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SUMMARY

A numerical technique has been developed to compute the optimum

spanwise load distribution on nonplanar wings of arbitrary shape.

jj Complex curved wing configurations with multiple fences can be analyzed

with this technique. M. M. Munk's criterion for minimum induced drag

ii was used. The problem is solved in the two-dimensional Trefftz plane.

The two-dimensional shed vortex sheet ,is assumed to have the same s1Lape

as 'he nonplanar wing, from which it. has been shed.

J. L. LUndty of the McDonnell Douglas Corporation found an' ingen-

ious solution to this problem, by computing the potential flow field,

which would satisfy Munk's criterion. Lundryls method requires a

Schwartz-Christoffel conformal transformation.

the method developed in this paper is different in that the

numerical technique does not require a conformal transformation. The

vortex sheet in the Trefftz plane is subdivided' into 21 segments.

! fEach vortex sheet segment is assumed to have a linear vortioiy ditri-

bution. The velocity induced at N-Q stations is determined with the

LI Biot-Savart law. Because of symmetry it is sufficient tod.compute the

Il velocities in one half of the vortex sheet. A set of N-4 equations

has been derived with as many unknowns. The unknowns are the strength

1 oi of the shed vortex sheet at N-Q, stations. Munk's criterion provides

the condition matrix for the magnitude of the normal component of the

induced velocity. The utrength of the shed vortex sheet is integrated'

to obtain the optimum spanwise loading on the nonplanar vcing.

4J
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The technique has been tested on nonplanar wings with various

Ii dihedral angles and locations of the nonplanar wing sectionsi The

nonplanar wing results are presented relative to those of a planar

wing with elliptical load.ng. Both wings elected 'have identical lift

and total wing peripheral length, and thus 'equal skin friction drag.

It is shown that the ratio of the induced drag of the planar wing to

Ii that of the nonplanar wing is always less than one. The results are

in complete ,?greement wvith those obtained by Lundry. Hovever,. because

Lundry compared wings, with equal span instead of equal peripheral

1length, he found this ratio to be always greater than 1.0.

in 'conclusion it can be said that if the span is the limiting factor

U it may be advantageous to use nonplanar wings with dihedral angle and

fences. However if the wing peripheral length is limited, then the

planar wing is always the most desirable configuration, with the highest

Ut lift over drag ratio.

Ij
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SYMBOLS

English Letttrs:

AB,..K abbreviations as defined in appendix

DI  induced drag

h, Variable along vortex sheet segment

k induced drag efficiency factor

L lift

U N total number of the vortex sheet segments

n unit normal vector

P -abbreviation as defined in the appendix

Q total number of wing and fence tips on a
semispan

R radius vector

r radius vector

S abbreviation as defined in the appendix

T ratio as defined in Eq. (2T)

w downwash velocity

xJ coordinates of the vortex sheet segments

z unit vector in downstream direction

Greek Letters:

doefficient defined in Eq. (11)

coeff' ient defined in Eq. (30)

F~bound vortex strength

,shed vortex sheet strength

angle defined In ?ig. 4
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SYMBOLS (cont'd)

0 dihedral angle

non-dimensional spanvise coordinate

P air density

Superscripts:

indicates the side of the vortex sheet" t
which the domnwash is comjuted"

ii indicates opposite sideof the vortex
sheet from where the dovnwash is computed,

* properties of a planar, elAltically
loaded wing

Subscripts:

j 'indicates anyone 'of the Q tip spctions

on the semispan

m indicates the location of the inducing
vortex sheet segment

n indicates the location at which theII induced velocity is computed

o indicates the vortex sheet centerline
conditions

ii
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SINTROUWCTION
A progressively increasing need is becoming apparent for aircraft

with STOL capabilities. The forty plus versions of fixed ing air-

F7 craft existing today, with both VTOL and STOL capabilities, represent

a bare initial effort to satisfy both commercial and military require-

i ments. Commercial nee's include downtown-to-airport transportation,

while those of the military are for operations from short runvays such

as those found on aircraft carriers.

