous vortex. It ,

was found that the various experimental velocity distributions in |
; the vortex were in good agreement with a linearized, axisymmetric, '
% laminar, incompressible, viscous vortex theory due tc Newman when

. an apparent kinematic viscosity of eight to ten times the laminar

kinematic viscosity was used. This result illustrates the fact

that ordinary vorticity diffusion is stronger than that based on a

purely laminar case and therefore the flow should be characterized
as turbulent.
Velocity Fiel:
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Far downstream, where the boundary-layer-type approximations
3/3z << 8/3r and ;r << Gz are supplemented by the approximation

. |‘-’z - V,l << V_

the equation of motion (2.3) reduces to

. v - 32v v
. : v —2=-3123R, z .1 2 (14)
T : . © JZ p Z 52 r ar

i and the egquation for the swirl component becomes

B = 2 <e 1
, : vy 2tv, g v, v |

| Ve T "V |3z Trw T ‘

| ar? r?

;

This latter equation may also be written as

. ' aC a_ f1 ac)
; Vo 3—z= uer 5T [r r )" (15)

14
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The solution of this equation for C or v, as a function of r at any
value of z may be written down explicitly. As is well-kpown, the
asymptotic form of the solution as z+« is

C = rGe = Co{l - B exp(-n)}
where B
v r?

n = and
4vez
Cpis the (non-zero) value of C at large r. Hence the resulting
velocity field after injection for the azimuthal component of the

flpw field becomes

;e = :; {1 - B exp (-n}} {16)
The arbiirary constant of integration B which occurs in the
above solution for the azimuthal velocity must be evaluated. For
this purpose, the momentum integral theorem is employed, with a
control surface eunclosing the nozzle at the origin in the form of
a right circular cylinder with generators parallel to the z-axis
and of which A is the area of each end face. The upstream end
face and the curved surface of the cylinder are both at a suffi-
ciently large distance from the jet, so that conditions there are
¢ pproximately as in the free stream. Therefore, it follows that
the thrust produced by the jet is given in the usual way as
0 - - P, -~ P
;= f {v (v. -wv) + ————-} da (17)

-] ® z e
where

J (p, - p) dA = resultant normal force on the end faces and T
A
denotes the thrust of the jet. For steady flow the magnitude of
the thrust produced by the jet is given by

15
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T = (- pA., vZ 18,
[JJJ (18
where v, is the exit velocity of the injected airstream leaving the
nozzle and Aj is the area of the nozzle. It has becun shown pre-
viously that the pressure term is given by

= = dr (19)

where

Far downstream, the trailing vortex is approximately cylindri--
cal, and the pressure in the core is determined by the balance with
centrifuga. force, where the pressure is given by equation (19).
Solving (18) for p, and inserting it into (17) and performing
integrations by parts vields

p _ Co? ) - 1 ac? Ve
o - & | (VelVa = V)T - 5 5 log =y ax (20)

in which, consistent with Batchelor's approximations, VZ(Vm - vz)
has been approximated by V_(V_ - vz) and therxefore the integrand

can be taken zero outside the vortex core. Also, it is noted that

~ - 2
{E—Jz = (1 -Be M) (21)
]

which follows from equation (16). Introducing the change of variable

v r

n = (22)

v, 2
€

into (20) and performing the quadratures yields the following
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guadratic equation
the thrust T,

for the constant of integration B in

4zv_ {4sz]
+ B{.577-1log_|-—i(| + |A~-
T8 Ve

B2 (.5)1og, -. 633

T
o VI =0 (23)

-

where

A =

« a
j V (v, - v, rar I v (v, -v) rar .
0 a

The value of the integral A can now be estimated via energy argu-

ments, and B can then be calculated at a given downstream location

for a given thrust injection. The velocity v, is usually greater

than V_ in the core and approaches V_ with increasing downstream
lccations. Outside of the vortex core v, =V,

It is also possible to examine the effect of an injected air-
stream on the axial velocity assuming that the injection process
is of sufficient magnitude to induce turbulence and the swirl
component decays independently of the axial velocity by again
using the momentum integral theorem in conjunction with Batchelor's
form of solution for the axial velocity.

