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ABSTRACT

‘A method for calculating the response of simply supported windows to

sonic hooms haa been developed.

The procedure is based on a linear one-

degree-of-freedom analysis plus estimatea of the importance of nonlinear

and multimodal effects, Eftects of stress raisers and of movement followed

by impact of loose windows are not considered,

Significant contributions to the maximum stress in windows subjected

to 2 psf aonic booms are made by large deflections (nonlinearities), modes

above the fundamental, and the int:rnal pressure built up in the buiilding

by the boom,

An attempt to estimate statistically the occurrence of window failure

under 2 psf booms was frustrated by the lack of precise knowledge of the

statistical distribution of glass strength.
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PREFACE

This report ie one of a aeriea of technical reporta desling with
varioua effecta of aonic booma. The research waa aponaored by the

National Oonic Boom Evaluation Office of the Air Force,
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RESPONSE OF WINDOWS TO SONIC BOOMS

SECTION I

INTRODUCTION

The reaponse of windows to aonic hoom loadinga preaenta an impor-
tent prohlem in the evaluation of =cnic hoom effecta on atructures, Ex-
perimentsl atudiea which have heen undertaken to amcertein the effects
of hooma on windowa of varioua sizea are those of Maglieri, Huckel and
Perrott (1961), Blume and Asaociztca {1965), and Freynik (1963)., Theae
teat progrems have ahown that nearly all windowa ere hroken hy hoom
preaaurea of 100 paf and that e few will hreek at preaaures of 10 or 20
psf. No lower 1limit has heen estahlished on the preaaure required to
! hreek a window, Theae three studiea and the stetic teata of Bowles end
Sugsrman (1952) and Orr (1957) heve shown that windowa have a nonlineer

hehavior even at low preaaurea,

] Nonlinearities hecome important when the central deflection exceeda
i one-half the plate thickneaa, and, for uaual window dimensions, atatic
preaaurea of 1 paf to 10 paf will cause auch a deflection, The conae~
guence of the nonlinearitiea ia that atreaa and deflection ere not nro-

portional to ;resaure or to each other. Hence, there has heen consider~

ahle difficulty in interpreting experimental reaulta and in extrapolating

; the findinga, In moat csaes the data were not correlated with theory.

In the dyaamic teata the pressures acting on the window were not meeaured,
only the nominal preaaure in the vicinity waa meaaured. In csaes where

window deflection was moaaured, only maximum excursioin waa ohtained.

. R .. SN

Knowledge of window hehavior regquirea careful procuriing of the right

data and data reduction hesed on 1 theoreticel analyals of the window
! motion, This preaent study ia intended to hring together available theo-
retical knowledge on the suhject to

1, indicete the experimentsl parsmetera which ahould he meesured,

2, provide a haais for data reductlon,
3. provide a haais for prediction of window atreasea and deflec~

tiona in reaponae to booms,




4, indicata those araas whara furthar axparimental or theoratical

work is moat naadad.

The study is primarily concarned with boom loadings with peak presaures
of about 2 paf.

Nat loading on a window is a function of tha stiffneas and voluma
of tha structure in which tha window occurs. Rasponse of a window to
loading i3 highly nonlinear and dependa on the participation of savaral
deflection modes. Becausa ¢of this complaxity tha prcblem has not baen
aclvad analytically but has been approximated by considaring {1) ganeral
propertiea of windowa, (2) the linear responsa of windows in the funda-
mantal mode, (3) linaar responsa in all modes, (4) effect of intarnal
preasure on the reaponae, and (5) nonlinaar reaponsa in the first moda.
By comparing tha rasults of (2}, (3), (4), and (5), wa have estimatad
the nonlinear, multimocdal reaponsa, Finally, using tha calculated res-

ponne, the atatiatical probability of window damaga was catimated,
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SECTION Il

GENERAL NATURE OF WINDOWS

To celculste window respornss, we need to know the normal mounting
conditions of windows, strength snd modulus of glsss, common sizes of

windows, end the neturel {roquencies of windows,

Window glsss 1s mounted either with glszing nsils snd putty or in
s rubber sesl. It may be assumed that the edge conditions cen be spproxi-
mzted by 5 simple support with e moveable edge, This sssumption hss been
studied by Freynik (1963), Freynik used squsre windows mounted wita
glezing nsils snd putty. He compared empiricsl nsturel freguencies with
those from viorstion theory for simple supported plstes, snd compsred
messured stresses with theoreticel vaslues., Both comparisons showed thst
the experimental results could be explsined on the bssis of s simple
support condition, The results of Bowles snd Sugsrmsn {1952) in stetic
testing of windows confirms the existence of the simpe, movesble boun-
dsry condition.

An unknown, but probsbly lsrge, fraction cf existing windows sre
loose in their mountings snd/or have stress veisers present in poor mount-
ings. The resulte of this report csnnot be spplied to such defective
windows since the sbove sssumption of simple support edge conditions does
not spply., Our results should spply well to calculstion of the response
of new, well-mounted windows such ss those ususlly encountered in lsbors-

tory tests or field test structures.

Strength of window glsss has been reported by R. W. McKinley (1964);
velues for strength snd other psrsmeters of glass windows ere l.ited in
Table 1, Strengths were deiermined by the standerd ASTM (1965) heam test
procedure. Flexursl strength wss evslueted as fsilure in teneion: glsss
Teils without sny significent amount of plssiic deformation so thst the
yield value equsls the uliimste strength. There is considersble scstter
in results from strength tests. McHinley (1964) ststes thst the strengths
are normally distributed snd suggests using s coefficient of vsrietion of

25% (that 1s, the stsndard devietion is one-fourth the mesn stvength).




TABLE I

PROPERTIES OF WINDOW GLASS
(from McKinley)

Property Velue
Flexurel Strength
Short duration: sonic booms, blests 6600 psi
One minute lo-ding: wind | 4400 psi
Elestic modulue 107 psi
Density 0.09 1b/in?
Poiseon's ratio 0.23

On the other hand, Shand (1958) states that the distribution it not ncr-
mal, but skewed so thet the mean is larger than median and mode; possibly

a lognormel or Poisson distribution would fit the data.

Normal sizes for glase panes are dictated by building code require-
ments which in turn are based on wind lcadings end nominal factors of
safety. The allowed thicknesses for panes of various ereas as specified
in the Uniform Building Code (1984) are shown in the first two columns
of Teble 2, The values are for a wind loading of 20 psf, Dimension of
the window may be combined to form the dimensionless parameter, a/h,
whers A is the length of one side of a squsre pane and h is the thickness,
For a rectangular pane, e is taken ss the square root of the area. In a
equere pane the a/h ratio and the pressure govarn the magnitude of stress
in the pane under uniform loading. From the building code requirements,
the maximum allowsble retio (a/h) was determined and listed in column 3
of Table 2, If it is presumed that a builder will alwsys use the minimum
thickness permitted, then we cen also cbtain a minimum ratio ss in column
a of Tubie %, This winimiw vaiue of a/h was computed for each thickness
using the value of e assoclated with the next smaller tuickness. The
minimum values are listed opposite the thickness vslues used in each com-

putation,




TABLE 2

Nominal EBizes of Squsre Panec¥

Ares Thickness Maximum Allowed Minimum Probsbl
a? t, a/h e/h
(£13) (in.) (dimensionleans) (dimensionless}
5.8 0,085 340 14 1%
10,85 0.115 343 251
12 1/8 332 318
27 3/1e 332 222
48 7/32, 1/4 380, 333 285, 242
78 5/18 333 268
198 3/8 333 277
190 1/2 331 250

P

Data in Columna (1) ond (2) ere from the Uniform Building Code (1964).
Based on e 12 x 12-inch window,

The listings in Teble 2 show that the runge of s/h veluea ia not
very large, Since most of the valuet are between 220 and 340, this range

wes used in the enelyaea of this report,

Tae netural frequencies of windowa ere importent for studiea of dy-
nemic lcadinga. For this anelysis the windows sre treated as simply
supporied plates undergoing amall deflections, This epproach appeers to
be adequete for deflections which ere leaa than the psne thickneoa.

Figure 1 ia a greph of natural freguency as a function of the aree-to-
thickness ratio, calculated from the equetion shown on the figure, Square
end rectengular panes with severel eapsct ratios ere included end the
firat three freguencies ere considered. These three frequencies correa-
pond to modea in which there are one maximum point of deflection, three
maxime, end nine maxime, The renge of erea-to-thickness ratios for var-

izus glass ihicknesses is also shown to indicste the probeble frequancles

which are encountered,
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SECTION I1I

DEFLECTION AND STRESS OF WINDOWS UNDER SONIC BOOMS

A, Problem Statement

To determine the deflection end stress of windowa under booma let
ua examine qualitatively preasures on the buildiirga end resction of the
building. Cheracteriatic hoom preasures related to structure reection
are ahown in Fig, 2, In the free field tbe pressure rises sharply. At
the front wall of the building the preasure showa a aharp rise and evi-
dence of reflectiona from tbe ground end wall, The boom preasure at the
rear ahows e more gi'sdual rise and fol)lnva that on the front face by s
few milliaeconda. The preasure at each point on the roof haa 8 sharp
rise, but the averege roof pressure hra a longer riae time, corresponding

to the travel time of the wsve across the roof.

The effecta of theae loadings an tbe building are of two typea:
(1) general compreaaion of the building followed by a rarefaction,
(2) racking of the building firat in the direction of travel of the boom
and then in ihe reverae direction. The oversll compresaion of the build-
ing causea an increaae in the preaaure inside the building. This inter-
nal pressure is uaually one-fourtb to one-half the peek boom pressure end

significantly sdds to the atructural atiffneaa in compreaaiovn.

¥indow deflections duri..g a sonic boom ere e furnction of the exter-
nal preaaure, structure motion, and internsl preaaure built up through
compreasion of the building. The external presaure ahowa avidence of re-
flectiona from ground and buildings and pssssge sround buildinga and so
may not correapond cloaely to the free-field boom preasure. To calculete
the internsl proasurea snd bullding mot .na it will be neceaaery to know

(1) motion of the walls and roof caused oy a hoom prassura

and {2) motion

H

of the walls, ceilipg, and roof cruaed by internel presaure. If internal
end externel presaure ere known, window motion can be calculated ea the
motion of # nonlinear, multimo<al aystem under the action of known forces,
Such an analyais would be & major effort. Inatead, s one-degree-of-
fresdom analyais was made end the contributior of nonlinearities and

higher modea computed aa perturbations of the single mode solution.
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To make tbe problem trsctable the following sssumptions were intro-
duced:
1, The outside boom 15 sn idesl symmetric N-wsve, This assumption

eliminatea the rise time and minor irregulsrities in the wsve

ot

oA
Akke

form. If the period of the siruciure is much loagsr than
rise time or durntions of irregulsrities, then this sssumption
is Justified,

2. The inside pressure hss the form of s full sine wsve with the
same duration ss the boom signsture, This pressure history 1s

8 simplification of observed internal pressure histories,
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3. The variastion in srrivel times around the bullding cen be
neglected.
The seversl enslyses required ere
° Lineer enelyels of first mode motion under sn N-wave
L Lineer anzlysie of first mode motion under internsl pressure
L Linesr snalysis of tirst mode motion under sn N-wsve end

internsl pressure

® Lineer enelysis of multimodel motion under en N-weve
L large deflection enelysis of first mode motion under en N-wsve
L Calculstion of the emplitude of internel pressure

The results of these enelyses ere presented next. Following them,
the results sre collected to produce sn anelyais of e window motion end

stress,

B. ¥indow Deflection and Strees Based on Lineer Anaslyses

Figure 3 is sn 1llustrstion of the probeble bigctory of centrel de~
flection of s window (fundsmentel mode only) to en N-shaped pressure
wsve. The epplied pressure is shown es the dotted line with sn emplitude
corresponding to the stress which would occur if the pressure were epplied
steticslly. The dynemic deflection curve shows oscillation st the funde-
mental frequency of the plste. The plste is oscillsting ehout the ststic
deflection curve so thst the dynemic deflection eppeers ss s superposition
of stetic deflection end free vibrstions. [In this figure the maximum
negstive defluction 1s epproximstely equel to the maximum positive. The
two maxima sre 26% snd 40% higher thsn the stetic stress corresponding
to the maximum spplied pressure, The rstio of msximum dynemic stress or
deflection to the ststic velue is referred to a8 the dynsmic smplificstion

factor.

The dynemic smplificstion fector for the fundementel mode of & equere
plate {appliceble to both stress end deflection) is shown in Fig. 4. The
loading wes s symmetric N=-sheped pressure weve. In this figure there ere
separete curves for the maximum positive end negstive deflection during
tha boom end the magnitude of the free oscilletion following the boom.

These curves were derived from the snslysis in Appendix A for linesr
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omplificstion fsctors. The sbscissa is or/2m, a nondimensionsl relation
between w, the fundsmentsl circulsr frequercy of the window, and T, the

duration of the N-wave,

Higher modes slso contribute to the deflection and stress in the
window, Dynsmic smplification fsctore for the deflection snd streas
undar s symmetric N-shaped pressure wsve for the first eleven modes sre
shown in Figs. 5 snd 6. The first eleven modes were cslculsted but the
msin contributors were the first (1,1) and sacond symmetric (1,3) modes.
For compsrison the two figures include the positive snd free vibrstion
msxima for the fundsmentsl mode. We note thst, while the smplificstion
fsctor wes the same for stresa snd deflection in the fundsmentsl mode,
it differs for the multimodal case. The factor. for deflection is modi-
fied only very slightly by the contributions of higher modes: the first
pesk is szbout 4% nigher snd other curves are modified less. The smpli-
ficaticn fsctor for stress is increased 0,60 in some regions of the sb-
scissa and the peaks of the curve sre broadened. In sddition the second
symmatric mode is sufficiently importsnt to provide well-defined humps
on some of the curves, On the sversge the stress increase during free

vibrstion is 0.28 snd for the positive maximum the incresse is 0,26,

c. Deflection Under Internsl Pressure Based on Linear Anslyses

The response of a one-degree-of-freedom systom to s pressure in the
form of a full sine wave is shown in Fig. 7. This 1Is the expected form
of internal preassure, Agsin the positive maximum, negative maximum, snd
free vibrstion msximum sre shown as a function of fundamentsl frequency.
The amplification fsctor is lsrger than 2.0 only nesr coiucidence of the
forcing freouency snd the nstursl freguency. The snalysis on which thesc

curves sre bssed is detsiled in Appendix B.