STOL capability requires unusual wing configurations, often using

multiple leading edges and trailing edge flaps with boundary layer

E control to obtain high lift coefficients. These modifications often

require many fences to separate wing sections with different lift

coefficients. The frequent use of horizontal or vertical engine nacelles

adds further to the nonplanar nature of the wings. Aircraft an Naval

c&ridrs can benefit from a nonplanar ving configuration so as to rie i; I
tcir ' reuirod ,span -Andpe-mit compact storage.

The ccmmter-tachnique devploped in this paper calculates the

qptiqum- ioadin on any nonplweAr wing of given complex geometry for the

minimum ift over drag ratio. Such a computer program can be used to

determine the effect of size, location, and dihedral angle of the fences

employed on the overall lift to induced drag ratio of the wing. The

computed optimum loading can determine the desired wing twist and

taper.

Jo
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The optimization technique is based on Munk'8 I criterion for

minimum induced drag. This criterion requires that the cosine of the

iocal dihedral angle equal the normal component of the local induced

velocity divided by a constant.

a*- segment of shed vortex sheet

dihedral angle,

H joptimum when cc,e,, WJ I
constant

Figure 1: Munkts criterion f Z-minimu-m induced drag.

For all planar vings, regardless, of taper,, aspect ratio, or sweep,

the optimum spanwise loading is elliptical.

Because the induced ag: of a .Ang is only a function ot its

spanwite loading and not of the a0?act ratio it is desirable to derive

the optimum spanwise loading in the Trefftz plane, which is located

iMUinitily far downstream of the wing, where all chordwise effects can

be ignored. The two-dimensional Trefftz plane is perpendicular to

th6 )uble-infinite shed vortex sheet, which is assumed to remain

S undistorted and to maintain the same nonplanar shape as the wing.

i 1Superscript numbers denote references.
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V96 two-dimensional

Trefftz plane

shed vortex sheet

Figure 2: Schematic view of the Trefftz plane.

Lundry2 has presented a solution to ti. iproblem by computing the

potential flow field which satisfies Munk's criterion. By Buperim-

posing a uniform crossflow on the two-dimensional vortex sheet, he

cancelled all the normal components of the downwash velocity and thus

satisfied the boundary conditions on a solid surface. Next he

computed the velocity potential around a solid surface in the shape

of the nonplanar wing by using a Schvartz-Christoffel conformal mapping

technique. Then by 'subtracting the velocity potential of the super-

imosed crossflow, he found the desired velocity potential of the

induced velocities. The strength of the shed vortex sheet was found

from the difference in the upper and lower tangential velocity

components. Using integration, he subsequently computed the optimum

V spanwise loading on the wing.

JJ
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The velocity past a solid surface in tite shape of the nonpJ~anar

wing is zero at stagnation pol\nOa, e .g.$ the root of a fence on the

wing, and is infinite for the flow qlonS the ving vhere there is a

diacnatimuity in the dihedral angle, such dincontinuities will. be

referred to as bends. Consequeatly Lundry' a analysis shovs that the

strength y of the vortex sheet segment shed by the fence is zero

at the fence ro. In addition a vortex sheet segment shed by either

the top of a wing, fence, or by the bend in the wing, has infinite

vort-1city. Suich segments require special treatment in a numerical

calculation.

Lundry' s analysis covers straight line segments because of the

naueof the Schwart:.Christoffel transformation, but otbergd have 4
usedmaping whch avetranfored urvd lnesto straight lines

and performed a similar analysis. In references 2 and 3, the analysis

was performed in the Trefftz plane and an undistorted wake assumption
was made. A recent publication by Blackwefl 4 describes a numerical

technique which does not use conformal mapping. His tfechnique is a

special form of lifting surface theory, which provides information

on both the spanwise and chordwise optimum loading. ExperimentalI

work on nonplanar wings has been reported by RobertsO.