In the case of flow in a tip vortex shed from a ro-or hklade or
wing in an infinite body of fluid, all streamlines originate in a
region where the pressure is uniform and equal to p, and the fluid

velocity is uniform with components (V_, 0, 0). Some streamlines

will pass through the boundary layer at the wing where visccus forces
are appreciable, and the Bernoulli function at any point in the vor-
tex may therefore be written as

o]

1 = - - «
z (v2 + y2 2) = +
+ 5 ( 2 vi+ vz)

— V2 - AH .
P ]

hel fof]
2] o)
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Batchelor has shown that the magnitude of the axial velocity (in

the absence of total head losses { H=0)),in the vortex core is given
by (for a vortex core of radius a, which rotates rigidly with angu-
lar velocity uc):

-— >
vz vV, for r a,

(24)

v

z {Vi + 2mé (aé - 1:2)}1/2 forr S a_ .

c

The interesting feature of this equation is that it shows there is

an excess axial velocity in the core of the vortex. Outside the
core, v, = V_ (free streamvelocity); but inside the ccre v, > V.
This result, however, is in disagreement with the linearized analysis
of Newman which predicts an axial velocity deficiency (Vz < V) in
the vortex core. At present, the question of whether there is an
axial velocity defect in the vortex core has not been resolved either
experimentally or theoretically.

Circulation

At a given location downstream, the tangential velocity is a
function of r only, and the circulation in a circular region of
radius r is

I = 2u(r - ro)vy(x,z). (25)

Drag

Spreiter and Sacks [3] have shown that the induced drag of the
wing in terms of the vortex core radius for the rolled up vortices
far behind the wing, assuming that the vortex cores are circular
in shape and rotating as solid bodies has the form

2
poro 25'-& ]
D = 1+ 4 log. ——=5 {(c6)
c 8 e T a J
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where a, denctes the tip vortex core radius and s' denctes the
semispan of the vortices. Therefore, knowing the vortex core
size which can be obtained f:om the graph of the tangential velo-
city distribution in the radial direction, the vortex core drag
can then be computed from equation (26).

Similarity Solution for Swirl Injection

The problem tc be solved for this case is formulated as
follows (bars over the time-averaged quantities have been
omitted):

p_-P J‘“ vZ(g,z)as

7
> T {27)
r
‘-’ra('w"'a—-‘i— (z) = |22 v, (28)
< ir ¥V Vz 3z = Ve ar |r ar 8
av v = v_(2) v
- 2 - z . _123p Z 3 2
Vedsr T V2352 T T 5 3z Y= 3¢ | IF (23)
v
1l 3 - z _
Zir (rvr) t e 0 {30}
where by Prandtl's hypothesis
ve(2) = kgbg(2) |V 0 = Vgibg) | (31)
vz {2) = kb (2)|v, . = V(b)) | (32)
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in which b, and b, are the radii of the mixing zones and x, and
k, are the constants. In order to deduce similarity and satisfy
the boundary conditions a solution of the form

Ge(r,z) Vv, (r) + o (r,z) (33)

, Gz(r.z) v (r) + ulr,z) (34)

is assumed. For the case 5f a weak axial jet with strong swirl, it
» is assumed that

= v, << v, (i.e., weak axial jet)

while o is of order V, and V,. The governing equations for the
swirl case then reduces to

PP ) - dg
= 282
5 —[ [Ve () + o(g,2)] 3 (35)
z Y
- 30, = 8 Ji o -1
o v (r) 53 = v (2) 3% {r ar[r(ve + ”]} (36)
Vv av - v_(2)
x v 2z -z __123 e . 2 v
Ve 3T Vo l8) 57 = P 35 =3 ar[r 3 V2 t Vz)] (37)
av
i 2 = Z _
i' 3-1-' (Wr) + '—z—- = Q (38)
vglz) = Kebe(Z)‘OmaxI (39)
- v, (2) = biz(z){vzmaxl (40)
20




and from (3) and (4)

L - J (2vF, + 3 (% + 2v,9)) rar (41)
[}
M.z ® -
i = J r2V_ ()3 (r,2) ar. (42)

0
In problems involving free turbulent jets it is usually assumed
that the mixing length is proportional to the width of the jet,
that is,

L

EQ = g = constant.
e
It may be shown that the mixing length Lo associated with the
swirl component is
2, n ozt (43)
€
and the scale of velocity defect
T I (44)

max

and therefore the apparent kinematic viscosity may lbe seen to be

volz) ~ gy o~ 2~ /? (45)