In Appendix B sn snslysis is also msde of the response of a one-
degree-of -freedom system to a combinstion of the N-wave snd iaternal
pressure. Some results sre shown in Figs, 8 and 9 for deflection (stress
curves sre identicsl). The main effect of increasing the internal pres-
sure is to greatly decresse the smplificstion fsctors in the vicinity of
wr/2m = 1,0,

12
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D. Nonlinear Deflections and Stressea Under Booms

In reaponse to normal wind presaure loadings, window deflection is
a markedly nonlinear function of the pressure. This nonlinear behavior
occura becauvae the plrite reaists part of the load as a membrane after the
deflection bacomes large. According to the diacussion of Freynik (1963)
thia nonlinearity cautes the motion to differ considerably from that
ahown in Fig. 3. Ins ead of the amooth sinusoidal vibrations, the motion
ahowa abrupt changes .n direction. The natural frequencies of a window
undergoing large deflections are a function of the deflection amplitude
and are almoat a continuous band of frequencies above the fundamental.
Witk auch a mixture of frequencies in the motion, the natural frequencies
cannot bhe readily determined from the records. The nonlinearities have
an important effect on

b atreaaea and deflectiona,

L natural frequency,

. dynamic amplification factor.
We will conaider each of theae effects and then provide some numerical

valuea to guide in saaesaing the seriousneas of the nonlinearity.

The variation of streaa and deflection with applied static pressure
ia ahown in Fig. 10 baaed on the calculstiona in Appendices C and D. In
Appendix C the forms of the equationa are derived theoretically. The
coefficienta of the equationa are evaluated in Appendix D from experimen-
tal data of other .nveatigations. Figure 10 ahows the nondimensional
quantitiea wo/h (deflection, £), ca?/Eh?® (stress, S), and gqa®/Eh* (pres-

anre, Q), where

wg = central deflection of the square plate
¢ = streas {bending, membrane, or boih)

q = uniform preaaure on the plate

a = side of plate

h = thickneaa of plate

E = @laatic modulua of plate material
The nonlinearitiea became important for a deflection greater than 0.5
timea the plate thickneaa., A 2 paf boom will cauvae deflactions up to 1.9
times the thickneaa in aome windowa - that ia, well into the nonlinear
range.

18




Yo S BT | 1 |! T T !/| ( 3
LINEAR TOTAL STRESS ¥
- LINEAR DEFLECTION /
& £
| ~ 15
B ¥
-] L
b 20 -2
wvi 1
- z
ﬂ‘ DEFLECTION E
& ]
b= el
(15 ] b
" -1
-4

5 a
- :
g o] | E
g

0 o

0 20 40 60 80 100 120

NONDIMENSIONAL PRESSURE, Q = go*/En?
TH-$06%6

FIG. 1¢ DEFLECTION AND STRESS IN THE CENTER OF A SQUARE PLATE
AS A FUMNCTION OF STATIC PPESSURE

19




In Fig. 11 it ia appareni that the relation between deflection and
central stress is not altered much by the nonlinearities, The fact that
the linear and nonlinear curves do not colncide vt the origin suggeats
that there may be some uncertainties about the experimental values from

Appendix D on which the curves are brsed.
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LINEAR STRESS
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NONDIMENSICNAL DEFLECTION, £ = wo/h
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FIG. 11 NONLINEAR RELATION BETWEEN CENTRAL DEFLECTION AND STRESS

Next we conalder the large deflection of a window under boom pres-
sures, Dynamic cslculationa of plates undergoing lerge deflections
normally begin with von Karman's equations. {See Timoahenko {1938) for
8 derivation of the eguationa,) However, the reaulta from von Karman'a
equations did not agree well with experimental data on window deflectliona
{see Appendix D). Therefore we took the preaaure~deflection relation
derived froa the atatic experimenta, reairicting attention to motion in

the fundamental mode only.
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Nonlinear deflection of a window under an N-wave 1s shown in Figs.

12, 13, and 14 (based on calculations in Appendix E). These three figures
corresrond to peek pressure amplitudes required to cause static deflec-
tions of h, 2h, end 3h, (§B 18 the nondimensional static deflection

ws/h under the peek pressure,) The peaks of these figures and Fig. 4 are
sumparized in Fig. 15. In the summary figure we see that large deflec-
tions tend to reduce the psriod of the plate so that the maxima occur at
smaller values of wt/2m than occur from small deflections. Also, the
amplification factor for free vibration is reduced for large deflections
but 18 unaffected for the positive maximum during forcing. The change

in the apparent natural frequency with deflection is summarized in Fig. 16,

An estimate of the multimodal nonlinear behavior is made in Appendix
E for both stress and deflection. The peak deflections are modified very
slightly by the perticipation of modes above the fundamental. Therefore,
it is recommended that the nonlineer response in the fundamental mode be

used to calculate deflections with no changes to account for higher modes,

The estimate for peak stress is more complicated, and the accuracy
of the estimate may be considerably less than that for deflection, The
estimetion procedure to be outlined eppeers logicel bvt has not been
verified in auy way. The procedure includes two elements:

¢ Conversion of the nonlinear deflection amplification factor

to stress amplification factor

* Addition ot an increment to correspond with the contribution

of higher modes,

To convert from deflection to stress, Eq, D.8 can be used to relate

the stress in the first mode, 8,, to the totel central deflection, §,

| = 4_95 (1 + 0 187

4
&

)

3
But the deflection £ is F gs where
Fg is the amplification factor for dellection and
§S is the static deflection.
Therefore

S, = 4.9 Fggs {1+ 0.187 Fggs)

The next step 1s to add a f:utor corresponding to the contribution of
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the higher modes. According to tre snslysis of Appendix E, the stress
sssocisted with these modea is primsrily bending (not membrsne) stress
and hence equsl to thst obtsined for the linesr case., Therefore sdd 0.28
times the totsl linesr static atress if the peek occurs during free vi-
brstion, or 0,26 if the pesk occura during forcing., That is, for freae

vibration the dvnamlec streas is
= . 1 . . 4, 2
S 4.9 rggs (L + C.167 Fggs) + 0,28 (4.4) %s
The stress smplificstion factor, FU, i3 found by dividing S by Ss where
= 4.4 1+ 0, €
s € ( 186 _s)

8
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Aa an example conalder a aquare window and & boom with the ftollow-

ing characteriatica

Window area = 45 aguare feet
Thicknesa = 1/4 inch
Natural frequency = 7.4 Hz
Boom duration = 0.1 seconds
Peak pressure = 8,83 paf
Nondimensional pressure = &6

According to Fig. 10, the static deflection urder the peak preasure ie

2h. Fgl is 1,80 according to Fig. 15, using an sbaciasa of 0.1 (7.4) =
0.74, Then for moment wa compute

poo 49 (1.80) (1 + 0,167 x 2.0 x 1.80) + 0.28 (4.4)
a 4.4 (1 + 0,18 x 2.0)

2.54 {nondimenaional)

8 value which appears quite resaonable,

Now let us take three examples of windowa and determine the deflec-
tiona, stresaea, and freguencles in reaponae to & 2 psf boom, disregard-

ing internal preasure, The maximum and minimum slenderneaa ratios (340

and 220 and an intermediate value will be used for the compariaon. The
calculated values are given in Table 3. Included in the table are values
from the linear snalysis of the same problem, The window with the largeat
a/h value givea the most markedly nonlinear behavior. For thia window

the lsrge deflection theory givea a2 deflection just 84% of that from the
linear theory, and streases 75% of {hose from the linear theory. The

windowe with emeller a/h ratice

dirm Aaflandd-:
jo -

~
O e -
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TABLE 3

DEFLECTION AND STRESS OF SQUARE WINDOWS UNDER A 2 PSF BOOM

Linearized Anslyais,
a/h Static Loading Dynamic Losding Dynamic Loading
wo/h a wg/h o wWo/h o
Deflection | Stress | Deflection) Stress Deflection | Stress
- {ps1) - (ps1) - (pat) | .

220 0.15 160 0.30 370 0.30 440
280 0,39 240 0.75 560 0.78 730
340 0.78 350 1.42 810 1,70 1080
NOTE: The boom durstion snd fundsmentsl frequency of the window

were presumed to be such that wr/2m = 1.0,

E. Determinstion of the Amplitude of Internsl Pressure

The pressure in s building which 18 struck by 8 boom may be csused
by
1., flow of the pressure weve through openings ir the building
{open doors, windows, ventilstion ports),
2. cverall compreasion of the building,

3. transmission through flexible sress such as windows,

The third is essentislly a different wsy of stating the second with the
added presumption that the only elements which will deflect sppreciably
are windows. The third csuse wss assumed by Blume (1965) to be the most
important, 1In this section s cslculation is presanied determining the
pressure rise as 8 function of oversll building compression. The
¢slculation shows thst bullding compression msy be the primz cause of

internal pressure.

For the cslculstion we will assume that the history of the internal
pressure is sinusoidsl with perind equal to the boom durstion. Internal
pressure is cslculsted from the equilibrium conditicn between the beom
presaure, wsll deflection ond internal pressure., The necessary equetiona
are derived using the vsriables 1llustrsted in Fig. 17. The maximum
deflection of the roof is

28
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p = . = 1
*r For "sp 91 = (Fpy ~ Fpep) Ygp 9m (1)

where F R ia a dynamic amplification factor for the roof under boom
B loading.

FBIR ia a dynamic amplification factor for the roof under
boom and internal preaaure (aa ahown in Figs. & and 9).
Yopr ia average atatic deflection under unit preaasure,

q9;, 933 A8re outdoor boom and attic peak presaures,

TA- 4O8%-29

FIG. 17 PRESSURES CONSIDERET IN CALCULATING
THE INTERNAL PRESSURE OF A BUILDING
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Ccomparable equations can be written for the wall and window deflections,

Similarly, the ceiling deflection is

“'c = FIC wSC (azy = c122) (2)
where
FIC is tue dynamizc amplification factor for the ceiling under
internal pressure
w is the average static ceiling deflection under unit pressure

SC
937 1a the pressure in the first floor rooms,

The internal pressure 1is caused by deflection of the structural surfaces

so that
U2z = WG, + WG, + WGy (3)
= - 4
921 = Wglg = ¥clpc (4)
where
Wy T window deflection
L wall deflection
GC’ Gw, GB, GP’ and GRC are factors relatirng the average deflection

to the change in pressure,

The main contribution to internal pressure is from large panel elements

such as the roof, large doors, or windows.

To validate the method, a calculation waa made of the peak internal
pressure in a simple rectangular one-atory structure designated PF-6 in
the White Sands sonic boom teat report of John A, Blume and Assocliates
(1965},

The experimental results obtained during the sonic boom tests indi-
cate a nonlinear relation between internal and external pressure, For
low presaures the ratio is about 40% for booms from an F-104, At 5 psf

the ratio is 30%. For our calculation the 2 x 4's in the walls and roof
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were asaumed to provide all the astiffnera to those elements and to be
fixed at both ends. 7The poaltive maximum amplification factor waa used
from Figs. 4, 7-9. The boom duration was assumed to be 0,10 seconds, a
nomingl value for the F-104. Calculated frequencies of the atructural
elementa were

Windows 18 Hz

Walla 25 Hz

Roo!, Celling 8 Hz
Equations 1 through 4 were solved for a 1 paf hoom to give

4,; = 0.f4 psf (peak attic presaure)

qp, = 0.36 psf (peak pressure in first floor rooma)
The value of 0,36 for q;, should be compared to fhe internal preaaure of

30 to 40% measured by Blume and Asaocisates.

The correspondence between the calculated and experimentsl valuea ia
very good considering the uncertain basis for aome of the asaumptions.
The present calculations alro ahow th= relative importance of the contri-
bution of each element to the pressure rise in the structure, For PF-6,
the pressure csused by motion of the roof and ceiling was 32% of the in-
ternal pressure, q,,. The walls contributed 8%, windowa 10%, While the
calculations are not verified sufficiently to use for predictions, the
resulta led us to believe that compression is the main cause of the rise

in internal pressure.

The preceding procedure 1s dependent on the velidity of certain as-
sumptions concerning *he end fixity of wall and roof members, and on «in-
dows and doors being closed, Instead of conducting this procedure, which
is unverified, it is reamsonable to depend on an 2stimate of the internal
pressure based on the experimental results of Blume (1965). For a flexi-
ble structure the internal pressure might be eatimated at 50% of the boom
pressure, If the voof or ceiling or upper floor ia s stiff element and
the walls are not abnormally flexible, an educafed guesa indicatea that
the internal presaure is 25% or leas of the boom pressure. Following
the reduction of the Edwards Air Force Base test dats it ia expected thst

a nore relisble baails for these pressure estimates will be available,

o p—————



F. Summary of Window Behavior Under Boom Loading

Determination of the response of windows to booms requires the com-

putation of a host of factors. Now that each of the factors has been

introduced, a summary of the calculation is presented:

1. Eatimate window deflection using some guess ai internal pres-
sure; use Figs. 4, 8, and 9. Thia estimate is required for
Step 2.

2. Compute the internal pressure acting on the inside of the win-
dow as outlined in Section E.

3. Determine the amplification factor for the window as a one-
degree-of-freedon syatem to boom pressure and internal pressure;
use Figs. 4, 8, and 9.

4, Modlfy the computed factor for nonlinear effects: Find the

dynamlc amplification factors for appropriate static deflection

and for zero deflection; multiply the amplification factor from

Step 3 by the ratio of these factora to obtain Fe .
2
5. Mcdify the values for the muitimodal effect: For deflection,

let Fg = Fgl. For moment or stress, compute Fc’ the dynamic

ampliZication factor from the relation

1.115 F, {1 + 0,167 F_£ ) + 0.28
. bl Es
a 1+ 0,186 §_
=]

The valuea of streaa and deflection can then be found from the equations

and
= FS = 4.4 1 + 0,186 F
3 = Fj ik 5,) F,
It 1a expected that the dominant dilsplacement response of square
windowa to a 2 psf far~field sonic boom will be resonance in the funda-
mental frequency of the window., For longer rectangular windows there

will be oacillation in the first and second symmetric modes. The noar-

32




field boom exhibits oscillations which may excite oth-r window frequencies.

Nonlinear effects are expected for windows with large slenderness
ratios (length to thickness over 300) when subjected to 2 psf booms.
Instezd of a resonance in the fundamental mode at the fundamental fre-
quency, the resonance will occur at a range of frequencies near the fun-
damental. Freynik (1963) has shown that the Fourler spectrum of response
has a continuous band of frequencies with the frequencies from linear
theory dominant. The linear frequencies hecome less dominant as the
deflections increase. The magnitude of the peak deflection and stress
will be recduced by the nonlinearities. The dynamic amplification factor
for deflectiun and stress will be 1.4 to 2,7,

Maximum stress and maximum deflection are not closely related, even
in the static case, Maximum deflection under a uniform static pressure
1s essentially a function of the first mode reaponse whereas maximum
stress receives a centribution of akout 10% from the higher modes. 1In
the case of dynamic and particularly nonlinear dynamic response, there
ls even less correlation between the stress and deflection. Hence, if
stress is desired from experimental data, stress should be determined
from strain gage measurements, and if deflection is desired, deflection
t,o0uld be measured, One should not depend on calculating one quantity

from a measurement of the other at a given point.
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SECTION IV

STATISTICAL PREDICTION OF FAILURE

Tha most important information which should be obtained from a study
of window raaponsa to aonic booms ia an answer to the question: What is
tha probability of failura of win. .-"s undar aonic boom presaurea? To
anawar this quaation wa naad ataii:: lecal data of three types:

. Variability of maasured ..ximum prasaures for a planned pres-
sure of the sonic boom. Thesa variations are dependent on
weather conditions, position, valocity, and acceleration of
aircraft, and terrain. With our present state of knowladga
about booms, these variations muat be handlad statiatically
rather than deterministically.