METHOD OF ANALYSIS

The vortex sheet shed by a given wing, with arbitrary shape

and number of fences, is assumed to extend to infinity without any

~I7 distortion. Only wings with an optimum loading will have a trailing

vortex sheet which satisfies Munk's criterion at any spanwise

location:

' We,= constant

This criterion can be applied to the spanwise direction at the wing

or at any other norr~l surface downstream of the wing. If the

normal surface is chosen infinitely far downstream of" the wing then

1 one deals with the TIefftz plane and the problem has become two-
dimensional. The velocities found in the Trefftz plane are induced

by a two-dimensional double-infinite vortex sheet of strength y'

j The shape of the shed vortex sheet is equal to that of the nonplanar

wing, assuming an undistorted wake.

L Identifying the semiwing total peripheral length by max 1.0

and the bound vorticity of the wing by P r# vH then the

Lstrength of the shed vortex sheet is:

= _ d_'r ( )

V
I
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if the ii-vorex sheet total ALh r.~

int.) N s ment o: 0, q ngth 105 'a Shon1 in Fig 3.

-" (' 3)

Definae the number of wing and fence tips on the -,.em#pm , ar 4

if each tip has N(j) vortex sheet segments, where 1,0 ,)

--, then the total number of vortex sheet segments is:

.gA

An example it shown here with Q 5 and 26.

centerline of ving4'and vortex sheet

"9 \" 3

2.0 No

- N- N'I1 01 2 3 4 r

2. 3

T 4

Figure 3: Example of an arbitrary nonplanar wing shape.
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Munk's criterion will be satisfied at N-Q stations n(,)-,

Fit where n varies from 1 through N(j)- 1. The n(j) stations are located

on the right hand side of the vortex sheet; because Munk's criterion

is automatically satisfied on the left hand side owing to symmetry.

[ The normal component of the velocity induced at f(j) by- the

entire shed double infinite vortex sheet is W1 n . This

F velocity component is composed of the aum

Wa- ita. W M 0)

where Wis the velocity induced at n(j) by both

the left hand and the right hand vortex sheet segments located

E! between- stations m(-j) and m(j+1 ) . The strength of these vortex

F sheet segments is: y ) or the right hand side and -

for the symmetrically opposite segment on the left hand sie. Using

1the Biot-Savart law and leaving off the subscript (3) gives

ff

[-!
4~wJ fx.. n

• [ a-
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f where:

h is the running variable in the 7 direction having a maximum

length A4 .

2 is the unit vector in the downstream direction.

n is the unit vector normal to the vortex segment at point n.

is the radius vector from n to the right hand vortex sheet segment1at m.
is the radius vector from n to the left hand,*rtex sheet segment

at m.

centerline of vortex sheet

-YY

A,

I I I

Figure 4: Schematic presentation of the geometry used in Eq.(
6 ).

I -b (Y4
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Where r and I can be expressed as functions of the known coordin-

11 ates of the vortex sheet segments:

FR is positive for Le and negative for i

H2

while r 2 is positive and can be written as:

-X + cos oil, + ( + +' E ~ ~
(Lj , - - ' ho, : C, .,.Ii,,E ,- @ 1 )

+ SI

To be able to integrate Eq. (7) one has to assume a vortex distri-

bution along the segment. Good accuracy has been obtained by assuming

a linear vortex distribution, so that Y becomes a function of the

two unknown values at the ends of each segment ri% and T:

+U
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c bining Eqs. (7) and (10) gives

7A17

0( 13)

• t kN

_ I~Af7

(14
1Ji ~ ~~.-~-----'- 

_______________
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The symbols A, B, C, etc., are functions of the known coordinates
and dihedral angles of the vortex sheet segments (see Eqs. (38-4T) in

