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Section 1
INTROCUCTION AND SUMMARY

Q-switched laser pulses have found wide applications in diverse areas of pure
and applied research. Some fields which have been opened to investigation by the
avallability of cuch pulses irclude ga- breakdown at optical frequencies, plasma
production for thermonuclear research, optical harmonic generation and parametric
amplification, stimulated scattering effects and coherent propagation effects. Q-
switeched pulses have also been used for ranging and guidance systems, high speed
photography, medical research, precision machining and other applications. The min-
imum pulse durections obtaingble with the various existing Q-switching techniques are
limited to approximately 10™~ seconds because of the time required for the buildup
of the pulse in the laser cavity.

The advent of the mode-locked laser has brought about a four to five order of
magnitude decrease in pulse duration, from 108 sec to less than 10-12 sec and a three
order of magnitude increase in peak power, from 109 watts to 1012 watts or greater.
Detection systems capable of resolving events on a time scale as short as 10713 gec
have been developed. It is expected that these developments should open more areas
of investigation and should lead to additional scientific, military and commercial
applications. The short time duration of the pulses allows the investigation of
atomic and molecular processes and coherent interaction effects on a time scale that
was previously inaccessible to direct observation and high power available with
these pulses allows the investigation of nonlinear effects that were previously
unobservable.

The United Aircraft Research Laboratories have been conducting under the present
contract a continuing investigation of short time duration laser pulses and their
interactions with matter. This investigation, while primarily concerned with the
picosecond duration pulses produced by mode-locking, has also been extended to tran-
sient phenomena involving longer pulses. During the period covered by this report,
work has been conducted in the following areas: (a) the analysis of the propagation
of ultrashort pulses in a resonant medium, (b) the analysis of the generation of
Cerenkov-like radiation by nonlinear optical effects, (c) the development and
demonstration of a novel technique for the measurement of a phase structure of
picosecond pulses, (d) the study of stimulated transient Raman Scattering in liquids
and gases,(e) the development of extremely fast pumping sources for organic dye
lasers, (f) the mode locking of a flashlamp pumped organic dye laser, (g) the demon-
stration of traveling wave laser action in an organic dye, (n) the investigation of
the possibility of obtaining stimulated emission from laser produced plasmas, (i)
the investigation of nonlinear polarization effects in anisotropic molecular liquids.

In the area of the analysis of pulse propagation, the major portion of time has
been directed toward the formation of a unified synthesis of advances thus far
achieved by various workers in obtaining analytical results in the field of ultra-
short optical pulse propagation. In the course of reformulating the results of these
workers, a number of minor extensions and simplifications of their work have been
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obtained. Although the results of some investigators have not been incorporated at
this time, it is expected that the material reported herein will constitute a major
3tep toward the compilation of a complete summary of the current status of this fleld.

During this period, consideration was given to the "dc" component of the nonlinear
polarization induced in a dielectric by the passage of a high power optical pulse.
This component constitutes a polarization source that moves through the dielectric with
the group velocity of the optical pulse. This polarization can lead to Cerenkov radia-
tion at frequencies whose velocity of propagation is less than that of the pulse. This
effect is of fundamental interest in itself as it represents a completely new technique
for the generation of Cerenkov radistion. It could have application to millimeter and
submillimeter wave generation and noise sources. Of even more general importance is
the realization that many experiments in beam-wave interactions that can be performed
with difficulty using megavolt electron beams can be performed easily using the non-
linear polarization associated with a propagating picosecond pulse.

Since the first measurement of the time duration of the pulses produced by mode-
locking of neodymium-glass lasers, it has been apparent that the duration of the pulses
are considerably in excess of the minimum possible duration as determined from the
reciprocal of the bandwidth. A time-bandwidth product in excess of unity implies
a phase or amplitude structure in the pulses. The first measurement of this structure
was obtained at this laboratory in 1968. It was found that the pulses could be com-
pressed in time by passing them through a dispersive optical system. The dispersion
of the system that was capable of compressing the pulses was such that the transit
time increased with increasing wavelength. The compression of the pulses indicated
the presence of a linear component of the frequency vs time of the pulses, with
longer wavelengths or lower frequencies coming earlier. The compression also
indicated that a significant fraction of the observed bandwidth was due to the fre-
quency sweep. While the compression experiments serve to demonstrate the presence
of a frequency sweep, it is difficult to extract more detailed information about
the phase structure from them. During this reporting period a technique has been
devised to extract the maximum available information on the phase structure of the
pulses subject to the constraint of present detectors. The information that can be
obtained from this technique consists of essentially /N resolvable points on a fre-
quency vs time curve. Here N represents the time-bandwidth product of the pulse.
Initial experimental results have been obtained and indicate that the technique
vorks as designed. These results also are consistent with the compression eXperiments
and reconfirm the presence of a linear component of the frequency sweep.

Experiments in stimulated scattering with picosecond pulses have continued.
During this period emphasis has been placed on the investigation of stimulated Raman
scattering in liquids and gases, and a number of new results have been obtained. The
essential difference between stimulated Raman scattering with nanosecond duration
pulses from a Q-switched laser and that produced with picosecond duration pulse from
a mode-locked laser lies in the finite build-up time of the associated phonons. In
the case of picosecond pulse excitation, the phonon population does not reach its
steady state value and the transient nature of the scattering must be considered. An
important consequence of the transient nature is the fact that in the extreme tran-
sient limit, the Raman gain is determined not by the peak value of the spontaneous

2
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Raman cross section but by the total area under the curve of cross section vs fre-
quency. It is possible therefore to excite Raman lines in the transient limit
that cannot be excited in the steady state due to competition with other narrower
lines that have a higher peak cross section but lower integrated cross section.

Using a mode-locked ruby laser that produced pulses of 5 - 10 picoseconds
duration and approximately 56 watts of power, transient stimulated Raman scattering
was observed in all liquids that were tested including liquids such as water, carbon
tetrachloride and methanol in which stimulated scattering is normally difficult to
obtain. Energy-conversions as high as 20% were observed together with multiple order
Stokes generation ar. beam trapping. Stimulated ocattering was also observed in a
variety of gases including N, 02, 002, N0, SF s C H 1,2 C H 52 HC1 and HBr. Prior
to these experiments, stimulated Raman scattering haé been obs rved only in H_, D2
and CHh Self trapping in a collimated beam was observed for the first time gn
gases, and evidence of a strong optical Stark shift was observed. It is felt that
stimilated Raman scattering could have important application in the determination
of relaxation rates of materials of interest for chemical lasers. Tie scattering
provides a means of selectively exciting a non-equilibrium population on a very
short time scale. The subsequent decay can then be monitored to determine the
relaxation rates.

The work on stimulated Raman scattering was carried out in collaboration with
N. Bloembergen, R. L. Carman, F. Shimizu and J. Reintjes of Harvard University. All
of the experimental results on stimulated scattering reported herein were obtained
at United Aircraft Research lLaboratories.

The continuing effort in organic dye laser technology has led to improved pumping
and modulation capabilities. Dye lasers are capable of producing energetic short
pulses at a wide variety of wavelengths and should have significant military and
industrial as well as basic research applications.

Initial investigations of the feasibility of obtaining stimulated emission
from laser produced plasmas have been carried out. Picosecond pulse excitation
provides an extremely fast pumping rate and might be used to populate levels having
a very rapid decay time. With such a pumping technique it might be possible to
obtain stimulated emission at ultraviolet or shorter wavelengths. Further experi-
ments in this area will be carried out upon completion of a corporation owned 10 Jjoule,
.1 nanosecond neodynium laser facility.

The extension of the ideas of magnetic adiabatic passage into the optical region
and the first experimental demonstration of the optical adiabatic rapid passage were
carried out under the present contract and are reported in detail in the Third Annual
Report, H920479-13, March 31, 1969. A separate research program on optical adiubatic
passage in gases has been established and is being funded under contract with the
Army Research Office, Durham, North Carolina (Contract DAHCOL-70=C-0014). Work in
this area under the present contract has, therefore, been discontinued.
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ANALYTICAL DESCRIPTION OF ULTRASHORT OPTICAL PULSE PROPAGATION |
IN A RESONANT MEDIUM

2.1 Introduction

Recent advances in laser iechnology have led to the production of coherent
optical pulses having durations in the picosecond (10'12 sec ) regime(l’z). Such time
intervals are comparable to or shorter than the reluxation times associated with the
energy levels of many atomic systems. The interaction of radiation with matter on
such short time scales gives rise to phenomena which, as a result of quantum mechanical
coherence effects, cannot be described by the rate equation analysis developed
previously 3-5 for the treatment of much longer pulses.

The novelty of the effects which may appear in the short time resonant response
of atomnic systems has been brought out quite strikingly by tre recent discovery of
self-induced transparency (6:7: ). In this effect, the leading edge of an optical
pulse is used to invert an atomic population while the trailing edge returns the
population to its initial state by means of stimulated emission. The process is
realizable 1f it takes place in a time that is short compared to the incoherent
damping time of the resonant atomic systems, i.e., to the homogeneous broadening
time of the medium. When all conditions for this process are met, it is found that
a steady state pulse profile is established and that this pulse envelope then propa-
gates through the medium at a velocity which may be considerably less than the light
velocity in the medium. What is perhaps most remarkable is that even those atoms
that are off resonance due to inhomogeneous broadening can partake of this process
in such a way that they are returned to their initial state. Within the theoretical
framework that has been used to describe this effect it has been shown (7,8) that
such steady state propagation can take place only if the profile of the electric
field is of a special form, namely that of a hyperbolic secant. Many salient features
of this effect have been considered\T) since its discovery. The possibility of
analogous effects in semiconductors has also been proposed 7 and somewhat similar
effects have been observed in the study of neuristor waveforms.

In addition to the anomalous transmission property of ultroshort optical pulses,
the amplification of such pulses has also drawn considerable attention. A number of
analytical results have been obtained here as well(9;10,11) . one expects that ampli-
fication processes will ultimately be limited by non-resonant loss mechanisms. If
these are introduced in a phenomenological way through a conductivity, then the ad
hoc assumption that there is a steady state pulse propagating at the light velocity
may be verified by direct computation.

Whenever it becomes necessary to extend the range of validity of a theory to
§QCfE§ass new phenomena, it is useful to seek limiting cases of the new formalism(syley
e which admit of exact solutions of the type referred to above. While the
experimentalist is rarely moved by theoretical descriptions that fail to provide
for all facets of a phenomenon as it is known to exist in the experimental situation,
such as relaxation times, inhomogeneous broadening, etc., it should be emphasized
that many of the most interesting effects in ultra-short pulse propagation appear

4
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already in mich simplcr theoretical contexts and an understanding of ecven these
simpler equations, as opposed to the new generation of numerical results, is far from
complete. The most promising method of attack is clearly through a simultaneous
application of both analytical and computational techniques and the field of optical
pulse propagation provides an ideal opportunity for the application of this "synergetid
approach. In fact, self induced transparency was discovered from an analysis of
numerical solutions of the appropriate equations.

The present paper summarizes the success that has thus far been achieved in
describing the novel aspects of ultrashort optical pulse propagation by analytical
treatment. In addition to the above-mentioned results, two relatively simple models
have becen devised which describe a number of other effects that have been observed
both experimpntally(s’ls) and as output from machine computations based upon more
complete theoretical descriptions?lg'lh) The first model(9’17 is one in which in-
homogeneous broadening is neglected. The physical situation most closely related to
suc?lg ngel is that of proragation under conditions of extreme saturation broaden-
ing*~™? . Although the problem under consideration involves a coupling between
radiation and matter that is too strong to be treated by perturbation theory, a fairly
extensive analytical treatment of this model is still possible since it expresses this
interaction in terms of a single nonlinear partial differential equation which arose
long ago in differential geometry. The techniques developed about the turn of the
century for obtaining solutions to this equation may be employed to great advantage.

Certain other phenomena, notably that of photon echo(20'23), require for their
explanation the relative dephasing of atoms that results when inhomogeneous broa,%Piyg
is present. This effect is also an example of the collective superradiant state
in which energy is radiated coherently into the electromagnetic field. Here again, it
is possible to construct a soluble model(ah) in which the reaction of stimulated
emission back on the incident wave is taken into account. If one is willing to forgo
consideration of the detailed structure of pulse shapes, the time dependence of the
pulse may be assumed to be that of a delta function and interest confined to the
spatially dependent amplitude of such delta function pulses. Only the time integral
of such a pulse shape is meaningful, of course, but such a time integral has been
shown to be preci§el¥ the quantity of interest in the treatment of ultrashort pulses.
The area theorem'!s®/, which is so useful in understanding short pulse phenomena, is
also found to govern the spatial evolution of the amplitude functions introduced in
this model.

Although much of the physical insight required for an understanding of these
propagation effects may be obtained from a consideration of the interaction of light
with a system of two-level atoms, it should be emphasized that the results thus
obtained may require modification when level degeneracy is included(s;le).

2.2 Basic Equations
We begin by summarizing the standard semiclassical description of the interaction
of an electromagnetic wave with an assembly of two-Jevel systems. The optical field

in the form of a plane polarized electromagnetic pulse may be characterized by its
electric field vector E(E,t) vwhich satisfies the usual wave equation

p)



J920479-21

2g_ave 0E_1 O°E . 4w %P
VIE-TT T a1 T T ot (2.1)
vhere ¢ is a conductivity that ic introduced to similate nonresonant losses in the
medium, ¢ is the velocity of light in the medium and‘E is the polarization of the
medium that is induced by the eclectromagnetic wave. For a medium consisting of an
assemblage cf noninteracting two-level systems distributed with a uniform density Ty,

this polarization is ngp where p is the polarization of an individual two-level
system.

The polarization of an individual system may in turn be obtained from its micro-
scopic description by the usual prescription

vhere p is the density matrix of the two-level systcm(25), and P is the polarization

operator. The time dependence of p is given by the quantum mechanical Liouville
theorem

w3e +[r¥] .o (2.3)

where ¥ 15 the total Hamiltonian of an individuel two-level system. The time depen-
dence of an arbitrary operatc~, 0 is governed by the relation

a? . .. 0
'"F?"“??*[o-"] (2.4)

For later use, it proves convenient to recognize that operators not containing
cxplicit time dependence also satisfy

h’%i"zz +[[0,.¢],0] : ih[g—-f.O] (2.5)

The Hamiltonian of a two level cystem interacting with a classical clectromagnetic
field may be adequately renrescnted by

NN ¢V (2.6)
vhere M%)is the Hamiltonian of the isolated two-level system and
Vi-E-P (2.7)
is the interaction energy in dipole approximation.
The wave function for the isolated two-level system may be written

Vi 1) s aghuglr) + oy (thuyly) (2.8)
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vhere ua and ub are eigenfunctions of the system and satisfy
NyUg* Equg.0° 0,b (2.9)

Such ¢« rgy efgenfunctions provide the specif'ic representations

€ O 0 Pod Poo  Pob
L P ‘p.(oo o)
(O Eb) (ebo O) Poo Pob (2.10)
vhere Pag* -ofd’L Ug’ £ Ug
(2.11)
Pag’ o.’op

and the levels are labeled such that En > E . The vanishing of the diagonal elements
in Paignifiec the ascumed absence of any permanent dipole moment in thc system under
consideration.

In addition to the polarization‘g, the difference in population between upper and
lover states n, is also of interest and may be expressed in the form

N2 Ng(Pog = Ppp) * Ng TriAT,) (2.12)

vhere o_ is the Pauli spin ratrix

(10
% (O-I (2.13)

The time dependence of p can be conveniently obtained by taking the trace of the
operator equation

28 +[[e.n].5] 6] 22 ] (2.14)

which follows from Eq. (2.4). With the representations given above, the right-hand
side of thic eountion vanishes while

P
[g,H] 3 [p,wol : -ﬁuob(?, “3")

<bo (2.15a)
l['3° ”]'~°| ’ t”obze (2.15b)
and
PobPbo  © )
l[f.ﬂlovl ’ 2““‘ob§.' (0 - ~bO~POb (2.15¢)

7
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vhere
ﬂ""ab: Eo- Eb .
(2.16)
Equation (2.12) therefore reduces to
o 2w
2. . ab .
Pt+wy,P: % £ PabPbo %2
(2.17)
Application of the trace operation converts this operator equation into
2 1\ 2wgp #° (2.18)
B == |—\E%ab__ 2.1
Pt wab p (3) fing 3

vhere it has been assumed that pab = pba = 3‘. The factor of 1/3 in parenthesis is
to be included if all possible spatial orientations of the two level systems are
permitted(26,75),

From a direct multiplication of the quantities involved there follows

ne- o] s - 2 el (2.19)

On the other hand, multiplication of Egq. (2.3) by no, and application of the trace
operation yields

mn = NE - T'{P[‘fv"z]} (2.20)

Calculation of the trace of Eq. (2.19) then finally leads to the equality

2m,
rl(dob

£ P

Ul (2.21)

Equations (2.18) and (2.21) provide a convenient starting point for describing the
response of a two-level system to an external electromagnetic field.

Having formulated the response of the two-level systems to the incident optical
field, we now turn to a consideration of the reaction of the medium back upon the
incident wave. It is the self-consistent evolution of these two processes that is
the essence of the problem under consideration. On the right-hand side of Eq. (2.1),
the term agp/at2 may be approximated by -wgg where w, is the carrier frequency of
the incident pulse. This follows immediately if wgy is replaced by wg in Eq. (2.18)
and the term of the right-hand side of that equation 1s neglected. Neglect of this
term is equivalent to a neglect of the backscattered wave that is produced as the in-
cident wave traverses the medium. From Egs. (2.1) and (2.18), one sees that this
neglect is permissible provided that n0$°2/11wo<< 1 which will be nearly always
satisfied.
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Since even the shortest pulses produced to date contain many optical cycles,
it is appropriate to write the electric field in terms of a carrier wave as well as
envelope and phase functions §(r,t) and §(r,t) respectively which vary slowly on
the length and time scales of the carrier ﬁgve. Hence we write

E(r)=ELlr ) cos [&o-g-wof+¢(,[,f)] (2.22)

and assume w @ >>3 g /at, k & >> 3 & /3x plus similar inequalities for §. A character-
istic field magnitude E_ has also been extracted from the amplitude. Because of the
assumption that E&(r,t) and &(r,t) vary slowly compared to the carrier wave, Eq. (2.1)
may be reduced to a much simpIEr form. In particular, only first derivatives of

g (r,t) and 3(r,t) need be retained on the left-hand side of this equation when it
is‘gxpressed in terms of & and $. The solution thus obtained is customarily referred
to as the solution in the slowly varying envelope approximation.

In general, it is appropriate to consider not a single transition frequency Wop
but a spread in transition frequencies about w,y, so called inhomogeneous broadening.
It is convenient to analyze the situation in which this distribution is symmetric about
upb and the carrier frequency of the incident optical pulse is at this frequency,

i.e., Wo = Wape

Equation(2.l), specialized to a plane wave traveling in a positive x direction
novw becomes '

o0
(d—g+2 maf )Jsin dx,1) + g<i’cos dix,t) . 2T %% fdAwg(Aw)p(Aw,x,f)
df dt Eo Jo

(2.23)

where

o 4.9 .9
Q(x,t)-kox wot+¢(x.f): t = ot te 0x (2.23a)

and Aw = w - wy. Although the idealization of an infinite plane wave front is
convenient for theoretical purposes, it should be emphasized that transverse mode
structure may be important in experimental situations.