. Distribution of window sizas in buildings.

L Distribution of window strengths in normal kinds of caaings.

We hava made two computations, aaauming firat-.that window glasa
strangtha are distributed normally, and sacond that they are distributed
lognormally. (Available data do not diatinguish between theae diatribu-
tions.) We take the coefficient of variation of the strength as 25% a8
recommended by McKinley (1964) of Pittsburgh Plate Glasa, The mean boonm
strength is taken as 2 psf with a coefficient of variation of 25%. The
25% is characteristic of fairly calm daya. The paak atresses uaed will
ba thoaa from Tabla 3, for a/h = 340 (moat critical caae) and for a glaaa
strength of 6600 pai.

The probability of failura is treated from the viewpoint of multiple-
valued random phenomena as described by Parzen (1960) (Chap. 7, Sec. 3):

1

welx,y) ax, dx, (3)
s

x
{"

where ¢'s are mutually independent probability density functiona, For a
normal distribution, ¢ 1s given by

1
o(x) = Vang exp [-1/2 (Eéﬂ 2]

PRECEDING PAGE BIANK
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and for the lognormal, ¢ is (see Altchison and Brown (1937))

1
Fa——— ) log x-m
@(x) = J2mxo exp [-1/2 (—£6—)2]
While an exact analytical solution of Eq. 5§ 1a not possible, the integra-
tion can be easily performed numerically, These computations were made
for the moat critical caae of Table 3, that ia, for a/h = 340, The

results are

Diatribution Probability
Normal 0002
Lognormal 109

Evidently then the failure probability is critically dependent on the
distribution aasumed, It is often aaid that the normal distribution is
impcaaible because it predicta a finite poasibility of negative values

of atrength and boom pressure. However, 1f we truncate the normal dis-
tribution at zero for the above calculation, we make no noticeable change
in the calculated probability. Hence there appears to be neither logical

nor experimental baaea for determining the correct distribution,

From claima data it appears that the probability of damage for win-
dowd per 2 paf boom is of the order of 1072, This indicates that the
correct diatribution for window atrengths may be intermediate between the
normal and logncrmal. Because of the very low probability value of 1078,
it 1a not to be expected that laboratory tests can provide the distribu-

tion with aufficient accuracy for damage calculations,
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SECTION V
SUMMARY

The results of this report spply only to windows which may be con-
sidered simply supported. An unknown portion of reel windows sre looes
or have stress reiaers in their mountings. Most windows without such
defects will feil under hoom pressures of 100 psf or less while st lesst
e few will fsil et 10 or 20 psf. Defective windows mey fall at even low-~
er levels. At stetic pressures of 1 to 10 psf the response of simply
supported windows becomes nonlineer. The nonlineerity radically effects

the reletions emongz deflection, strees, and pressure.

The dominent motion of &8 window under e 2 psf hoom le oacilletion in
the fundsmental frequency. For windowe with 8 length to thickness retio
over 300, nonlineer effects are expected to increese the response in the
higher modes. Also the motion in the fundemental mode will ozcur at e

renge of frequencies near the fundementel frequency.

A procedure was developed for predicting the deflection and streas
of windows under low-pressure booms, The present enalysie ia sdequate
elthough spproximate. The procedura is bssed on e one-degree-of-freedom
enelysis plus estimates of the multimodel snd nonlineer effecta end of

the interection with the building motion.

The celculetion procedure provides pradictiona of

. Peek internel pressure csused by incidence of a boom on a
building
L Response of ¢ one-degree-of-freedom system to e combined boom

end internel pressure losding

L] Contribution of higher modes to the streas end deflection of
windows
. Modification of window response ceused by large-deflaction

(nonlinear) effecta.
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The possibllity of window failure caused by 2 psf booms is consi-
dered fram a statistical standpoint, But no reasonsble estimate of the
rtatistics of fallure can be made because statistical distribution of the

strength of glass 1ls not known precisely.

In experimental studies of window motion 1t 1s necessary to meaaure
(a) central deflection of the window, (b) strains at aeveral points on
both sides of the pane, (c) pressure on hoth sides of the window,
(d) edge fixity of the window, In dynamic studies the histcry of each
of the measurements a, b, and ¢ must be taken. Auxiliary measurements
must be made of Young's wodulus and Polsson's ratio and the exact dimen-

slons of the glaas pane.

A basis for reductien of experimental data on window response 1s
provided. Stress, deflection, and pressure should be nondimensionalized
and graphed againat sach other to show the trends., Dynamic results will
refjulire a dynamlc analysia similar to thoae herein to provide an adequate

avaluation of the data.

There ia need for ~2mpirical relations among stress, deflectior, and
preaaure for windowe in the uvaual mountinga. Such relations should pro-
vide a baals for multimodal reaponse calculations., The next step 1s a
dynamic multimodal calculation. With statlc rolations and dynamic cal-
culations. an adequate base is lald for reducing data from sonic boom

tests on windowa.
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SECTION VI

FURTHER STUDY

To more clearly define the response of windows to sonic booms, four

further studies may be considered. The first three should be undertaken
in the order l.sted.

1,

An experimental detciwination of the static and dynamic load-
deflection relations for windows, Measurements must be auffi-
ciently complete to provide information on the behavior in

several modes,

A calculation of the dynamic multimodal response of windows

undergoing large deflections.

A detailed analysis of the response of windows in test houses
at White Sands or Edwards Air Force Base, The required instru-
mentation «onaists of an accelerometer, atrain gages or dis-
placement gages on the window, and pressure gages on the inside
and outside of the window. In addition, a motion gage on the

window frame would be uaeful to show the amount of support

movement .

A study of the magnitude of internal pressures in huildinga
subjected co booms. The internal pressure should be measured
and calculated from the motion of structural elements. A by-
product of such a study would be an accurate method to calcu-
late the frequencies and deflections of building elements in

residential construction,

Wnile each of the above studies has scientific and engineering merit, none

appears to be justified by the needs of the sonic boom program.,
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APPENDIX A

DYNAMIC AMPLIFICATION FACTOR: LINEAR

The dynamic amplification factors for the stress and deflection at
the center of a simply supported square plate were calculated for a
pressure pulse in the form of an N-wave. The static moment and deflec-

tion are given by Timoshenko!® (1959) in the following series form:

M = w—f,ﬂfi Z z n—m_!(n?':;%? sin {mmx/a) sin (nmy/a) (A.1)

m=1 n=1

1

w = —fT%-Ba—‘ z Z m sin (mmx/a) sin (nmy/a) (4.2)

m=1 m=1

where M_ is the moment in the x-direction in the plate
w 18 the deflection

o 1s the pressure

@ 1s the length of one side of the plate

D 1s the flexural rigidity ot the plate
X,y 4are coordinates of the plate

V 1s Poisson's ratio

m,n are indices denoting the number of modes in the x and y directions

respectively,

For purposes of the computer program required to evaluate the equa-

tions, nondimensionalized static deflection and moment, 70 and MO, were
defined by

16q,a ¢

WO — 'Fg'g—zo
16 2 (1+
i Mg = _SLQ:?_(_v)MO

where w, and M, are the central deflection and moment under a uniform

static pressure., Therefore
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[~ -] w0 @
_1) 7
20 = z: S: mo{m-+n2)¢ i:
m=1 n=1 m=1
odd only odd
But for m = n
1
Rl(m,m) = :1?
and for m ¥ n
R,(myn} = R (n,m)
Now define Rlm,m, = —lg
20T ap
m-n

2 _1)_!_
and R(m,n}) = LT for m

Then the nondiwiznsional atatic deflection is

o = z E R(m,n)

m=1 n=m
odd only

The nondimenaional static moment ia

1 o = m-n m?+yn?
L E E (-1) mn(m2+n2)2
m=1 n=1
odd only

But form=n

1+v

sl(m:m) 41‘1’:‘

It

and for m % n

1+v
mnim’+n’5

]

8,(m,n} + 8,;(n,m)
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Therefore, let

1
S(m,m) = 4'?'
and
m-n
g/m,n) = ~1) for m = n
i ~ mn(m%+n
Then

MO = f: i S{m,n)

"he dynumic deflection is obtained ualng the mode auperposition
approach which can be found in many texta {aee, for example Norris, et al
{1959)). 1In thia method, the deflection is represented as a seriea of

products of three elements:

w(t) = gn: )r; Enl) Yon Oy (%59) (4.3)

where

an(t) ia the dynamic amplification factor
v is a participation factor for each mode

ia the mode shape.

For the square plate

qhn(x’Y) = sin (mmx/a) sin (nmy/a) (A.4)
a a
908 F rrpm(x,y) dxdy
D o )
Wmn 2 a a (A.5)
w’mn Y J; J; ¢hn’(x,y)dxdy
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where
is the acceleration of gravity

1s the weight per unit area

W is the natural circular frequency of the mn mode

Ao is the maximum of vhe applied pressure

in the subsequent analyaes, we will develop two solutiors: one
applicable during forcing and the other applicable in the free vibration
following forcing. Let the loading be given by the expression qof(t},.
Then the dynamic amplification factor is
t

~

an(t) = o Jo £{t') ain [uhn(t-t')] dt' (A.7)

For an N-wave the loading is
qo(1-2t/7) for 0 S t S 7

where T 1a the duration of the N-wave, Then the solutiorn during the time

of forcing is given by

2t 2 ¢
i - — 4 = t 0s L4 .8
1-cos(w__t) N 51? {w__t) { t s 1) (A.8)

1]

Ealt) T

16q,a* for m and n odd (a.2)
Yo = T%Dmn (m2+n 2 ) 2

wit) = l%%gii E: E: ain (mmx/a) sin (nmy/a) an(t) (A.10)

16q,87 — = na+unl
M, = -—%&~— E: E: —CLTUL sin{mmx/a) sin(nmy/a) an(t)
{A.11)
for {(0< t < T)
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These values of w(t) and Mx are valid only during the loading, that is,

up tot = T,

Using the quentities R and 5, and introducing nondimensionalized

central deflection Z and moment M, Eqs. A.10Q and A,11 take the following

form,

= o 2t 2

Z = 5: E: R{m,n) fl-cos(uhnt) Tt Sin(uhnt)] (A.12)
m=1 n=m mn
odd only

M = 5: E: 5{m,n) [*-cos(uhnt) Tt o sin(uhnt)] (A.13)
m=1 n=m mi
odd only

Figure 3 shows the history of the stress or deflection in the funda-
mental mode during forcing and during free vibration, Both for deflec-
tion and moment in the plate, the major contribution is given by the
first mede {m = n = 1}, Using this fact we can approximately locate the
maxima of the deflection and moment by finding the maxima of the firat
mode., The maxima occur at a time when the derivative of the temporal

term 1s zero, l.e. when

%? sin wt = 1 ~ cos (ut) {a.14)
This relation is aatisfied in two ways. The positive maxima (defining

inward deflection) are given by

wiat . = 2 arc tan (wg17/2) + 2 1im (A,15)
where 1 1is zero or z positive integer. The case ? = 0 ia of intereat
here because it defilnes the largeat of the positive maxima. The negative
maxima (defining outward deflection) occur for wiat o= 2in where |1

1s a positivz integer. To obtain the largest negative value, 1 1s

chosen so that

2 in < wr < 2(1+1) n {A.16)




The maximum values obtained from Eqa., A,12 and A,l3 represent the
pv.k of the first inward motion of the window. To reduce these values to
the dynamic amplification factors we divide them by the corresponding
static valuea from Eqa, Al, and A.,2, That ia

Z
F§ = 70 = Aor C
and
- M _
Fm = W - B or E

where Fg and F0 stand for dynamic amplification factors for deflection
and moment. A, B, C, E, are names for theae factors in the computer
program develcped to evaluate the equations, A and B are for positive

maxima, C and E for negative maxima.

in addition to finding the amplification factor for the multimodal
caae, it ia of intereat to find the factor for the firat mode. This
calculation is eaally made becauae the Eqa. A,15 und A.16 exactly locate
the maxima. The amplification factora for deflection and moment in the
firat mode ounly are deaignated Al and Cl. Curvea showing the amplifica-

tion factora for deflecticon and moment are ahown in Figs, 4, 5, and 6.

Following the application of the load the plate undergoes free vi-
brationa which are also aaaociated with deflectiona larger than the
atatic onea. The deflections during a period of free vibrations have

tke form

w = wgcoa [w(t-ty)] + %f sin [w(t~te)]

whirs wg and Wp are ini
Therefore, the firat step in calculating these free motiona 1s to deter-
mine the diaplacement and velocity at the terminatien of forcing and
beginning of free vibration, that is, at t = 7. 7he displacemeni and

velocity at the center of the plate are
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wiT) = E: E: wmn(f) {A.17)
mn=1 n=1
odd only
and - -
w(T) = E: i: Wmn(r) (A.18)
m=1 n=1
where

4

wmn(T) ;Sggz sin{mmx/e)ein{nmny/a

) {-1-coe w_ T +
mn

Yo AY ]
{m*+n*) w T
i () 1646 * uhnsin(mnx/e)sin(nny/e; (stn o2,
mn * ~ n®Dmn (m24n?)? “on W T W T
mn mn
Then for t 2 T the deflection ie
s = ¥
- M - ——— -
w(t) N W (T) coe w (£-1) + — sin g (t-r) (A.21)
m=1 n=l mn
odd only
end the nondimensional deflection 1is
-] «©0 2
7 = ): ): R{m,n) <[(-1-cos(wmn'r) + ein(wm'r)] cos [wmn(t-'r)]
m=1 n=m mn
odd only
+ [sin(w 1) - 2 ., 2 cos{w 7)) sin [w (t-7)]}
mn mnT w T mn i

The equations for moment efter the loeding cen be determined by the

same procedure, The maxima in the first mode ere given by

W

ten [w;,{t-1)] = —3- (a.22)
¥y1Wga
which reduces to
wi,t o= 22T 4 g(w) (A.23)

2

where 1 1s zero or e poeitive integer. 1 must be lerge enough eo thet
tzT,
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sin uhnT) (4.19)

cos uhnT) (A.20)



The dynamic amplification factor for the firat mode 1s deaignated
A2 and 1s obtained using the tima given by Eq. A.23. The multimodal
amplification fantors are designatod AFR and MOMFR, where

M
AFR = _ZO and MOMFR = M‘—'O

Z and M are the mazimum values of nondimensional deflaction and moment

which occur during free vibration.