Equation (36) characterizes the fact that via the assumptions
employed, the swirling motion of the fluid has been uncoupled from
the axial and radial mction and may therefore be determined inde-
pendently. In order to solve this equation for o, it will now be
assumed that the free stream axial velocity component is constant,
that is,

21
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Vz(r) = constant = V. (46)

Thus, we are required to sclve Equation (36) under the stipulation
that

M o
zZ . = 2=
v = constant = J rcs(r,z) dr, (47)

2

0
where Vz is given in (46). It is now assumed that a similarity

solution exists. Introducing the notation

E(r,z) = z (48)
and
nlr,z) = xz' P (49)
then it follows that
30 _ 39 3¢ , 35 3n
3z 3E 3z an 9z '’
= EE - Eﬂ ié ’
9F £ 9n
30 _ 30 3& , 20 3n . 1 30
ar aE ar an or Ep an
and
327 1 32g

axr? EZP 3n2

It is further assumed that the Ve will be such that

H -

(rVe)} =0 {50)

3_ (L3
ar Y
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for every such r and therefore the differential equation to be
sclved becomes:

30 _ k J3%3 , 130 _ ¢ . (51)
Gi'z'_vz{arz"'rar J?z}

It may be noted that Equation (50) does not place any restrictions
of particular note on the problem since one often encounters the
boundary condition that '

To
Ve=mat2=° {52)

where Ty is the circulation in the initial vortex (assumed potential)
generated at z=0, and therefore for this important case, e.g. (50)
is identically satisfied.

From {49), it follows that

and inserting this change of variable into the differential equa-
tion yields

35 _pn 25 _ Kk 325 , 135 _ 3
3¢ £ 3n v £2p+1/2 {3ﬂ2 n 3n 7 . {53)
z d

In accordance with the assumptien that a similarity solution exists,
it is further assumed that the swirl component of the velocity is
given by the following expression

a(n,g) = £ME(n) . (54)

From the requirement that the net angular momentum must be con-
stant, i.e. Equation (47), we have the result
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M ® ")
2 235 = M 2¢ (X
LTS [ r2s(r,z)dr = 2z { r f[zp] dr
0

0

= 3P l n2€(n)dn . (55)

0

Since it is required that this quantity be invariant with respect
to z, one then obtains the following equaticn for m and p:

m+ 3p=0 (56)

Inserting (53) into (54), one finds the equation of motion can be
written as

gt e K 1/2728 (o, £ £
mf - pnf' = v, £ {f + = ;z-} ’ (57)
where
_at
£ = an !

and upon inspectiocn of (57) it can be seen that

= %
P =73 (58)
and hence from (56)
- - 3
m = i - (59)

Finally, the differential equation for which f must be a solution
is

v 3v
£ + {% + I n}f' + {EEE - #@}f =0 (60)
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and if the notation 2 = “{I%] is introduced in (60) then

azf

—_—

dx?

T

as _1) .o
+.\}ﬁ+[3 J\2]f o . (61)

A solution of Equation (61) which may be verified by direct substi-
tution is given by

-2
£() = axe”r 2 (62)
This solution satisfies the two boundary conditions:
(i) £ is finite at the origin,

and

(ii) £ is zero at infinity (i.e., lim £(x) = 0)

A+

The general solution for the swirl component of the velocity field

is therefore given by:

2y
T Z

'Cz—s/u[rz_l/k)e_gf7f

o(r,2)

r2v_]

z 8kvz

To determine the constant of integration, (63) is inserted into
(42) which gives us

2
C . (64)
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rThus, the constant of integration is then

LA (65,
64npk?
and the general sclution has the form
- MV V. .2
alr,z) = |2 § exp|- §E'£;' (66)
64npk? Vz |

wiere the free stream axial velocity Vz has been denoted by V_.
The solution for the tangential velocity is then given by the sum
of Equation (66) and (52).

Circulation

At a given location downstream, the tangential velocity is a
function of r only, and the circulation in a circular region of
radius r is given as follows:
<

a

27
J olr}yrde = ¢ , c

0

where ¢(r) is obtained from Equation (66).

Drag
The induced drag created by the vortex is calculated by

Equation (26} by substituting in the vortex core size obtained
from the graph of the swirl velocity distribution.
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DISCUSSION OF RESULTS

The equations for the azimuthal and axial velocity compoﬁents,
circulation, vortex core drag, and vortex core size for both the
linear and swirl injection cases were developed to investigate the
effects of mass injection on a tip vortex. The results ¢f various
representative cases are presented in Figures 1 -~ 6.