The spectrum g(Am) which characterizes the inhomogeneous broadening is assumed
to be normalized so that

(00]
f dAwglAw) = |
- (2.2k4a)
The caysal Green's function for Eq. (2.18), i.e., the solution of
2 L]
6 4 werts = - s(t-t)
dt (2.2Lb)
which satisfies G = O for t < t' is
| I "o '
G(tIt) = —=—— U (t-t)sinw,, (t-1)
( l ""ob ab (2.25)
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in which u(t) is the unit step function. Multiplication of Egs. (2.18) and (2.25) by
G(t]t') and p respectively, subtracting and integrating over &ll time yilelds

t
P(Awxt) =2 ¢ .Q.fdt'sin w(t=t)¥ (Bw,x 1) Ex,t') cos &ix,1) _—
=0 2.

where ¥ = n/n_, and Q, the Rabi frequency, is given by Q = E, /% . The factor of

1/3 due to orientational averaging is neglected. This expression for the polarization
may now be decomposed into parts which are in phase and n/2 out of phase with the
electric field. One finds that

p=¢ [p (Bw,x,b) sin(@xt))+ 2 (Aw,x.t)cos(cb(x,t))]

(2.27)
where ¢
®:=Q fdt'£ ) N (Aw x,t) cos [Aw(t-t') +(x,1)- ¢(x.r')]
—00
(2.28a)
t
2 = -Q./dt'g(x,t')/V (Dw,x,t) sin [Aw(t-t') + ¢ (x,t)— ¢(x,t')]
-® (2.280)

In obtaining this result, terms near the second harmonic of w, have been discarded.
However, it should be emphasized that in obtaining these results there has been no
assumption that /2 , 2 , and N vary slowly compared to the carrier wave.

Equation (2.23) may now be decomposed into the pair of relations

dﬂ +emol = (Ca/ﬂ)fdAwg(Aw)p(Aw x,t) (2.29a)

o0
gg—‘f -(ca'/ﬂ)./_‘fijwg(Au).?(Aw,x,t) (2.290)

where ’
a' =2mwngw,® “/hc
(2.30)

The functions p and Q are readily shown to satisfy the differential equations

9P 0P

ot ng”+(A“’+ )-2 (2.31=)
02 _ a¢
b <A“’+at>ﬂ G5

10
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When time dependence near the second harmonic of wois also neglected in Eq. (2.21)
it 1s equivalent to

_%V-=_gg( - iZ)

0 wo gt (2.32)

When the slowly varying envelope approximation is used, the second term on the right-
hand side may be discarded. It is convenient to introduce the transformation

t=Q(t-x/c),€ = (Qe/c)x (2.33)

The constant ¢ 1s essentially the ratio of energy stored in the medium to the energy
of the wave, i.e.

€ =nyNowy/ (EZ/2 )

(2.34)
Neglecting the conductivity at this point, Egs. (2.29) are transformed to
oL _(®
2l I dAwg(Aw)P(Awg,T) (2.35)
9¢ _ (@
£5% [ dAwg(Aw)2(Awg r) (2.36)

while Eqs. (2.31) and (2.32), in the slowly varying envelope approximation, become

}TA-'- ==Lp (2.37a)
3P . 'L

T =N +<f+ar)2 (2.370)
g? =—<f+ %)ﬂ (2.37¢)

where f = Am/b. Equations (2.37) describe how the field amplitude € and phase 3
determine 2 , 2 and N for a two-level system that is off resonance by an amount
Aw. Equations (2.35) ani (2.36) show how the polarization due to a distribution of
such systems reacts back on the amplitude and phase.

Equations (2.37) also arise in nuclear magnetic resonance studies in which an
oscillating magnetic field interacts with an assemblage of two level systems which
possess a magnetic moment. Such studies have been confined to samples that are of a
sufficiently small size that the reaction of the induced field back on the exciting

11
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field could be ignored. Equations (2.37) may then be solved for a specified external
field. This is not the case in the situation envisioned here. A satisfactory
description of optical pulse propagation is only obtained when Eqs. (2.36) and

(2.37) are solved self consistently.

At this point, it may be noted that Egs. (2.35) and (2.37) contain two conserva-
tion laws. Conservation of energy follows upon multiplication of Eq. (2.35) by &
and introduction of Eq. (2.37a) which yields

4
1 98° . 0 ffD -
4 + dAwg(Aw)N=0 .
e T BB N (2.38
Multiplication of Egs. (2.37) by N , £ and 2 respectively along with summation of
the resulting equations yields an exact differential which is equivalent to

N+ D%+ 0% (2.39)

In this result, a constant of integration has been set equal to unity since in the
usual applications of the theory one has f ((, -») = 2 ((,~=) = 0, ¥ (¢, =) = #1.
The form of Eq. (2.39) enables one to interpret the response of a two level system
in terms of the motion of a vector on the surface of a sphere in a f , 2, /¥ space.

2.3 Self-Induced Transparency and the Area Theorem

Up to the present time, the full set of equations given by Eq. (2.35 - 2.37)
has received little attention. However, if one adopts the consistent set of assumptions
that the phase term ¢ is initially zero, that the carrier frequency is at the center
of a symmetrically broadened line (i.e., g(Aw) = g(-Aw), and that 2 is an odd function
of Aw. Then from Eq. (2.36) one sees that the source term governing variations in o
is zero so that ¢ will remain zero. This form of the theory, particularly with the
aid of numerical computations,(lh) has provided considerable insight into the
subject of ultrashort pulse propagation.

Even this specialized formof the basic equations has yielded only steady state
solutions. These include both the solitary wave solution of self-induced trans-
parency (f and infinite wave train solutions 27,26,29 which contain the solitary
wave as a limiting case. Only the former will be discussed here; infinite wave train
solutions will be discussed later in connection with a somewhat more specialized
theoretical model.

For a steady state solution, one may assume that £, /2, 2, and / are functions
of a single dimensionless variable w = (t-x/V)/-rp where V is the velocity of the
pulce and Tp is a parameter having the dimensions of time. It will be shown that

o may be directly related to the pulse width.

Equations (2.35) and (2.37¢) may now be combined and integrated to yield

12
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(._ %)g(w)+egf_2 40wq (8w)2(Bww) /Bw= 0 (2.10)

An integration constant has been set equal to zero in this result since £ and 2
are zero before arrival of the pulse. If this equation is divided by £(w) and
differentiated with respect to w, one obtains

© p 0@ d (2] .
f_mdAw Dw dw (Z) 0

Now the function g(Aw) contains a parameter such as Tg that determines the width
of the inhomogeneous broadening, e.g.

(2.41)

9(8u) = 2 exp| ~(au /2P ] (2.42)

Although o and V, and hence w depend in an implicit way upon T;, there is no explicit
dependence of g'upon T;. Also, singe 2 is the response of an individual two-level
system, it is also independent of Tp except for the implicit dependence contained in
w. Consequently, the function in parentheses, the integral of Eq. (2.41), does not
contain explicit dependence upon T§. Now if it is assumed that the theory must be
valid for arbitrarily large values of IE, then one may invoke Lerch's theorem 30

to justify the conclusion that the term multiplying g(Aw) in the integrand must

itself be equal to zero. It then follows that

Q(Aw,w) =X (Aw)f (w) (2.43)

where X (Aw) is an as yet unknown function of the detuning. When this result is
introduced into Eq. (2.40), one finds that the velocity of the envelope function
is given by

L4 £
VT <|+€Q,f_wdAwg(Aw)x(Aw)/Aw> (2.L04)

To obtain the form of the envelope function 3, it is first noted that Egs. (2.37b,
c), with the phase term ¢ set equal to zero, are equivalent to the linear equation
A .
9% +ifr= 12 (2.45)

where A = 0 + 1 2. Setting

e mpf_“;o dw'Eiw’)
(2.46)
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and introducing Eq. (2.43), one finds that the solution of Eq. (2.45) which reduces
‘top(-oo) = 0, /V(-m) = =1 is

P = —(1-fx)sin¢ (2.47)

N =‘fx'(|-fx)COS¢ (2.48)
Substitution of Eq. (2.43), (2.47) and (2.48) into Eq. (2.39) yields

Qrplw
x(Bw)= W&Jg‘)z (2.49)

Also, from Eq. (2.38), the energy conservation law,

£ 2
(g—m:zyz (1= cos ) = 4y2sin’ (@/2) {Bo50)
where
2_ 2 _
vé: el Qr,)7 (S -1) o
and
| o0
F=rg/dAwgBw b wxidw
—o0
(2.52)
The solution of Eq. (2.50) that vanishes as w—ste is
$=4 tan"'e” "
(2.53)
Hence the electric field envelope is
@ | d$_2Y
X p=L32T-S"sechyw
h Og Tp w Tp (2.5)_'.)

and one sees from the definition of w that o will play the role of pulse half width
provided y is set equal to unity.

If the maximum pulse height is equated to 2E_, then Eq. (2.54) yields

ftp =1 (2.55)

which determines the pulse width in terms of its amplitude andf)owhich characterizes
the medium.

14
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From Egs. (2.43), (2.47), (2.48) and (2.49) one finds that the response of a
given two-level system is

N = —I1+2Dsind(¢/2)

/) = - DSin¢
2= 2 Awt, Dsin(¢/2) (2.56)
where
2—!
D= [l+(Awrp)] (2.57a)

Also, it is now possible ;o return to Eq. (2.44) for the envelope velocity and
consider its dependence upon T,. Combining Egs. (2.44) and (2.49), one finds that
V is given by

o0
| .2
LV L t+arT gAwg(Aw)D B
S I o
Vo vl ”(Vo C) (2.58)

Here V_ is the velocity in the limit of no inhomogeneous broadening. For g(aw)
given by Eq. (2.42), one obtains

I'= [dAwgBw)D = 2kexp(K2)EM fc (k) (2.59)

where
- *
K=T,721, (2.60)

and Erfe(k) is the compliment of the error function(3l). For T§ >> Tps ' =+ 1 and
V—>Vy. As T; becomes much less than Tpr @ much smaller percentage of the atoms are
on resonance. One then finds I — O and hence V — c.

Finally, it has been noted(32) that if the carrier frequency is not confined to
the center of a symmetric line but is in fact far-off resonance, the expression for
the velocity given in Eq. (2.4h4) goes over to the usual result for the velocity of
a wave in a dispersive medium.

The above results, along with the infinite wave train solutions which correspond
to libration and oscillation solutions of Eq. (2.50) are the only analytical solutions
of the inhomogeneously broadened version of Egs. (2.35 - 2.37) that have been reported
to date. However, further analytical progress is still possible if one confines
attention to the area under the envelope curve 7,8), Defining

o0
8(x)= Q./:%'Z(x,t') (2.61)
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the equation governing the variation in @ is readily obtained by integrating Eq. (2.29a)
over all time. Using Egs. (2.28b) and (2.31b) with ¢ again set equal to zero one finds

46 4 8- j: fi Aw %{:’) /: zt'ﬁ(x,t')ﬂ(x,t') Lim sin Acw (t-1) (2.62) i

dx t—=00

where k = 2p o/c. Since the indicated limiting process is somewhat delicate, a
method of carrying it out is now given in some detail. First, one may introduce the
well known forms

f—oOO Aw
Lim cosQwt =(|___g_>
t—=e Aw Aw Ddw (263)

where P denotes a principal value. Using another standard representation for the
delta function and the principal value,

Lim cosdwt _ Lim [_l__ Dw ]
t=°  Aw €—~0 w €+(Aw?
o 3(Aw) LM €-=0 (2.64)
w €0

When these results are used in Eq. (2.62), one obtains

d6 _af [T !
K0 =% [_gtf(x,t)/V(O,X,” (2.65)
where

a=2mgla (2.66)

and o' is as defined in Eq. (2.30). As will be shown later, the population of on-
resonance atoms, i.e., those represented by‘/V(O,x,t), may be expressed as

Mo £ cos [2fargix) (2.67)

where the upper sign ic to be used if the population is initially inverted while
the lower sign is used if the population is initially in the lower level. Hence
Eq. (2.65) finally takes the form

Equation (2.68) is the area theorem(7s8). It contains the key to an understanding
of many of the effects which occur in the propagation of ultrashort optical pulses.
Again,if orientational averaging is included, the factor o should be replaced by 0/3.

16
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For ¢ = 0, the solution of Eq. (2.68) which satisfies 8 = 8, at x = x, is

tan % = tan %Q exp [‘.':-g- (x-xo)] (2.69)

and is depicted schematically in Fig. 1. M?dégications of this result due to
nonvanishing conductivity have been inferred 16) from numerical solutions of Eq. (2.68).

Since Eq. (2.68) contains a choice of signs, it is actually two distinct differen-
tial equations. The two solutions are obtained from Fig. 1 by reading the diagram
from right to left for the plus sign (amplifier) and from left to right for the minus
sign (attenuator). Hence one sees that an infinitesimal area will grow to m in an
amplifier while any area less than m will evolv=2 to zero in an attenuator. This
second result allows for not only the well-knowi decay of a pulse as it propagates
in an attenuator, but also for evolution into a nonvanishing zero m pulse, i.e.,
one in which the total area under the pulse envelope is zero but the area under the
pulse energy (~4?5 is not zero. This is of course possible if the positive portions
of a pulse envelope are equal in area to the negative portions. Physically, the
regions of positive and negative envelope are merely regions in which there is a
relative difference of 180 degrees in the phase of the carrier wave. In an
attenuator, initial pulse areas between m and 3m will evolve into the steady state
2rm pulse of self-induced transparency. One also sees that the 21 pulse is unstable
in an amplifier and will evolve into either a nr or 3m pulse.

Figure 1 refers only to the total area of a pulse and gives no information at
all about the possible breakup of a pulse into two or r>re pulses with the same
total area or of whether a continually amplifying pulse will retain an area of n by
virtue of pulse narrowing or by developing negative regions in the pulse envelope.

2.4 Steady State Pulse in an Amplifier

In addition to the self-induced transparency solution in an attenuator, a some-
vhat similar steady state result may be obtained in an amplifer if the loss term @
is retained in Eq. (2.29a). This was first recognized by observation of machine
computations(13) and subsequently obtained analytically{9). Both results have been
obtained in the limit of no inhomogeneous broadening alth?ugh certain cases in which
homogeneous broadening is retained have also been treated 9], From Eqs. (2.29), (2.31)
and (2.32) the relevant equations are

_0_37 +c%£x+27r°’£=%/)

d (2.70)

dt d X a

as well as Eqs. (2.27). The ad hoc assumption which renders the analysis tractable
is that both £ and ¢ travel at the velocity c. The differential operators in
Eqs. (2.70) and (2.71) then vanish identically and the problem is greatly simplified.

g (ﬁ_d’+c 01):-2‘1_'2 (2.71)
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It should be emphasized that there is no rigorous Justification for this assumption.
However, it has recently been noted(16) that if a steady state pulse at any velocity
v¢c 1o assumed, then the resulting numerical solution is unstable and evolves
asymptotically into a pulse propagating at v = c.

From 3q. (2.71) one then sees that 2- 0 and hence from Eq. (2.37b) that

4% .
buwt G =° (2.72)
Conscquently,
¢ lw-upt (2.73)

and from Eq. (2.22) onc sees that the frequency of the steady state pulse is always
equal to w the transition frequency of the two-level systcm(9). Since 2 = 0,

Eq. (2.37a) follows from Eq. (2.32) without the use of the slowly varying envelope
approximation. The remaining equations are now

€g=p (2.7h)
p=98N (2.75)
N=-Qgp (2.76)

where the dot signifies differentiation with respect to t - x/c and

Q:UEO//VOWO&’ . (2.(7)

Since Fq. (2.75) and (2.76) have the parametric representation

p=sin¢ (2.78a)
N =cos ¢ (2.78b)
with
NE=¢
(2.79)

Eq. (2.74) is equivalent to the differential equation

18
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abe=sing (2.80)

The solution is immediate and leads to

£- -&- sech[ Q(t-x/c)/l;] (2.81)

Also, the population is seen to be inverted by the pulse since Eq. (2.78b) 1is now
equivalent to

N = - tanh[ 2. (1-x4)/L] (2.82)

Since

(¢ 0]
nf-az: dtese (2.83)

and also because the vector whose components are / and 2 is rotated through an
angle n during the passage of the pulse, the result given in Eq. (2.81) is customarily
referred to as a nw pulse.

Steady state pulse propagation in an amplifier has also been analyzed without
the assumption of a slowly varying envelope and phase(lo). The assumption of propa-
gation at the light velocity of the medium is retained, however, and provides the
simplification that is sufficient to permit an exact solution. For pulses that are
many optical cycles in duration, there is very little difference betwecen the pulse shape
obtained with this more exact treatment and the method described above, as is to be
expected. What is of great interect, however, is the prediction of phase variation
in th2 carrier vave. The "chirp" predicted by the theory is proportional to the
squarc of the ratio of optical period to pulse width. Such a result could not be
obtained in the slowly varying phase and envelope approximation since it is equivalent
to an expansion to only first order in this ratio.

The method has subsequently been extended(ll) to include the effect of dispersion
in the host medium. In the limit of large dispersion it was found that a monotoniec
frequency sweep is predicted. Such chirping of ultrashort pulses(g%s3E$en observed
experimentg%}y and offers new opportunities for pulse compression‘--? and population
inversion The chirp that developes in the presence of large dispersion is found
to be proportional to the first power of the ratio of optical period to pulse width.
This suggests that cuch a result can be obtained with the framework of the slowly
varying phase and envelope approximation and in the following development, the
problem will be approached from this point of view.

When no dispersion is present and the pulse 1s assumed to propagate at the velocity
of light in the host medium, Eq. (2.21) reduces to
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1

aE=—aw

(2.84)
where w = t - x/c. When E and P are written in the form of Eq. (2.22) and (2.27)

respectively but without any assumption that £ and p are slowly varying, EQq. (2.80)
yields the pair of relations

(2.85)

30 2w $8)-> (2.86)

Eqs. (2.37), with Aw again set equal to zero, are also applicable. Combination
of Egs. (2.85) with (2.37¢) and Eq. (2.86) with (2.37b) leads to

£e-p (2.87a)
w°2=-ﬂ.g/v (2.87b)

Eqs. (2.37b) and (2.37c) may be combined to yield
Qzaiw(?q:“mg * g;t("”z) (2.88)

in which Eq. (2.39) has been employed. From Egs. (2.87), (2.37) and (2.39), one
obtains

2
22=02/V2(|—/\/2)/ [|+02/\/2] g_a/_ = —w, o[l -N ]

1+a2/ 2 (2.89)
a=8/0 w, (2.90)
Finally, Eq. (2.88) yields
2 2

+Eh)?z ['”"MZM (2.91)

Unfortunately, one cannot solve Eq. (2.89) explicitly for the explicit time

dependence of /. Solution of Eq. (2.89) merely leads to the inexplicit relation
equation for N which has the solution

awew = N —(02+| ) tan h-|/v (2.92)
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For a >> 1 this reduces to Eq. (2.82) as is to be expected.

The "instantaneous" frequency is

¢

dw (2.93)

Winst = Wo ~

For / = #1, i.e., at both ends of the pulse

Wingt =Wo [l— 02/(l+02)] (5.0
2.9

while at the center of the pulse A = 0 and

Wingt = wp(+a?) (2.95)

The fractional shift in frequency is 2a2/(l + a2). For a picosecond pulse at
ly, a ~a10'3 and the fractional frequency shift is ~10~. The absolute frequency shift
is 300 mHz.

The calculation outlined above was subsequently(ll)extended to include dispersion
in the host medium. The dispersion was treated by standard methods of linear wave
propagation. It was found that in the limit of large dispersion, the chirp becomes
proportional to the first power of the ratio of optical period to pulse duration
rather than to the second power as was found in the previous calculation. As is to
be expected, then, this limiting case can be treated in the slowly varying envelope
and phase approximation and this formulation is developed below.