Flow charts for the program are shown in Figs. A.l1 - A.3. Most of
tge variables have been defined in the previous discussion. Comment
cérda in the program listing further help to clarify the computation
ayatem uaed., The program la written in Fortran IV and has been uaed
with both a Burrougha B5500 and a ChC3200, The input parameters required

for the program are explained in the program. A sample set of data cards

are

(1) 2

(2) 40 21 0.02 0.02 0.005

(3) 20 211,00 0,05 0,005
The firat card indicates that there will bte two groupa of data, The
second requires a calculation for 40 values of the abaciaaa, uﬁon,
starting with 0.02 and proceading to 0.80 in increments of 0,02, The
third card producea a calculation for 20 valuea of absclasa, from 1,00

to 1,95 in atepa of 0.05,

The program printa out the input parametcra for reference and liats
the reaults in 15 columna, The firat column ia the abaciasa, u7/2m,
The next group of ailx columns are reaulta for the fundamental mode only
and conaist of Al, Ci, A2, Al, Cl, and A2, The next aix columna are
regulte far all modea up to 11, 11, Tha printout ia in the order A, C,
AFR, B, E, MOMFR, The final two columns, headed X(Z) and X(M) indicate
the value of wt at which the negative maximum occurs for deflection and

moment, reapectively.

Until the abaciasa exceeda 0,50, the maximum negative responso

during forcing is zero. The program doea not correctly provide for thia
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eventuality s¢ that small positive or neg-tive nuaiers are listed for C

and £ with 9 < wr/2m < 0,50, Such values should be disregarded.

The compils time was shout 80 seconds on either the CDC3200 or the
B5500, The execution time per abscissa vaslue was 9 to 10 seconds on the
3200 and 12 to 13 on the 5500,

The resulta of the program are depicted in Figs. 4, 5, and 6, The
first ia the maxinum dzflection or moment in the first mode. This figure
shows the fundsmental pattern of the responae which is only slightly modi-
fied by the perticipation of higher modea, The first maximum to occur
during forcing is celled the positive maximum, corresponding to the posi-
tive pressure of the N-wave. The curve of positive maximum is monotoni-
celly increasing with sbsciasa values, approsching 20 at infinity. The
negetive maxima occur at the largeat negative oscillation during the
time of forcing. Negstive maxime may occur under two conditions: et the
peak of sn oscillstion where dw/dt = 0 and 4t the end of forcing when
t = 7. The decreesing portions of the curve pertain to the firat condi-
tion, incressing portions to the second., The free maxima ahow the ler-
gest vslues end moadt cleerly show the dependence of the mexima on the
nstursl frequencies, For sbaciaaa values of 1,43, 2,46, and 3,47, theare

is no motion efter the time of forcing.

The multimode) Adeflection iz very similar to the first mode ueflec~-
tion, The positive maxima show e 2% or 3% increase over the response in
the fundsmentel mode, Negative maxima ere very similar to the first mode
response throughout and coincide exactly during decreasing portions. The
curves for fres vibration maxima ahowa slightly broader humps snd sbuui
a 4% increese for the first hump, less for later humps. The min:!mum
points on the free vibration curve are not zerc, showing thst there is

alwsys some residual motion following forcing.

In Fig. 6 it is evident that the moment maximr receive a significant
contribution from the higher modes. The curve of posaitive maximum is
eugmented up to 20%. In apite of this feirly large contribution, the
response curve is smooth except for s slight undulation near the origin.
The everage increase in amplificetion fector is 0,26, The curve of nega-

tive maximum i 2bout 5% higher than thoame from the first mode, The
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curve ila bunpy, showing the participation uf higher modea, particularly
tha aecond symmetric (1,3). The free vibieation maxima are modified moat

algnificantly by the higher modes,

The contribution of the 1,3 mode 1is

clearly ovidenced by the triple humps at each main hump of the curve,

The ircreaase over the first rode curve va.cies from O th 0.56 with an

average value of 0,28,
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PROGRAM MULTIPLATE

C PROGRAM COMPUTES CENTRAL STRESS ANO DEFLECTION OF A SQUARE PLATE UMTIR ACTION
C OF AN N-wAVE. FIRST ELEVEN MODES ‘LINEAR THEORY) ARE USED.

COMMON WrD1+X0rJ1rKeQTAU»ASINW»ACOSW

DIMENSION W(BetH) 1 Z(U0) aR(6s6)eS(6¢6) rMOM{YO) rASINWI(E6) rACOSW (B D)

REAL MJ,»MOM: MOMFR » INCREM
960 FORMAT(//8H GROUP +I2.6Xs32HABSCISSA = OMEGA TAU/2PI FROM

1 FOe3rlH TO vF6eIrlOXNrZHKT IS¢ 6N UHEPS=1FH.37/) FORM 960
961 FORMAT (l1Xe29HF I RS T MODE ONLYVYrI9:23HE L EVEN
IMODES) FORM 961

962 FORMAY (9H ABSCISSAIZXe2HZ+¢bXr2HZ=24X16HZ FREE+4X e ZHMA, 6Y ¢ 2HM =)
1 X rE6HM FREE ¢ 4Xr2HZ+ 16X 2 2HZ=14X16HZ FREE e 4X e 2HM+ 2 OX 0 2HM=p UX r FORM 262
2 6HM FREE r4X e 4HXCZ) 2 3X o 4HX (M) ) FORM 982
963 FORMAT (1XeFbe3012FB8+422X02FT:3)
980 FCRMAT(1X e 13HSTATIC DEFL =¢F8,4e 92 1SASTATIC MOMENT =¢FB.l)
986  FORMAT (I3¢13:Fbe30Fbe30F6E.3)
987 FORMAT (I3
C JEGIN LOOP TO CALCULATE Z0 AND MO., STATIC CEFL AND MOMENT
20=0
MO=0
0O 129 M=1+6
FM=29M-1
RIM¢M)=0,.25/FHAsg
S(M)MIZQe25/FMEsYy
ZOSR{(M+sM)+20
MOSS(HsM]+MOD
MM=M+]
DO 115 N=MMe b
FNE=2%N=-1
R{M¢NIZ(2,0/{FMeFN®(FM2#2+FN*52)x82) )% (=1,0)2% (M=N)
SIMeN)IZ(1 0/ (FMSFN&(FM%22+FN*%2) YI*(=1,0)%% (M=N)
ZOSR(MeN)+20
MOSS(MeN)+MOD
115 CONTINUE
120 CONTINUE
WRITE (6¢980)Z2+M0 WRITE
CALCULATIONS ARE MADE FOR GROUSS OF VALUES OF ABSCISSAr OMEGA TAU/2PI
ON FIRST DATA CARD ENTER VALUE FOR THE NUMBER OF DATA 3ROUPS«JGROUP,
ON SECOND AND SUCCEEDING DATA CARDS ENTER JEND* Ke FIRST: INCREM.
AND EPE.» JEND 1S THE NUMBER OF INCREMENTS OF SIZE INCPEM IN EACH
GROUP, K IS THE TOTAL NUMBER OF STEPS TAKEN ON BOTH SIDES CF THE
FIRST GUESS+X0. K MUST BE 0ODD. FIRST IS THE FIRST VALUE OF
ABSCISSA IN EACH GROUP. INCREM DEFINES THE INCREMENTAL CHANGE
IN ABSCISSA SITHIN EACH GROUP. EPS IS THE ACCURACY REQUIREMENT
USED IN DECIDING WHETHER TO ACCEPT THE CURRENT Max OR TO RECYCLE
READ (51987} JGROUP
DO 691 JUG=]1»JGROUF
gEAD (51986) JENDrK+F . >Te INCREM!EPS
K=K
O2l.6/(FR=1.0)
00 690 11I=1+JEND
FI1I1:2111
ABSCISSFIRST+INCREM#*(FIII~-1.0}

a2z NzNzNsNaNaEal gl
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179
180

OTAUSABSCIS®6.2832

02 180 Mz1.,6

00 170 N=MsH

FMZ23M=1

FHZ2#N~-]
BIMIN)IZOT2UR{FMse2+FN#22) /2.0
ASINW(MINISSIMN{WIMe? ))
ACOSW(MyN)=COSIWIMINI)
CONTINUE

CONTINUE

C BEGIN CALC FQR POSITIVE OAF FOR DEFL -- A AND Al

0122
X022, 0%A 21 (DTAU/240)
AlZ1.0=C0.{X0)=2,0%X0/0TAU+2.0#SIN(XN)/0TAU

C CALC 9 VALUES L+ 2

250

280

PENULT=0

CALL FORCy4 (Z/R)

CALL ZMAX 2}

CALL MOQOIF -

CHANGE=ABS (PENULT=Z(J1))
PENULT=Z(u!®

IF (CHANSE -[.'S) 2B0s280+250
A-I(J1)/20

C BEGIN CALC FOR POSITIVE OAF FOR MOMENT: B

310

340

D1=0

X0=2.08ATAN! I3TAN/240)
PENULT=0

CALL FORCZM {/A0M»S)

CALL ZMAX (MGM)

CALL MOQIFY

CHANGE=ABS (PEMNUL.T~HMOM(J1))
PENULT=MOM(JY )

IF (CHANGE-EPS) 3K0Gr340:310
B = MOM{J1)/MO

C CALCULATE OAF NEG FOR 2

402

404

4J6
408
410
420

430

JJJ = ABSCIS

QJud=dId

X0 = 6.2832 5 QJJJ

C1 = 1.0 - COSIX0) - 2.0 = XO/0TAU + 2,0 *5IN(X0)/0TAU
IF (JJJ=T1) 402¢e402040"
QI=0.5*0TAU/ (FK-1.0)
X0=0.750TAU

GO TC 810

0L (0TAU=6,2B3280JJJ) / (FK=3.0)
IF (0I-D) 4064069408

01=¢
X0=0TAU/2,0+3.14164DJJJ=D]
PENULT=0

CALL FORCZM (Z'R)

00 430 I=1¢K

Zil)==2(1)

CONINUE

CALL ZMAX (2)

CALL MODIFY
CHANGE=ABS(PENULT=Z(J1)])
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CALL SuB
CAaLL 3UB
CALL SuB

CALL SuB
CALL suB
CALL suB

" CALL suB

Cal.L suB
CALL SUB
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455

PENULT=Z{JL)

IF (CHANGE=EPS) 455:455,420
C=Lt(J1)/20

X02=x0

€ CALCULATE DAF NEG FOR MOMENT

462

464
466
468

470
480

490

510

IF(JJUJ=1) 462¢462¢464
01=0.5%CTAU/ {(FK=1.0)
X0=0.T75%0TAU

GO TO 470
0iztOTAU=6.2B32%0JJJ) /{FK=3.0)
IF (0I=0) 466,466 46R

Di1=0
X0=0TAU/2:0+3:1416%DJJU=0]
PENULT=0

CALL FORCIM (MOM.5)

00 490 I=1:X

MOM{I)==MLM(])

CONT INUE

CALL ZMAX (MOM)

CALL MOOIFY
CHANGE=ARS { PENULT~=MONM 1 J1))
PENULTZMOA{J])

1IF (CHANGE-EPS) 510,510,480
£ = MOM{JL)/MD

XOM=X0

£ CALC MAX OEFL DURING FREE VIBRATION

606

610

620

DI=D

X0= OTAU/2.0 + 3,1816*(DJJJ*1.0)

A202 ~1.,0 =CIS%0TAU) +2.0eSIN(OTALI/QTAU
A2VE  SINIOTAUI= 2.0/0TAU #2.0% COS(0TAU)/O0TAUY
A2 = A20 #COS(X0=0TaU) + A2V *SIN(XQ0 ~0TaU)
PENULTZ0

CALL FREEZM (2+FR)

00 610 I=1.K

21}5ABS(Z41))

CONTINUE

GCALL ZMAX (2)

CALL MODIFY

CHANGE=ZABS (PENULT=2(J1))

PENULY=2(J1)

IF (CHANGE-EPS) 620:620¢606

AFR= 2(J1)/20

€ CALC MAX MOMENT OURING FREE VIBRATION

635

640

D1z ©

X0= OTAU/Z2.0 + 3.1416%(0JJJ*1.0)
PENULT=0

CALL FREEZM (MOM:S)

DO 640 I=1.XK
MOACTIZARS(MOMITI))

CONTINUE

CALL ZMAX (MOM)

CALL MODIFY
CHANGE=ABS(PENULT-MIM(J1))
PENULT=MOM{J1)

IF (CHANGE=EPS) 6£50¢650¢635
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CALL 5uB

CALL 5uB
CALL 5uB

CALL SUB

CALL SuB
CALL 5uB

Call SuB

CALL 5uB
CALL SuUB
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e50
660

661
690
691

| 704

710
711
Ti2

802
804

t 818
~ 819
820

MOMFR= MOM(J1) /M0

IF (111-1) 660:660:661

DATEND2JEND
FLAST=FIRST+INCREM*(OATENG~1.0)
WRITE (6¢960) JUGFIRST+FLAST X /EPS
WRITE (6+961)

WRITE (6:962)

WRITE (6+963) ABSCIS+ALeCL1rA2¢ALrCLoA2¢ArCrAFRIBIE/MOMFRY XOZ ¢ XOM
CONTINUE

CONTINUE

ENC

SUBROUTINE FREEZM (Y.G) SuB
COMMON WeOloX00J1oKsOTAUASINWSACOSK

OIMENSICON W{606) e Y(40)0G{6e6) rASINWIG6) ACOSKIS6)

00 712 J=1/K

OlFF=J=(K+1) 72

X=X9 +DIFF = D1

YiJy = 0

Jr(X=0TAU) 712+704.704

00 711 M=1+6

N0 710 N=Ms6

FMZ2sM=]

FN=2eN=1

VEXs (FMe#2+FNes2) /2,0

YidI= GIMeNIS (2. 08ASINWIMeN) /WIMetN) =L e D=ACOSWI{MeN) Y COSIVW{MIN})
14 (ASINW(MeN) =24 0/W{MN) 42 0%ACOSWIMeN) ZW(MIN) JESINIVW{MeN) JD+Y(J)
CONTINUE

CONTINUE

CONTINUE

RETURN

ENO

SUBROUTINE FORCZM (Y») 5uB
COMMON WeD1+X0rJ1eXeOTAV

DIMENSION W(Be6) e YI40)16(646)

00 820 J=1+K

LIFFsJ=(K+1)/2

X=x0 + QIFF = Dl

Yig) = 0

IF {X=0TAU) g02+802+820

IF(X) 820,804+804

00 819 M=1+6

00 818 N=Mss

FM=2%M=1

FN=2#N=1

VaXa(FMas2+FN®92) /2.0

Y(JIZGl 1N 2 (1. 0=COS(V)=2,0%V/W{MINI#2. 0¢SINIY) /WIMIN) 4T ()
CONTINUE

CONTINUE

CONTINUE

RETURN

ENG

SUHROUTINE ZMAX (Y) SuB
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COMMON WrD1rX0rJIK:OTAU
QIMENSION W(6sE}sY{40)sG6(6,6)
Jizl
KKIZK=1
00 870 JzIsKKI
IF (Y{J+DI)=Y(JI}) BT0rB65r 865
665 vl J+]
870 CONTINUE
C MAXIMUM Y IS AT Y{J1}
RETURN
ENO

SUBROUT INE MODIFY

COMMON WrD1leX0rJ1rKsOTAU
: DIMENSION wW{6&:6)
f ULIFF =Jl=(K#1)/2
X0=X0+D1FF#D}
FK=K
01=2.0=01/(FK+1.0}
RETURN
END

3

10 21 1.00 002 0.005
10 21 2.00 0.02 0.005
10 21 3.00 0.02 0.005
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APPENDIX B

RESPONSE TO INTERNAL PRESSURE

The respcnse of an enclosing structure to the combination of boom
loading ‘#nd internal pressuras will he considered in two wayr, Firet, it
will be sssumed that the internal pressure ia a functicn of the dellec-
tion of the element considered, Thia corresponds to the case in which
the moving elerant is the main contributor to the deflection which is
ceusing the internel pressure rise, For the second celculation, it is
assumed that the internel preesure is known snd 15 not modified hy wmotion
of the element. This situetion occurs if the motion ef the element is
meking only 8 small contribution to the internsl prsseure.