Appendix A). Equations (16-19) are the general forms of the coefficients

. in Eq. (ii) except for the special case that m = n-i or m = n. For

m = n one finds o 0 0 and for m = n-1 one finds 0, &-

This is easily understood when it is realized that under these special

F conditions the contribution of the right hand side of the vortex sheet

I, I_ is computed at the end of vortex sheet segments of

finite strength y.. and y . and then the velocity becomes

infinite. This problem can be avoided when [ aW A-I

is computed for both adjacent vortex sheet elements simultaeously as

Ii shown in Fig. 14 .(see Appendix B). The results of suck special treatment

are:

for m n-I

-CO (221)

for m n

hese e~~ultions have been derived in appendix B (see Eqs. (53-56)).
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Another difficulty arising in the application of Eq. (11) occurs

when m + 1 = N(j) or Ym ~l which is the vorticity shed

by either a wing tip or a fence tip. This vorticity is, of course,

[I infinite and when used in Eq. (11) would make A/ 1,i=(3)-- o

This problem has been overcome by asstuning that Y shed by the non-

planar wing goes to infinity at N(j) at the same rate as the vorticity

1 y' shed by an elliptically loaded planar wing becomes infinite at

the edge. Defining the semispan of the planar wing by = 1.0 and

I the strength of the bound vortex at the centerline by Fo gives:

and at the distance i? from the edge is given by:

NN
-2, -2

-7,,,.) _(24)

The normal component of the downwash velocity induced at station N-1,

, adjacent to the tip is most sensitive to the accuracy of the vortieity

at the tip. If the downwash velocity at N-1, induced by the vortex

sheet segment between N-1 and N is computed, the result will be infinite.

This is because is evaluated at the end of a vortex sheet
with finite strenth. However, if Is induced by both

adjacent vortex sheet segments, then this normal velocity will be finite,

as shown in Eq. (52) (see Appendix B).
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One can compute induced by the two adjacent1 110 3
segments of strength as shed by an illiptically loaded planar

wing by:

=f , _ __ _ _ ci,

2 IT
i T,

replace 7 by cos z and de7 by - sin z dz

_,?N2 0

IN-2(

7W.,J

Compare 4 ,, . to the expression found for the velocity

[induced by two adjacent vortex sheet segments with a linear vorticity
distribution as was derived in Eq. (52) (see appendix B) and which is

repeated here as:

111ML- ~a 1Z ( e)1()U J ,f~ , W()- l YN)"~1t~-

If the Induced velocity is set equal to ) ,
and the vorticity f equal to - then an equivalent[ finite value for the tip vorticity is found as a function of

the vorticityNNJ-
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Equating Eq. (25) to Eq. (26) gives the equivalent finite tip

IIvorticity as:[IY (a?)

where T is given by:

Equation (28) is quite insensitive to the size of the Increment used.

For example:

! -4417 =10 gives T = 5.986

=10 gives T - 5.991

-2
A7  10 gives T-6.o44

TI -l

A 10 gives T z6.714

ji T
LI~T 7 - - A



r h
f;

,115
-- T YN(j)-2z

Kp / elliptically loaded wing
shed vorticity '"'

assumed linear
vorticity 7/

r
shed vortex sheet

f gW-2-- YN()-2 Aw =w,,_A , .

L Figure 5: Graphical presentation of the finite tip strength approximation.

All the terms in Eq. (11) have now been defined and the next step

is to solve the optimum vorticity distribution in the shed vortex sheet.