The wave equation given in Eq. (2.1) is readily modified to include effects
arising from the presence of a host medium. Since the effect of the host is merely
to provide an additional contribution to the polarization, one need merely introduce
an additional polarization term Pnr to describe this nonresonant contribution. The
total polarization in Eq. (2.1) is then

Pz P'L+Pnlb (2.96)

where the first term, P,,, is the resonant polarization resulting from the interaction
of the wave with the two-level system suspended in the host medium. The frequency
dependence of the nonresonant polarization is conveniently described in terms of a
susceptibility x (w) by writing
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T00) ~iwt
P f o B e X WEW) (2.97)

where E(w) is the Fourier transform of the electric field vector

E (w) =/_°:Od1e““' E) (2.98)

In the neighborhood of the carrier frequency Wy the susceptibility may be
approximated by
2
am x(w)=a,+ 0, (wo/w)
(2.99)

Hence X is real and X(w) = x{-w) which assures the reality

Note that any absorption associated with an imaginary part of X is ignored.
The nonresonant polarization then satisfies

where a, and a, are real.
of Pnr'

(2.100)

For an electric field polarized in the Y direction and travelling in the positive X
direction, it follows from the Maxwell equations that the associated magnetic field
vector is

- d x (2.101)
where k is a unit vector in the Z direction.
Energy conservation is expressed by
. 4 9 (E%nl) 4+ 4T .ﬁk:_f&_v( 2+mu_29_)
\Y) (EXH)+20 dt(E )+ C E 3t c ok 2 ot (2.102)

where Eq. (2.21) has been employed. If one assumes that a steady state pulse is

maintained by a balance between ohmic losses and resonant gain, then the right-hand
side of Eq. (2.102) will vanish.

The left-hand side may be simplified and one finally
obtains

£ (& $F - ¥ i‘?‘%)o (2.103)

If it is assumed that E is of the form of a steady state pulse with envelope
velocity Ve and phase velocity Vp then one may write

E=jExl (f-x/vp)cos[wo(t—x/vp)+ 4>(f—x/ve)] (2.104)
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From Eq. (2.101)

VXH = cj {— L JE , wof (L - t)(?fcsin V- g cosV)

Ve Ox Ve \Ve
(2.105)
2 (l___L. j" t-E}
where © Vez sz —00
£.= Lcos ¢
£i=Esin ¢ (2.106)
and
¥ = wolt=x/vp) (2.107)
When second harmonic terms are neglected,
9 - 0
x & B vZ of EE (2.108)

and Eq. (2.103) takes the form

2 1
|_< __¢i>a_sz 2 [(.L.-L)-_."Z] dt'e =
|+ g + wsc E- [dtE=0
C o} 2 0 PR
2 Vel | Ot ve. W/ ¢ ~o (2.109)

Since the two terms in this equation have a completely different time dependence,
one must require that they vanish separately. This yields

L = Vi+a
Ve 0
. (2.110)
v, © Viteg Ve,
Turning now to the wave equation for the medium under consideration, one has
2 2 2
0E 1+ 0 G 47 0 opr (2.111)

E —
o ¢ ot 2~ & ot ot

With the velocities as determined above, the left-hand side of this equation reduces
to a perfect time derivative and one finds

woAEo(ZsCOSw'ZcSi"lP)=UE+da—Pf'£ (2.112)
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where
2mA= ~ Jaz(|+ a,)

(2.113)

!

The resonant polarization is of the form

P, = nog,[—psin(w+¢)+2cos(w+¢)] (2.114)

where { is as defined in Eq. (2.107). Employing the slowly varying envelope approxima-
tion,

[

2 = ~woflo p [P sin+di+2 cos (y+¢] (2.115)

QU

and Eq. (2.112) yields

(Cy & -Dsing-(LL-P)cos¢ =0
(C,g-ﬂ)sin¢+(§y£’-2)cos¢=0 (2.116)

Two expressions may now be formed for tan ¢. When they are equated, one finds

(Lg-p) =-lyLg-2) (2.117)

where  is as defined in Eq. (2.77) and

Y= WoA/o (2.118)

Since all terms are real, each side of Eq. (2.117) must be zero and hence one obtains

pP=LE

2=y88 (2.119)

From Egs. (2.119) it is seen that y represents the ratio of the in-phase component of
polarization to the out of phase component. For a dispersionless system y = O and
hence Z = 0. The effects of dispersion may therefore be considered to be large

when v = 1.

From Eq. (2.39)

A (2.120 ;

e

n
=
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and from Eq. (2.37a)

AN _ _Q g2
at C(l+7)(l WS (2.121)

The population is again seen to be inverted by the pulse for the solution of Eq. (2.121)
is

N = —tanh (t/7,)

(2.122)
where
Tp=L(1+y2/Q (2.123)
The pulse shape, which follows from Eq. (2.120) is
- 1.
From Egs. (2.88), (2.119) and (2.120),
E&f —— ;Z./y
t Tp (2.125)
and the "instantaneous" frequency is
5 _..a.é 8 |+ Y
Winst 07 0 wf WoTp A (2.126)

Hence, for vy comparable to unity, the frequency sweep is proportional to the first
power of the ratio of optical period to pulse width.

For large it may be easily seen that the population inversion takes place by
' {359

means of adiabatic rapid passage . Introducing a position vector in a three
dimensional /2 , 2, N space according to

R=iP+]2+kN (2.127)

and a vector describing the electric field and the detuning of an individual two-
level system by

£ g +k 32

ot (2.128)
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Egs. (2.37), with f set equal to zero, may be written

dr _
. at - EXR (2.129)
For large vy, the angle between‘g and‘E is given by
cos 8 = —— [
RITE > 20

Hence the position vector remains collinear with E. As the pulse passes a given
two-level system and g% goes from Y/Tp to -y/Tp the & component of R must proceed from
1 to -1.

It is to be expected that future research in the field of ultrashort pulses will
place increasing emphasis upon the phase characteristics of such pulses.

2.5 Transformation of Equations for a Two-Level System

It has been found useful to observe that Eq. (2.37) are a set of scalar equations
which have exactly the same structure as the Frenet-Serret equations of differential
geometry(36). It is known that the s?lgtion to such a set of equations is equivalent
to ths solution of a Riccati equation 30) To show this, one first recalls from
Ey. (2.39) that an integral of Egs. (2.37) is

Ny P2e2%= (2.131)
Two new functions may now be introduced by writing
N+iP . 1+2 . $
-2 NTip T (2.132a)
A+iP 42 (1 g
=2 N+iD ¥ (2.132b)
Equations (2.132) may be inverted to yield
_ |=-¢y _ 2red
N - ¢_w - |¢|2+| (2'1335-)
p iy i+éy - 2Imo
-y |3+ (2.133p)
PR |l
-V o2+ (2.133¢)

Equations governing the time dependence of ¢ and ¥ are readily deduced by inserting
Egs. (2.133) into Egs. (2.37). It is found that ¢ satisfies the Riccati equation
do i
=22 ige + F(t+92) (#2-)
ot (2.134)

and that ¥ satisfies the same equation.
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One may now employ the usual transformation to convert this Ricecati equation to
a seccond-order linear equation. If the phase term is neglected the problem is reduced
to that of solving the equation

ol 62, @2, g

+ (f+8+2i) w=0
where the dot signifies differentiation with respect to 1. The new dependent variable
w is related to ¢ through the transformations w =u exg-= _; dr' &) and ¢ = (2i/f)
d(lHU)/dT. From well-known properties of such second-order differential equations, it

follows that in general it is impossible to write ¢ or ¢ explicitly in terms of
quadratures of £.

Equation (2.135) is particularly instructive since it puts power broadening in
evidence and provides an immediate contact with results obtainable from the well-
known vector model for describing the response of a two-level system to an external
field 37 . We now digress briefly to consider this approach. For a constant
envelope g = g(yEq. (2.135) is readily solved in terms of the functions

W = exp (:t L;—« /1248 2 > (2.136)

If the population is initially in the lower level and the pulse is turned on at
1 = O, then the proper initial condition for w is readily found to be w(o)/w(o) =
i(f - Zo),(f‘2 +£2)2 and one obtains

N = —i+2cos a sif(fr/2) (2.137)
where

a = tan (/&)
(2.138)

This constant field result agrees with that obtained from the geometric model. It
should be emphasized that although the vector model itself is applied for arbitrarily
short pulses, Eq. (2.137) is only applicable if the pulse envelope varies slowly

on the time scale Q~~. For the ultrashort optical pulses under consideration here
this condition is violated. An example of a time dependent pulse profile for which
Eq. (2.134) is still soluble in closed form is the steady state solution for self-
induced transparency, namely

£ = 2secht (2.139)

The solution of Eq. (2.134) when £ has the form given in Eq. (2. 39) and which takes
on the velue -1 as T - -» may be shown to be
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__ t=iexplio/2)
® - f-iexpl-ia/2) (2.140)
where
N -1 T
o= fdr'é’ = 4fan ‘e
-0
(2.141)

Eqs. (2.133) then yield expressions for the response of the system which agree with

Egs. (2.56)

2.6 Specialization to a Soluble Model

Although it is possible to obtain a falirly complete analytical description of
steady state pulse propagation in an inhomogeneously broadensd medium, other very
interesting features of pulse propagation have not thus far been found to yield to any
simple analytical treatment. It has been noticed, however, that if inhomogeneous
broadening is neglected, the analysis may be pursued much further. Fortunately, it
has been found that results predicted on the basis of such a model are preserved to
a conciderable extent when inhomogeneous broadening is included and the morc complete
set of equations is investigated by numerical computations 14,53 . Furthermore, the
model is not without physical interest in its own right since, as mentioned above, it
may be used as an approximate description of optical pulse propagation under condi-
tions of extreme saturation broadening.

The cimplification introduced by the assumption of vanishing bandwidth is im-

mediately evident when one recognizes that Eq. (2.134) becomes linear for f = O.
The solution is then

: + el
p:Ie (2.142)
where o is given by Eg. (2.141) or equivalently,

g = aO'/aT (.]_ll»_’j)

The choice of sign in Eq. (2.142) is again related to the two relevant initial con-
ditions A/(gl - ®) = t1. From Eq. (2.133) there follows

N=2%coso (2.14h4a)
Pt sino (2.1441)
.Q =0 (2.1hke) J‘
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and Eq. (2.35) takes the form

% _ ...
deor - Tsine (2.145)

This nonlinear partial differential equation is the fundamental equation of the
model, Fortunately, it has already been studied extensively since it
arose long ago in the theory of pseudospherical surfaces, i.e., surfaces of constant
negative curvatur? 38 5) More recently, it has arisen in the analysis of many
physical problems .

The general solution of Eq. (2.145) is unknown. However, a variety of particular
solutions corresponding to specific pseudospherical surfaces, have been discovered.
One rather large class of solutions is expressible in terms of the variables

usatr+ ¢/
v=at -¢/a (2.1L46)

where a is an arbitrary constant. In terms of these independent variables, Eq. (2.145)
takes the form

v (2.147)

The above-mentioned solutions are of the form

o(uy) = 4ton"[F(u)/G(vﬂ (2.148)

Substitution of this assumed form into Eq. (2.147) leads to the requirement that
F(u) and G(v) satisfy the equations

F/2z —kF*méré+n
6'% = k6* +m?-1)?-n (2.149)

where k, m and n are arbitrary constants. The various psuedospherical surfaces cor-
responding to such solutions are known as the surfaces of Enneper and have been
exhaustively catalogued by R. Steuerwald(h6).

Among such solutions are to be found analytical expressions that describe not
only the stcady state 2n pulse assoclated with self-induced transparency but also
solutions that correspond to a Um pulse as well as pulse envelopes for which the total
pulse area is zero, so-called zero m pulses. As noted previously, the negative part
of the envelope in such a pulse is merely the way in which the present model accom-
modates a phase change of m that could teke place in a more complete theory in which
the phase term ¢ of Eq. (2.22) were retained 8’h7). The U solutio? ﬁxhibits the
pulse breakup phenomenon that hag been observed both experimentally 8 and in more
complete numerical computations s1
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Another, and more general, method of obtaining solutions is to use the fact
that Eq. (2.145) is an example of an equation which admits of a Baecklund transforma-
tionl*%:%9), Tnis transformation theory may be interpreted geometrically as the
transformation of a surface which represents a solution of a given partial differen-
tial equation into another surface which is the solution to the same or, in some
cases, another known equation.

For Eq. (2.145) the transformation equations are(38’ 39)

L d L inl =%

£ v 25 (2.150)
d in(S

;—d—r_(a'-%):a sm<°'+2°.> (2.150p)

One may easily show that both g, and o, satisfy Eq. (2.145). Hence, from a given
solution o, one may obtain a new solution ¢, which contains not only the constant a
but also an arbitrary constant of integration. This transformation may be used
repeatedly to generate a solution o, from 0, etc. For extensive calculations of this
sort, it has been found convenient to use a symbolic representation of Eqs. (2.150)
in which a transformation from a solution g; toa solution g, with a constant ay is
represented as shown in Fig. 2. As a first usage of such muitiple transformations,
one may show quite readily that the four solutions that are related by the trans-
formation depicted in Fig. 3 will satisfy

0'!—0'9 - g, + Q2 g -0
which, quite remarkably, does not involve any quadratures. A simple algebraic
manipulation of the eight equations impiied by Fig. 3 leads immediately to Eq. (2.151).
It will be shown subsequently that this result may be used to construct a Ur pulse as

well as a number of different types of zero m pulses.

If a; = ay and the integration constants in ¢, and o, are different, this
relation merely yields

= +
9300 =T (2.152)

When the integration constants are the same, the resulting indeterminate form may be
evaluated from the usual Taylor expansion and one finds

(253 22 2

a |/ 2\0da, 9y, 9 (2.153)

Where vy, 1s the comstant of integra.ion arising from the solution of Egs. (2.150).
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It will be shown that the compounding of transformations shown in Fig. 4 ylelds
a 6m pulse. An obvious gencralization to obtain a 2nm pulse and undoubtedly more
complicated zero n pulse suggests itself immediately but the subject has not been
pursuecd bey~nd thiz point.

All of ther above solutions represent modes of propagation that are realizable
in an attcnuator. It has been found that a solution which appliecs to a lossless
amplifier, the n pulse, is contained within the family of solutions that results “rom
the specification that o be of the form o(ft). Suc? solutions have also been con-
sidered within the context of differcntial geometry and have b?cn used recently
in the attcnuator case to describe coherent resonance fluorescence 51).

2.6.1 Specific Pulse Profiles

We now turn to a more detailed consideration of the various solutions of
Eq. (2.145) that were mentioned above. The results are, of course, meagre in com-
parison with the complete analytical description of the evolution of arbitrary initial
pulsc shapes that can be obtained when dealing with linear initial value problems.
However, the particular solutions that have been found do exhitit many of the import-
ant and interesting features of optical pulse propagntion as !t has been observed
both experimentally and as output from numerical conputations.

2.6.1.1 2n Pulse

As has becn indicated above, a largc number of pulse profiles may be obtained
for propagation in an attenuator. Perhaps the most widely known solution of this
type is the one related to self-induced transparency. It may be obtained in a number
of ways, the simplest being that of assuming a steady state solution of the form
a(t - x/v). Such steady state solutions will be discussed subsequently. The solution
may also be obtained by noting that o = O ie a solutiorn of Eq. (2.145). This esolution
may then be used as o, in the Paecklund transformation given by E3s. (2.150). Choosing
the lower sign in the eerond Eqs. (2.150), as is required for propagation in an atten-
uator, the two resulting first-order differential equations have the solution

o, =4ton’'e”
' (2.15h)

where v is as defined in Eq. (2.146 ). One cons tant of integration hns been set cqual

to zero cince it merely serves to translate the initial location of the solution along
the v axis. The corresponding electric field follows from Eq. (2.143) and one finds

£ = 2a sech v= 20 sech [on("‘*/")] (2.155)

where

v (Hé) (2.156)
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-1
From Eq. (2.155) one sees that (8Q1) = determines the width of the pulse envelope.
Therefore, setting &} = Tp'l where 7_ is the pulse width, the expression for the
)Y
electric field envelope becomes

Eo , 2 -
g sech (t-x/V)T, (2.157)
vhare
| | ’ |
vEota s li+tuy/uy) (2.158)

o' is as defined in Eq. (2.30) and U, and Um are the energy densities of wave and
medium respectively. The last form for the velocity given in Eg. (2.158) is
particularly instructive and has been derived(52) on simple physical ground by
merely equating the average energy of both wave field and medium, VTp(Uw + Um), to
CTpr the amount of energy that flows through the volume Vr_ at the light velocity c.
Egs. (2.157) and (2.158) agree with Eqs. (2.54) and (2.4k4) En the appropriate limit,
namely g(Aw) - 6(Aw).

2.6.1.2 Um Pulse

It has been observed both experimentally(e) and from machine computations
that the combination of field strength and magnitude of dipole moment sufficient to
induce two inversions in the population of the two-level system, a so-called by
pulse, does not propagate as a single pulse but rather separates into two separate
?Y7pgéies. Such pulse separations are also exhibited by the analytical solutions

947}, The bn pulse is obtainable as the function o- in Eq. (2.15.) when one
chooses gy = 0. If one chooses the lower sign in Eq. (2.145), as is appropriate for
the attenuator, then

- ) 2.1
o; = 4fan ! [exp(ui)] yiz 1R (2.1592)
where
y = g T=¢/0 (2.159p)
The resulting expression for 03 may be put in the form
+ sinh7 (y,-v
s « aton|(Qutgz) SN2 (nove)
cosh s (v +v;p) (2.160)

For a; > 0, a, < O the function o3 in Eq. (2.160) varies from -2n to 2n as T proceeds
from -» to ®, Since
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g5 [Td1f = ol@ - )
(2.161)

one may expect that the assoch ted electric field will correspond to a 4m pulse.

-1 ;
Setting a2 = 7, , -axQ = 1" using Eq. (2.143), the electric field is found
to be

Eoé"g - (2/7,)sech x + (2/Tz)sechy
i) ~ " 1-B(tanh x tanh y-sechx sechy)
(2.162)
where A = (T2 _1-'2)/(-!-22 + T2
B =21 T,/(7% + T?)
x = (t=x/v,)/T
Y = (t-x/ve)/ T,
(2.163)
and the velocities Vl and V2 are
Tl/.’ = 1+ Q%1%e) = & +a't?
R 2.2y . L 12
VZ‘C(H'Q T,%€) = Tt aT (2.164)

A graph of Eq. (2.162) is shown in Fig. 5. As the pulses become completely separated
Eq. (2.162) reduces to

Eo¥ p _ 2 2
$=£ = £-sech(x£B)+ £ sech(v £ 5) (2.165)

where the upper sign is to be used for T < 72 and the lower sign for Tl > Ts and where

B = tanh~'B (2.166)

In order to obtain a pulse envelope that begins at € = O with only one peak as

a function to time, one must impose the requirement aef/a'r2 <Oat g =7 = 0. This
condition, along with the requirement £ > 0 leads to

(1=2)(1+22=-32)>0 ,2=T,/7T, (2.167)

which 17 cquivalent to

¢2(3—~/§)< T,/Tp < -%—(3 +J5)
(2.168a)
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Figure 5 could, of course, be continued back to negative values of £ to provide
an example of the envelope distortion that takes place when an ultrashort pulse over-
takes a slower pulse and passes through it.

In addition to the above results for specific pulse profiles, certain conclusions
relating to Um pulses of arbitrary initial shape may also be given. These results
are obtained by employing a technique previously applied to the Korteweg de Vries
equation(63 which has solutions with many of the same pulse like properties as
Eq. (2.145). It will be discussed further in Section 2.6.3.

One begins by noting that Eq. (2.145) possesses the two conservation laws

70; %(gg)z + aas (1-coso) =0
168
-a%(I—COSO’) + —a%—[—'z-(g_g)z] - 0 (2.160)

which follows from Eg. (2.145) after multiplication by dc/3€ and 33/dT respectively.
Integrating over all € and over 7 from 1 = O up to an arbitrary final time one
finds

f_:dflﬁ('g%)z = 4c¢,

_[:dcf(l—coscr) = 4C, (2.168¢)

where cy and ¢, are positive constants that are obtained by evaluating Eq. (2.168c)
for a given initial form of o¢. After the pulses have completely separated one may
write

o = Z 24tcn"{exp[0i(r-r.-)—{/c:g]} ——
VEh 2.1684

Egs. (2.168c) then yields the paid of algebraic relations

ar'+a;! C

a+dz =G, (2.168)

Introducing the positive quantities @) = 8, ¥y = -3,, One finds that the final
amvlitudes are given by

a,,= +(c. £ /cF-acyc, )
(2.168f)

Also, one notes that, since the o; are real
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C, C,>4 (2.168g)

It has been shown(78) that Korteweg de Vries equation satisfies an infinite
numver of conservation laws. TFor that equation, the above technique may be extended
to treat pulses which evolve into any number of isolated pulses. Thus far, no
additional conservation laws have been found for Eq. (2.145) although, as will be
shown below, it is known to have solutions that break up into more than two pulses.