For the first cese the relevant equation of motion is

D (%5; + 2 Sg;g;, + %;#) + E %%; = q(t,x,y) ~ G (B.1)
where
D is the plste stiffness
w is the deflection |
x,¥ ere rectsngulsr coordinstes in the plete
v is the weight/unit eres ‘
g is the accelerstion of gresvity '
t is time
q is the boom loading

[

is e coefficient relsting deflection end internel pressu~-

genersted by ths deflection. Possilile units ere pounds/cubic
inch,

i
Following the derivetion in Chapter 5 of Norris, et el,?!, let

v o= 53 D () v o (x,y) (B.2) g

end

Q(thJY) = f(t) Q(x’Y) Q1

59




where

D (t) ia the dynamic ampiificaticn factor for each mode, mn
' ia the participation factor for each mode
¢bn(x’Y) ia the ahape factor for each mode

£(t) ia the time variution of applied pressure
q(x,7) is the spatial variation of pessure

q, is the peak amplitude of prressure,

A uniform pressure diatribution over the plate 1s assumed, so that

q(x,y) = 1.0, Then, for the modal deflection

¢hn(x’Y) = sin (mmx/a) sin (nmy/a) (B.3)

the participation factor is

Vo= -1——39%4%:-,7; for m and n odd (B.4)
mn  T°Dmn (m*+n :

0 for m and/or n even,

The participation fectcr ia identical for static and dynamic loading.
In Norria, et al.?!, it is shown that

[- -]
an(x,y) = L Yan Y & Can(%r¥) (B.5)
m=1 n=1
and that
a! ai ad \'I
et * %7 " % %n = “an g % (B.6)

Now EBq., B.Z2 1s substituted into Egq. B,1 taking into account Eqs., B.5
and B,6, The following reault is obtained:

o L] Y 42 G
L L g Yan fanlqer * Vol * Dy -

m=1 n=1

£(t)) = O (B.7)
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In order to sstisfy this equetion, eech of the terms of the doubly infinite

series must be zero. The solution for eny term is
w? t
= ' [‘/—r———rv- et 1
Pon Juﬁmn+ Gg LE £(t') sin [Yu an + G877 (t-t ] at (B.8)
Y

Compere Eq, B,8 witbh the solution for externel loading only, wbich
is t

D= w t[ £{(t') Bin [uhn(t-t')] dt' (B.9)
‘0

The effect of internal pressure ls to increese the frequency by the retio

o+ Cg/y
Ry(m,n) = = (B.10)

mn

end to decreese the dynamic emplificetion factor by the seme ratio, For
the further discussion only the first mode, uw;,, will be considered.

For this cese Fig. 4 cen be used to determine D,, provided the frequency
end D;, ere mwiified by the retio in Eq. B.10,

For the second cese the internel pressure is essumed to be sinu-

soidel, given by the equetion

q, sin 2nt/T during forcing

F]
1]

= 0 after forcing

T -

T is the duretion of forcing, end colncides with the boom duretion

q, iz peek epplied pressure.
For e combination of boom and internal pressure. the loeding is

q = q,(1-2¢/T) - qa sin 2mt/T (¢ < ™)

= 0 (t > 1) (8.11)
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» solution wss obtained for the first mode only using the methods of

Appendix A, The deflection during forcing is

2

2
= - - — b}
= q, [lwcos {ut) - 2t/1 + = sin (wt)]

(B.12)
a3 ToITEyr [+ stn (2mt/1) - 2n/um) stn(ut))

where

Z1  is the ststic deflection under q, = 1,0

0

With internsl pressure slone (q, 0) the maxima occur for

"

cos (2mt/T) cos {wt)

The relevant maxima occur at the times

t = ———a (B.13)

The time of positive maximum is8 given by n = 1, The time of negative

maximum is given by the lsrgest even vslue of n such that t s 7,

During free vibrstion the deflection is

N
b

= q,{{-l.o - cos {wr) + -j—T sin (w7)] cos [w(t-1)] + [2tn (wT)

- % + ;zr-cos (wr)] sin [w(t-'r)]$ - 4z fﬁ%] Jsin (wr) cos [w(t-T)]
' {

]
+ [«2.0 + cos {wr)] s8in fw(t-T)]$ {B,14)
)

For q, = 0, the condition for a maximum is thet

cos [w(t-7)] = coz (wr)
That is, for
at _on 1 ogr
® = 35 om (B.15)
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Two programs were written to carry out the required computstione,
The one called Boom-and-Interna] makee cslculstions of mexima when both
q, 8nd q, are not zero, No flow chart ia provided for it ss the progrsu
ie a aimplificetion of the Multiplste progrsm in Appendix A, The input
paraemeters sre the same as for Multiplate with the addition of @, and Q,
which are the coefficiente of the boom snd internsl preeaure terms. The

maxima of Eqs., B.12 send B.i4 were determined by trisl using the ssme
‘eyatem 88 in Multiplste,

When q, = Q; = 0, the terme of the maxima csn be determined analy-
tically, sc =« specisl program cslled Sinuscidsl wss written to cslculate
this case. There are no dste csrds needed for this program aa the input

is psrt of the progrsm instructions.

Both progrsms were written in Fertrsn IV and run on 8 Burroughs
B5500 computer. Compllstion times were sbout 50 seconds. Sinusoidsl

executed st 8 rate of 0,12 seconde per sbecisss vslue, Eoom-and-Internal
tock 0,15 seconds for esch.

The resulta of the Sinusoidsl program are in Fig. 7. This shows
some of the same festures ss the responee to booms but the first peaks

sre higher snd lster peaks sre lower,

The resulte of Boom-and-Internsl for Q, = 0.25 snd 0.50 sre ehown
in Figs. 8 and 9, Evidently the main effect of internal preesure is to
decresse the firet hump in the response curve, Otherwise the curves are

eseentislly the esme 85 thoee in Fig. 4 for boom loading only.
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PROGRAM BOOM AND INTERNAL

C PROGRAM COMPUTEZS MOTLION OF A 1 DOS SYSTEM TO A 8COM LOADING AND AN

c

901

950
955
963
986
987

INTERNAL PRESSURE IN THE FOAM OF A SINE WAVE

COMMON D1/X0sJ1eKtOTAU»Z:ABSCIS»R12@29E0S
DIMENSION Z2(&0)
FORMAT (9H ABSCISSA+4Xe4HDPOS+ 4K v GHDNES » 3X ¢ SHOFREE ¢4 X e GHTPOS s & X »
1 GHTNEG: 35X SHTFREE)
FORMAT(52H DAF FOR 1DOF SYSTEM UMODER SINUSOID AND 800M LOADING)
FORMAT (/10X s 2HKZ0 12¢4X o 4HEPS=oF 6 3¢ 4XeIHOL=sFO. 304X s 3HR2=¢F 6.3/}
FORMAT {1XsF642¢6F8,:3)
FORMAT (I3¢I3¢5F64+3)
FORMAT (I3)
WRITE (&¢950)
READ (5,9871 JGROUP
DO 691 JUG=1.JGROUP
READ (5,986) JEND+K+FLRST,DELTA(EPSrQ1+GQ2
WRITE 16+¢955) KrEPSeQlrQ2
WRITE (6:901)
FX=K
D=1.67{FK=1,0)
D0 650 11I=1.JERD
F11i=111
ABSC1S = FIRST+DELTA *(F1l1l-1.0)
OTAU = ABSCIS*6.,2832

Cun2snCALCULATE ZPOS

250

280

D1=0D

X0S2.0%ATVAN(OTAU/2.0)
PENULY = 0

CALL FORCEZ

CALL ZMAX

CHANGE = ABS{PENULT=2!Ji))
PENULT = Z(J1)

IF (CHANGE=EPS) 280+280¢250
ZP0S=2(J1)

XPOS = X0/0TAU

ConmesCALCULATE ZNEG

4o2

404

406
408

5 a

e

420

430

JwiJ = ABSCIS

DJNEJIJ

X0 = 6.2032%DJUJ

IF (JJJ=1) 402:402+404
D150.500TAU/(FK=1.0)
X0=0,75¢0TAU

60 TO 418
O1=(0TAU=6.28323DJJJ 1/ (FK=3.:0)
IF {(D1=D) 406+406+408

01=0
X0Z0TAU/240434141680JJU=01
PENAT = &

CALL FORCEZ
DO 430 I=1.K
Z(I) = =Z(1)
CONTINUE
CALL ZMAX
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455

CHANGE = ABS(PENULT=Z(J1)}
PENULT=Z(J1)

IF (CHANGE=EPS) 455,455,420
ZNEG = 2(J1)

XNEG = X0/0TAU

ComennCALCULATE ZFREE

606

610

620

690
691

C

GI=D

X0 = OTAU/2.043.1416*(DJiJt+1.0)
PENULY = 0

CALL FREEZ

L0 610 I=1+K

Z(1) = ABS(Z(1))

CONTINUE

CALL ZMAX

CHANGE = ABS(PENULT=Z(JI))
PENULT=Z(JI}

IF (CHANGE=-EPS) 620+620+606
ZFREE = ZlJ1)

XFREE = X0/0TAU

WRITE (6+963) ABSCIS:ZP0SsZNEGe ZFREE+XPOS ) XNERs XFREE
CONTINUE

CONTINUE

END

Cxexen»3UBROUTINE FORCEZ

a02
803

avs
s8lc

815
820

SUBROUTINE FORCEZ

COMMON D1+X0sJIoKeOTAULZ»i3SCIS»Q1:02:EPS
ODIMENSION Z(40)

00 820 J=1.K

DIFF = J=(K+1)/2

X = X0 + DIFF » D1

ZtJ) =0

IF{X=0TAU) B02:802:820

IF(X) B20,803+803

AAZABS (ABSC1S=1.0)

21 S 1.0=COS(X)=2,0%X/0TAU+2.0/0TAURSINLX)
IF (AA=-EPS) 810,810,804

2= -ABSCIS*'ZIIL-O-ABSCIStia)t(-SINIX(ABSCISI + SIN(X)/ARSC1S)

60 TO BIS

225  =0.5%(SINI(X)=X*COS(X})
Z(Jd) = QIeZl + Q2eZ2
CONTINUE

RETURN

END

CeewxxsSUBROUTINE FREEZ

T04

SUBROUTINE FREEZ

COMMON DI+ XGeJ1/KeOTAU,Z1ABSCIS QY 1QZ9EPS

DIMENSION Z(40}

00 712 J=iK

OIFF = J=(K+1}/2

X S X0 + DIFFxD]

Zid) = 0

IF(X=0TAU} TI2:704,704

AA=ABS(ABSCIS~1,0)

Z1 Z (=1.0=COS(OTAUI+2.0*SINIOTAU) /0TAU;*COSIX =0TAU}
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1 +{SIN(OTAUI=2.070TAU+2,.0«COS(OTAUI/0TAU} *SIN(X =0TAU}
IF (AA=EPS) 710+710+706
7086 22==(ABSCIS/(1.0=ABSCIS*+2)) #{SIN(OTAU)»COS(X =0TAU)+(=1.0+
1 COS(OTAU)) «SIN(X =0TAU))
GO TO 711
710 22= Jel4160COS{X=0TAY)
Ti1 Z{J) = Qi*Z1 + Q2+«Z2
Ti2 CONT LNUE
RETURN
END
g CoennsaSUBROUTINE ZMAX
1 SUBROUTINE ZMAX
§ COMMON D1+X0¢JL1eKeOTAUZ/ABSCIS Q1sQ2/EPS
DIMENSION Z{(40)
Jis1
KK1z=K~1
U0 870 J=1/,KK1
IF (Z{J*1)=Z{J1)) BT0+865+8565
865 Ji = J+g
870 CONT1NUE
DIFF 2 Ji=(K+1)/2
X0 = X0 # DIFF » Di
FK = K
D1 = 2.09D1/{FK+1.0)
RETURN
END
70ATA COTBSEAMAN/TAPES

4
25 21 0.5 0.02 0.005 1.0 0.0
20 21 1.6 0.02 0.005 1.0 0.0
15 21 2.7 0.02 0.005 1.0 0.0
15 21 3.7 0.02 0.00% 1.0 0.0
PEND OF DECK
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C OF A 1 DOF SYSTEM TC A LOADING IN THE FORM OF A SINE WAVE EXTENDING

PROGRAM 5INUSQOID

SINUSOID CALCULATES THE PEAK POSITIVEs NEGATIVE, AND FREE RESPONSE

C FROM ZERC TO 2 Pl » WITH NO LOADING THEREAFTER

500
901

902

[}

10

15

20

90
100

1

FORMAT (1XeF6,2¢2%X+6F8.3)

FORMAT (9H ABSCISSA+uXr4HDPOS4Xr4HDNEG+3XrSHDOFREE v 4 Xt UHTPOS /X
GHTNEG» 3X » SHTFREE)

FORMAT (35H DAF FOR IDOF SYSTEM UNDER SINUSO1D)

WRITE (6¢902)

WRITE (6+901)

U0 100 1l=1+200

1IF (11-50) 10+5¢10

DP0S=1.5708

DNEG==3.1416

DFREE=3.1416

TPCS=0.5

TNEG=1.0

TFREE=1.0

ABSClS = 1.0

GO TC 90

ali=l1l

ABSC1S=Bl1»q0.02

DPOS = ABSCIS/(1.0=ABSCIS)*»SIN(6.2B32%ABSC1S/(1.0+4ABS5C1S))

TPOS = 1.0/(1.04ABSC1S)

M 2 05 + 0.5%ABSC1S

FN = 2™

DNEG = ABSCIS/(1.0=ABSCIS)eSIN(S.2a8328FNeABSCIS/(1.0+ABSCIS))

DNEG2= ABSCIS/(1.0«ABSCIS*#2)sSIN(6,2852%ABSCIS)

TNEG = FN/(1.0+ABSC1S)

DIFF = =DNEG + DNCG2

1F (DIFF) 15:20020

DNEG=DNEG2

TNEG=1.0

N = ABSCIS + 1.0

DFREE = 2.0%ABSCIS/((.0=ABSCIS##2)aSIN(3.14162ABSCIS)*(=1,0)neN

M = ABSCIS + 1.5

FM = 2% M=]

TFREE = 0.5 + FM/4.0/ABSCIS

WRITE (6¢900) ABSCIS+DPOS+DNEG+DFREE TPOSs TNEG TFREE

CONTINUE

END
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APPENDIX C

NONLINEAR LOAD-DEFLECTION RELATICNS

The purpose of thls sppendix i8 to deturmine the form of the lerge-
deflection relations between load and deflection, snd between etress and
deflection for squere plstes. Theae reletione will be used in the next

eppendix s8 e bssls for reducing eveilahble experimentsl dete,

In the litereture the lerge deflection of Bqusre pletes hae been
determined only for some specific vslues of Poisson's ratio end certein

boundery conditions; the sveileble solutions do not precissly fit the

present requirementz., An epproximate rsther than rigorous solution seemed

edequste, snd it wes also desirsble to have the reeults in anelyticsl
rather than grsphicsl form, A modificetion of the method recommended by
Fppl (1924) wss used for the celculetions,

The method of F8ppl 1s to seek e solution as tbe sum of two perts:
one for membrene snd one for bending behsvior. Thus the epplied loading

cen be represented es

Q = Q +Q (c.1)

where
4
Q = g , 8 nondimer ‘lonsl loading peremeter end subscripts refer
Eh
to bending end membrene.
q = pressure

]

length of the elde of the squsre plete

In FBppl's spproach, the reletions between the ¢'s end the deflec-
tion sre *teken from the solutions of the small deflection bending and of

the membrsne problems, These solutions have the form

%:Aog .

