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Abstract

The propagation of a first-order electromagnetic disconti-
nuity is discussed. Expressions are obtained for the possible
velocities of propagation as functions of the field strengths
ahead of the surface of discontinuity. Expressions are also
obtained for thefgrowth in the magnitude of the discontinuity
as the wave progresses.




1. Introduction.

In this paper we shall discuss the propagation of electro-
magnetic waves in which the fields are continuous with respect
to space and time, but where spatial and time deriatives may be
discontinuous on some surface. Such discontinuities are called
first-order discontinuities. Until recently studies of the
propagation of discontinuities of this type have been confined
to fluid dynamics (see, for example, Courant and Friedrichsl).
More recently, using a technique based on the compatibility
conditions at a moving surface of discontinuity, Thomasz_has
studied the growth of elastic waves of this type in linear ma-
terials. Varley and Cumberbatch® have considered the more
general problem of a quasilinear, first order, system of hyper-
“bolic equations using a variant of the method for a linear
system described in Courant and Hilbert4. In this paper we
apply the procedure of Varley and Cumberbatch to the study of
the propagation of first-order electromagnetic discontinuities
in a non-linear centrosymmetric isotropic material, for which
the electric displacement field depends only on the electric
field and the magnetic induction field depends only on the mag-
netic intensity field. | 4 | | '

We obtain first the secular equation for the propagation
of a first-order electromagnetic discontinuity surface. We
find that there‘are, in general, two possible propagation
velocities in a specified forward direction and correspondingly
two possible polarization directions. Both the velocities and |

‘directions of polarization depend on the magnetic induction field

‘electric displacement field immédiately ahead of the disconti-
nuity. ' '

In 54, we obtain an expression for the ‘growth of the
maghitude of the discontinuity as a surface of discontinuity
propagates. In §§5 and 6 this:fesult is specialized to two ‘

and




cases in which the fields ahead of the surface of discontinuity
are uniform and constant. In one of these the magnetic induction
field is taken normal to the surface of discontinuity and in the
other, the electric di5placement field is taken to be normal to

this surface.



2. Propagating Surfaces.

In thls sectlon we con51der the propagatlon of an electro—‘

magnetic wave for which the magnetic induction field B and
elastic displacement field D are continuous, wﬁile their first
derivatives, both with respect to space and tiﬂe, may be dis-
continuous across some surface. This singular§surface is called
a first-order singular surface. - e

~ Let X be the vector p051t10n of a generlc point on thls

51ngular surface with respect to a fixed origin.  Let
6(x,8) = 0, | (2.1)

for flxed t, be the equatlon of the singular surface at time
‘t. We define a by '

t

=.¢(§’t) ’ - ‘ o 1(2'2)

'

and assume that ¢ is a continuous function of'x and of t,
which has continuous firstlderivatives with respect to space'
and time. We also assume that 3¢/t # 0 in some nelghborhood
' ’ 0.

In view of the definition (2.2) of o, we_see that

of the propagating singular surface, i.e. a

a = constant describes a propagating surface, which is the
_singular surface if the constant is zero. Also, the variables
X,0 define a point on such a surface. Let g(gya) denote the
unit'normal at the point X to the surface a = constant, drawn
'in the direction of propagation. vLet V(>0) denote the speed’
of propagation of the surface. From the def1n1t10n of the
speed V of a moving surface at a p01nt as the speed with which
the surface moves normal»to itself at that p01pt, we have

dx ‘ : .

V=13. 'd-z ’ _ ; ' (2-3]




where

n = Vo/(V¢:7¢)/? (2.4)

E=

-Now, from (2.2), we have for the moving surface a = constant,

d
Vo -

~

'ad Kial

09 _
+:a—_E— 0 (2.5)

Multiplying (2.5) throughout by n and using (2.3) and (2.4),
_we obtain '

n .
'v—— -vm . ) (2-6)

Now, any function f, say, of x and t may also be regarded

as a function f, say, of X and o, where o is defined by (2.2).
We then have

£0x,t) = F(x,0) (2.7)

Whence

of _ oF 9o _ oF 3¢
3t - Ja 3t _ 3a 5t (2.8)

e define the operator V as the spatial gradient, hold-
"ing a constant. It follows, from (2.7), that

(2.9)




With (2.6) and (2.8), this yields

Here we may point out that the operator Y is a %urface
operator on the surface ¢ = 0 since by the choice of the new

(2.10)

(2.11)

set of coordinates,'the variables involved in the_differenti-‘

ation correspond to a displacement on the surfate4




3. The Secular Equation.
In the absence of free charges, Maxwell's equations may

be written as

WE + 3B/3t = 0
(3.1)
xH - BP/Bt =0 |,

where E and H are the electric and magnetic intensity fields
respectively.