2.6.).3 Zero n Pulses

As mentioned previously, Eq. (2.145) also admits of solutions for which the
associated electric field envelope becomes negative. Such solutions cannot be dis-
carded on any physical basis since a negative field envelope merely corresponds to
a phase change of 1 in the carrier wave.

Three different types of zero m pulses have been constructed from the solutions
mentioned above. The simplest type is obtained by merely choosing a, > 0 in the
previous solution for the 4m pulse. The electric field envelope in dimensionless
form is

_ a, sech v, — a, sech v,
£ = 2n i -8 (tanhv, tanh v, + sech v, sech v;) (2.169)

where

- 2_ 2 2 2
A= (af-a2)/(a2+ a?) (2.170)

B8 =4.0,0,/(a? + a5?) (2.171)

An example of this result is shown in Fig. 6.

In the limit a = a,, Eq. (2.151) becomes indeterminate. In this case, with
y; again set equal to zero, onz may use Eq. (2.153) and obtain as the sacond form for

a zero m pulse,

o = 4tan”' (#sechv) (2.172)

This yields the field envelope

35



J920479-21

_ | —utanh v
£ = aasechv(- e )

(2.173)

A graph of this result is shown in Fig. 7.

The third, and by far the most interesting type of zero m pulse is obtained
by allowing the parameters a; and a, in Eg. (2.151) to become complex and requiring

G, =0 =a=a+ifB (2.174)

One then finds

o = aton” {£ S0} (2.175)

where
= - 2
p = a(r-&/1a1?) (2.176)
and
= 2
q = B(r+&/1al?) (2.177)
The electric field envelope 1is
- h fCOSQ*(a/B)sinqtonhp]
6 & cuek p|_|+(cz/[3525inzq sech? p (2.178)

A graph of this result is shown in Fig. 8.

Unlike the two previous types of zero mm puises, the envelope given in Eg.
(2.174) tends to remain as a single localized disturbance. It provides an alternate
and more flexible form of self-induced transparency. It has been found 53 from
numerical computations that this pulse shape is remarkably insensitive to variations
in inhomogeneous broadening.

2.6.1.4 6 Pulse
As mentioned above, the 6m pulse is obtained from the sequence of transforma-

tions depicted in Fig. 4. From this diagram, the corresponding analytical expressions
are easily seen to be

36

U o S Sl oes

—t



J920479-21

A Og- 0]
g 0y + 41an (K,3fon > b) (2.179)
where |
o, * atane’
— . -L _ -
a, : 41an , smh2| Yy -v,)
| © cosh5 v+ 1)
= . [ .
- sinh = (v,- v,)
ab=41on' Kz 'i Clg>
| ““cosh 5 W, + ¥y) | (2.180)
and

K|j = (0i+0j) /(Oi -Gj)
(2.181)

One may immediately impose a number of constraints upon the triad of constants
a), ap, as3. In the first place, for the envelope function corresponding to oo to be
positive, one must require s > 0. One then proceeds to make g, 2 U pulse which
requires a; < 0. Also, %y is made a zero m pulse which reguires O < a, < 8- The
three constants a; may be related to the widths of the three pulses whén complete

separation has taken place by setting -a,(d = 17, a)} = To a3Q = 73.

As with the bn pulse, one must impose additional restrictions in order to
assume a pulse shape that consists of a single peak at £ = O. The inequality is much
more complicated in this case than in Egs. (2.167) and has not been analyzed in
detail. By a trial-and-error method the case shown in Fig. 9 has been obtained.

2.6.1.5 1 Pulse

To describe a nwm pulse, one must turn to the other completely different class
of solutions of Eg. (2.145) that were mentioned above. These are solutions in which
the independent variables occur solely in the product form €. WEﬁn one sets Z = €t
in Eq. (2.145) it reduces to the ordinary differential equation(5

20"+ o'-sinoc:=0 (2.182)

where the prime indicates differentiation with respect to Z.
A new dependent variable, w, related to e by v = exp(io), may be shown to
satisfy a special case of the equation that defines the third Painleve transcendent( ).

Since the properties of such functions are essentially unknown and tables appear to be
unavailable, it seems preferable to resort to a direct numerical integration of
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Eq. (2.182). The result of such a numerical solution is shown in Fig. 10 which also
includes the result for o' = (£ /) as well as a phase plane diagram of the solution.
The ‘exanple shown in Fig. 10 satisfies the condition ¢(0) = 0.1 as well as ¢(0) =
5sins(0) which is required for continuity at the origin.

Scaling laws for 1 pulse propagation may be inferred from these results.
Since the abscissa for the pulse envelope is g7, the actual pulse envelope narrows
linearly with increasing distance of propagation. Also, since £ = o', the amplitude
of the envelope increases linearly with distance. This spatial evolution of the pulse
shape is shown explicitely in Fig. 11. Similar results have been obtained from
direct numerical analysis 71’16 of the partial differential equations governing optical
pulse propagation in a resonant medium. A comparison of Fig. 11 with results present-
ed in Ref. 16 shows that until the signal becomes so large that the linear loss is
dominant, neglect of the loss term introduces no significant change in propagation in
an amplifier.

The fact that the self-consistent interaction of field an? resonant matter
should give rise to ringing is not unesxpected in view of the known response of
an inverted population to a specified spatial mode of the electric field. The ring-
ing may alsg be inferred from a theorem concerning solutions of Eq. (2.145). It may
pe shown that there is no function which satisfies Eq. (2.145) and at the same time
remains within the interval O < g < 1

2.6.2 Steady State Solutions

An example of a steady state solution has already been given with the discus-
sion of the 2 pulse. This solution is actually a limiting form of a more general
oscillatory solution which is now considered. Similar rfgulgg gof propagation in an
inhonogeneously broadened medium have also been reported 1,29,29 .

Steady state solutions will be fuuctions of one of the variables defined in

L. (2.14%). Choosing the variable to be v, one readily shows that the conservation
laws given by Eqs. (2.38) and (2.39) take the form

- #gﬂ/v:/v, (2.183a)

2 2
P+l =1 (2.183b)
where Nil is a constant of integration and the constant a is again (Qf )'l. Allowing
for a steady state solution in which £ is non-zero when the entire population is in
the ground state, one sees from Eg. (2.183b) that the constant / may be less than
-1.

From Eq. (2.37a) and (2.183) one readily obtains
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(d/V> (N-N) (=N .

which shows that A may be expressed in terms of elliptic function.

If -l</1/l<l, a solution for which the population varies between/"l and 1 is
given by

| d z Yo (2.185
J, T e )
which leads to(SS)
N=1-2 kzsnz[( v—vo),q
(2.186)
vhere k- = 3(1 -/Vl). From Eq. (2.183a),
L= 2okcn[(v—v°),k] (2.187)

A solution for which -l« /V</\/1 could also be given, but it requires that a
be imaginary. This implies envelopé function propagation faster than the light
velocity. In the limit k — 1 this solution goes over to one which represents 2m
pulse propagation in an amplifier which is unstable.

For /Vl < -1 it is seen that k2 > 1. TUsing the relations(56)
sn(v,k)=k"sn(kv, K"
cnlv,k)=dn (kv k™) (2.188)

one finds that the population difference and field envelope may be written

N =|—2snz[k"(v-vo), k] (2.189a)

£=20K"dn [K'(v-vg), k] (2.1890)

where now k = 2/( l /,). These latter forms may, of course, be obtained by direct
integration of Eq. éh) In the limit /Vl —+ -1 both solutions reduce to that for
the 21 pulse in an attenuator.

(57)

It has been conjectured that these steady state solutions may be realized
in self-pulsing situations.
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2.6.3 Relation to the Korteweg-deVries Equation

It has been noted(58) that the hyperbolic secant solution of Eq. (2.145) and
the decomposition of pulses into a sequence of such "solitary waves" is very similar
to results obtained in recent investigations of the Korteweg-deVries equations 20~ 3).
In fact, one may show that, for steady state solutions, the square of the envelope
function € satisfies the corresponding steady state Korteweg-deVries equation. This
may be seen quite readily by writing o(E,r) in the form o(v) where v =1 - E. A
first integral of the resulting equation is readily obtained. The integral satisfying
£ (=) = a(=) = 0 is

2
coso =1t - %g
(2.190)
When +this result is solved for ¢ and differentiated, one obtains
2
4 \dv 4 (2.191)
2 s
wvhere u £ °. Two derivatives of this equation yields
dv dv  dv®
The substitutions
4
= = f
U= 3 (x)
7
vEzktx (2.193)
transforms Eq. (2.192) to
—kf'+ff'+£f" =0 (2.194)

where the prime indicates differentiation with respect to x. Eqg. (2.194) is the
steady state form of the Korteweg-deVries equation. The solution that vanishes for
large values of X may be written in the form

f = 3ksech’ ('?k'/2x> (2.195)

vhich is readily shown to be equivalent to the result given in.Eq. (2.157). Periodic
solutions in terms of elliptic functions have also been given . They are related
to the result given in Eq. (2.187) and are referred to as cnoidal waves.
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Although the multisoliton and oscillatory(77)solutions of the Korteweg-deVric
equation are similar to results obtained above for 2nm and n pulses respectively, and
the criterion given in Eq. (2.167 is similar to oniggypearing in the breakup of two
soliton solutions of the Korteweg-deVries equation , to the authors knowledge no
quantitative relation between Eq. (2.145) and thc time dependent Korteweg-deVries
equation has been discovered.

2.6.4 Stability Considerations

When inhomogeneous broadening is present( t ? stability of the area under the
electric field envelope & (X,t) may be inferred‘'’"’ from the solution of Eg. (2.68).
However, an integration over the frequency of the detuning associated with inhomo-
genzous broadening is a crucial step in the derivation of this result. In the model
being considered here, inhomogeneous broadening is neglected and so one must rely
upon other considerations to infer area stability. This is accomplished quité
readily by noting that Eq. (2.145) may be written

g _ha ..
fai?' Tp Sino (2.196)

where

t
ol =tk )+ drg)
o (2.197)

For a system initially in the lower level, onas may take g(x,-») = -m for then
N (x,~0) = coso(x,-m) =-1, For a system initially in the upper level one may assumec
U(X:"m) = 0.

For the hyperbolic secant pulse envelope given in Egq. (2.155) 8 = (39/h)findtf
= 2m so that near the trailing edge of this pulse, Eq. (2.196) goes to

%f_ = %-a'sin[('oﬂ) + 21r] (2.198)

where the upper choice is made for the attenuator and the lower choice for the ampli-
fier. DNow if there is a perturbation in & such that the total area 8 is greater than
2rr, then in an attenuator 3 £/3x ~ sin(m + ¢) < O. The field at the trailing edge
therefore tends to decrease to recover a total area of 2m. On the other hand, if the
perturbation is such that & is less than 2r, then 3 £/3x > O and the field at the
trailing edge increases. The total area of such a pulse therefore tends to remain

at 2nr. In the amplifier, the inequalities are reversed and thes hyperbolic secant no
longer represents a stggle pulse envelope. These results are in agreement with those
previously obtained(7, for the case in which inhomogeneous broadening is included.
The above considerations predict only the area stability and leave open the question
of perturbations in which the total area remains unchanged. We now take up this topic
and show, by exhibiting a Liapunov functional with vanishing derivative, that in the at-
tenuator the pulse shape is stable but not asymptotically stable, i.e., perturbations
remain finite.
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(64
An appropriate Liapunov functional ) F(u) is given by

o do 2 o 2 _ ]
F(U)=f_mdv[('a_u') + (—gT) + 2(l—=cos0) G

which is proportional to the total energy residing in field and medium. Differentiation
with respect to u and a subsequent partial integration yields

df_ | [© 4, 90 (%0 _d%T , ) 3o 9a |
H'(f'f_oodv c)u(c)u2 vz * SN )Y 50 oy -

(2.200)

which vanishes by virtue of Eq. (2.147)(in which the lower sign has been chosen as is
appropriate for an attenuator) and the boundary condition that o represent a pulse and
hence 30/3u and 30/3v must vanish at v = #w,

Since dF/du is merely zero rather than negative definite, it is not unexpected
that a first-order perturbation analysis of Eq. (2.%37) will ?o?tain a zero eigenvalusz.
This 1? geadily seen to be the case. Settingo =o' (V) + ¢ 1 (u,v), one finds
1

that o satisfies
a;uoz"’ - 033!"_’ —-(1-2sech®v)cM = 0 (2.201)
Expressing o(l) in the form
ol (uv) = viv)es
(2.202)
V(v) is found to satisfy the Schroedinger equation
V" 4+ (A-2sech?v)v=0 (2.203)
where A = -(S2 +1). For A = -1 ( and hence S = 0) one readily finds(65) V(v) = sechv

which is the solution corresponding to the expected zero eigenvalue.

2.7 Inhomogeneous Broadening and Photon Echo

A very extensive analysis of the effects on pulse sh?gﬁslgg both homogeneous and
inhomogeneous broadening has been carried out numerically‘™ "’ . Thus far ouly the
steady state pulse shape has been described analytically when inhomogeneous broadening
is present. However, if one foregoes consideration of the actual pulse shapes and
confines attention to the area under the envelope of the pulse, then further progress
may be made. In particular, it has been shown 24) that a very simple description may
be given of the space-time evolution of the photon echoes that may appear behind two

L2
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optical pulces as they propagnte through s resonant inhomogeneously broadenec medium.
This was carried out by noting that the area theorem, Eq. (2.68) is still satisfied
if the pulses are assumed to be infinitely narrow, i.e., of the form

£(&,r) = 8(¢) 8(r) (2.204)

vhere 8(v) is a deltu function. The assumption of propagation at the light velocity
ic consistent with that of zero pulse width according to Eq. (2.57a)

The apparent ifnconsistency of using a delta function in the slowly varying
envelope F£(%,r) dous no violence to the theory. It merely provides a convenient
device for obtaining solutione to Eqa. (2.35) to (2.37) in the ehort pulse limit.
We nov give a derivation of the area theorem for delta function pulses and show
how some of ite implications may be readily explored.

The response of the systen is governcd by the Ricecati equation given in Eq.
(2.134). Introducing the new complex function y = v * wt by the definfition
o = exp(fu) Eqn. (2.134) and (2.133) become

() e o

o -itsiop s £ (2.205)

P = sech ., sin py (2.206)
2 ¢ ~tonh u, (2.207)

N = sechu, cosp,
(2.208)

Uaing the form for £ given in Eq. (2.204) and integrating Bq. (2.205) across the
singularity at ¢+ = O, one {indn

W -ps = B(E) (2.209)

Since & {s real, ’y Uy {e contiruous across the pulge and according to Eq. (2.207),2
ir aleco continuous acrose the palae. Tae change in population ic

aN=N>_N< = sech pc(cosu? - cospg)
(2.210)

vhich may be written as

N> : N<cosg -P<sing (2.211)
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Similarly, Bq. (2.206) yields

P> = P< cosg +N<sin @ (2.212)

Eqn. (2.211), (2.212) and the continuity of 2 across the pulse may be summarized in
the vector form

p> c0sg O sing \ / P<
221 = o | o |[2°
N> _si N<
sing (o] cos 8 (2.213)

The 3 x 3 mmtrix represents a rctation about the 2axis by an angle 9 and may be
represented symbolically by R (8). Considering (f,2,N) as the three components of
a vector P, Eq. (2.213) may be written

P> = R,(0)P€ (2.21k4)

While the pulse is not acting, the system evolves according to the homogenecous
counterpart for Eq. (2.205) which has the solution

e'* = icot F(fr+a) (2.215)

vhere o = o wi ic a constant of integration. It is now a simple matter to show
that

(Ptt) + secha;sin(fr + a,) = p(ro)cos f(r -To) + 2(1o) sinf (T - 7o) (2.216a)
2(r) = secha;cos(fr + ay) =2(ro) cos f (r-7o) P (ro)sinf(r-r1o) (2.216v)
n(t) = tonh @, = 7(7)
(2.216¢)
The =atrix representation of this result ic

Py cos f (T -71g) sinf(r-15)0 Alro)

2ty | = |-sinf(r-1o)cosf(r-10)0 | | 2(r0)
vig 0 0 ' 7(T%) (2.217)

vhich represents a rotation through an angle f(r - -ro) about the n axis and may be
uritten

PIT) = Ry(T=-T9) P (7o) (2.218)
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If a tangverse relaxation time were retained in the analysis, so that between
pulses A and 2 satisficd

%re ¥ Q|_sz = 12 (2.219a)
92 -
or * HITTQ = 0 (2.219b)

then Egs. (2.218) would be replaced by

pir) = e-{F-ToVaT2 g (v_15) p(ro)
(2.220)

At a time v after interaction with a pulse of arca 9, the state of a system that
wag initially in the lower level is given by

-sin 8 cos fr
P(T) = Ry(TIR; (BIPLO) = ¢ing sinfr

-cos 8 (2.221)

E3. (2.35), with g(Aw) = g(0) to accommodate all spectral components of the delta
function, takes the form

.0_.8_8(1) : -mg(018(risind (2.222)

§

vhich yields the area theorvm in the form

%‘z’-, = -sin6 , €'= mgIOK (2.223)

Thiz echeme may now be used repeatedly to describe the response of the medium
to a sequence of pulses. The response due to two pulses of arca n, and 92 a time T
apart (in units of 0-1) ic found to have a contribution at r = 2T. Evaluating P
Just beyond this time ¢ = 2T, one finds

z -2T)R. (63)Rn(TIR- (820 R(TIR. (6,)P(0)
P(T) = RplT=2TIR, (83)Rn(TIR. (B2 Ry(TIR; (6, e

Carrying out the indicated multiplications for a system that is initially in the
ground ctate, one obtains

p(€,r) = ~sing, cos fr -sind,cosh, zosf(r -T)

- [sine,cos 6, cos 8, - cosf, sin?(8, /2 )sinG.]COSf (r-271) (2.225)
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If a relaxation time T» were included, this entire expression would merely be
miltiplied by e ~2T/QT2,

Substituting this result into Eq. (2.35) yields

a8, . ..
aer ° ~sné, (2.226)
AQ?' = -sinf, cosh
d¢ 2 ' (2.227)
g—ea} = -sin@, cosB,cos8, + cosby sin?(@,/2) sinb, (2.228)
Rgs. (2.226) and (2.227) have solutions
ton—e-L = exp(-¢'
ton—%‘- = Bsech(¢'-a) = Bsin g, (2.230)
where
ed = ton%@ B = tonﬁzz(-ﬂ)csce.(m
(2.231)

Now, if 97(0) = n/2, 95(0) & 7, the optimum case for photon echo experimants,
then |8| >> 1 and from the solution for 8, one sces that192 remains nearly equal to
ite initial value until 8, decays to a value equal to 8. Until this final state
in the pulse evolution ic reached, one may set A5 = n in Eq. (2.228). The resulting
equation may then be transformed to

g6 cos By + coth, sindy = O

da, (2.232)

Upon substituting y = tan(93/2) thic becomes a Riccati equution which may be converted

to a second-order linear equation by the substitution y = -2(du/da)/u. Setting
ko= nin(91/2) one finally obtains

k(kZ-1)u" + (3k2=1)u' + ku = 0O
(2.233)

vhere thisgrimc indicates differentiation with recpect to k. Eq. (2.233) has the
solution )

u = ak(k) + bx (k) (2.234)

L5
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where K(k) is the complete elliptic integral of modulus k and k' is the complementary
modulus. Finally, the solution for 93 may be written

6y _ (k7k)B(K') = (k/k')B(K)
fong™ = K (k) + K(K)
(2.235)
where B(k) is a tabulated function(67) rclated to the complete elliptic integral by
- 1=k®dx
B(k) = % 4k (2.236)

Figure 12 contains a graph of Eq. (2.235) as well as the variations in el and
8,. It ic seen that the amplitude of the echo increases at a rate approximately
cﬁual to th3t at which the first pulse decrcases. This has becn observed experi-
mcm,ally(15 .