The theoretical values of the tangantial velocity for cne to
fifteen chord lengths dcwnstream for the linearized soclution are

depicted in Figure 1 for threc different values of the thrust pacame-
ter.

It may be noted in Figure 1 that the tangential velocity distri-
bution at one chord length downstream has not been significantly
altered under mass flow injection rates considered whereas Lor
eight chord lengths downstream, the swirl veleccity component of the
tip vortex has been considerably reduced from that of the classical
{non-injected) case. Reducing the swirl coﬁponent «f the vortex
core is important since this corresponds to a reduction in the
strength (circulation) of the tip vortex. The reason the tangean-
tial velocity distribution has not changed to any'appreciable ex-
tent at one chord length downstream is that the trailing line vor-
tex has not had sufficient time to modify the injected airstream
by imparting some of its rotational kinetic energy of the vortex
core to the injected mass. While the theory developed is not ade-
quate to accurately predict the near field flow effects {i.s., less
than three or four chord lengths downstream), it does show that
the mass injection is beginning to reduce the swirl. At 8 or 10
chord lengths downstream, the tip vortex has had sufficient time to
entrain the injected airstream, thereby reducing its rotational
velocity. It may also be noted that there is a definite growth
in the vortex core as it progresses in the downstream direction.
This is to be expected since it is in agreement with the experi-

c
mentally observed fact that the core of a viscous vortex increases
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in size with time (i.e., with downstream direction) and there is

a corresponding decrease in the rotational velocity at a given
radius inside the vortex core. Physically, the results observed
in Figure 1. are quite plausible and in fact offer an explanation
of the mechanism by which tre noted changes of the vortex core can
take place with mass injection.

£ is known that the tip vortex consists of a finite central
viscous core of fluid rotating like a solid body surrounded by a
potential free vortex region. When an airstream is injected into
the vortex core; the tip vortex will do work on the injected air-
stream by attempting to impart a rotational velocity component
to the injected fluid. Furthermore, there will be a vigorous
mixing action taking place (i.e., a free turbulent flow) between
the tip vortex core and the injected mass which will cause the rota-
tional velocity component of the tip vortex to be reduced through
an exchange of momentum between the tip vortex core and the in-
jected airstream. Thus, the normal viscous decay of a vortex has
been greatly amplified by injecting the airstream into its core
which creates a free turbulent flow and thereby greatly increases
the viscous dissipation of the vortex core. As may be noted in
Figure 1, the linear momentum of the injected fluid is of suffici-
cient magnitude after a few chord lengths downstream to completely
overcome the tangential velocity of the tip vortex near the axis
of symmetry.

At a giveh location downstream, the tangential velocity Ve is a
function of only r,and the circulation in a circular region of

radius r is ,

r = 2n(xr - rg)ve .

As may be seen from this equation, the circulation will decrease
(or increase) as the swirl component of velocity decreases (or
increases). Since the theoretical values of the velocity
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distribution v, are known, values of the circulaticn (strength) in
the core c¢f the tip vortex were calculated from the above equation
and the results plotted in Figure 2 for both the injected and non-
injected cases. The results shown indicate that injection of the
airstream into the tip vortex core not only causes a decrease in

the magnitude of the maximum circulation but also alters signifi-

cantly the distribution of the circulation in the core because of

the change in the swirl component of velocity.

A tip vortex usually remains fixed in size and strength for
quite some time after its generation. It is precisely for this
reason that the blade-vortex interaction problem has been of con-

|
cern in helicopter dynamics where the helicopter blades must
operate in each other's wakes. Figure 3 reveals that the direct i
injection of an airstream into the forming tip vortex can be of q
importance in helping to alleviate the blade-vortex interaction
problem. While the ordinary vortex for the non-injected case i
will remain relatively fixed in size and strength, the injected ;

vortex core will increase in size and thus lose strength.

It can be noted from Figure 3 for the case of 15 chord lengths
downstream, the tip vortex for the injected case is roughly double
that of the non-injected case for a thrust parameter of .1l. How-
ever, as the thrust parameter increases from .1l to .20 there is

very little additional increase in the growth of the tip vortex
core. This indicated that it is not the velocity at which the
airstream is injected but rather the amount of mass which is in-

jected that is an important parameter. Furthermore, it illustrates

the fact that there is an optimum amourt of mass which can be in-
jected for any given tip vortex strength.