We shall consider that the medium in which the wave is
propagating is isotropic, centrosymmetric and non-dissipative
and that E is determined only by D and H is determined only
by B. It follows that the constitutive equations take the

forms

Y w

E = e(D-D) and H=u(B-B)B , (3.2)

whére e and p are scalar functions of the indicated argumenté.
Introducing (3.2) into (3.1), we obtain

e'7(D-D)xD + eWD + 22 = 0

VexD + ewD + 2L = e1y(D.D
and | ' (3.3)

oD
W'T(BB)B ¢ B - g

Q
e

1]
o
-

VuxB + uwB -

(s
ct

~ e e

where €' = 3¢/3(D-D) and p' = 3u/3(B-B)
We bear in mind the known vector identity

V(D-D) = 2 [(D-7)D + Dx(VxD)] . | (3.4)




j ' f;
Substitutingrfrom'(3.4) and (2.11) in (3.3)1,;we obtain:

oD

: aD
enx 5% + 2¢e'(D. ——)(nXD) -V

| @
R

= 2¢'"V[(D*V)DXD + {Dx(UxD)}xD] + eVVxD: . (3.5)

Similarly, from (3.3)2 we obtain_

9B B )}
unx g+ 2u' (B-5%) (I}%l}) * V st

ﬁ

= 2u'V[(B-V)BxB + {Bx(VxB)}xB] + uv?xéi'.' L (3.6)

We now introduce the assumption that B and D are con-
tinuous at the moving surface ¢ = 0. It follows that their
- tangential derivatives VB, VD, VxB and VxD arQ also con-
tinuous across the surface ' |

We denote by b and d the Jumps 1n aB/at and aD/at as we.
.cross the surface ¢ = 0 in the direction of n; thus

b= [3B/3t] , d= [3D/3t] . ,§i;4, (3.

With (3.7) we obtain, from (3.5) and (3.6), o@:d>= 0

S

1
o

emxd + 26" (D) (D) - Vb
and _ ' . - ; (3.8)

upxh + 2u’ (B-b) (nxB) + V4

"
o




From (3.8), we obtain

n-b =0 and §'§'= 0o . (3.9)

Thus, the jumps b and d are tangential to the surface ¢ = 0.
Now, eliminating d from (3.8), we obtain on ¢ = 0

penx (nxb) + 2u'e (B+D) {nx (axB))

+ 2" (nxD) [uD* (nxb) + 2y’ (B-b){D- (mxB)}] + Vb = 0 .(3.10)

We introduce the notation

BB vB . D=DyvD (3.11)
where B and Pt}are>tangential to the surface ¢ = 0 and B,
and Pn are normal to it. We dlso write
J = nxD, . | - (3.12)
Using (3.11), (3.12) and (3.9)l in (3.10), we obtain
(V2-ue)b - 2u'e(B,-b)B |
-2e'J[u(b-J) *+ 2u' (B -b)(Bd)l =0 . (3.13)

Forming the dot product of (3.13) with gt’ we obtain
2 _ - . - .J)?2 .
[(VE-ue) - 2u'e(By-By) - 4u'e' (B -J)*1(B,-Db)

- 2ue (0 (B-D) . (5.14)
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!

Forming the dot product Of'(3.13) with J, we.obtain

[-2u'e(J-By) - 4u'e' (B,+J)(J-J)1(B,b)

= [(e-V?) + Zue'(g-éJlt?fJ)

(3.15)

Eliminating b from (3.14) and (3.15) and using the notation

we obtain

x? - x [2?'{€(§t'§£) + 2" (B -J) %+ 2u€;£{'f)]
* 4ﬁu;88'{(27{)(§t'§t) B} ({‘gt)z} = d
Fromr(S.lﬁ) and (3.17), we obtain the two‘solqtions for A
V2 o= pe + u;[E(gt'§t) + 2e'(J-B)?] f‘ué'k{'{)
+{[u'{e(B,"B.) + 2¢'(J-B)2} + ue'(g'é)]?
- 4gu'€s;[(§°§)(§t'§t) - (f*?t)éll/z
2 is real and poéiti?e if and only if
[u'{e(B.-B,) + 2€'(§'§t)2},+'us'({°§)2]2»?
> dunree’ [(J+0) (BB - (J-B?]

and pe > 0. In this case we see that for giveh n, §t and

D

t5'thére are two possible real speeds of propégation'in the

(3.16)

(3.17) .