2.8 Level Degeneracy

It has been pointed out(8’18)that pulse propagation under conditions which
prevail experimentally may lead to considerably different results from those predict-
ed here since level degeneracy may be present. It has also been shown that level
degencracy has a marked effect on the direction of p?%%sization of the eclectric field
vector of the echo pulse in a photon echo experiment . Thus far, however, only
the source term for the echo pulse has been calculated when degeneracy 1s present.

No consideration has as yet been given to the complete problem in which the spatial
evolution of the photon echo is followed in the presence of level degeneracy. Hence
this latter topic will not be pursued here.

To avoid detailed consideration of specific molecular modes, level degeneracy
will merely be expressed in terms of a simple jm scheme. The two states previously
denoted by a and b are now characterized by angular momentum quantum numbers j'm'
and jm respectively. Additional quantum numbers that would be associated with molecular
vibration will commute with angular momentum operators and may be ignored. Each
clemeat in the 2 x 2 matrices of Eq.(2.10) now bccome°68 (27 + 1) x (2J' + 1) submatrix
itself with elements <)'m' L! |Jm>. As is well known( ) transitions in J are
restricted to AJ = J' - J =-1,0,1, the three alternatives frequently being referred to
as P, Q and R branch transitions respectively. 1In addition, if the quantization axis
is alligned parallel to the electric field polarization vector then only the P |
matrix elements need be calculated. All such matrix elements vanish unless m' = m
One then finds that ‘Fm,j = <)'n LI?] Jo> = K ¢ vhere ¢ is the largest value of 3om,)
in cach of the three cagses and

Km = J12-m%j , Bj=-I B

(2.2370)
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. - 2 e =
J(j+l)i mé/(j+1),0 (2.237¢)
Since the submatrices of ¥ = -E ‘P = = -F P are nov diagonal in m, the various pairs
of levels designated by different m valucs are not coupled by the interaction and may

be treated separately.

Hence, for each value of m one may write

Pm + wgp? PM =-2—:-9'b NMmE |l<jm/P, /j'm>|2 (2.238)
e _ _2E b
hwgp "M (2.239)

Accuming that all sublevels of the lower state are equally populated initially,

Nm = -2—7%- (< jmlPljm> - <jmlP|jm>)
’ (2.240)
The electric field is governed by
2wwu
at dx ey
i< (2.241)
where j< refers to the lesser of J and j'. When this relation is integrated over the

duration of the pulse, one obtains, in analogy with the derivation of Eq. (2.68)

de . -
i 21+| § m sin(km8) (2.242)

where

8ix) = %‘Qﬁf:dt'Z(x,t')
(2.243)

For transparency to take place it is necessary that the right-hand side of Eq.
(2.243) vanish. For Q branch transitions this will be possible for 6 = 2m Just as
in the nondegenerate c¢ se since the various K are integrally related. For P and R
branzh transitions, however, the irrational ratios of the various Km prevent a
cimiltancous vanishing of all K except in the few cases in which there is only one
nonvani?hing value of K,. For P and Q branch transitions this takes place for
,} =O, e
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(18) .
However, it has been noted that the right-hand side of Eq. (2.243) will
also vanish if dt'f =0 . Such zero m pulses should cxhibit transparency indepen-
X0

dently of the values of the K. Although profiles of zero m pulses have been described
in Section 2.6.1, it should be emphasized that they have been obtained for a simple
nondegenerate system and arc not directly applicable to the present sltuation.

For large valucs of J the summation may be approximated by an integration.
Setting m = jcomw, the results quoted in Eqs. (2.237) may be replaced by continuous
variable K given by

sina , )= i

K =
cosa, 8j=0 (2.24Y)
For Al = 0
| - . | m . .
2] +1 2 Km sin(km8) —= -g-j; da sinacos a sin(fcosa)
= (sind - Bcos8)/6% = j,(8) (2.245)
(72)

where Jl(a) ic a spherical Bessel function

z_j'ﬁ' ¥ Kmsin(kmf) — —",_—'/;"da sin‘a sin(gsina)

m
= —<-|HolB) —-H (8)/8
e [ ! ] (2.246)
(69)

where the Hn(a) are Struve functions

The two forms for the area theorem in the presence of degzn-racy for large j are
now obtained by combining Eq. (2.243) with Eqs. (2.246) and (2.247). It is again
cevident from these results that a zero n pulse should exhibit transparency.

For small g9, the arca theorem for O branch transitions reduces to the small O
form of Eq. (2.68) when orientational averaging is included.

As in Scction “.6, pulse shapes may be obtained in the limit of extreme saturation
breadening.  Setting g(aw) = #(Aw), Eq. (2.145) then goes over to

- ' .
IxafT ° Zj%7 LXmSin(Kmo)
(2.247)
where t' = t - x/c and o' iz as defined in Eq. (2.30).
(18)

Examples of steady state pulse profiles have been obtained numerically ., For
Q-branch transition with j = 2, the result may be given in a simple closed form(72),
One obtaine
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o = -atan~'(/5 csch w/T)

(2.248)
where w = t - x/v and
—l- =} L -+ alrz
v C > (2.249)
The electric field is
PEQL _ _44/5 sechw/t
h T+ 4sechZw/7)
- (2.250)

which is shown in Fig. 13.
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Section 3
CERENKOV TYPE RADIATION FROM LIGHT PULSES
3.1 Introduction

Optical rectification in non-linear dielectric media produces a polarization that
follows iIn time the intensity of the optical pulse. The so-called dc polarization has
frequency components in the millimeter and submillimeter region of the spectrum, and in
general has vector components both longitudinal and transverse to the direction of
light propagation. Submillimeter radiation can therefore be generated from picoseconi
light pulses. A general theory of microwave generation via the dc effect does not
exist.

The most important feature of the generation of the microwave field from its
source is the fact that the source polarization moves through the crystal at the group
velocity of the light pulse , which is approximately c/n, whereas the phase velocity
of the free microwave field in the same crystal is usually lower, c/m, where n and m
are the optical and microwave indices of refraction. Because of the infrared resonances
between the optical and microwave frequencies, m is usually larger than n, so the
microwave field moves slower than its source, in close analogy with the Cerenkov
radiation from a relativistic electron. The analogy with Cerenkov radiation will be
shown to be very close for the microwave field generated by the longitudinal component
of the polarization. Our understanding of the microwave generation from light pulses
in non-linear media is greatly increased by studying the Cerenkov analog of the problem,
viz. the ocoupling of the source to the free fields of the dielectric. For example,
one learns to what extent'phase-matching” is important. A comparison of the induction
fields and the radiation fields shows the possibility of greatly Increasing the micro-
wave power generation by changing the boundary conditions on the problem in such a
way as to couple to the induction fields.

This work deals with the radiation from longitudinal and transverse polarizations
in optically isotropic and uniaxial crystals. The physical picture that one associates
with these phenomena is a light packet accompanied by a dc polarization radiating
microwave power in Cerenkov cones, one cone system at the leading edge of the pulse
and another at the trailing edge. The Interference between these Cerenkov cones is
completely accounted for by Fourier analysing the polarization pulse into its
frequency components. The radiated fields at any frequency are proportional to the
corresponding Fourier component amplitudes of the equivalent source current. In
the same way, the interference between waves originating from different regions in
the cross section is exhibited in the Fourier-Besssel transforms of the traverse
distribution of source polarization.

The first problem that we treat is that of radiation in an optically isotropic
medium. Both longitudinal and transverse polarizations are treated. The theoretical
technique is to solve the inhomogeneous differential equations for the field potentials,
then derive the actual fields by differentiation of the potentials. The second
problem is that of a uniaxial crystal, in which the tensor nature of the dielectric
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constant so much complicates the problem that it is easier to deal directly with the
field quantities rather than the potentials. The method of analysis here 1is to
resolve the source polarization into a continuous spectrum of plane waves, find the
electric field components for the ordinary and extraordinary plane waves of microwave
field, then sum them all through integration to find the complete ordinary and
extraordinary wave fields.

3.2 Optically Isotropic Media

The microwave field is derived from the vector and scalar potentials A and y:

H=curl A (3.1a)
E = - L éé - grad {. (3.1b)

The polarization field P is split into its homogeneous and inhomogeneous parts:

P =.EH t EI (3.2)
where
2
(- 1)
~H = Yoy -E-:' ’ (3'3)

and P, the inhomogeneous part is the source polarization caused by the dc effect in
the non-linear medium. The potential field equations are

2h - e %A k2 (3.1)
v 2 "2 T° 7T 3 ’
c 3t
2 2
2 m_o oy by
vy - —5 5 © —5 div PI (3-5)
¢ at m
m2 Q&
div A + o e 0. (3.6)

This last 1is the gauge condition. Only two of the three equations are independent.
We use the first to derive A from Py , the third to derive § from A, then find E and H
by differentiation of these potentials. The source of A is a current density. For
Cerenkov radiation from electrons the source current is the actual current due to
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i
c .

motion of the electron, and the right hand side of the wave equation for A is

The comparison between the Cerenkov radiation from an electron of charge e and
that from a longitudinal polarization front of length A and face charge Q is easily
exhibited. In both cases, let 2 be the direction of the motion of the source. For
the electron, the charge density is given by

0 = elé(x)é(y) 5(z - vt) (3.7)

where v is the electron speed. The current density is

J =0y = e v(x)s(y)s(z - vt) 2 (3.8)

We use the time convention exp (-iwt) throughout, and thus have the Fourier component
of current at frequency w as

5o-ar e s s(0set (3.9)

The vector potential equation is therefore

22 e
2 m w 1 iwz /v
A A = — .10
v w * c2 w TCp 6(p)e (3 )

where A = (0, 0, A ) and where 5(x)5(y) has been replaced by §(p)/2mp in cylindrical
coordinates. The polarization front is represented by

Po= Al - U/m tan (2 - v)/AH] 2 5(2)5(y) (3.11a)

Its Fourier component equivalent current is

aP

4 , s @ -Ao|/v dwz/v 8(p)

—_— = -iwP_. =2 — e e

3t /s ~Iw en 2mp (3.11b)

Thus the vector potential viave equation is

—
<
no
+
=32
€
~—
>
e
i
=
3
e
e
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where again A = (O’O’Aw)' The energy radiated per cm of path per unit frequency
interval by the electron is

(3.13)

d2w . &2( _ e )w
dwdz ce m2ve

i

Hence, by comparison of the two vector wave equations, the radiation from the advanc-
ing polarization front must be given by

2
ddw_\c’jvz : %;.(. - %Z)we-i’/\w/v (3.14)
For a single electron, e} = 4.8 x lO-lo esu, and the energy radiated per cm path per
em-l bandwidth is ~5 x 10'28 erg. For a picosecond pulse focussed to lolzwatts/cm2
in KDP we have PI = 8 esu in say a square millimeter section, so that Q = 8 x 10-2 esu
= 2 x 10%eq. The energy radiated here is now ~ 2 x lO'll erg per cm path per cm'l
andwidth at wavelengths long compared to A and to the cross section dimensions.
Admittedly, the energy output in this case is small, but techniques for increased
coupling can be found,and the important point is that the equivalent of 108 relativistic
electrons in a cubic millimeter volume is easy to achieve with picosecond pulses and
NLO. The defocussing of light is less serious a problem than Coulomb repulsion and
beam collimation in megavolt electronics.

We now proceed with accurate calculations of the field quantities for this
Cerenkov type interaction - the weak coupling situation.

Calculation of the Electromagnetic Fields

We want to solve

ve+ r_ngzw_"’ Ay : 4giw Prw
(3.15)
and
Ve, - i“émz Y, ° O
(3.16)
for the general polarization pulse;
Prr,) = PRx,y) F(z - L) (3.17)

which is derived from a collimated picosecond pulse. Fourier analysis of F2 gives

x . q
Fplz-vt) =f_m [Gg(w)e'"z“"c] e-'“dw (3.18)
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The following quite general form of F, (X,y), expressed in cylindrical coordinates,
will teke care of most polarization forms derived from rectification of the mode
fields of a laser output:

Filx,y) = Fi(p,$) = §F1<P’e"¢ (3.19)

The vector D will have longitudinal and transverse components. Because of the
linearity of the problem, we may consider either one component alone and also
select one l-component of the transverse polarization distribution. Equation (3.15)
now becomes

22 4Tiw ; :
v2 4+ mecw )A : ————F )e|l¢G w) eiNwz/c
( w ¢ Falp 2l (3.15a)

where A stands for either of the rectangular components A * X or A * 2 correspond-
ing to %ransverse or longitudinel polarizations respectifgfy. The-zgvious method
of solving Eq. (3.15a) is to substitute

Aw = u(P)eu¢ eian/C (3-20)

which ylelds for the scalar-u(p) the inhomogeneous Bessel equation

S e _23 _amiw
Bau = 7 4P P—dp + (Sz ?)U i F;(P)Gz(w) (3.21)
2

2 2
where § = %é (m2 - n ) is the square of the transverse k-vector.

The solution u is readily found and will be written down later. For the moment
it is instructive to look at the structure of the solution being forced on this problem.
The only boundary condition is the radiation condition. Equation (3.20) is consistent
with & lineaer loss (diffraction) balancing the energy generation. The exponential
factor einwz ¢ in Eq. (3.20) is an expression of the translational invariance along
z of the problem. There is no possibility of exponential growth of the microwave
field along z here. The magnitude of F (p) in Eq. (3.15a) is independent of z, which
is an approximation that neglects diffraction of the picosecond light pulse along the
path of interest, and neglects absorption of the light pulse. Of course, the micro-
waves rob the light pulse of some of its energy, and they take their momentum from
the crystal directly, and some momentum from the light pulse indirectly wvia the
crystal. '
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Filelds Generated by Longitudinal Polarization
RITH inwz/c),

When D = 2, the solution of Eqs. ’3 gn& 7nd (3.21) is A = (0,0,u
vhereupon Eq. (3 16) gives Ww —u . From Eq. ?? l) we therefore obtain
m
- du 4 i A 2 f .22
Ew® {_%{__p.p .'Zéﬂ_u¢+ ._C&(_%z_)ug} gilnwz/c +2¢) (3.22a)
. Jitu 4 _du ilnwz/c + £¢)

The energy radiated is found by integration of the Poynting vector

$(h = 75 Re[EMN X Fih} (3.23)
Lognar = & re{ [7(Eux Bu)du} (3.24)

Taking into account the frequencies @ and -w simultaneously we calculate the energy
radiated per unit frequency interval through a cylinder of 1 cm length coaxial with
2 by integrating the w-derivative of Egq. (3.24) over the cylinder surface. The
result is

2 am = H
L RS

When p 1s large enough for the cylinder to enclose the sources completely, Eq. (3.25)
is independent of p. From Eq. (3.22),

5 . dw du
(£w xBu)p * ¢ [1-F)u 55 (3.26)
and Eq. (3.25) becomes
d’w_ . w [,_.n? : ( dg__-du )
dwdz 'T(' Tn")z""’ dp ~“dP (3.27)

ig
This formula is for F_(x, y) -e1 A cos fp + 1 sin l¢ wherein the cosine and sine
terms radiate independently. If only one is present (e.g. cos f¢) we have to divide

en i
(3. . Note th 2 fp = = 0.
Eq.(3.27)by 2. Note that ;ﬂ Io cos todp = 3 Re{ei ? o 1L¢}, except wvhen ( = O
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Fields Generated by Transverse Polarization
When D = %, the solution of Eqs. (3.20) and (3.21) is
Au (uei1¢einwz/c 0 ,0) e (u oS l(beinwz/c'o'o)
= ucos Lepcos¢p einwz/c f -y cosLe sin¢einw2/0$ (3.28)

where the ¢p-dependence has been written more explicitly. Equation (3.16) gives

bo + —perr [ cosacosd + L sintgsing] e e (3.29)

Use of Eqs. (3.1) and (3.2) gives the fieldslgw and Hm from which one readily obtains

Re {(gwxﬁw)P}=-é—%c z,lqsl( 45 ~Tg" )(sun2¢+ N> cos ¢) (2.30)

We have dropped terms in E and H that fall off faster than l/pE because they will not
contribute to the radiation field. These induction fields are capable of courling
energy out of the system through microwave structures that come in to within a couple
of wavelengths of the source. The presence of such a structure changes the boundary
conditions on the problem, so that our equations no longer give the correct expressions
for these fields. A simple analogy may be helpful here. A radio frequency choke

is a poor radiator because of the small overlap of its fields on the free fields of

the vacuum. The same choke coil when ue~i as the primary winding of a transformer

is capable of coupling strongly to a transmission line connected to a secondary
winding.

The formla for the energy radiated by the transverse polarization as calculated
from Eq. (3.25) depends on whether ( =0, ¢/ =1, or { > 1. The result is:

dzw H _(_U_ nz _d_U..._—_d_u—.

dwdz|,., 3 ('+ 2)"'"’(“dp u p) (3.31a)

d’w . w(p 302\ 7,0, dT _gdu

dwdz |,., = 4 1+ 205) Fie (v gE -0 8% (3.31b)

d?w = _"‘_’.(|+ n? . |P(U_QE. ..ﬁ_dl)

dwdz |5, 4 m? | 2 P P (3.31c)
The Eqs. (3.27)(longitudinal golarization) and (3.31)(transverse polarization)

both contain the expression i0 (u du = QE) in which u is the function that solves

(3.21) TR

5T



-

J920479-21

e

Evaluation of ip(u d ;oo

dp do

The solution of Eq. (3.21) can be found most readily from expression |

- P
ulp) = - 1482 Mg, (p/ o) Faip)RdPs (3.32)

where ge(p‘po) is the Green's function of the problem

47§ (P-Po)

By9u(P/Po) ¢ - —F5—+ (3.33)
The Green's function for Eq. (3.33) is (83)
9 p/po)2m2i Ju(spIHalsps) P Po (3.34a)

and

(P/Po)2m2 T, (spo)Hyls P) p2 P
2 kel ’ (3.340)

Both expressions (3.34) must be used to express the field inside the source. We need
only Eq. (3.34b) for the radiation fields. Combination of Egs. (3.32) and (3.3W4b)
gives

212w G2 lw)

u(p) = 5 [_/;pg(po) Jz(Spo)PodPo] HE' (sp)

. 272w Gy (W)

- 6tis) HY (sp) (3.35)

where we use Gl(s) to denote the Fourier-Bessel transform (the expression in square
brackets) of the source distribution.

Thus
_ —du \. w? 2 . () d ) -
|p(u—p—u ) 41r4_CT|Gz(w)| [Gl(silzlp[H; (Sp)dp Hg(sp) c.c.]
2 2
: 1673 —éﬁzﬁ|cz(w)| [G"(s)] (3.36)
Energy Radiated in an Isotropic Medium

Equation (3.36) is now substituted into Egs. (3.27) and (3.31) with the follow-
ing results
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Longitudinal Polarization:

d?w L o’ (_ﬂ"’_ 2r.z2 2 3.3
__dzdw 3 8174—c2— | mz)le(w)l [G (S)] € ( T)
where
e{' =1 for L =0
(3.37a)
and
"L =%f0[‘ 4=1, 2, 3y ¢ o
(3.37b)
Transverse Polarization:
_dw | : e wd n? 2l £.y]2
dzdw |;., " L7 (1+3 7] [zt [ [6%s)] (3.38a)
d*w . art @2 (14 P2V ez Plotisy P
dzdw |l¢| P ATz (H m2)|G (w)l [G (S)] ek (3.380)

In the above expressions 1is the transverse component of the k-vector of the field.