(c.2)
Q, = Bog®

80 thet Eq. C.1 becomes PRECEDING PAGE BMNK
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Q = AoE + Bof® (.3)

where
E is th2 nondimensionsl deflection wo/h
Wog 18 the central deflection
Ap and By ave funntions of Poisson's ratio,
When thia cubic equation is solved, the membrane and bending stresses

can be determined from

8. = GCof
(c.4)

where
8 = 95;
~ Eh
o = stress

Co 8nd Dy sre functions of Poisson's ratio, v.
The natural boundary conditions for this solution are the simple support
for bending and the immovsble edge for membrane sction. FKowever, in our
cese the edge is movable, Therefore, the sought solution was assumed
to have the form of Eqs, C.3 und C.4 but with unknown coefficients B,
and D;. Further, it wes assumed thst B and B; would vary in the same

wey 88 a function of v so that

Bo(v Bolv,)
Ef%gt} ~ By(v, (c.3)

snd similserly for D and D,.

The steps tsken in the solution were the following:

1, Find the relations between deflections and pressures for the
separste csses of membrsne snd bending, that is, find A,(v)
and BO(US in Eq. C.2.

2. Use the theoreficsl solution of Levy!® to determine the coef-~
ficiente B, snd D, (for the csse v = 0.316),

3. Determine the coefficients B; and D; for the case v = 0,23
using Fq. C.5.
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The values of A, and Cy sre readily determined from Chapter 5 of
Timoshenko (1959). The results are given in Teble C.1.

TABLE C.1

COEFFICIENTS FOR LARGE DEFLECTION OF SQUARE PLATES

0.23 21,7 | 28.65 |5.91 2.134 | 12,8 | 1.32
0.316 | 22,8 | 31,3 6,625 | 2,582 | 14,0 § 1.40

The coefficients B snd D were determined from the snslyais on p, 419

of Timoshenko (1959) for the membrsne problem, The following expruossiona

were teken for the displscements

¥ = Wg COB T cos X
B B

u o= ¢ sin X o ™ (Cc.6)
a a

v = ¢ ain Eﬂl coa Ix
a a

where u, v sre diaplscementa in the plsne of the plste in the x snd y
directiona, reapectively, and the origin is at the center of the plate,.
The strsin energy of the plste is then

(c.7)

Il
he principle of viriuel dispiscements wss used then as ouxrlined in

Timoshenko to find c Bnd w, 88 functions of the applied presaure. The
vBlues of B snd D in Table 1 sre the calculatod results,

The theoreticsl vslues of Levy'® were used to find B, snd D,. Hia
results were plotted aa membrans and bending stresses versus spplied
preasure for the care v = 0.316, Two relstions were used for the deter-

mination, The first was the requirement that the deflection in Eq. C.4
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be unigque, that 1s, that
Sm
B2 = — = oo {c.e)
1

Levy'a resulta were uased for Sb and Sm and a value of D; = 1,40 waa found
{aee Fig., C.1). Then Eqa. C.3 and C.4 were combined aa

3/‘3

A Sm.
= =2 —
Q = 8, + By (Dl; (c.9)

Co
Uaing lLevy'a valuea for Q, Sb and Sm, & aolution waas obtained for B,.
The determination of B, la ahown in Fig. C.,2 from which it ia evident
that Eg. C.9 1la a good repreaentation of the relation. Following thia
evaluation of B; and D, for v = 0,316, B; and D, for v 0.23 were cal-

culated uaing Bq. C.5.

The following equations are then available for sgolving large de!lecj

tion problems in agquare platea with aimply avpported boundaries,

Q = Aof + B, E?
§ = Cof (c.10)
S, = D g2

In the next appendix experimental valuea are uvaed to re-evaluate the

coafficlienta A, through D; in these equationa,
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APPENDIX D

EXPERIMENTAL DATA ON WINDOW RESPONSE

Load-daflaction and atrass-daflaction ralaticna can ba obtained
from raaulta of savaral axperimental studiaa, Thie atudy la basad on
tha rasults of Bowlaa and Sugarman (1952), Orr (1957), and Fraynik (1963),
Tha data ara fittad to aquationa in tha form of thosa in Appendix C,

Load-Daflaction Ralations

A load-daflaction aquation lika Eq., C.3 will be datarminad firat.

Q = Aof + BoE?

whara
Q = nondimensional load = % (%)‘
= nondimansional daflaction = wo/h
= appliad prassura
¥ = Young's modulus
a = distanca betwean supports of squara pana
h = thicknasa
wo = cantar daflection

Tha value of A, will be takan as 21.7, tha thaoratical valua obtainad
from small-daflaction plata thaory for Poiason's ratio aqual to 0.23.
Tha data will ba ralatad to this aquation to datarmina tha valua for
Bo, and to indicata how wall tha data follow tha analytical aquation.
Wa will usa tha data on ultimata deflaction (daflactlon Juat pracading
fractura) £~ : Orr (1957) and from Bowlas and Sugarman (1952), Tha
rasulting equation should be aspacially applicabia at tha utlimate
strength of panala, but will not necassarily describa the load-daflaction
reiation at low prassures. Tha data used ara in Tablas D.1l and D.2,
O:r's raxults rapresant individual panela wharaas Bowlas and Sugarman
t2stad 30 or 40 panals of aach siza and raportad masn valuas and stan-
dard davistions from the maan. Tha raaults are traatad hara as though

thay wara from squeare panala although Orr'a panals wara rectangular,

75




TABLE D,1

ULTIMATE DEFLECTION AND BURSTING PRESSURES

(Dats from Orr}

h 874 q Q* Wo
hickness | ares | a/h | Msx. Pres. | Nondim, | Max, Defl. = %f
(in.) (in.2) (pst) Pressure (4n.)
PLATE
0,2373 6720 346 52,20 516 1,200 5,05
0.240 6720 342 51,87 491 1,189 4,95
0.303 6720 271 80.65 300 1,200 3.96
0.301 6720 273 56,17 214 1,000 3.32
0.2344 8360 389 39,26 631 1,300 5,54
0,2453 8360 373 36,02 .84 1,200 4.89
0,3045 8360 300 54,09 305 1,200 3.94
0.305 8360 298 54,02 303 1,200 3,93
0.242 9840 410 32,52 638 1.400 5,78
0.239 9840 416 23.58 485 1,200 5.02
0.303 9840 327 44,56 355 1.311 4.33
0.304 9840 327 44,00 343 1,300 4,28
0.369 9840 269 56,13 204 1,200 3.25
0.372 9840 267 57 .85 203 1,200 3.23
0,114 8640 816 16,72 5120 1.400 12,3
SOLEX
0.248 8640 387 54,22 740 1.400 5,65
0.373 8640 257 73.20 197 1,200 3.22
U.383 864U 2h1 81,36 148 1,000 2.61
0.255 11530 421 38,56 847 1,502 5,88
0.248 11530 433 41,52 1015 1,600 6.45

¢

* Q = 351 , E was tsken as 107 pai,
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with sspect ratios hefween 0.6:1.0 and 1,0:1,0. The dsta points sre
plotied in Fig. D.1, The trend line is given by the equation

Q = 21.7% + 2.80€° (D.1)

which sppears to fit the dats quite well, For compsrison tha theoretical
results of Levy (1942) for Poisson's rstio of 0,316 are slso shown,

A check can be made to determine how well Eq. D.l predicts deflec~
tions st low loads, using the data of Bowles and Sugsrman on four panels
(1isted in Table D.3). These four sets of load-deflection points are
shown in Flg. D,2 with the theoreticsl curve of Eq. D.1l. Eq. D,1 will he
used in subsequent work, with the understanding that its accuracy is
limited at small deflections, It may be noted that the data from the
tests of the 1/8-inch plste are far from the other points. This tendency
is noted in lster grsphs slso. The discrepancy may he csused hy using
the mean thickness of 0,122 inch in cslculsting £, Q, and S or there mgy.

have heen some experimentsl error.

g

| LI LR | T T 1 T T 1L

.~ © DATA OF BOWLES AND SUGARMAN
@ DATA OF ORR

T
S NN

0e 2I|.7€ + 280€3

S

FrrrTrTi

'U/ - <THEORY OF LEVY

) °
/ /-" (v=0.316) |
//
—

i | [ A O R
10 100 000 10,000
0-217¢

NONDIMENSIONAL MAXIMUM DEFLECTION, £

T S085-13

FIG. D.1 RELATION BETWEEN APPLIED PRESSURE AND DEFLECTION AT RUPTURE
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! |
! )
; TABLE D.3
STRES88 DATA
i (Date from Bowles and Sugarman)
I
}
!
i h#* q Qs £ = wo/h Op % Sp** §_**
Thickness Pressure | Nondim. Nondim, Bending | Membrene Nondim, NonEim.
(1in.) (ps1) Pressure | Deflectiun | Btress Stress Bending | Membrene
(psi) (psi) Stress Stress
0,122 0.05 57.8 1,61 395 215 6 .40 2,315
0.10 115.5 2.40 795 415 8,55 4,465
0,15 173.2 2,98 900 580 9.68 6.24
! 0.20 231.0 3.43 950 750 10,23 8.07
‘ 0.25 289 .0 3.78
0.195 0.05 8.9 0.59 577 92 2,43 .39
0.10 17 .8 0,92 250 200 3.59 .B4
. 0,15 26.6 1,19 1222 297 5,14 1.25
| 0.20 35.5 1.41 1430 400 6.01 1.68
U 0.25 44.4 1,62 1595 525 6.71 2,21
i 0.30 53.3 1.81 1725 645 7.25 2.71
0.35 62.2 1.96 1827 752 7.68 3.16
' 0.25 0.1 6,53 0,42 670 40 1,715 0.10
0.2 13.10 0.70 1240 160 3.17 0.41
? 0.3 19 .65 0.93 1705 295 4,37 0.75
| 0.4 28 .20 1.13 2075 435 5,31 1.11
. 0.5 32.75 1,32 2367 563 6 .06 1,44
0,6 39.30 1.48 2615 685 6.69 1.75
. 0.7 45 .85 1.63 2825 815 7.23 2,09
i 0.8 52,40 1,76 2990 950 7.65 2,43
1 0,373 0.2 2.65 0.25 395 45 0,684 0.052
| 0.4 5.42 0.41 1170 100 1,345 0,115
: 0.6 7.94 0.57 1730 180 1,99 0.207
0.8 10.58 .70 2270 270 2,61 0.311
o 1.0 13.23 0.81 2740 380 3.15 0.437
1.2 15 .87 c.92 3179 520 3.64 0.598
‘ 1.4 18,52 1,02
i 1.6 21.15 1.12
; 1.8 23 .80 1,21
i 2.0 26 ,47 1,30
2.2 £9.10 1.38
; * The thickness of the specimen tested was not known, so the mesn
thicknesg for the group ol specimens was used.
| #* Nondimensicnel pressures end stresses were celculeted using E - 107 psi,
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Ultimate Deflection end Ultimate Strength

The deflection which e penel cen undergo before failing is closely
releted to tihe thickneaa of the panel., The deflection data of Tebles
D.1 end D.2 ere plotted in Figs. D.3 end D.4 to show thia reletion, IV
i8 cleer from the figurea thet there is e marked difference between the
reaulta of Orr (1957) and of Bowles &nd Sugarman (1952), end there 1is
e noticeeble difference between the plete and abeet gless reaulta in the

lattor reference,

To predict ultimate atrength of gleaa penes it 1a useful to plot
nondimenaiocnel maximum preaaure ageinat the thicknesa retio, e/h, es 1n
Fig. D.5. Agein there 1s e diatinct difference between the resulta of
Bowlea and Sugerman (1952) end of Orr (1957), The presaures taken by
the panes of the former ere about 2,5 timea thoae in the letter. This
difference 1s only partly eccounted for by the fect that Orr‘s penea were

rectanguler and tested st e slower loading rete,

To indicate the probable effect of testing rate on ultimate atrength,

we can exemine the equetion given by Frownfelter (19859)

oﬁax do
%e - - + 0.5 log,, 71
where
dc/dt ia the rete of epplication of atresa in pai/min
Og 1a e reference atreas

With a reference atreas of 2000 psi, thia equetion ia plotted in Fig. D.6.

In addition, the recommended atrength veluea from Pittaburgh Plete Gleas
{1964) ere shown and straight lines were drewn on the figure to indicete
the trend of the pointa, Compariaon of the teating retea of Bowles and
Sugarman (1952) with thoae of Orr (1957) indicatea that Orr'a atrength
velues should be ebout 75% of those from Bowles end Sugarman.

Streas-Deflection Ratioa

Equationa releting maximum atreaa end centrel Jdeflection were deter-

mined uaing tL: date of Bowlea end Sugerman (1952). The equetiona have
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the seme form as those of Appendix C, that is

Sb = C°§
- 2
Sm = Dof
where
s oa ?
= En?
g = s8tress
Co; Dg = constants
b,m = subscripts denoting bending or membrane.