(3.18)

(3.19) B
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forward direction. Propagation in the opposite direction with
equal speeds is also possible.

Provided that V2 is a simple root of the equation (3.17),
i.e. the greater than sign in (3.19) is valid, we can determine
the direction of polarization of b from equation (3.10). Then
the direction of polarization of d can be determined from

equation (3.8)2.
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4. Growth Equation.

In this section we shall derlve a d1fferent1a1 equatlon
governing the change in magnitude of the discontinuity. In
order to do this it is more convenient to refer all equationé
to a rectangular cartesian reference system ;énd to use
indicial notation. With this notation, we obtaln by dlffer-
entiating equations (3. 3) with respect to t,

s 9D, - 3D 8D, 3%B.
e.., {P —(z=) + Q — } o+ =0 ,
1jk " k2 ot axj nkf 9t axj 5t 2
(4.1)
. 2 .
. R 3——(BBR) ‘s BBn aBz} ) d Di . 0
ijk "k& at‘ox. nkf 3t 9x. 3t2 ’
J J
where
Prg = &8y * 2e'DyDy
S '
Ria = MOy * ZW'Bi By
‘ (4.2)
= = ! 1" t
Qi Bsz/aDn 2e'D 8, , + 4e"D DpD, + 2e Dkﬁzn
+ Ze‘DQSkn' ,

Snk2 = asz/aBn

Zu'Bnék2 + 4u"BanB2 +v2u'Bk6£n

+ 2u'B£§kﬁi ,

and~eijk denotes the alternating symbol.




-13-

We now change the independent variablesfrom x,,t to X;,0.
In indicial notation, the relation (2.10) may be expressed as

> .2y - oid
9X - 0X. vV 2at ’
J J o
whence
n 2
ﬁ_( d ) = 0 rﬁ_g = (_3_9 9 . 302
9t oxX. 9X. ot X - ot Vo 5¢2
j j j o t

Intrbducing (4.3) and (4.4) into (4.1), we obtain

32D 32B, . 3D
3 1 : ) L
e...P. 0. SV —L = ve. . {P,  (x2) =
ijk k7] g¢2 atz ijk ko ij)a ot
- . 3D ( aD - n. 9D )
: n % B R 3
* Qukg 38 \lax)e T T BT }
and
328 32D, 3B
L 1 _ ] L
iRkl 377 7 ¥ 3er Veijk{Rkl(gig)a 5t
BBn BBQ n. BB2
I N R et L
nkf ot ij a V 9t

Eliminating V 82Di/3t2 from (4.5), we obtain

) BZBS , \ 3 3D,
-(a;*V ais)gzi"= eijk{v sz(axj)a(at )
: 3D ( 3D n. aD
g P 2Dy __1_&)
+ V2Que 3¢\ (3% v 3

ja

(4.3)

(4.4)

(4.5)

(4.6)
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BB
Ve mnPkeRns J(Bx e (Bt T
3B, 8B -~ n_ 3B 3B )
‘—Velmnpklspnsnj((gi—au itV gf_ AN
where
s eijkezmnPkRRnannm " o | (4.7)

Using square brackets to denote the jump in azquantity across
the surface of discontinuity, we have '

5D aD.  9D. D,  aD_ 3D 5D, 3D
n L _ n L % 2 n

e

where (BDﬁ/at)o denotes the valué of 3D /Bt immediately in
front of the wave. Also, we note that P K2’ Q nk? kz and
S kg are continuous across the surface of discontinuity.

n . - ‘
Using these results, we obtain from (4.6), with the ’

pqtatlon bi = [aBi/at], di.= [aDi/at],

82B : ad

_-(ais+V26. )[Bt ] = e {V P

%
is )

kQ(Bx
J

1Jk

2 : BDQ : Ei'
+ Vv anl{(a—xj‘)adn "7 (dndz

oD 3D .
L n ‘ ,
Ge) 4+ e dz)}_ |

0
ab

JZ,mnPkJLRnsn ( )