It may also be observed from Figure 3 that direct injection is .
favored over reverse thrusting {i.e., suction) since direct injec-
tion will create a less concentrated tip vortex whereas suction .

can create a more concentrated vortex {(i.e., small vortex core size)
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by removing mass from the vortex core. /130, the reverse thrust-
ing {sucticn) will cause a parasitic thrust on the rotor blade.

An interesting feature of steady axisymmetric flow fields is
that strong axial flows cccur near the axis of symmetry. As
Batchelor (5] has shown, the coupling between the azimuthal
(swirl) and axial (downstream) components of the motion in a
steady line vortex is provided by the pressure. The radial pres-
sure gradient will balance the centrifugal force field, and any
change in the tangential (swirl) motion downstream creates an
axial pressure gradient and consequently an axial acceleration or
deceleration of the fluid.

The variation in the axial velocity across the vortex core for
two different downstream locations {(one chord length and ten chord
lengths downstream) for the injected cases has been evaluated for
McCormick's data [4] and the results are shown in Figure 4. The
interesting feature of Figure 4 (top curve for one chord length
downstream) shows that there is an axial velocity, and a large one,
in the core of the tip vortex. Outside the core, where the circu-
lation is constant, the axial velocity v, =V, the free stream
velocity; but inside the tip vortex core v, >V, and increases to-
ward the axis of symmetry up to a value of 2,72 times the free
strz2am velocity (V_ ). The data used for computing these curves
was taken from Reference [4] obtained by wind tunnel tests of a
rectangular semi-span wing having an 18-inch span, a 5.85-inch
chord, and a free stream velocity of 100 feet per second. Since
such a model is similar to full-scale helicopter blades, the
theoretical results presented in Figures 3, 4 and 5 will be equally
applicable to full-scale rotor blades. Since mass injection into
the forming tip vortex will create a continual slowing-down cf the
tangential motion by viscous mixing of the injected fluid in the
downstream direction and consequently leads to a positive axial
pressure gradient with continual loss of axial momentum, it might
be expected that the axial velocity in the vortex core will be
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closer to the free stream velocity as the vortex progresses in a
downstream direction. The bottom graph in Figure 4 depicts this
situation with the maximun v, = 1.03 times the free stream velocity
at 10 chord lengths behind the wing. This result seems to be in
agreement with the physics of the dissipation of a tip vortex and
ghows that direct injection of an airstream into the tip vortex

core does create a faster dissipation of the trailing line vortex.

The induced drag associated with the tip vortex core has been
considered by expressing the drag as an integral over a transverse
plane which is independent of z, the downstream location. This
drag is related to the vortex core size and thus depends on the
thrust of the injected airstream. The effects of direct injection
and suction on the induced drag of the wing have been computed for
McCormick's wind tunnel test data and the results are presented in
Figure 5. The theoretical values for the drag show a decrease of
the induced drag for the injected case, while the drag remains
constant for the non-injected case. A reduction in the induced
drag on the wing should occur for the direct injection case since
there is a corresponding reduction of the induced velocity on the
wing. Since the present calculations neglect the three-dimension-
ality of the resulting flow field, the resulting percentage de-
crease as given in Figure 5 for the induced drag (i.e., approxi-
mately 20 per cent) are believed to be too high. A reduction of
the induced drag of about three to five percent would seem more
reascnable. The results presented in Figure 5 also show that
suction will create a slight increase in the induced drag since
suction generates a more concentrated tip vortex with a higher
induced velocity field. Thus, suction is unfavorable in comparison
with the direct injection case.

From Figure 6, the tangential velocity distribution across the
vortex core is presented for various downstream locations for the
reverse swirl case. The initial value of the circulation was
chosen to be 350 ft2/sec {about twice as high as would be
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encountered for a recalistic rotor blade) and a free stream velocity
of 600 feet per second (comwarable to tip speeds encountered in

actual helicopter flicht regimes). The results shown are based on
the assumption that reverse swirl is injected into the forming tip

vortex core.

As may be noted from the results presented in Figure 6, the
effect of injecting an airstream with reverse swirl is not favor-
able since it does not create a rapid dissipation of the tip vor-
tex core even for relatively large amounts of injected fluid.