For any actual polarization distribution, one uses the decomposition of Egq.
(3.19)oand sums the Eqs. (3.37), (3.38) over {. Equation (3.37) contains the factor
(1 - ng) in close analogy with Cerenkov radiation. The transverse polarization
case goes not have this factor, because the radiated power does not vanish when
m = n. This 1s in sharp distinction to the case of Cerenkov radiation from a trans-
verse electric dipole on a relativistic particle. The distinction arises because
for the particle the equivalent current sources are always along the direction of
motion, and furthermore, the transverse dipole partly transforms to a magnetic dipole
at right angles to both the electric dipole and the direction of motion. fuch a
Lorentz transformation does not enter the NLO case, where the equivalent current
source may actually be transverse to the direction of motion.

The case m = n represents a match between the speeds of the optical pulse and
the microwaves. In the case of SHG this phase matching causes a large increase in
power. The present situation 1s different, because of the essential role played
by diffraction of the microwaves. Since (1 # n2/m2) is slowly varying in n/m,
nothing spectacular happens at or near n = m. Transverse and longitudinal polariza-
tions radiate about equally well according to our formulae.

Next we examine the case of an anisotropic medium to see what new features are
introduced.
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3.3 Optically Anisotropic Media
This method of analysis is more powerful than the one used for isotropic media.

In essence, we resolve the polarization pulse into its plane wave components, find

the electromagnetic plane wave for each polarization wave component, then add all

the resulting plane waves to obtain the total field.

Again we start with
a vt
EI (E‘_,t) = pFl (x,y) F2 (z - (3.17)
The Fourier transform of Fl is given by
(3.39a)

i k
Fy) = )6 e ky) e Y ik,

or
F.(P,¢) =_£(;°K K/;Z"de'G| (x’e)eiKPCOS(G"¢)
(3.390)

vhere X = p cos @, ¥y = p sin g, k_= K cos 6, ky = K sin 8. The inverse of Eq. (3.39b)

gives
6i1(x,8) * g [ do-o [*TdpuF (0, u) emixo coslE=K) (3.408)
Again assuming that Fl(p,w) = ZlFl(o)eiLw
61(x.0) - -(E'"—)z- %:_/;mda' &, (a_)/;zvrdﬂe-ixa-cos(e-#hil# (3.40b)
(3.40¢)

| i -
erl‘(e W/Z)GI(K)
/]

where G((x) is the Fourier-Bessel transform defined previously in Eq. (3.35), and
Filp.d): med f”dg_l_eiue-m) /4 ikpcos(f-¢)+it8
\Papl = G Jo KK /o 57 G'(x)e
(3.39¢)

Using Eq. (3.18) to transform F, now gives the combined result

-iamiz = E -iw (1- i -6) + i
5(_5,1):6 ;%-Idw Gz(w)_[)dx K G’(K)f de{e"“'“ nz/e gixpcos(B-6)+ i 9} (3.51)
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The quantity in curly brackets defines the frequency, wavelength, direction and
starting phase of an elementary plane wave component of polarization with amplitude

PmKIdm’ Kdx,ds where

Puk * 50~ 42 Gy (w)6* (k) (3.41a)

If such a plane wave gives rise to an e%%ctrom7§7e§&c wave gith ?ne {}eld component
(say x) of amplitude and phase e, dedKﬁe,
the total field component due to %ﬁé totality of elementary plane waves is given by
the integral

. X p® am -
ea(tit) = 3 [duf die e [780 {(€yun/Purc JPu 5= €12 G G0 (3.140)

Our problem reduces to finding the ratios ¢ /P o & /p and € /p (where e.g.

e = ¢ and integrating Egs. (3.42) to obtain the electromagnetic field. These
ratios ggé found in the general case by solving the inhomogeneous wave equation.
The general solutions can then be specialized to the required uniaxial crystal or
biaxial crystal, etc. :

Solution of the Inhomogeneous Wave Equation

In the anisotropic medium, the displacement vector is related to the field
intensity and the inhomogeneous part of the polarization by

D-eE+aTp, (3.43)
The wave equation is now

| i 625 - -47 6251
<ETTRIE T TcE Tt (3.hba)

VkV kE +

Resolved into Fourier components. Equation (3.4t4a) becomes

g ) W {e-s6-a)-eg- amp b

- (3.4k4b)
where e¥ the Fourier transform of E, and k = k8 ° A subsidiary condition,
coming rom =0 is

O= div Dx= keleeEy+ 4 7Py
(3.45)

SeSe€et: -41rpw6-’§/£’k
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(84)

The inhomogeneous wave equation (3.4l4b) is solved by the method used by Kleinman
in his study on SHG.

e G L

€8y € E+€,E+ SE, il

g ¢

~

where S is the wave normal (k = kS), &, is the direction of polarization of the E
field for a free ordinary wave and & }s the direction of polarization for the free
extraordinary wave. &., &., and S are not orthogonal. When Eq. (3.4kb) is resolved
along these three directions we obtain

z Y Ay
(%) {— kzg (/S\/e\' )E'-kzls\(/s\'/e\z) EZ" kZIe\IEF" k @zEz}

- (€08,E, + €9€,E,) - €48 4= 4179;K6 , (3.l4k4e)

The quantities ¢ * &, and ¢ * &, in Eq. (3.4kc) are found by solving the homogeneous
wave equations for tﬁe ordinary and extraordinary waves respectively. These equations
are

2
c .
((‘T) kf’z{él'z - /s\(g.6|'z)} -€ '/e\l’z =0 (3.)_|_7)
Substituting ¢ - @ 21nto Eq. (3.4kc) we find

l’
(= )2 [(kE-k®) {8(848) -8} e (k3-18) {81

">
o
o>
n
!
>
SN
m
N,

Ay
-Eo/S\Ea=41rpr6 (3.444)
The scalar product of Eq. (3.44d) with s gives

E, = -41rpr(6-’s\)/(’s\oe-’s\) (3.48a)

which is now substituted into Eq. {3.44d) to give

2 2 )
(%) (k'z'kz) {'s‘(’s\.’e\l) _eI}EI * (%) (kZZ'kz) {§ (@-@2)°€2}Ez

(3.4ke)

4T pr[ﬁ - (eo’s\)(Sog) / (§s € @)]

In anisotropic media the‘g vectors of the ordinary and extraordinary waves are polar-
ized in the Qirections 4. and 4, respectively, which are both perpendicular to the
wave normal S, and each Is perpendicular to the non-corresponding & vector

N A

d e, = 0 = d,e¢€, (3.49) !

The scalar products of Eq. (3.l4le) with ?11 and d, yield the remaining field components:
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2 A
£,z am (&) p,,[00P - (dresd)(B8)/ Geekd)] /@re)(K-i) (3.480)

2
Ex: 47 (%) pu [dpeP ~(dyre s N8I /(S ver)/(dy + 2 )(KP k7)) (3.48¢)

In equations (3.47) and (3.48), kl, 5 denote the wave vectors for ordinary and
extraordinary waves and are given in terms of the phase velocities Vo and v of the
ordinary and extraordinary waves belonging to the wave normal S, i.e., k. = w/
k2 = u)/vL.
These ratios like ex/p needed for Eq. (3.42) come from Egs. (3.46) and (3.48)
when e, 3 , and S are projgﬁted on to the x, y, and z axes. To progress from
(% s, We specialize to the case of uniaxial crystals.

Uniaxial Crystals

Before we can use Eq. (3.42), we have to evaluate the various scalar product
terms that appear in Eq. (3.48). Assume that the motion of the source polarization
is in the direction of a principal axis of the dielectric tensor ¢. The direction
of motion is 2 * % and ¥ are also principal axis directions. For a uniaxial
crystal, ¢ = ¢_makes 2 the optic axis while ¢ = ¢ makes % the optic axis. In
the f'irst case ¥he source moves along the opticyaxis with either transverse or
longitudinal polarization. The latter of these two possibtilities can be solved
almost by inspection by looking at the solution for Cerenkov radiation from an electron
moving along the optic axis and adjusting the coefficlents in a way suggested by
comparison of Egs. (3.13) and (3.37). We will concentrate on the transverse polariza-
tion case, for motion along the optic axis. This case is easier to treat, though
of perhaps less interest than the case where the motion is perpendicular to the optic
axis with the polarization along the optic axis. In this latter case the Cerenkov
cones are not circular and the integration over § in Eq. (3.42) is best omitted so
that one can consider the azimuthal distribution of radiated energy.

Figures 14 and 15depict the ellipsoids of wave normals for uniaxial crystals.
The relevent phase velocities v corresponding to the wave normal § = (Sx’ S , SZ)
are derived from the equation for the normal surface Y

2
EETCIIMET Ew A 2 A (3.50)
For the source moving along the optic axis (Figure 1), v. = v = Vo = c[/éx and
Vg = Yy = ¢//e,. The solutions for v, are then: d
Vp =V 2 C/VEy (ordinary)

(3.51a)
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2 2 1
C C .
Vp= Ve = (7)(— cos? B + < ssz) (extraordinary)
(3.51b)
Equations (3.5la) and (3.51b) correspond to & sphere and an ovaloid respectively.

Here B is the angle between S and 2z. For the source moving transverse to the optic
axis (Figure 15),vx =V = c/fex, and vy=vz=v0=c//ez. The phase velocities are

A
Vp Vg zc €, (ordinary)
(3.52a)
C2 2n . 2 2 12
Vo= Ve = [;— sin Bcos 6+— (sin“Bsin“g+cos B)] (extraordinary)
z (3.52b)

Here 6 is the azimuthal angle for the wave normal 3.

We now have sufficient information to evaluate the various unit vectors and
the scalar products in Egs. (3.48). The results for the source moving along the
optic are as follows:

al = (sing, -cos 8, 0)
§2 = (cos 8 cos B, cos B sin 8, -sin B)
S = (sin B cos 6, sin B sin 6, cos B)
€S =¢ (T] sin B cos 8, M sin B sin@, cos B); M = ex/ez
e, = & 1
'é; = ( os2 B + T]2 sin2 B)° (cos B cos B, cos B sin g,-7 sin )
3 - 3
8.1-’1‘) sin g; d -p cos B gos 0; b - 8 = sm 8 cos 6; (al; ’él) =1
8.2-%2= (cos® B % 72 sin® g)=2 (cos® g + N sin® g); ( ¢ "8 =
o - A 2
(ap.e-s)= ez('r] -1) sinB cos g; (S + ¢+ 8) = (ez cos B + 1 s:ln2 8).

(3.53)

The results for the source moving transverse to the optic axis with the
polarization along the optic axis are

é\, = (1- sin?Bc0s26) ™2 ( 0, - cos B, sin Bsinb)

d,=(1— sin?Bcos?8 )2 (; - sin¥Bcos26, - sin2Bsin 8cos 8, - sinBcosBcosh)

= (sinBcos8, sinBsing,cosf)
A

o> n>

&, = (1-sinBcos %" [I + (n?=1)sin®Beos?6) ™2

6k -

- sinzﬁcosze, -7 sinZBsinGcose,--,, sinBcosBcosf)
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€8 z¢, (nsinBcos, sinBsinb,cos P

d,-3=0; 32°3=(|—sin28c0529)"2 . P+S =sinBcosh, d, e =0;
32-Q2=[|+(7;2-|)sinzpcosze]'”z [|+(n-l)sin2[3coszel; (dl'e'g)=0;
(é\z.e.’s\) = (n-1) sinBcos(i - sin’B cos?6)"? ;

(3.54)

A A, SN )
$+€:5) = €te, (m =1)sin Bcosze
The case of motion

We are now in a position to combine Egs. (3.46) and (3.48).
along the optic axis is treated here. The following substitutions are first made:

2 (LR
\

2_,2_wel.2, 2_ M
Kok (C)Z(T+n cosB-msinB)

k2 = K2+ nz(%)z

kz-k,2=(%)2(12+n2— 7€)
sinB=7/(r%+n?)"2 cosB=n / (r2+n?)"2 (3.55)
The field components to be substituted into Eq. (3.42) are thus
. 2 2,062 2.2
sin“8 n“cos®8 T°c0s°6
4 2
Ex 147 uc TZnine; | (nr2endimri+nZne,) €,(nT24+n?) (3.56a)
. _-sinBcos8 n?cos Bsiné 12c0s8sin8
Ey/4TPun® T2en -me; T (MTZendinr2mZome,) ¥ €,(nT2+n?)
(3.56b)
—'l]nTCOSG nrcosé8
; (3.56¢)

£./anp = »
S (MT24n2)(n724n2-me,) € (NT24n2)
These integrals are of the form

The integration over § 1s performed first.

|
T

2™ iK -p)+il(8-m/2
Lf cg)e’ pcos(8-¢)+iL(8 )de
2 2
where C(9)is the sin 6, cos 8, sin § cos B,or cos §. These all integrate into

For example, consider the easiest one with
This integral is now

derivatives of Bessel functions.
We substitute p cos ¢ = x and ¢ sin ¢ = y.

) c(e) = cos 9.
ix(x cosB+ysind) ® if (8=-m/2) de

| 2m
. f cosf e
2 0
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Using the well known integral representation of the Bessel function, J 1 (€) =
-2 .
i § e1§ 22 L irkpdr.p, the above integral 1s obviously a derivative with respect

2n 1 1
to x of a Bessel function, and in fact is i ®

g 'L(Xp). The other integrals are
only slightly more complicated. e

The Egs. (3.42) for E , E_ and E_ in terms of the remaining integrals are now
as given below in Egs. (3.§7)

il p® (
Ex=§:41rel [oodw |wtnz/c)( a(w)f dr £ 16 ( ){

wTp/c)
e

2, ' lwo/kc) 2
[ sin qbﬁ + cos ¢Jg”(WTP/C)]

{ T24n2-me, + sinZp 3" (“’TP/C)]

ey Loos
n2
(nT3%n2HnT24+ 02 -7ne,)

_ Te 2., Jlwrpl) I
_e_(n_rzrrﬁ_) [sm ¢ k) + cose Jj (wrp/c)]}

- o 2
€, - ;4 |2¢jd iw(t-nz/c) (%) Gz(w) j‘“ar r Gl(w'r/c){
-0

Tp/c)

p/c)
”2 WPl _ oo s cine 34 (3.570)
mT2+n2)(nT2+n2-7¢,) [°°5¢5'"¢’ ekl Y R

2

(3.5Ta)

{ - +n — [cosqbsmqb or — cos$sing J;,”(w'rp/c)]

i wrp/k)
/c)

0 e
€, (nT2+n?)

|l¢ —iw(t-nz/) 2 e
E, =Y ar fwe = G(w)fdrrclu{
z % 2o (Cl 2 o ( c )
nrt
€,(nt2+n2)
{ nnt
(m t24+n2)(mT24n2 -7¢,)
We now proceed with the integrals over 7. Quite a few of the integrals can be
disposed of immediately. Thos / hat involve a Bessel function divided by p have
asymptotic forms that go as p and contribute nothing to the radiation field.
They are 1nduction fleld terms. Consider now an integral like

f drr Gl ) T e +nI2_'r)ez 5 (% TP)

[cos¢> smqb - cos¢ snnqup(wrp/c)]}

[-i cos ¢ J/ (wrp/c)] }
[ icosp & Qurp/c)] (3.57c)

VTN bW A
Set 5 (&= s (%7 TP) + W o ( 7) . Replace the integral
along the positive real axis by the sum of the two contour integrals shown in Figurel6é
where H(l) 11 i¢ integrated along the upper contour and H(ezll along the lower.

1
H( ) and H( ) vanish along their respective contours at infinity. The vertical
contributions on the two contours cancel as can be shown by using the relation
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1 1 2
iH( )L(ix) = (-1)*’+ H( )L(-ix). Thus the sum of the contour integrals equals the

wanted integral. The poles are located at ¢ = i/n(e + 1p) -n° . These are in the
first and third quadrants. The lower contour integral encloses no poles, thus it
vanishes. The upper contour integral is 2ni times the residue at ¢ = nez - n2, and

oot w _i 21/2] m”{ W 2yl12

thus 2 7'© [ ¢ (ne,=n )" | H T (ne;-n9) P} . The same technique is

used for the other intiéfals. The contributions trom the pole at t = -i(n + ip’ )Afn
involve the function H ( ;& ﬁl p) which falls off exponentially in p, and gives

no radiation field. The surviving integrals are now:

i % -iw(t-nz/ |
Ex - _Zﬂzi%elwaj-'mdwe iw(t-nz/c) (T) GZ(W) [Gi(kfo) H(l) (k.PP) sun2¢

_n?_
N2,

€, r-2m uz e'“"’fd

2
+ ;26—1 6! (k&) H'" (k) cosep sin¢]

z:-21rzi§e___ (3-58)

+ G‘(ke) H"’"(kepv) cos? 4>]

-iw(t-nz/c) .
e (c)2 Galw) [ GkO) K Ol (k2p) cos ¢ sing

E

0
Here kT and k; are the transverse k vector components for ordinary and extraordinary
waves

2.
T I T

(3.59)

To Justify the labelling in Eq. (3.59) we compute the corresponding phase velocities.
For the ordinary wave we have

n? (L) + k07 = (4P,

o
"
g’
sle
%
1]

(3.60)

Therefore | cA/gx, vhich is correct for the ordinary wave. For the extraordinary
wave we have

k2= (&)= (L) + k) = (@) [+ 02 (1- )]

n
‘z +ne (l = jq:j , which can

(3.61)

Let ee be the angle between Ee and 2. Then coszﬁe=

can be solved for ne.

N2 :E cos®Be

|-u-#)cosim (3.62)

Substituting Eq. (3.62) into Eq. (3.61) ve get

cz
o T DeE (3.630)
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or

v cos?Be N sin2Be

c €x € (3.63b)

This is identical to Eq. (3.51b), so our identification of this wave vector with the
extraordinary wave is correct.

The Egs. (3.58) are of the form

8 =f°°{E(°)(w) £, emeldw
% doal Bx x  (w) (3.64)

with similar expressions for E and E . The superscripts o and e refer to the ordinary
and extraordinary fields and tXe tan fields can be treated separately. The

asymptotic expressions for Ex’ Ey, and Ez can be written down by using the asymptotic
relations:

: ffztfe1) 7/
= uw(z) oy lH'm'(z)=H,m(Z)=\/:*zz: e {ztLe1) m/4)

(3.65)
The results are:
2. 2 of__2 /2 i[k?P(’Zfﬂ)"h] -
(0)
y
(30) (3.66a)
s F 2 2 \"2 ilk®p-(2(¢1) 7/
E®w T 272 —5— (L) 6w 6f(k®) (—) e
x ; n2¢, (c) 2i e :t Vk’.P
2 1w
- s gt cos)2¢o ) o,ke) > |12 i[k%p=2(s11w/a)
Ey (w)“ZZWl-;)z—E: 3 Gz(m,G(r -"—k-?P— e
cos® sing o ¢ oWV
i = UL
@) 2. "(‘z- ﬂ) ‘ s 2 i[hEp-t2fe ) wm)
El (W) = ‘2 =27 —5?‘—— (%) Gz(w)cf(kt) :k_t‘; e T
. A .
cos ® o' (P (3.67a)

The cylimirical components are readily found {rom the rectangular components. The
angular factors are as follows

E:’”(w) ~sinP sin2 ¢ e o

Eq w)~sin®cos2é " (3.66)
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s,‘f’(ww cos¢ o'®
£ =0 (2.670)

The magnetic field components are obtained from

Hiw = =i (&) curl E () (3.68)
(0} o) (o) () ) ck! (o
Hp (W) = =n Eg (W) Hg W) = Ep (w) Hy (W) = —— Eg (W) (3.69)
) ke
Holw) s 0 Hglw) snEptw) — =L E, M%) 20 (3.70)

BEvaluation of the Poynting vectors gives

- ck? 3 2 Eul
[s“'(w)xu‘"(m]P « =L g Qe 0m’(%) lojwl [6UKA] 4 sin‘écos’ 2 (3.710)
and
- cky _eze exe
[eMwx®@®w)] = - €'E - €'F

2 2 2 (3.71b)
i [") 0| L _n_ 2
evr‘(c)’lqw)l [G (kg )] P we; ©°% ¢
Integration »>f the Poynting vector gives the energy radiated. For the ordimary
wvaves we find

vherecl’-lforz,-o
= 1/8 for cos 9, 3/8 for sin @
=4 fore>1,
vhile for the extraordinary wvaves the result is

o'T:::'z':“‘ 3"5’ k,u)r [c;‘(n,')]t ’7':: . (3.73)

3.4 Susmary

The interesting case that we still have not vorked out in detail is that vhere
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"

the source motion is transverse to the optic axis, with the polarization along the
optic axis. This will probably be examined later. The case of motion along the
optic axis with longitudinal polarization is less interesting, but the problem
can be solved by inspection as noted earlier.