Applying Munk's criterion from Eq. (1) gives:

[ W! ~ ~~Cos e. 0 = -W

Using the e~pression for the induced velocity from Eq. (11) gives:

I: o s e,( = e .= T jo%. cO(- ., +0U YC0- (+

CO Wa(t) ( CK (29)n i

Lii
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This equation can be remoritten in the form:

Coss -9 WO(3

where the coefficients @are as given belov, ith subscript (0

() + 0

pot I-

;a (a) + cK4+.0

+ ~ TY~- *4'4 C< + V( \X4

-A (3)111+G<21 P3-

(4) (92-a)3. (

'is irregul~ar teas tis the first coeff'icient;(3 iireur

because m n is1; irregu.car becmtse m n ;,(4 is irregular

Sibecause m n + 3.i -re-uIr~ -- mz. T R)
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Equation (30) represents a set of N-Q equations for N-Q unknown values

of Y o) . The solution of this set of linear algebraic equa-

tions is obtained with the use of the digital computer subroutine

DECOMP,- The values of thus obtained, represents the
WO

F dimensionless optimum strength distribution in the shed vortex sheet.

To compute the corresponding spanvise distribution of the bound

vorticity one has to integrate Eq. (2) numerically. First,

the integration is performed along the fences starting with tip N(2 )

"(f.at wing root

- - a --- Y.".) -," Y. , ()

S[ This integration is carried out along the wing, starting at the

wing tip N(!) and proceeding to the ctnterline. Every time a fence

F Lroot is encountered the bound vortex or the V.ng experiences a step-

like increase of magnitude ],')L

ri(,)at ist fence
ng root

ZN
rI lai than

at ls fence
wing root

The ln-ation of position n is shown in Fig. 6.

h
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{4A non aa win
I . .....

Li we.1 '. b ound vorticity f n tWOI 
' finite

WOI

Sir
Lu j' -shed vorticity

alon ~ ()~J.-*- along fence,

jj u

SF'iure 6: Effect of fences and bends on the voftic4ty.
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RESULTS

rThe optimum loading computed with this method can b e V;Aed to

calculate the corresponding lift and induced drag or the wing. The lift

-Z is proportional to the vertical componeat of the force obtained

from the vector product between V. and r and is:

V- Cos mI)

The induced drag 3)| is proportional to the vector product w x r

using W x W4"A I"xF>W. o

w,(~x )C05G)

The lift over induced drag ratio for wings with optimum loaeing is then:

I WOL

To compare the ratio between an elliptically loaded planar

wing and an optimum loaded nonplanar wing, one should specify that both

wings =mt have equal lift, and use Eq. (35) to define an induced drag

efficiency factor k as:

[k. (36)
plna nonpisanar Wo nonplanar

L7s

planar
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The following argument shows why the efficiency factor k is less than

unity when the tvo wings being compared have equal total peripheral

length. Both wings are chosen to have equal lift or:

planar nonplanar

This inequality is given by the mean value theorem.
Defining an average bound vorticity r= . then

planar (C 6) it r nonpianar

9 r'planar nonplanar

If one defines an average shed vorticity 7= - f then

according to Eq. (2) f- A,, From Eq. (30) It follows

that ,v W. or combining these results 1 ^ 4o. .

Assuming the proportionality constant to be of the same order of

magnitude for both the planar and the nonplanar wing one obtains:

'~]planar 7] plna
W ~ WO

planar <1 nonplanar

k P~lana.- ~ 1.
Wononplanar

This is the definition of the efficienty factor used.
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r
The effect of a dihedral angle on the efficiency factor k 1.0

is shown in Fig. 7. Both planar and nonplanar wings have the same

total peripheral length and consequently the same area and skin

friction drag. The nonplanar wing has a shorter span but its perfor-

mance is worse because of the lower lift over induced drag ratio.

Seemingly contradicting results are found in Ref. 2, where the effi-

ciency factor k >/ 1.0, because Lundry has compared the nonplanar wing

with a planar wing of equal span instead of equal peripheral length.

Under these conditions the area and the skin friction of the nonplanar

! 17 wing is larger than that of the planar wing but its performance is better

because it has a higher lift over induced drag ratio than the planar wing.

The optimum loading computed in this paper is in exact agreement with

the results obtained by Lundry in Ref. 2, except the efficiency factor

Fk is defined differently (see Fig. 7).