The vslues used ere listed in Table D,3 for the four penes instrumented
witb strein gegee to ind cete stress in the center of the pane. The data

plotted in Fige. D.7 and D,.8 give the following reiations

5, = 4.4¢f (D.2)

2

]
(]

0.82¢% (D.3)

The bending stresses ere about 654 of tbose given by Levy (1942) while

the membrane atresses ere 65% to 80% of fevy's values. It is improbsble
that these differences can be expleined by the fact the Polsson's ratio
for the glase weas ebout 0.23, while Levy used v = 0.316, Becsuse of the
coefficient of 4.4 insteed of 5,91 es from tbe linear axnalysis, stress-
deflection results do not coinclde withk the lineer theory even for small

deflections.

Equations D,2 end D.3 are reletions hetween the total stress in tle
center of the plate and the total deflection at that point, In the ana-
iyticei work it wili De necesssry to have expressions reisting siress ano
deflections in the firat mode only. According to the linear theory of
Appendix A the total static stress is 0,897 of the first mode stress; the
total static deflection is 0,976 of the first mode deflection, We will
assume that these factora from the lineer theory are velid for bending
but not for membrane streases; that is, the total membrane stress is

contributed by the first mode, Then
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4.4

Sbl = m‘(O.QTB)gx = 4.8€, (D.4)

sml

]

0.82 (0,976 £,)% = 0.78¢,2 (p.5)

where the aubscript 1 refers to the first mode, In aome caaes we will

want to relate firat mode atressea to total deflections. The appropriate
relationa are

CHAE 01637 g = 4,98, (p.8)

s, = 0.828? (D.7)
or combining,

8, = 4,95 (1 + 0,167EF) (D.8)

Streaa-Loading Relationa

The bending and membrane atresaea can be comparzad aa direct functions

of the loading. From the previous data reductions we have that

Q = 21.7¢ + 2.80%° (p.1)
5 = .4 N
b = 448 (D.8)
— 2
s = 0.82¢ (D.7)
Subatituting we obtain
= 3 A
Q = 4.53 5 +0.0329 5 (D.9}
and
Q = 24.0 sml/a + 3.77 sm"/2 (D.10)

The data of Bowlea and Sugarman (1952) and Freynik (1963)! are compared
with theae equationa in Figa. D.9 and D.19. The theoretical reaulta of
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Levy (1942) sre slso included. Equstion D.9 sgrees fairly well with
Levy's results; the dsts of Bowles snd Sugarman sppesr to fit Eq. D.9
somewhat better thsn the curve from Levy. Tbe membrsne stresa results
ahow s marked difference between the curvea from Levy snd Eq. D.10. The

experimentsl dsta sre divided between the two curves,

All of the stress-~loading dats sbove is for streases from one-quarter
to one-half the ultimate stress. Therefore, prediction of the stress ¢on-
dition st fsilure would require some extrspolation from the svsilsble dats.
Becauae the dsta do not ccrrelste well with the thecreticsl or qusai-
theos etical curves at high stress levela, it does not sppear that stresaes
st failure can be predicted now. Thia situstion i1a unfortunste because
it mesns that ultimate stirength dsts of glsss specimena cannot be used

directly to predict fsilure of glsss psnes,

Ststistica of Failure

Strengtha of glsss specimens snd window psnes sppear to vsry widely
from test to test; auch vsrictiona are commonly observed with brittle
materiala. The experimentsl reaults hsve ususlly been reported in terms
of tbe normsl diatribution slthough the dsts msy fit some othar distri-
bution eqsglly well,

Table D.4 lista the coefficients of varistion (stsndard devistion
divided by the mesun) of the burating pressure and the centrsl deflection
for the data of Bowles snd Sugarman (1952). The vsriations sppear to
incresae with the thicknesa of thu apecimens, ss expected for a brittle
materisl, It should be noted thst these vsristions pertsin to the pres-
rure snd deflection, not to the normalized qusntitiea, Q snd £, There-
fore, the ststed vsriationc include the effects of rsndomness in the

glsss atrengtb and in the glsss dimensiona,

Additionsl dsts on the ststistics of the strength of glsss sre listed
in Table D.5, The vulue given by Orr (1957) is for his estimstes of the
stress at failure in hia glaaa panels. The other dats sre from strength
testa on other types of glsss samples, Note that these coefficients of
variation pertain to stress at failure wheress the dsta of Tsble D.4

refer to spplied presaure snd ultimate deflection. Becsuse we do not
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i have 8 sure relation between atreaa and applied preaaure at failure, we
cannot relate the coefficlenta of veariationa of theae quantitiea. Hence,
a knowledge of the atstiaticsl variation of breaking atrese doea not lead

to s knowledge of the atatistical vsriation of bursting presaure.

TABLE D.4

STATISTICAL DATA ON FAILURE

l (Data from Bowles and Sugarman)

Sample No, of Bursting Preasure Central Deflection
Description Panels Coeff. of Vsristion Coeff, of Varistion
(%) (%)
1/8" plate 40 17,2 8.6
3/16" plate 30 17.9 9.2
' 1/4" plate 30 25.0 12,1
! 3/8" plate 30 23.7 13,9
24 oz sheet 30 14,0 7,95
32 oz sheet 30 15.9 7.17
3/16" aheet 30 26,8 10,95
TABLE D.5

STATISTICAL DATA ON BREAKING STRESS

Coefficient of
Source Varistion Type of Glaas
‘ (%)
Frownfelter (1959) 22,0 - -
orr (1957) 19.7 Plate and aolex psnea
McKinley (1964) 25,0% Flate and window
Haaselman and Fulrath (1966) 12,7 Sodium Boroailicate

* Vslue reconmended by McKinley for nuae in estimeting aafety factora,
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APPENDIX E

DYNAMIC AMPLIFICATION FACTOR: NONLINEAR

When plates deflect beyond s amall deflection range, their apparent
stiffneas increases because of membrane sction. This chenge in stiffneas
increanea the natural frequency and decreases the amoslitude of motion.
The purpoae of thia appendix im to determine the magnitude of these
changes for tlie problem of window reaponse to booma. TLe aolution ia
developed first for the motion in the fundsmental mcde only, and then
estimatea are mado for the effecta of the higher mcdea,

Firat Mode Only

The equation of motion in the firat mode haa the following general
form

a’ wg) o DY

(E.1)

ia the nondimensional central deflection, wy/h
in atiffneas which ia 8 function of deflection

§
k
QD ia the maximum smplitucde of the nondimenaional forcing function

£{t) ia the temporal variation of that function,

¥From the aolution of Eq. E.1, we want to develop curves of maximum
deflection aa a function of the pericd rattio, wT/Zn, and of the loading.
Hence, we muat chooae to plot deflection aa e function of loading for
apecific valuea of wr/2m or aa a function of wT/2n for apecific loadings.
The latter courae seems appropriate because we can expect the deflection
maxima to vsry monotonically with load. The load values chosen are thoae
producing specific values of atatic deflection, The next atepa are to

introduce the nonlinear reiation for k(€) aad to replace QD by the atatic
deflaction it produces,

The lcad-deflection relstion in Eq. C,10 will be uaed although it

periaina to total deflectian, not juet firat mode deflection. This is a

a5
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fsirly small spproximation becsuse the difference between ststic totsl

snd first mode deflections is only 2.5%, The relstion ic

Q = Ao + BEY = k(E)E (E.2)

so that the equation of motion is

Q. f(t) k(£,)Q,
ai® A Biey o D~ _ 8 3
dt[ + m (g + AO § ) = m = m k(gs’ f(t} (E.3)
Note thst k(gs)/m = (Aogs + B,gs’)fmgs is the aqusre of the nstursl

circular frequency, snd QD/k(gs) is the ststic deflection §q under the
load QD' Now simplify the equstion to the form

SHral+e®) = alg, + €8 2(t) (£.4)

where

¢4

I}

Aa/m

€ By/Ag

Equation E.4 was solved numericaily using sn Adsms predictor-corrector
method for integration. The computer program uaed had been previously
developed for s three—degree-cf-freedom system snd reported by Bycroft
(1665). Tha progrsm waas simplified slightly snd chsnged to sccept s
sharply defined N-wave ss the loading. The deflections snd velocities
were printed out sfter esch step in the integrstion, Positive, negstive,
snd free vibrstion maxima weire taken from these listings by hsnd, The

results are plotted in Figs. 12 - 15,

The progrsm is lieted st the end of this sppendix., It 1s written
in Algol for use on s Burroughs B5500, The compilstion time is 40 seconds,
and the execution time per sbscisss vnlue sversges 14 seconds., The input
data ia entered on two types of csrds, An exsmple of input 1is given in
the comment cards st the beginning of the progrem, The first csrd iists
the number of abscissa vslues for which cslculations sre to he made. One

card of the second type is required for each abscisss, On the second type

of card the vsriablea sre
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. A

XI = §s, the stetic deflection under the maximum pressure in

the loeding function

ABSCISSA = yr/2m

FINAL = time at which celculetion ia termineted. It should be
set et some velue greeter than 1,0 such thet et leect
one free vibretion maximum le reeched.

EPS = ¢, the coefficlent of the noniinear term,

In the progrem the forclug function ie the etetic deflection times
a temporel function., If B response to e particuler pressure level, QD,

18 required, the eppropriaid velue of §B cen he found from the equetion

Q = Ao(ga + 3553)
Alternetively, the 32nd cerd of the progrem could be changed from

ALFA - (XI + EPS x XI *3) x (MEGA * 2;
to

ALFA = (QD/A) x OMEGA * 2;
where the vslues of QD end A would have to be supplied,

The progrem output lists the velues of ABSCISSA and XI end then
prints four columns of figures, heeded TIME, DEFLECTION, VELOCITY, end
DEFL/XI. The velues printed under these heedings are t/T, E, ng/dt,
and g/gs. The letter 1s the dynemic emplificetion factor,

Higher Modes

A rigorous enelysis of the contribution of higher modes 15 not made
tor the large deflection ceee, However, some ¢stimates ere required of
the importence of these higher modes. From Appendix A the cuntribution
of these modes to the lineer colution 1s known., Wwhat 18 needed now is
e meens for estimating chenges in the emplitudes end frequenciles of the
higher modes. Such estimatea will be made under the essumption that the
motion in the higher modes can be merely added to that for the fundementel
mode. With this assumption, the problem cen be treeted es thet of e plete

with atresses in 1its plene,
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The deflection of & plate with stresses in its plane can be derived

from sectior 93 of Timoshenko {1959). The result is

v - lﬁ&u f = ain(mmx/a)ain (nmy/s) (E.5)
_m A o+ 2 2 2 2 . .
L T T [(mazn )2 4 (mN, + 22:%D+ 2WDNXR)J
m,n odd

where Nx’ Ny, and ny ar2 forcea per unit width in the midplane of the
plate, They are constants in Eq., E.,5, In our dynamic case Nx’ Ny, and
ny all vavy over the surface of the plate, oacillate st the fundamental
frequency, and may be compreaaive or tenaile. However, Ey. E.5 gives an
indication of the nature of the effect of the membrane atresses on the
deflections in the higher modes. In the central region of the plate,
the membrane atresaee are tenalle and the shear 1is zero. Therefore the

aagaumption ia made that Nx = Ny and ny = 0.

Then
16q, = = ain (mmx/a) ain {nny/a)
Y = W% z: z: m{m2+n2) /g m2+ni)jaZ + N _/niD (E.6)
m=1l n=1 X
n,n odd

The momenta are computed from

a2 d 3w
Mx = =D (Sx—‘;- + v F), etc. (E.7)

The momenta are then

"B 16q 8 2(1+v) ii ﬁi H(m,n} ain (mmx/a) ain (nmy/a) (E.8)
x m mnl (m*+n*) + N_a*/m"D *

m=1 n=m
odd only

where

H{m,n) 1/2 form = n

]

1l form=n
Evidently each term in the aeriea for moment ia reduced by the factor

1
1+ Nxazj[n’D(m’+n’)]

98




from the value it would have if there were no membrane streasea, Using
thia factor a general expreaaion can be developed tc relate reduction of

amplitude la the m,nth mode to reduction in the first mode, Let RE(m,n)
be the ratio of amplitude for the nonlineer case to that for the linear

case. Then

1
1+ 2[1/RE(1;1)'1]/(m2+n2) (E.9)

Aa an example let ua Aaaaume that the amplitude in the fundamentai mode
waa reduced by 30%. Then by how much are the higher modes reduced?

The resulta for this example are in Table E,1,

TABLE E.1

AMPLITUDE REDUCTION FOR HIGHER MODES

Nonlinear/Linear
Mode Amplitude Ratio Nxazfnzn(m2+n2)
Rg
1,1 €.70 (aaaumed) 0.428
1,3 and 3,1 0.82 0.086
3,3 .95 0.048
3,5 and 5,3 0.97 0,025

The values in the table indicate that the amplitudes of the higher

modes are reduced by one-fifth (or lesa) es much aa the first mode,

The ratural frequencies are also altered by large deflectiona, The
estimate of the freguency change 1s made on the gams hoeils as the ampli-
tule estimete above. That is, the modea are considered separately and
the in-plane stressea caused by the fundamental mode are the aource of
the variationa from the linear theory. The approach used is to calculate
the strain energy and kinetic energy and equate them to find the natural

frequencles,

Again teking the reaulta of paragraph 93 of Timoaienko (1959),
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the deflection 1s aasumed to have the form

2] 1]
w o= E: E: x ain(mmx/a)} sin{nmy/a) (E.10)
m=1 n=1 My
odd only
Ther. the strsin energy 1is
) 2 o 2
L 2 2,.2%2 2 2 a
V = =2 Z Z f.pm,n[(m +n2)2 + (m N, +n Ny+2many) = (E.11)
m=1 n=1
The kinetic energy ia
T dt 5% (m,n))? (E.12)
m=1 n=1

where
Y ia the unit weight of the plate
h is the plste thickneas,

By equating the maximum valuea for esch mode of T and V and assuming that

the motion 18 ainuaoidal, we can obtain the following equation for fre-

quency:
n? /
= 2,n2Y2 2 2 2/m2py|1/2
uﬁ,n = o7 V gD/YL [{m2+n2)2 + (m N +n Ny+2many)a /np)
Again, let N = Ny, ny = 0, Then
2
W = E; gD/YL m?+n?) [1+a2Nx/n20(m2+n’)]‘/2 (F.13)

The fsctor in Eq. E.13 rsiaed to the one~half power containa the effect
of the in-plane atressea. As might be expected, this is the same facltor
which entered the expreaalon for the change in amplitude aa a function

of in-plone atreases. If the change in frequency 1a known for the funda-
mental mode, then Eq. E,13 phrmits a computation of the change for all
modes, That 18, 1f B(m,n) ia the ratio of froquencies in the nonlinear

and linear caaes, thon

100




et e e i 54 Atk

Y s T

BE(m,n) = Vi+ z[BE=(1,1)-1]/(m=+n2) (E,14)

Some sample results with Eq. E.14 sre provided in Tsble F.2, Note that
the aame valuca of membrsne stress, N , are used in Tables E.1 snd E.Z,

There is evidently very little change in the frequency of the higher modea.