The coupling problem solved here between the NLO source polarization and a
microwave field is probably the only one that has been treated anywhere to date. We
vere able to treat the problem fairly exactly because the microwave field we considered
is unguided. The case with different boundary conditions on the microwave field
will be more relevant to the submillimeter wave generation problem, and we feel
better prepared to look at such cases now that we understand the most elementary
one.

70



J920479- 21
Section 4

AN EXTENSION OF TPF TECHNIQUES TO SIMULTANEOUS POWER SPECTRUM AND PHASE
STRUCTURE MEASUREMENTS

There is considerable interest in non-linear optical phenomena that modify the
amplitude and phase structure of short optical pulses. Some of these phenomena have
been discussed extensively in the literature already. such as the self-steepening
of light c:?bge& ropagating in Kerr-active liquids and the associated self-phase
modulati ’ Indirect evid?grﬁ of the phase-modulation has been 1n{%1és'ed from
spectral broadening measurements which show a characteristic spacing between
the zeros of the power spectrum of the output pulses. More direct evidence has been
obtained by studying the output grgm a grating pair compressor with and without the
Kerr-active liquid in the 'belm.( 9 Evidence of self.steepening proceszes occurring
in a mvde-locked laser has been obtained previously in this laboreatory. %) More
recently, interest has developed in non-linear modifications to the propagating
pulse in the pﬁnnce of the propagating microwave signel genereted by optical
rectification, a 98 simultaneous front and back end shock formation in high

power optical pulses.

Much of this interest centers arom the possibility cf generating ogtical pulses
of ~10-1 second or shorter durstion. ) The various proposals for 10° b sec pulses
involve the addition of phase modulation to the pulse and the subsequent compressi-n
of those parts of the pulse that have the appropriate frequency sweep chncteru?lgﬁs.
using pulse compression techniques similar to those initisted in this laboratory.

In this type of investigation, it would be desirable to obtain simultaneous power
spectrum, phase structure and intensity profile informatior on a single pulse before
trying to compress it. We have investigated the extent to which such information is
obtaimable using the well estadblished pfggc&;.u of spectroscopy and the more recent
twvo-photon fluorescence (TPF) technique':””’ and ve are in the process of setting

up the equipment to make measurements. We believe that the technique we are developing
will come close to extracting the maximum available information from a single pulse
measurement.: A simplified and very approximate theory of the measurement technique

and a description of the experimental equipment follow. When experimental results

are obtained, a more precise theory will be developed.

At a fixed point, the optical fields of a pulse vary in time as A(.t)eb(t) vhere
the principal term in ¥(t) is ®,t. The rate of change of the phase 189 (t), vhich
varies in time if there is phase modulation. One could detect the phase modulation
by taking a set of filters in the same region of space tuned to different center
frequencies 9,®,, ®,, etc. with the same bandwidth 8®, and observing the sequential

‘ responses of these filters as the pulse goes by. This is illustrated in Pig. 17 for
a complex phase modulation in a pulse with large time-bandwidth product. The optimum
filter bandvidths would depend on the phace and amplitude structure of the pulse, but
a feeling for the mgnitudes involved can be obtained simply by considering a smooth
pulse envelops (e.g., Gaussian) with a linear frequency chirp. The product of the
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pulse duration T and the pulse bandwidth (Am/2n) is denoted by N, i.e. Taw/2n = N.
Therefore (T//N)(Aw/2n/N) = 1. A filter of bandwidth (pw/2n/N) has a response time
duration of approximately its reciprocal, which in this case is T//N. Hence, by
dividing the bandwidth into /N parts, the original pulse duration can be resolved
into /N filter responses. The curve o(t) versus t can in this case be drawn with
/N resolvable points. At the same time, the power spectrum versus @ can be sketched
out with /N resolvable points. We do not expect to be able to do better then this
with a single pulse. If m identical pulses could be generated, the effective time-
bandwidth product becomes mN, and the phasc and power spectrum curves could be drawn
with /(mN) resolvable points.

The construction of /N separate filtering devices that could be located in the
same region of space looks difficult if one thinks in terms of multilayer film deyices,
etc. Our approach to the problem is indicated in Figurc ( 18). The laser pulse is
analysed in a low resolution spectrometer, and the relative arrival times of different
spectral components in the focal plane is measured by "two-photon fluorescence"
techniques. The incident bean ic expanded in a Galilean telescope, then is diffracted
from a ruled grating with 1200 rulings per millimeter. The energy in the light pulse,
which was distributed in a disk at right angles to the propagation direction is
novw distributed in a volume that is canted relative to t he general propagation
direction. The resolving power at this point, for first order diffraction, equals
the number of rulings intercepted by the incident beam. The stepped mirror again
distributes the pulse energy into a disk at right angles to the beam direction,
although the energy distribution is canted in any local region. (The angle at which
the pulse is canted is determined by the angular dispersion caused by the grating.)
The recolving power of the spectrometer has now been degraded to the number of rulings
in the intercept of Figure ( 19), while the angular dispersion is left unchanged.

W= have constructed an apparatus like that shosn in Figure (18 ). The stepped
mirror nac about 60 clements, and was made by anncaling, grinding, polishing and
tilting a stack of microscope slides. The filter bandwidth of this system at any
point in the focal plane is atout 20 cm’l, and the angular dispersion in the focal
plans is about & em=l per millimeter.

At each point in the focal plane there is & filtering property with center fre-
quency that variees linearly across the plane and with filter bandwidth determined by
th> degraded resolution. The foenl plane iz in the center of a Rhodamine 60 fluorescent
dye cell g1 . One beam iz inverted so that the a versus x characteristic is reversed.
For a lincarly chirped pulse, the wavepackets would be slewed in the manner illustrated
by Figure ( ) ae they approach the foecal plane. The TPF display of such a chirped
pulse would be slevwed as {llustrated by the shaded region in Figure (20). Denoting
the time of arrival of the spectral energy centered around fregquency o by t(w) the
TPF dicsplaye the odd function

T(Aw) = 1:(wo + Aw) - t(mo - Aw) = -T(-aw) (4.1)
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for the phase structure and the spectral function

S(aw) = |I(w, + Awst') I(w, - Aw;t')dt’
(1)) I (DO (] (DO w (h.e)

vhere the simulaneous functional dependence on frequency and time is constrained by
the time-bandwidth product considerations mentioned earlier.

This new technique for using TPF has the great advantage of being able to present
phase structure information over & frequency band that exceeds the bandwidth of the
two-photon absorption. By adjusting the relative horizontal positions of the two
beams the frequency u, can be placed in the middle of the two-photon absorption band.
Since we correlate oetweer I{uy + Aw) and I( - Aw) the sum frequency involved in
the TPF is always ( + Aw) ‘?"b - Aw) = 2uy, as indicated in Figure ( 20). So even
when Aw greatly exceeds the two-photon absorption bandwidth, the TPF display is still visi-
bleand in fact will showan increasingcontrastagainst t he background as pg increases.

Figure ( 21) shows the TPF display produced by directing the output train of
pulses from a mode-locked neodymium glass laser through the apparatus. The similarity
between this Figure and Figure ( 20) is preliminary evidence that the technique
works. Our aim is to optimize the technique and use it for investigation of non-
linecar optical effects that change the phase stracture of picosecond pulses.
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Section S
STIMULATED SCATTERING AND NONLINEAR PROPAGATION
5.1 Transient Stimulated Raman Scattering

During the semi-annual report period, a number of experiments on s timlated
Raman scattering with picosecond laser pulses have been carried out in collaboration
with Dr. R. L. Carman, Dr. F. Shimizu, J. Reintjes and Professor N. Bloembergen of
Harvard University*.

The essential difference between stimulated Raman scattering with nanosecond
duration pulses from a Q-switched laser and that produced with picosecond pulses from
a mode-locked laser lies in the fact that phonons generated in the sczttering process
require time to build up. The characteristic time associated with this build up is
the reciprocal of the spontaneous Raman linewidth. 1In liquids, for those lines
wvhich have been stimulated, the linewidths range from about 0.1 em=l to 20 cm'l,
giving a phonon build up time of 0.5 to 100 psec. Consequently, while the "steady
state" can be achieved in stimulated scattering with Q-switched pulses, the scatter-
ing produced by mode-locked pulses of picosecond duration must be transient.

More quantitatively, the optical electric field, E(z,t), produces in the molecular
vibrators a dipole moment, p, propcrtional to the molecular polarizability, o, that
is,

p=aE (5.1)

In general, the molecular polarizability is a function of the normal coordinates,
q,, of the various normal vibrational modes of the molecules. Taking for simplicity
only a single mode with normal coordinate, q, the polarizability may be expanded to
give

p=af+ (2%)0 qE (5.2)

The effect of this polarization on the electric field can be found by substituting
Eq. (5.2) into Maxwell's equations, remembering that the bulk polarization is just
N times the above, where N is the molecular density. In a similar fashion, the
electric field also affects the molecular vibration. Let us assume

(kg2 - wgt)

L0« wf) By(2,t)e ot

E=E (2,t)e
L (5.3)

and

* The contributions of the Harvard group supported under RASA Grant NGR22-007-117 and
Joint Services Electronics Program Contract NOOOlk<67-A-0298-0006.
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q = Q(z,t)et(kphz - wt) + C. C. (5.4)

where EL and ES represent the laser and Stokes fields respectively, wg = w - w, and

kph = kL - ks. If laser depletion is neglected, Maxwells' equations yield

-3E,
az = M ¥E (5.5)

where

. 2uNeg” ) (5.6)
Y17 T2 Y3’ '
c ks

Similarly from the equation of motion for the molecular vibration
Q¥

3t * T = Ly EE Y

vhere t is now the retarded time, I' is the Raman linewidth and

(5.7)

1
Yot B (é’_)o (5.8)

Here Bo is the reduced mass for the vibration.

The coupled Egs. (5.5) and (5.7) can be treated conveniently in two limits. The
first is the so called steady state limit where 3Q* << TQ* Roughly speaking this

At [

corresponds to the case that the laser pulse duration is long compared to the vibra-

tional damping time, l/r. Consequently, the molecular vibrations are able to follow

the changes in the optical flelds. In this limit
YqY
1'2 2
Bg(z,t) = exp(—— [|E | 2) (5.9)
The Stokes wave experierces exponential gain with a gain coefficient
(5.10)

Since Y1Yp * Oy the integrated Raman cross section, only lines with both a large
cross sec%ion and a narrow Raman linewidth will exhibit high gain. It is for this
reason that nearly all of the lines stimulated with Q-switched lasers represent
symmetric stretching modes.
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d
The transient limit, E%t >> I'Q*, corresponds approximately to the case where
the laser pulse is short compared to the reciprocal linewidth. In this case the molecular |
vibrations cannot follow the envelope of the opttgg} pulses. The general solutions
to Eqs. (5.5) and (5.7) were first given by Wang . The have since been discussed
in some deteil by Carman, Shimizu, Wang and Bloembergen 997, In the transient limit

it is found that near the peak of the laser pulse

E.(2,t) « ex zIt |E|2dt)%
g\ 29 p(Yle o 'E (5.11)

The Stokes wave again experiences gain but the gain is considerably less than the
under steady state conditions. This is simply a reflection of the fact that the
phonon wave has insufficient time to build up to its steady state amplitude.

Of particular importance is the fact that in contrast to the steady state result,
Eq.(5.11) shows the transient gain to be independent of the Raman linewidth. To
exhibit hish gain a Raman line need only have a large cross section. On this basis
stimilated Raman scattering with picosecond laser pulses would be expected to occur
in different lines and in a wider variety of materials than with Q-switched laser

pulses. This prediction has found verification in our most recent experimental
work (100,101)

Also of interest is the unusual time and distance dependence indicated in
Eq. (5.11). The Stokes gain is seen to reach a maximum after the peak of the laser
pulse. This is a consequence of the continuing build up of phonon wave amplitude.
This continmuing build up results not only in a delay in the Stokes pulse emission but
also results in a Stokes pulse width which is critically dependent on the detailed
time evolution of the laser pulse. If the laser pulse has sharp leading and trailing
edges, such as for example, in a square pulse, the Stokes pulse will be dramatically
sharpened as the result of the high gain occurring at the trailing edge of the laser
pulse. If the laser pulse has a long precursor or a long trailing edge, the Stokes
pulse can be considerably longer than the laser pulse. For a Gausvian laier pulse
shape, the laser and Stokes pulses should have about the same duration(99 5

5.2 Experimental Results - Liquids

Transient stimulated Raman scattering has been observed at United Aircraft in
both liquids and gases using a mode-locked ruby laser. Attempts have also been made
at the McKay Laboratory by the Harvard group to observe stimulated Raman scattering
with a mode-locked neodymium laser. They have been able to reproduce many of the
results with the liquids using a frequency doubled beam but have had no success with-
out frequency doubling and have been unable to reproduce any of the results in the
gases.
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With the mode-locked ruby laser stimilated Raman scattering was observed in
all the liquids tried. These included liquids like carbon tetrachloride, water,
methanol, ethanol, propanol and acetic acid where stimulated scattering is obtained
only with difficulty with Q-switched pulses. Stimulated scattering was also obser-
ved in the more usual Raman materials like benzene, chlorobenzene, carbon disulfide
and acetone. In all cases, the scattering could be observed with a collimated input
beam. Sample cell lengths of 25, 50 and 75 cm were used.

Figure (22)shows a laser pulse train and the corresponding Stokes pulse train
f.r carboua tetrachloride. It is not yet understood why the Stokes pulse train
peaks early in the laser train and falls off rapidly toward the middle and end. The
forward to backward Stokes emission ratio was measured and was found to be greater
than 1000:1, the 1imit of measurability in that experiment. This confirms the travel-
ing wave nature of the scattering. In addition, the gain in the backward direction
was measured by reflecting the forward emitted Stokes radiation back through the
liquid cell. There was negligible gain. This result indicates that any background
intensity upon which the mode-locked pulses are superimposed must be at least 1000
times less intense than the picosecond pulses themselves. This information is quite
important in studying traveling wave interactions, such as the present one.

Of all the liquids tested, carbon tetrachloride showed the greatest energy
conversion. Up to 20% of the 0.5 J energy in the laser pulse train was converted to
Stokes energy. The relatively high conversion allowed a Stokes pulse width measure-
ment by the two photon absorption-fluorescence technique. Rhodamine 6G in ethanol
was found to be a suitable material for that purpose. Figure(22) shows the result.
It can be seen that the Stokes pulse duration is comparable to the laser pulse dura-
tion (5-10 psec). The fact that the two pulse widths are ab?aagsomparable lends
support to the notion that the laser pulse shape is Gaussian . The spectral width
of the first Stokes and of the laser line were also comparable.

Spectra vere taken of the outputs of a number of liquids. All showed considerable
generation of Stokes in several orders but, curiously, very little anti-Stokes gencra-
tion. The Stokes line in carbon tetrachloride and chlorobenzene was found to be a doublet,
in contrast with the results with Q-switched lasers where a single shift of 459 em”
is reported. The doublet may arise because of the two isotopes of the chlorine. 1In
methanol, two separate lines are observed, one at 2833 em=l corresponding to a C-H
Stretching mode and one at 2941 cm'1 corresponding a symmetrical CH, bending mode.

Figure (23) illustrates both the spontaneous and stimulated scatter?ng with bending
mode. The transient nature of the scattering process contributes heavily toward
allowing stimulated scattering in this rather broad line to be observed.

Near and far field patterns have also been taken with many of the liquids. The
far field patterns indicate a Stokes beam divergence of from 3 to 10 mrad depcnding
on the liquid used. This is to be compared with a laser beam divergence of about 1
mrad. The anti-Stokes far field patterns show an emission principally in the forward
direction but also in phase matched cones. The near field photographs indicate Stokes
emission both from the whole beam and from small filaments in the case of long eells.
With short cells emission 1s observed only from the filaments, indicating that as in
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the case with Q-switched lasers the thresl.old for Raman scattering in the liquids is
determined by self-trapping and not by the Raman effect itself. The sharp threshold
for the trapping and Stokes generation is showvn very clearly in Figure (2k) .
Dielectric reflectors were used to vary the laser intensity vithout changing the near
field pattern.

Figure (25) shows self-trapping in methanol as observed at the laser vavelength,
at the Stokes wavelength and at the anti-Stokes vavelength. Although the filamente
are very pronounced in the Stokes and anti-Stokes photographs they do not show up in
the laser photographs. Instead one observes a mumber of small dark areas about the
same size as the Stokes filaments, suggesting that once the laser light is trapped
it is nearly completely converted to Stokes and anti-Stokes. The size of the Stokes
filaments varies widely depending on the material. They range from about a 5 4
diameter (resolution limited) in carbon disulfide, to about a 100 , diameter in wvater.
There is also a considerable range in size in any given material. In sethanol, for
example, the Stokes filaments run from 5 - k0 ;. Curiously, the anti-Stokes filamente
vary mich less in size and are gencrally quite cmall. In methanol nearly all have
the resolution limited 5 , diameter. More curious still is the fact that each of the
anti-Stokes filaments is surrounded by from 1 to 6 concentric and nearly equally
spaced rings of anti-Stokes light. The diameter of the first ring varies from fila-
ment to filament. The formation of these rings is belicved to be related to the so
called(%% 8 II anti-Stokes observed in self-trapping liquids vith Q-svitched

lasers 5

One interesting and practical result cf the self-iocucing study is the fact that
focusing the laser bea=n inhibits self-trapping. This ie shovm in Figure (26) vhere
the results wvith a collimated beam are contranted vith thoece with the lager bean
focused by a 50 cm focal length lens into ttre center of the cell. The near field
photograph taken at the end of the cell shown little evidence of trapping in the latter
cagse. This is true not only for acetic acid but for all of the lov Kerr conctant
liquids. Recent experimental results indicat: that some filamentation ctill does
occur but it only exists over a short length acar the focus of the lens. Consequently,
if @ high quality Stokes beam is required it is test cbtained by focucing the laser
into the liquid cell and recollimating aftervard. The resson trapping is inhibited
in the focused beam is not completely clear at the present time, btut it is likely
associated vith the decrease in laser Iintensity per unit solid angle. Si=flar (10%)
inhibition of self-focucing in focused beams has been observed by other vorkers

5.3 Esxtperimental Results - Casgec

Recently a conciderable effort has been devoted to trancient stimulated Raman
scattering in gases. Trancient conmditione are eacily achieved by virtue of the fact
that the linevidthe are relatively marrov, even at the high preseures required to
reach threshold. Tc observe stimulated seattering, a test cell Sk o= long vas
precsurized with the sa=ple gas. The cutputl from the mole-locked ruby laser vas then
focuse? into the center of the cell with a 50 en focal length lens. The epectra
of the stimilated scattering fros gacee in the cell vere recorded on Kodak 1N plates
ucing a Jarrell-Acsh 75-152 Spectrograph. The experimental resulte for eti=ulated
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vibratiomal scattering are summarized in Table I, vhich lists all the gases tried.