It is noted that a reverse flow field in the tip vortex core is
possible since the angular momentum of the injected fluid can be
sufficient to overcome the angular velocity of vertex core in a
neighborhood of the axis of symmetry. To investigate the effect
of initial circulation strength on the results, a circulation
strength of about 100 ft?/sec was used. The results obtained,
however, were very similar to those of the higher circulation in
that the injection of a reverse swirling flow into the tip vortex
core did not significantly dissipate the vortex core.
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MEANS FOR OBTAINING THE REQUIRED MASS FLOW

Since it has been determined that it was thecretiuvally possible
to achieve significant, beneficial modifications of the vortex
core size, axial and swirl velocity distributions, vortex core drag
and vortex strength in all flight regimes by injecting a given mass
flow into the core of the tip vortex, it remains to be estimated
how much of the required mass flow might be obtainabkle fron centri-
fugal pumping and/or from utilization of the low pressure in the
vortex core and thus how much must be supplied by other means. It
is necessary to investigate these sources of obtaining the reguired
mass flow, since they could very well result in performance penal-

ties that might be unacceptable.

Basic Egquations Governing Pumping Process

The following assumptions were made in the analysis:

1. The helicopter blade was replaced by a horizontal pipe AB
of length R which is pivoted about a fixed support at A.

2. Suction and viscous drag forces associated with the pipe
flow were neglected.

The blade was assumed to be always full of air and for
dynamic purposes was regarded to be a thin rod of mass M,

0

V. = wXY = Ruwé
B

[ S
A

V==-Ve = -v_8

Free Body of Blade

Let R and 8 be rotating unit vectors along and perpendicular
to the pipe AB and k is the fixed unit vector forming a right-
R

handed system with and 6. The angular velocity of the blade

w = wk.
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The absolute velocity of the air leaving the nozzle is given by

The velocity of the air relative to the nozzle is given by

+ v

v, = (v B

£ f'r

and therefore

\-rf = (Ry - (vf>B)5 (69)

The redistribution of mass with respect to velocity for a rigid
body rotating about a fixed axis about 0 is given by

- = 4a ~ - dm() - - dmi - =
= e— A —— {  Sererm——
roxF = g+ (I, w) + 3 {roxvy) T (rixvo) (70)
where
1o = inertia dyadic about the rotation point
w = angular velocity of the rigid body about 0
Go = absolute velocity of the center of gravity ot utgoing
mass
v - = absolute velocity of center of gravity of incoming mass
A = area of nozzle or jet

0, ;0 = RR and

For the present case, Ei

Mg
a - 0Q = (rQ) ocut

(mass pex unit time flowing) (71)

wherc ¢ is the flow rate or discharge rate out of the nozzle. Since
w is constant in magnituce and directien, and rxF (resultant torgue
on system} is egual %o zerc, then Equation (70) becomes
0 = pQR(Rw - g) (72)
=9
(vf)B N
Thavefore, from Equation (71) it follows that

Q= A(Rw) = A(vf)B (73)
4.0

J .



by

r

and thus the discharge velocity at the exit (point B) is Ru. As
a check on this result, consider the sum of forces on a fluid ele-
ment ir the radial direction, that is,

mi{xr - ru?)

= 0 {74)
where
;-8 _ 4 5 ;v
r = 5;; = 3 {(v) = v 3T (75)

and r = position vector from the origin at 0 to the fluid particle.
Inserting (75) into (74) and performing the integrations yields

or

). =T = Ru (76)

which is in agreement with the result Equation (73) found from the
noment of momentum equation. If a helicopter blade has the follow-

ing parameters:

R = 30 feet
@w = 30 rad/sec (cruise condition)
A=5.5x% 10" °ft2 (1" diameter nozzle)

then from Equation (73) the discharge rage will be
Q = A(Rw) = 4.95 ft3/sec
which would be sufficient to cause the beneficial modifications of

the tip vortex core as previously noted (see Figure 1) since this
corresponds to a thrust parameter of .1ll.
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In addition to centrifugal pumping, it may also be possible to i

utilize the low pressure in the vortex core by means of a "pressure
pump" effect. By applying the Bernouilli energy equation from the
entrance to the exit of the pipe and neglecting head losses,

2 2 Y
Y_é+%=1§+pB(r) (77) .
2g ‘ 29 Y
and, therefcre
Po - B, = 5 j:(vf)f3 - (Ru) 2] (78)
where
w = angular velocity of the blade
pPo = stagnation pressure at entrance to pipe
Ec = tip vortex core pressure = pressure at pipe exit.
Solving for (vf)B yields
- 1/2 :
2(po-n,) / :
(vglg = (Ro) |1 4+ ———— . (79) .
o (Rw)?