TABLE E.2

FREQUENCY INCREASE FOR HIGHER MODES

Mode Frequency Ratio Nxa’/ﬂ’D(m’+n’)
1,1 1.20 (aasumed) 0.428
1,3 snd i,1 T1.04 0,086
3,3 1,025 0.048
3,5 snd 5,3 1.01 0.025

The two snalyses above hsve shown that the contribution of the higher
mcdea to deflectioas snd stresses sre very little effected by the non-
linesrities. Therefore it 15 suggested thet, for purposea of eatimation,
the linear contributions of the higher modes be assumed to bhe vslid for

lsrge deflections also.
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PROGRAM NONLINEAR WINOOW

BEGIN COMMENT LYNN SEAMAN EXT 3587

PROGRAM JF KRIEBEL wAS MODIFIED gY SEAMAN (JAN &7) TO CALCULATE THE
RESPONSE 0OF A 1 DOF WINOOW TO AN N=wAVE PRESSURE PULSE. PROGRAM USES
RUNGEKUTTA METHCD AS A STARTER ANO CONTINUES WITH ADAMS PREDICTOR-
CORRECTOR METHOOD .

OATA IS ENTZRED ON TWO GROUPS OF CARDS! ONE FOR ITER: ONE FOR XIr
ABSCISSAs FINAL AND EPS. ITER IS THE NUMBER OF CASES TO BE HANDLED ANO
EGUALS THE NUMBER OF DATA CARDS 7O FOLLOW. XI IS THE STATIC OEFLECTION,
ABSCISSA = OMEGATAU/2PI» FINAL IS THE LAST TIME FOR WHICH A CALCULATION
IS5 MADEes AND EPS IS THE COEFFICIENT OF THE NONLINEAR (CUBIC) TERMI

COMMENT SAMPLE DATA CARDS

1
3.0 1:8» Py 0,129, END SAMPLE#
REAL INTIME rHZERO» INITIAL+FINAL rPRINT+RELBr £ .58 0ELTAT,

ABSCISSA XIcOMEGA(EPS,/UDELTAALFADXII
INTEGER ITeJJrSIZEWNFIN¢ITER,ICH
REAL ARRAY YINITIAL YFINALL1:22)
FILE CR (1015}
FILE LP 4(1e15)
FORMAT OUT CLOCK {X36+"CALCULATION TIME OF PROGRAM ="¢F9.2:X3r
"SECONDS"» X361}
INTIME « TIME (1)1
SIZE+23 NFIN+1} DELTAT+#1.03 INITIAL+0.,04 RELBe(Q,0013 ARSA+0.00I}
READ {CRe /+ITER) }
FOR ICel STEP 1 UNTIL ITER
DO BEGIN
OMEGA*0: ALFA+0} DELTA+«Q} EPS+0}
FOR IlIs]l STEP 1 UNTIL 2 DO YINITJALLII] « O}
REAP (CRo/+»XI+ABSCISSA/FINALPEPS)?
HZERO ¢ 1.,0/(60.0xABSCISS5A)) PRINT ¢ HZEROQ)
OMEGA « ABSCISSAx6.2B83217
ALFA + (XI+EPSXXI#3)XOMEGA#*2i

HEGIN

REAL TESTIMELTESTIME2. TP}
KEAL ARRAY INFLOINFINIJ

HEAL PROCEUOURE FINPUT (T:FIN)}
VALUE Ti

REAL Ti

REAL ARRAY FINCOD
BEGIN COMMENT SECOND ORDER INTERPOLATION OF INPUT ACCELERATION.
USE OF FORWARD DIFFERENCES
REAL IRrRe¢R11R2)
INTEGER ITI.111e112¢
IF TSTESTIMEI THEN BEGIN
IR + T/DELTAT?
11 ¢ ENTIER (IR}
L s 18=ITt
IF ABS(R}SQ=06 THEN
FINPUT « FINLII)
ELSE BEGIN
IF TCTESTIMEZ THEN BEGIN
111 * II+11
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112 » III+1)

R1 + I=-RI)
R2 ¢ 2=Ri}
FINPUTe 0,SxR1x(R2XFINCII J=-RxFINCII2J)+RXR2XFINLIII )i
ENO
! ELSE
i IF T<TESTIMEL THEN BEGIN
! II1 e JTI+11
RI ¢ I=Ri
l R2 ¢ 2=-R}
FINPUT ¢ RIXFINCII] + RXFINC1ILI1d
| END
l ENO
i ENO
I ELSE
FINPUT = DI
ENO OF FINPUT
PROCEQURE FUNCT (TTEMP,YTEMPOERIV}H)
! REAL TTEMP}

REAL ARRAY YTEMP+OERIVL 11

! BEGIN COMMENT  COMPUTATION OF OERIVATIVES)

i REAL 012.QI3)

i INTEGER 1)

, @12 ¢ YTEMPLIIXYTEMPL1D)

i Q13 ¢ YTEMPLI Ix@12!

OERIVL13Z + YTEMPL2DI

OERIVL23 + =(QELTA XYTEMP[2) + OMEGA®2 x{YTEMPLIJ + EPS XGI3)) + ALFA
x FINPUTCTTEMP ¢+ INFL#3) 1

ENO OF FUNCTI

REAL ARRAY KFQORAOAMSL0:3+1:30)s YINCFORAOAMSLI:30Ji COMMENT GOES

BEFORE AOAMSI

PROCEOURE AOAMS(SIZE. HZERO» INITIAL+ FINAL. PRINT., RELB¢ ABSB.
YINITIAL, YFINALe+ FUNCT)
VALUE SIZE+ HZEROs INITIAL: FINAL» PRINTs RELB: ABSB i
INTEGER SI2E 7+ REAL HZEROe» INITIAL: FINAL: PRINT, RELB+ ABSB
REAL ARRAY YINITIALs YFINALCL13] §
PROCEQURE FUNCT )
BEGIN COMMENT AOAMS VERSION OF APRIL I+ I95&
OWN INTEGER I+ J¢ N |
OWN REAL X» He¢ RELTEST» ABSTESTe FACTOR 1§
REAL H24: LBs BOUNG+ Te TEMPX+ TEMPH 4 BOOLEAN TEST
REAL ARRAY Y» FLO!4¢1:SIZEJs Er YPLLISIZED
LABEL STARTI,» START2+ START3+ MARCHs LASTSTEP: RETURN
OEFINE LOOPI = FOR I + 1 STEP § UNTIL N OO &
FORMAT QUT MSSG (Xis"THE STEP SIZE IS NOW"+EIBLII)»
SINGY
(X330, "«sEQUATIONS CANNOT BE SOLVEO WITHIN THE GIVEN ERROR BOUNOS#x",X30)
+TITLE

(XI0+"SOLUTION OF NONLINEAR WINOUW MOTION™///XI0¢"ABSCISSA ="iFa.4,
X50"XT =" sFBeu//XBe"TIME® e XSo"OEFLECTION" o X3+ "VELOCITY" ¢ X3+ "QEFL/XI"/ /10
FRMT (X5/FB.lrXUsFB UrXUsFR.UIPXZIFR. LD
LIST LISTI (ABSCISSAeXI}}
PROCEQURE RUNGEKUTTALYOLO, FOLO, YNEW, FUNCT} 1
REAL ARRAY YOLO: FOLO» YNEW[ 1] § PROCEQURE FUNCT ;
BEGIN
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s vdm

OEFINE K=KFORAOQOAMSH» YINC=YINCFORAQAMSHI
REAL INCe H6 1 INTEGER L 3
L*01! Hs + H/6.0 }
LOOPI KLO0»I] ¢ FOLOLIY 2
FOR INC ¢ H/72.0» INC» H 00
BEGIN LOOPI YINCLI) ¢« YOLDLIJ+INCXKELI]
LeL +1 3 FUNCT(X+INC, YINC, KELe+*1)
ENQO
LOOFI YNEWLIJ + YOLOCIJ+H6EX(KLO¢I) 2. 0%X(KLL1sTI+KL 2,10} +KL 31200
X « X +H
ENO RUNGEKUTTA
BOOLEAN PROCEDURE ERRTEST(YPe YCo» E}
REAL ARRAY YP+ YC» E[C11 3
BEGIN REAL YCI+ EI LABEL RETURN 1
ERRTEST + FALSE ¥
LOOPI BEGIN ECIJ) *EI+ ABS(YPLII-{YCI+YCLII))
IF EI ¢ ABRS(YCI)XRELTEST THEN ELIJ ¢ EIZABS(YCI)
ELSE IF EI < ABSTEST THEN ELI] « EIXFACTOR
ELSE BEGIN ERRTEST + TRUE I GO TO RETURN END ?
END
RETURN: ENO ERRTEST 1
COMMENT INITIALIZE 3
WRITE (LPLPAGEI)}
WRITE (LP»TITLE.LIST1)}
N e SIZE + LOOPI YLO.I] ¢ YINITIALLI] )
X ¢« INITIAL ¥ FUNCT(Xe¢e YLOs*1se FLOs=1]) ¢
OXI*YINITIALLLI/XIS
WRITE (LP+FRMT INITIAL,LOOPI YINITIALLIJsOXI)?
BOUNO « INITIAL+PRINT 3
IF (TESTe+ ABSB#0) THEN
BEGIN RELTEST ¢ 14,.2xRELB } ABSTEST + i4.2xABSB ?
FACTOR « RELB/ABSB 1 LB ¢ RELTEST/200.0 )
H + PRINT ! FOR H+*0+5%H WHILE H >HZERO 00
END
ELSE BEGIN HeHZERO: IF H>PRINT THEN PRINT+H} GO TO START3I END )
COMMENT RUNGE=KUTTA STARTING METHOQ 3
START1: H ¢ 2,0xH |}
IF X+HgFINAL THEN BEGIN J ¢ 0 ? GO TO LASTSTEP ENO 3
RUNGEKUTTAC(YLO¢*]» FLO»*]» YP+ FUNCT) 3 X & X=H }
START2: H ¢ 0.5xH }
START3: IF X+#H=X THEN
BEGIN OXI » YLOr11/7X1D)
WRITE (LPeSINGY)? WRITE (LP+FRMT»X/LOOPI YLO+IJeOXI)}
G0 TO RETURN
ENO 1
RUNGEKUYTA(YL 0ve%1s FLO»*Js YL 1o%Js FUNCT)} FUNCT(Xe YL 1le*)e FLLlo®1)}
RUNGEKUTTA(Y( tsw])s FL1»=%2sy YL2+%]s FUNCT)}
IF TEST THEN IF ERRVEST(YPs YL2r%1+ E) THEN
BEGIN LOOPI YPLIY « YL1e11 }
X « X=H } GO TO START2
ENO 1
FUNCT(X» YL2¢eeds FL2/x1) )
WRITE (LP+MSSG »H)i
IF X+H2FINAL THEN BEGIN J ¢ 2 § GO TO LASTSTE? ENO 1
RUNGEKUTTA(YL 2¢%1s FL2¢*3s YL 3¢%Jse FUNCT)}) K24 * H/2k.0 )
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COMMENT CHECK STARTING VALUES FOR PRINTING 1
T + X=3.0%H )
FOR J « Ir2¢3 DO
BEGIN T « T+H 3
IF T=BOUND THEN
BEGIN BOUND«BOUNDAPRINTI DXI + YL JrId/ZXI)
¥RITE (LP,FRMT»T+LOOPI YL JrIJeOXI) END
ELSE IF T>BOUNU=H24 THEN
BEGIN TEMPX ¢« X 3 TEMPH ¢ H !}
X ¢ T=-H } H ¢ BOUND=X |
RUNGEKUTTA(TLJ=Ir%)r FLJ=1,2]r YPr FUNCT) )
DXI « YPLI1/XII
WRITE (LF'FRMTeX,LOOPI YPLIJeOXI!)
X « TEMPX ¢ H « TEMPH | BOUND * BOUNO+PRINT
END )
END 1
COMMENT ADAMS MARCHING METHOD )
MARCH? FUNCT(Xr YE3r*)r FL3r=x)) )
IF X+H2FINAL THEN BEGIN J ¢ 3 | GO TO LASTSTEP ENO !
LOOPI YPLI] « YL 3rI) +H24x(55.0%FL3r1) =59.0xFL 2r11
+37.0%FLI+I] =9.0%FLOrI2)
X ¢ X +H4 1 FUNCT(Xr YP» FLie*]) |
LOOPI YL4rId « YO3rI] #+H24x(G«OXFLYrI) +I9.0%FL 3¢ 13
=5.0%FL2,1] +FLI«I D)
IF TEST THEN IF ERRTEST(YP, YL4r=x]):s E) THEN
BEGIN LOOPI BEGIN YLOrI] ¢ YL3IeI) s FLOrI) ¢« FL3IrI) ENDI
X e X =H i H+ 0.5xH 1 GO TO STARTI ¢
END
IF  X=BOUND THEN
BEGIN BOUND«BOUNO+PRINT 1 DXI + YL4rI1/XI2
WRITE (LP+FRMTeXeLOOPI YL4rIJeDXI) END
ELSE IF X>BOUND-H24 THEN
BEGIN TEM®X ¢ X § TEMPH ¢« H ¢
X ¢ X=H } H ¢ BOUND=X 1
RUNGEKUTTA(Y[ 3r=]r FL3r2dr YPy» FUNLT) 1 DXI « YPLL1I/7XDD
WRITE (LP+FRMT¢x,LOOPI YPLIJ'DXINI
X «» TEMPX I H « JEMPH 1) BOUND * BOUNO+PRINT
ENO
LOOPI BEGIN YL 3¢I] « YL4rId ) FLO#ID) + FLIPID )
FLIvId « FL2eI1)2 FL2¢1) ¢ FL30I2) FL3¢Id * FLY4eId
END 3
COMMENT CAN INTERVAL H BE UOUSLED
IF H*H>PRINT OR NOT TEST THEN GO TO MARCH ¢
LOOPI BEGIN IF ELI] > LB THEN GO TO MARCH END
LOORPI BEGIN YLOrI) ¢ YL3:I0 3 FLO¢IY ¢« FL3»1] END &
H e+ 2.0xH 1 GO TO STARTI
LASTSTEP: H * FINAL=X } RUNGEKUTTA{YLJrx3y FLJrx1r YFINALy FUNCT) )
DXI « YFINALLII/XI
WRITE (LP+FRMTXeLONPI YFINALLI1eDXI))
RETURN: END ADAMS
TESTIMEL ¢« NFINXDELTAT
TESTIMED &+ TESTIMELI-OELTATI
INFLO] ¢ I.00 INFLI) « =I.0}
ADAMS {SIZE+HZERO,INITIAL'FINAL PRINT'RELB,ABSBr YINITIAL ) YFINALFUNCT)I
ENOJ
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WRITE (LPCDBL1): WRITE (LPLDBLI)# WRITE {LP+CLOCKs{TIME {1)=INTIME)/60)]

END}

CLOSE (CR/RELEASE) )
END.

?DATA CR

1

3!0‘ J_Ia' 105! 0.1290
PEND OF DECK
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