7 In conclusion it can be said that if the span is the limiting factor

then it may be advantageous to use nonplanar wings with dihedral angle

and fences. However, if the total peripheral wing length is limited,

then the planar wing is always the most desirable configuration with the

highest lift over drag ratio.

pThe numerical solution was tested for a simple nonplanar wing with

a planar center section and a dihedral angle e , which is constant

~4 for the outer portion starting at * The optimum vorticity

distribution in the shed vortex sheet is shuwn in dimensionless form

in Figs. 8 and 9. There is a sharp increase in near the bend in

the wing, N 100 in this calculation. The ratio between the bound

vLrticity F and its average value 7 is shown in Figs. 10 and 11.

The effect of the dihedral angle on the requirea increase in the optimum

loading is shown in Figs. 12 and 13.
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E0U AL S PAV

HERE K<1.0
EQUAL LENGTH

is 100
1~3 9:00 -

.... 0... -. /'. I /

0.80 - 0

04
j 0.70/

.. 0.60 /

:T

,.2 A .6 .8 I.0fBi ̂Is at the start of the dihedral avle 0

IFigure 7: induced drag efficiency.
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planar portio fWn :0

t

0 600

060
I I

0 0.2 0.4 0.6 0.8 1.0

'.r nondimensional spamnise coordinate.

Figure 8: Optimum vorticity distribution
in the Trefftz plane.
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t~

4. ,=e----- p0encr Portion of wing S"-wr

10

ii'i 2- VeC 0

00.2 0.4 0.s 0.8 1.0 I
"nondimensonal spanwise coordinate

Figure 9: Optimum vorticity distribution
in the Trefftz plane:
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O- wing

Fi 1.4 :.. . ,,
Lii , %. \ -=30°

S 91.-0

IL

'0.4-

HE!

0.2-

0  0.2 0.4 0.6 0.8 1.0

:18 q nondimensol spanwise coor'dinate

Figure 10: pfmum bound vorticity on
the wng
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Vj

planar portion
of wing 6

1.4-6:0

S1.2-

1.0

a j0.8-

Z 0.6-

j4 0.2

0 0.2 0.4 0.6 0.8 1.0

17 flondknenional spcnwise coordinate

Figure 11: Optimum bound vorticity on
the wing~
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planar portionof vin.._._g
2.0 -6:0

°

I -

0.4

C I I I I I I I

0 0.2 0.4 0.6 0.8 1.0

77, nondimensional spanwise coordinate

Figure 12: Relative bound vorticity.
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2.0 planar portion of wing-0".

2.0

1.6- 8:300
- =600

,i .10.8O-

0 A 1 I 1

0 0.2 0.4 0.6 0.8 1.0
? - n ndhwsol spamise coordnate

Figure 13: Relative bound vorticity.
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CONCLUSIONS

The results of this numerical technique have been compared to the

conformal mapping solution as presented by Lundr?2 in his configuration

r
5 and excellent agreement vas obtained.

The numerical solution used in this program takes little computer

time and is suitable for computer optimization of fence position, size,

and dihedral angle. Only the P matrix coefficients that belong to

the fence in question need to be recomputed for each configuration

change.

The step size A need not be constant = as was used

here. Wherever /f appears in the equations it can be replaced by

the local magnitude of used.

The input data for the computer shou.ld include the total number

of vortex sheet segments N and their coordinates Xo S n and

dihedral angle e . In addition A must be specified for

each station n, if the segments are not of equal length.