- Ve
: m o



-15-

9B n

- (= -
Velmnpkzspnsnj{(axm)a bp \Y (bsbp
aB 9B
CGED) byt (D) b))

where r_ is a unit vector in the direction of bé. With

S
(4.10) and (4.2), equation (3.8)2 becomes

vd, = 'RnseZmnnmbs = Ros€omn™m®s®

Using this result to substitute for de in (4.9), we

obtain,
, BZBS \
-(ais+V Gis)[atz ] = L, + Mic + Nic ,
where
L. = -Ve,.,e, P, ,R T {n (32—) +n (ao ) }
i ijk &mn k& ns’s "m oXx; i'9x ’
j o m o
_ oy 3 1
Mi V eijkelmnpkl(alexcv Rnsnmrs)
_ aDl

+eiijnk2Rtpnsrp{-enstV( xj)a

oD 3D

2 n
+enstnj(3t')o * ooty (g )}

o]

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
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.or
- - S
-Veijkezmnpkznj{Rns(ax )
: m o
_aBS n, oB n. BBS )
8 A=) o - r (3D - G 1Y,
pns me(l p V “s‘at ° V. oTprat 7,
Ny = -V eijkensteﬁaankQRtprcnjnansrprc

+eijkezmnpkzspnsnjnmrsrp
"~ In our present notation (3.8)l may be written -

Vb n.d

i %kt

With (4.11), we obtain

)b, =0 ,

2
(ais+v Gis s
where CHR is given by (4.7). We define a unit vector Qiiby
- -.Z
£i(a35*V7855) = 0

Multiplying (4.12) throughout by 21 and using (4.16), we
obtain ‘ ’

L + Mo + No2 =0 ,
where L, M and N are defined by

(L,M,N) = 25 (L M ,NL) o

(4.
(4.

(4.

(4.

(4

14)

15)

16)

17)

.18)
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Introducing (4.7) and (4.10) into (4.15) and differ-
entiating with respect to n_, we obtain

: aV
{eijkezmnPkQRns(apjnm+6pmnj) * 2y gﬁg'dis}rs
, ars

Multiplying throughout by L4 and bearing in mind (4.16) and
(4.7), we obtain ' '

' _ oy 9V
eijkelmnPkQRns(Gpjnm+6pmnj)girs = -2V gﬁg-kiri . - (4.20)

Since asos defined by (4.7), is homogeneous of secoﬁd
degree in n. and V is determined by the discriminant of

equation (4.15),-it follows that V is homogeneous of first
degree in n;. Therefore,

V =mn_ 0V/dn

. (4.21)

Now, suppose a point x_ depends on t in such a manner that it

always lies on the moving surface of discontinuity. Then

its velocity is dxp/dt. The velocity of the surface normal
to itself is V, which is therefore given by

vV = dx_/dt 4.22
n, xp/ ( )

From (4.21) and (4.22), we obtain-

= d .2
n, ?V/anp npdxp/ t (4.23)




_18-

A possible choice for the dependence ofop on, t which satisfies

the condition that x shall always be on the surface of dis-
Continuity is that for which R L )

dx_/dt = aV/3n_ . } L (s,
X,/ dt /an, . I (

We shall make this choice* and calculate the growth in the
magnitude of the singularity as we move along the locus of

X _. ‘ i
From (4.13);, (4.18), (4.20) and (4.24), we obtain
_ 2 9V 30 Y = 2 g(l'_
L= V' a5 %47y = 2VT g ATy (4.
We introduce (4.25) into equation (4.17);and make the
“transformation ' |
c=1/u . | - (4.
N We obtain
» B _
a% = Mu + N , (4.
“ where :
o= 2 : ) T o= 5172 ; c :
M= M/2vie;r;  ,/ N = N/2vie T, - . (4
This equation has the general soiution
_ 1 _  sMat - (x o -SMdt .
u. =5 - e {C + IN e dt} 5 | (4

*In this case the locus of x ‘is, iﬂ_fact;‘a'bicharagtgristic

of the secular equation la, *V?8 = 0.

e *A -

isl

24)

25)

26)

27)

.28)

.29)
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where C is a constant of integration.