For a circular vortex, the pressure in the tip vortex core as
given by Milne-Thomson [10] is

2 2
Py =Py - =2 f1- = (80)
2 2
ag 2ac
maé
where k = 5 = strength of circulation. Defining the average

pressure in the vortex core as
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b, = (81)

- 2 2
P, = |Po - kip + kK% . (82)
a2 4aé

If Ap = pg - Ec, then it follows that

2

ap = 3K
4a2
c

Substituting the expression for k? yields

3pméaé
AP = —Tg
and, thus
2 2
28p _ - é[ig (22] (83)
pRzmz 8 R [ W

where w, = angular velocity of the tip vortex core.

Inserting (83) into (79) yields

a )2

=
R

= 3
(Vf)B = (Ry) {l + 8

The second term in the parenthesis of Equation (84) represents
the increase in the discharge velocity due to the low pressure in
the vortex core. Note that if Po = Pu (stagnation pressure) in
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Equation (79) then

(ve)y = Ru

Ve'p

which is in agreement with Equation (76).

{; To cstimate the order of magnitude of this effect, consider
- the experimental data of McCormick [4]: 1

V.= 100 feet per sec
¢ R = 1.5 feet = 18 inches
Ru = 100 feet per sec

s w = 66.6 rad/sec
' 5.74 inches

_— a_ = vortex core radius = .72 inches at one chord length
EF- TN

G
o3
Q
n
[o%)
|

Y 2400

m §6.6 _ 37-0.

and‘(vf)B = 133,5 feet per second, the percent increase in the

b

discharge velocity would be

Vnew Yold _ 133.5-100

33% increase
Vold 100

assuming that all of the low pressure core could be effectively
- utilized.

"
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The following is a summary of the effects which may be expected

CONCLTJSIONS

from the modification of a tip vortex by the injection of an air-

stream into the tip vortex nore generated by a lifting surface:

1.

Significant beneficial modifications of a tip vortex core
may be achieved by direct inject‘on of an airstream into
the tip vortex core shed by a rotor blade.

Appreciable reduction of the swirl {tangential) velocity
component of the tip vortex is possible under quite
reasonable mass flow injection rates.

The bereficial modifications of a tip vortex by direct
injection were not dependent on thg/free stream velocity
and therefore should be obtainable over the complete
flight regime of the helicopter. This represents an
important improvement over other methods of circulation
control.

Modifying a tip vortex by direct injection shows that it
is the amount of mass which is injected into the tip
vortex core that is import:nt and not the velocity at
which it is injected. Furthermore, there is an cptimum
mass injection rate above which very little additioconal
benefits can be obtained.

The effect of direct injection is beneficial as regards
rotor performance since it slightly reduces the induced
drag on the helicopter blade which generates the tip
vortex.

The advantages resulting from the injected airstream will
be greater for those helicopters which have the smaller

1 i1lues of circulation per blade. Thus, for a given mass
flow rate and a particular type of helicopter blade, the
advantages of injection may be increased by adding more
blades per rotor or by otherwise reducing the total <ircu-
lation per blade.
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The effects of injecting a reverse swirl into the forming
tip vortex core and alsc withdrawing fluid from the tip
vortex core by suction did not show significant beneficial
modifications of the tip vortex core over a wide range of
mass flow rates and therefore cainot be recommended as a
possible means of modifving a tip vortex.

It has been estimated that the required mass flow for
aerodynamic injection could be obtained from centrifugal
pumping action of the blade.




-
- ——

RECOMMENDATIONS

Since it has been shown, theoretically, that significant
beneficial modifications of a tip vortex are possible by means
- of direct injection of an airstream into the forming tip vortex,
it remains to be seen if these changes may actually be obtained
on a full-scale rotor system. It is therefore recommended that an’
experimental wind tunnel program be implemented using a scale

A; model to verify that the theoretically predicted changes are
actually possible.

g ':-3‘
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