It is noteworthy to realize that Lundry compared his nonplanar

wing to an elliptically loaded planar wing with the same span and

found the induced drag efficiency factor k > 1.0. Consequently, when

the span is the limiting factor it is advantageous to use a nonplan~r

wing. In this analysis, the nonplanar wing is compared to an ellipti-

cally loaded planar wing with the same peripheral length. The induced

drag coefficient k was found to be - 1.0, and consequently if the

total peripheral length is a limiting factor it is advantageous to use

a planar wing. Either method can be used to find the optimum loading

of a nonplanar wing.
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APPENDIX A

7 The integration of the coefficients

oeo

2 2 IT

4 Of (r ( z

Equations 8a and 8b , can be written as:

I!I

where X, CosIN E, (38)

and~ ~ Cos 1% cos& SN0, SN (

and COfo ' SI m SIN e
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Equations 9a and 9b can be rewritten as:

-2m

whre,~ F

.h-eJCos 0cx,.r + a 19 (42)

and x ± (43)

where J -ac:i e (44)

and k - !s,

Inserting these expresuionus in Eqs. 12-15 givest.

A7 F +

- I% E

7< - + k),

-

12A
2 .r ) A _ __± ' 2 G

-< F G.),"< ;(-;) k

or=

0'4 2 -7
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The denominators are of the type ah2 + bh + c H ,with 4ac> b 2F2
This is because: 4 2, and 4k

Proof for 4G..> F-

2] >(~ X%) 2a ~

(~-~.~F ~(x 1(x- SIN oe, ,Cos 

O> I -].. -- o .

[When ac - > 0 then: . .... tan-1 2ah +b
-(4=_b 2)1 (4

When 4 ac -b 0 then: = (-2

for all values of 4ac-b 2

Jh db = L4IHI -b(dh
H 2a 2a J H

h2dh _h 
b -2 cf dh

- a 2;22
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171o __________ r}
for ' 4 ' > put and-), a:

- ..f~2 & {a~ .F._ 
( 0)

F aF(4 G FG -F 4G F2)&

for 4 G - = o or very small

7 2 +. 
(46

f7 }

f o r, 
t =

0

for 4 X - - O or very small

Ssv,{~ Nk} 
(47k

- IT +1,.,,,- .s~[(A- )+ BPt,, I

2 . ' V . - + - - ,1 (4 9

I--
-N p -S(G.A2

+"S" + -F +
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The special case is given where m n and m n-1. Under this

Fspecial condition the normal component of the induced velocity at n
is evaluated at the end of a vortex sheet segment with finite strength

y ; consequently the contribution to 4W± from the

adjacent segments on the right hand side of the vortex sheet, as given

by the coefficients o
1 

and O(2. vill be positive and infinite for

m = n where 0( +oo and be negative and infinite for m = n-1

where C . o_ . This infinkte velocity can be avoided if

the integration is carried out over both vortqx sheet segments simul-

taneously as shown in Fig. 14.

Y -

V !/ - shed vortex sheet

"'direction of [aWL7n"

i~Figure 14*. Vortex sheet segments for m =n and m =n-i.

When the dihedral angle 8,,, =7 -- , then there is a bend in the

vortex sheet and the corresponding exact solution of Yend= 00
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In order to smooth out the bends and avoid the necessity for to

go to infinity, one can choose the unit normal vector In" along the

average normal to the two segments as is shown in Fig. 14.

Applying the Biot Savart law as in Eq. (8) gives the velocity

component i induced at n by both neighboring

I vortex sheet segments, but not including the contribution from the

left hand side of the vortex sheet as given by CK2. and Oj .

where - T 7 -X2 Cox ___

Linearizing the vorticity distribution as in Eq. (20) produced a dis-

continuity in Y at station n. This vorticity distribution can be

replaced by one continuous function over both segments Y, , and by

one distribution 2 which goes to zero at station n so that

Y"r as show in Fig. 14.

for

for

for

., C7

i
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i[using a__fa 7

gives

As a result of this, one can write with the use of Eq. (11), the con-

tribution of the right hand side of the vortex sheet as:

I6

t" 44 h'0 "4

'M,+ Yo,, r) q3,,. %

Equating this to Eq, (52) gives the coefficients:

orA 1 2.ir (Or3)

II

0_2 -0

1 u 
_ _ .. . .. ..---.. -
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