We see that if the fields B and D are known before passage
of the surface of discontinuity, the velocity of such a surface,
propagating in a given direction, can be determined from (3.18).
sz and sz defined by (4.2) can be determined and hence a;g can
be determined. r; can then be calculated from (4.15) and (4.10),

and %5 from (4.16). Then, M and N can be determined from (4.28),
(4.18) and (4.13).
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5. Special case: magnetic induction field ahead of wave in -
direction of propagation. '

We now assume that the fields ahead of the moving surface

of discontinuity are uniform. This implies that the.speédsfof
propagation V given by (3.18).are. constant. " 1t then follows,
- from (4.15), that b has a constant- orlentatlon (i.e. r is a

constant) and, from (4. 16), that the un1t vector % is constant
We see, from (4.13), that in this case M = 0 and N is con-
stant. Then, from (4.18), M = 0 and N is constant. We then ob-
tain from (4.27) or (4.29)

u = é = Nt + %—- , ‘ ' (5.1)

where oénis the value of o when t = 0. The jump magnitude
o increases or decreases accordingly as N is negative or
positive.

In the particular case when the direction of propagation

is in the 1l-direction and the applied’magnetié induction field

into which the wave propagates is also in the 1- dlrectlon we
have '

n. = é. and B, = BS, ? . ’ (5.2)
Inttoducing (5.1) into (3.18), we have sinté B, =0,
V2 = ye or V% =ye+ 2ue'(D§+D§)‘;._ : (5.3)
Cotréspbnding to the first of these results, we gbtéin

= 2,n2y-1/2 ‘ : .
T = (D2+p2)-t/2 (0,0,,0,) ) ; . (5.4)
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and corresponding to the second, we have

-1/2

= 2412 T
¥ = (D3+0) 777 (0,-D,,0) (5.5)
The directions of polarization of the b vectors associated
with the two waves are perpendicular to each other.

Again, for the wave corresponding to the first of the
solutions (5.3), we find that N = 0, so that the discontinuity
propagates unchanged.

We now consider the wave corresponding to the second of
the solutions (5.3). Introducing (5.2) into (4.2)2, we obtain

= ' 1R2 |
Rps = wlpg * 2u'B%8, 85, (5.6)
From (4.2)1, (4.7), (5.2) and (5.6) we see that a; is sym-
metric for interchange of i and s. Hence, with (5.5),
L _ p2ap2y-l/2
i = 1; = (Dj+D3) (-Dy6,,+D,6,,) . (5.7)
From (4.18) and (4.13)3, we obtain, using (5.2),
- vle.
No= -V e k®m % bk R tp bcrprcg'l
eixkezxnpkzspnsrsrpzi' (5.8)
Introducing the expressions (5.7) for T, and li into (5.8)
and using (5.6), (4.2) and (5.2), we obtain, with (5.3)2 and
(4.28), |
N - u2(3€'+2€”D2l9 ’ (5.9)

Cu€+2u€lD2)5/2



‘ 'where D = (D2+D2)1/2 is the'magnitude of the'édmponent of the
- electric displacement field normal to the dlrectlon of propa—-
-gation. (In carrylng out the calculatlon we find that the

second term on the right hand side of (5.8) is zero.) In the
case when D = 0, the two waves with velocities given by (5. 3)
have the same speeds and can be propagated w1th arbitrary -

~direction of polar1zat10n in the 23- plane
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6. Special case: electric displacement field ahead of wave

in direction of propagation.

We again assume that the fields ahead of the moving surface

of discontinuity are uniform, so that (5.1) still applies.

We

again take the 1l-direction as the direction of propagation, but

now assume that the electric displacement field is in the 1-

direction, so that

It folldws from (3.12) and (6.1) that
J =0
Introducing this fesult into (3.18) we obtain
v? = we  of V2 = ue + 2u'e B ‘B,
Corresponding to the first of these rgsults, we.have

r e (82+8%)7/7(0,-8,.5,)

and corresponding to the second of these results, we have

r = (B2+B2)'/?(0,8,,B,)

From (6.4) and (6.5) it follows that the directions of
polarization of the electric vectors for the two waves. are

perpendicular.

(6.1)

(6.2)

(6.4)

For the wave corresponding to the first of the solutions
(6.3), N =0, so that, from (5.1), the discontinuity propagates

unchanged.
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‘We now consider the wave corresponding to the second of
the solutions (6.3). As in §5, we again obtain the expression

(5.8) for N. Introducing (6.1) into (4.2)1,_w§ obtain

Prp = &8y * 2e P 110817 L - (6.6)

Proceeding in a manner analogous to that used in the previous
section, we find that ' o

_ B(Su |-+2unB2)
ue + 2u'eB?

(6.7)

_ where B = (B§+B§)1/2 is the magnitude of the component of the

magnetic induction field normal to the direction of propéga-
tion. (In carrying out the calculation, we find that the first
term on the right hand side of (5.8) is zero.)
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