The nusber and variety of gases in vhich stimilated Raran scattering has teen observed

stunds {n strong contrast to previcus vork vith Q-svitched luonbsm successful

rnults vere obtained only vith methane, hydrogen and deuteriua In other
conpn.&’ou vith Brillouin scattering prevented the tuild up of stimiiated Ranman

suucr!a‘ Trangient excitation vith picosecond laser pulees not only allove

the stimulation of large croes cection, broad lirec but slso very effectively dis-

cri=imtes against the more slovly responding Brillouin scattering.

Of all the gases exanined, the largest conversion efficiencies occurred for
and SF,. In both cases, more than tventy precent of the total incident laser ersrgy
vas converted tc Stokes energy. In ctimilated ceattering could be produced vithout
focusing. Stimulated vibratiomal ceattering in a collimated bean could aleo te
gencrated In SF,., K, and oo by telescoping dovn the incident ruty laser dbeam vith a
2 pover Onlllug u'lueon Nearly all of the conversion takes place in the early
pulees of the train, as is shown in Figires (27a) amd (270) for "6 Up to seventy
percent of the energy in theee initial pulses could be converted to Stokes emergy as
verified by the depletion of the incident laser in Figure(27a) amd by direct energy
reasurements. The reason for L decrease in conversion tovards the cnd of the train
ie not clear, btut it may represent 8 caturation of the vibratiomal populatiion. Another
poseibility is uah&’ld up of clover thermal or acoustic perturtations "ﬂl”
discusced dy Poh and observed recently by one of the present suthors

In the case of OO 50 and X o, stimilated pure rotatiomal smd rotatiomml-vibrae
ticml h“értmln eogld aleo be produced If the incident ruty tean is cireularly
polarizaed ¥ith Q-wltm(mlonly hﬂm ard deuteriun have shown
stimilated rotatiomel ceattering vhich Mz the largest rotatiosal
cross gection of the three gases, both first oil second order rotational and rotatiosal-
vibrational Stokes lines are excited. Fvidence of rotatiomml ceatlering ic aleo seen
in propylems. Pigure(28)ehove pure :otaticeml Paran epectra and corresponding decito-
weter traces for 00, and O,. In OO, the linec 8(12) through S(24) have teen ctimslated,
vhile in 0., S(5) tgrauca ‘(13) I-an been ctimulated. The line ehifte obsw sgree
vithin exwrlmul error vith those reported for the cpontanecus mctn“ 2 In the
caee of K 0, the marromece of the line epacing in commarison to the 1limevidthe pre-
cludes an sccurated ifdentification of the stimulated lines. The obzerved rotatiomml
seattering spane the region from 8(13) to 8(20) {n both ondere.

Often the rotatiomal linee otserved are tromdened and skeved from line eentler or
even 2plit into reveral compomente. This iz believed to te the result of an opticel
Stark effect. Neglecting any pervanent molecular dipole momnte, the Stark ehift for
circularly polarized light ig to lovest onder {n perturtation theory

e

bn vl J(J o 1) -
W T (5.12)

vhere the z.axic has been chogen in the direction of Mum. Here v ig the anfcotrople
part of the polarizitility tencor and I fs the incident intencity. Using( ), eme sy
readily confirs that the chifte are sh appreciable fraction of the total rotitiomal
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energy for the J-levels involved, and that the splitting in the rotatiomal shifts

for the different z-stated is of the order of a fev reciprocal centimeters, in quali-
tative agreenent vith the splitting obeserved. In gases, vhere rotatiomsl freedom is
preserved, the Stark chifta are also respcasible for the cbserved Xerr effect. For

v >0 in Bq. (5.12), the lovest energy states are m = &J, corresponding to molecular
rotation in the plane of the electric fleld. 7Thic 13 equivalent to clacaieal alignment.
Purther evidence of the importance of the optical Stark effect in the transient

regi=ze g provided Ly the obeerwation of self-trapping in o collimated beam in the most
anjaotropic gases, oo ard l ,0. Thiz is clesrly ceen in the near field patterns shewn

in Pigare (29).

£ linearly polarized light 12 used in an attenpt to observe stimilated rotatiomsl
Fasnn scattlering, one sees instead o broad ving chaded 10 the Stokes side on both the
ruby line ard on the vnmu Stckes linn. Sinilar results are found in the eape of
Fayleigh ving mtterh\g( 1z . Explamationas for the 41 re in tehavior vith eircul
ard linearly polarized light !uwe been given by Rermn 3ant bty Chino ard Codine 11k
The cense of circular polarization of the stimilated first rotatioral and rouuomx-
vitraticral lines fc alvays reversed from that of the incident lager lwu.. The eame
cituntion fe fourd ir the gtimulated rotatiomal ceattering from hrdmm )nua in
Fayleigh ving nnteﬂng("z + These experizental resulite are in sgreement vith
theoretical predictione giving & forard gain ratic for the m-!ut’c Lo same pense
of polarization of 6:1, Iif the si -lwaes coupl ing 1z Ignored(108%and 6:0, if this
cospling iz taken (nto &cmm( « The pecond rotatiomm! and rotatioml-vibtrational
Stokes linez cbserved in N O are pahrl*ed in the same gence ac the laser light, end,
therefore, in the owosne rente ac Lhe first rotaticeml Stokees linee, ag expected
from the sequential sature of the higher order Stokes production (Figure 30).

5.k Vitratioral Decay Tine Nrasuremsntc

Maring ctimuinted Paman conttering not only iz the Stokees vave amplified turt ro
alco {2 the phonon vave. For every Stokee pholem profuced, an excited vibratioml
quantun ig also created. Stimulated Faran soattering ic, therefore, a conventent vay
of germrating & noneeqallibrium popslation dictritution. The short time geale of the
present experisents sakec trans fent ctimuiated facan gceattering a useful tool for the
study of gas kinetics. A rajor area of appliesticn is in chenical laser diagnosties.
There ztandard techniquee often capeot give the decired relmmaticn ratec under
corditions pertiment to chenical lazer oporating conditionc. Shoek tute analyzis is
often useful tut high tenperatures and precgures are required. With eleetrieal
excitation fonized epeclee ard electrons are pecersarily generated. In stimulated
Pavan cenattering only the excited Masar @ctive vitratiomal state iz populated.
Experirente ean be run atl room tenpe=ure or telov If decired. Nigh pressure fe
reqired for the Paran oscillator ~ the relaxation rate fc linear vith precesure,
then the resulls mny bo extrapo « d. If not linear, then a lov pregcsure Faran
naglifier my be uted in conjunction vith a high preceure Fammn cecilliator. The gas
progerties vould then bte ctudied in the amplifier.
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The simplest type of measurement vould be a fluorescence measurement. Such a
zeasurement could be used to deterxine the vidbratiomml decay rate in HF as showm in
Flgure(3l). Other caniidates are the termimal lagser levels in OO, and N O and the first
vibratiomal level in CO. Prelisimary experimente are nov under in WF.

A more general though more difficult technique for deterzining vibratiomal decay
rate is showm in Pigure(32). Mere one monitors the excited state population by detect-
ing spontanecus ant{-Stokes seattering produced by a second high intensity light
source, poesibly arother laser. Prior to the arrival of the mode-locked pulse train
and the generation of stirulated Stokes light little or no spontancous anti-Stokes
light vould be observed due to the atsence of excited ctate population. The anti-
Stokes intencity vould btuild up vith the creation of vibratiomal population during the
rode-locked pulse train and vould decay aftervand vith the decay mate to te deterained.
This dosble Faman technique kas been uced vith a Q-cvitehed N‘Hl” er Lo deteraine
the vibrational deeay tine in hydrogen gac at room teaperature o ¥ith tmnsient
etimulated Faman scattering, this technique can bte used to make medsurenendtls (n a
host of different gases, including all of those listed in Tuble 1.
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Section 6
ORGANIC DYE IASERS
6.1  gimple, Migh Intensity, Short Pilse Flashlampe

Flectrical discharge flashlaspe cajadle of emitting intense light pulses of very
short duretion are required in a variety of anuuthmg. including photochemical
stidies and laser excitation. Specisl annular lampe10r1170110) pove veen found
rerticularly useful in such applications but often require considersdle care in
congtruction and are not readily adapted irrediation of irregularly shaped samples.
Scme performance charecteristics are reported here for high intensity short pulse
lamps vhich are easily constructed and can be formed to efficliently irrediate various
sample eonfigurations.

A mmber of linear cylindricsl ablating w11 ®1% ‘z')lnm vere constructed e
shown in "lgd3in) using quarts tubing of 1 sm wll thickress for all lamp envelopes.
The semi-flexible plastic (or rubder) tubes shown absorbted mechanical shocks associated
with the lamp discharse and effectively prevented dasage at the erds of the lamp.

The vire electrodes were soldered or spot welded to the inside walls of the setal
sleeves, which provided the recessary exterral electrical contacis. Tungsten, copper,
al:mirum, ard stainless steel electrodes were tested ard all were found to give
similar results. Rerformance Was also eseentially unchanged when the lamps were bent
{nto various forms for irmadiation of irregularly shaped samples, as in Fig.(36b)

To enharce the light pulse risetime and to minimisze the intermal explceive
shock associated vith the intense short duretion discharges, the lampe were continu-
ously evacunted. A smll continuous air leak was provided in the pumping line to
mintain residul gas pressure high enough (typically 1 to 3 torr) to ensure repid
reproducidle discharge initiation, but low enough to minimise explosive lamp failures.
o simificant changes were ocbeerved vhen gases such as argon, helium, senon, nitrogen,
and COp were substituted for air in the lamps. This is consistent with the {dea
that the discharge was carried primarily be adlation products from the quart: wlls
vhile the residal lov pressure ms served only to facilitate discharge initiation.

Electrical enercy storege for the lamp was provided by lovw inductance capacitors
(Maxwell laboratories, Series M) vhich wre connected to the lamps through a triggered
spark mp (B35, Mdel CP-1kE) as shown in Fig.(h]) To minimise pulse risetimes, all
elecirical connections in the discharge circuit were mde as short as possidle. In
sSIne CAses seversl lampe were connected in pamallel with another, and all were
discharsed simularecusly (msasured delay detween lamps, less than 0.05 usec) through
the spark mp.

Mch lanp s tested to destruction to determine the explosion energy, i.e.
the discharge energy above vhich the lamp would fail vithin one or & few shots. The
Mailure m>fe in these tests was 8lways that of violent explosion near the center of

the lamp envelope.
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After determimation of the explosion energy for a given lamp, an identical
lamp was fired at approximately seventy percent of the explosion energy and the
1ight pulse risetime, duration, and peak intensity were recorded, using an S-k
photodiode and an ocecilloscope with a total instrumental response time shorter than
2.5 neec.

Operation of a lamp at enercies highor than seventy percent of the explosion
energy generally resulted in increased light pulse fall times without substantially
increasing the peak intensity. Risetimes were someviat shorter at energies near
the explosion 1limit, but lamp life we greatly reduced from the several hundred
shots often obtained at seventy percent of the explosion energy.

Performance characteristics typical of the lamps tested are preserted in Tadle 11.
As expected, the light pulse risetimes (108 to 90%) were shortest for the smallest
capacitors used, due to their relatively lov inductance. Risetimes were also
dependent to same extent on lamp gecmetry, generally increasing significantly for
long thin lamps whose inductance contriduted excessively to overall ecircuit inductarce,
and for large diameter lampe in which wall ablation apparently developed slowly due
to the large free channel available to the discharge. Data for lamps exhiditing
risetimes in excess of a microsecond are not included in Tadle I since conventional
s filled lampe can often be used in applications where longer risetimes are

petaiasibdble.

Pulse vidths (between half intensity points) were generally greatest for lamps
of large energy handling capadility and tended to be amallest for laaps of amll
diamster in vhich emitting atoms wvere apparently quickly deexcited by wall collisions.
Peak light intensity and energy handling capadility were found to increase with
increasing lamp dimensions and in fact were quite simple related Lo the projected
area (length times diameter) of the lampe, as shown in Fig{3i5) 7The simplicity of
the approximate eapirical relations of Fig/35) makes 1t possidle to quickly compare
energy hardling capadilities and saximm light intensities for various lamp configure-
tions. It should be recognised however that extrapolation of these results to lamps
of very large diameter or length may not be justified.

The two righthand coluans in Tadle I represent quantities roughly indicative
of the total light eaitted (the product of half power pulse width by peak 1ight
intensity) and of the rate of rise of light intensity (the matio of peak light
intensity to light pulse risetime). The latter quantity may be useful in charecterie-
ing lamps desigrned for certain applications, such uﬁ_ec”:ue dye laser excitation,
vhere fast rising intense light pulses are required. !

Measurements using a bellistic thermopile in conjunction with various filters
indicated that the lamps used in these tests radiated more than twenty percent of the
electrical input energy into the 2000 to 6000 X spectzal recion, with more than three
fourths of the rediation falling in the 2000 to A0OO A range. These msasurements,
combined with the results of several tests performed to estimate lamp emissivity,
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suggest that within this spectral reange the lamps emit essentially as dlackbody
rediators vith temperatures in the 20,000 to 30,000 °X rangs. The corresponding
stersdiancy at peak intensity in the 2000 to hgook spectral range would thus be
typieslly & fev hundred watt/(ca®. steradian. ).

As & prectical test for lamps of the type descrided adbove, five lamps 200 mm
long with 3-b£rumphmumldou 10 am dia by 200 mm long quarts cell
containing a 10°" molar solution of either rhodamize 65 or 7-diethylamino-k-methyl
cosarin in ethanol. Broadband mirrors of 100 percent and 33 percent reflectivity,
respectively, were placed at either end of the cell and sligned perpendicular to the
cell axis. When all lamps vere simultanecusly fired in parellel through the spark
mp, using a total stored electrical energy of about 700 J, laser oscillation ensued
at the expected wavelengths of about 5700 A for the rhodamine and 4600 K for the
comarin dye. Typical ocecillographs of the lamp pulse ard of the coumarin laser out-
put are shown in Fig.(i6) The laser oulput energy emitted through the 33 percent
airror vas about one joule in each case, being scmeviat higher for the rhodamine dye.
This represents one of the highest output energies reported to date for organic dye
lasers of this type and demonstrates one prectical applicatiocn of the above descridbed
lanpe .

6.2 Ultra jast Flashlanps for Dye lasers

Since the development of dye lasers two different approaches to the prodlea of
pusping the dyes have been pursued. laser ng vas first deacnstrated in infrared
enitting dyes using & Q-svitehed rudby laser®’-) With rnqzmey doubling this technique
vas then extensed to visible and near N eaitting dyesl! More recently, the pulsed
nitrogen laser has been used with great success to W-«\z"f’ wriety of dyes over
the W, viaible and near IR regions of the spectrm ' ' . The fast rieetines
achievable with laser pumping avoid the prodlea presented by singlet to triplet
erossorer and result in a relatively high 2onversion ?rﬂ)clm:y. Flashlamp rumping
vas first desonstrated in 1957 by Sorokin and lankard'“?) The m>st successtul
flashlazps to date are those of Furamdto and ‘?o:cm,""ﬁ)mo have achieved lasing
in mary of the drses which can be pumped vwith laser pumping. Flashlasps offer the
advantage of bradband pumping and generally higher oatput enercies. Considering
that the pumping is a 0ne step process, the overall efficiency is oftea higher.
™e principm] dismdvantage of flashlanps is that fust risetimes have not been
achieved so that triplet quenching limits *he number of dyes viich can be made o
lase. A flashlamp with a risetine of 5-10 ranoseconds and an energy handling
capadility of a few joules would offer all the advantages of voth methi>ds of pumping.
Luring the seni-annuml repsort period an experimental effort to devise sush a lamp
wag initiated.

For the initial efforts storage in high voltage, tarium titirate “doorknod”
eapacitors vas tried. Theee are camonly available in a 530 plicofarad camacitance
and & 20 or 30 kV operating voltage. The 3) kV capacitors have a self-resosant
frequency of absut 50 Me, vhile the 20 k¥ cajecitsrs tave a 60 Mo gelf-resomant
frequency. Tvo types of discharges were tried, an unconfined digcharge in air or
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nitrogen, and & capillary discharge in nitrogen. The results with a test fixture
holding three (3) of the 30 kV capacitors are shown in Fig. (37). These photographs
represent an input energy of about 3/4 joule at 33 kV in each case. For the open
arc 1.2 ca diameter ball electrodes, separated by 1.5 ca were used. The light output
has a 10 nsec risetime and a vidth at alf-maximum of 35 nsec. This is about the
risetine expected considering the 30 M self-resomant frequency for the test fixture.
With the capillary discharge the light output had a risetime of 18 nsec and a width
at alf-maxinum of 70 nsec. The peak light output is adbout the same. The arc was
1.5 ca long and confined to the inside of a 1 mm bore quartz capillary tude vith a
0.5 ma vall thickness. A pressure of 3 ata of %> was necessary to hold off the 33 | 4
firing voltage; hovever, the light output and risetime vere found to be fuirly
insensitive to pressure over & rangs of from 1 to b ata. A parallel trigger was
used to fire the lamp. The slower risetime of the capillary lamp is dbelieved due

to the formation of a hotter, smaller diaseter and, therefore, higher inductance arc.
The greater integrated light output in the 2apillary lamp attridbutes to the hotter
diecharge. 811111! results have been found by other workers vith somesmat slover
dtscharges127)

The open air arc was coupled with a dye cell in an effort to proluce lasing in
an ethanol solution of rhodwmine 6G. In fact, lasing was obtained even with only a
30 percent output reflector. Howsver, the lasing was very erratic dus principally
to the very ermtic belmvior of the open arc in the pressnce of a near by ground plane.
Atteapts to correst this prodlea vere unsuccessful.

As & result of these experiments a mylar insulated 30 kV strip line capacitor
storing twd (2) joules is under construction. The erratic behavior of the open
arc diecharge in the presence of the dye cell mandates the use of capillary lamps.
To reduce the circuit inductance several of these will be used in parallel in a scheme
similar to that in the 700 joule flashlamp array described in 3ection 6.1.

6.3 Mode-locked, Flashlamp Pumped Coamarin Dye laser at L6920 R

Experisents during this period have resulted in what is delieved to be the first
mode-102king of a flashlamp pumped dye laser operating in the blue region of the
spectrum. Dyes suitable for passive mdde-locking of such lasers are difficult to
find, due to the extremely large abdsorption cross sections required. However, t.h? 128)
technique of intracavity m>iulation at the longitudinal mode difference frejuency
is readily applied to mide-locking the relatively long duration, high intensity output
pulses typical of these lasers.

The lager used in these experiments consisted of 100 percent and 33 percent
reflectors spaced by 160 cam, with a 20 cm by 1 ca dia quartz cell centered between
the reflectors and filled with a 10-¥ mslar solution of 7-diethylamins-k-methyl
coumrin in ethanol. The dye solution flowed through the 2ell at a rate of about one
liter per ainute and wvas excited by means of five specially constructed linear flash-
1amps, of the type described in Section 6.1, symmetrically placed alongside the cell.
The lawps were fired simultaneously through a trigsered spark mp from a 3.6 microfurad
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capacitor charged to 20 kV. The resulting flash was characterized by a half-intensity
duretion of a few aicroseconds and a risetime of several hundred nancseconds.

An acoustically driven fused quartz block was located in the lager cavity close
to the 100 percent reflector and periodically diffracted a few percent of the haﬁra 8)
radiation out of the cavity by virtue of the acoustic standing wave in the block.
When the periodicity of the diffraction was made equal to the 1l nsec round trip
transit time of rediation in the laser cavity, the 4600 R laser output s2en through
the 33 percent reflector exhibited the mode-locked characteristics shown in Fig{38).

6.4 Superradiant Traveling Wave Dye laser

In recent years a number of dye solutions have been made to lase with either
flashlamp or laser pumping. One striking characteristic of many of these dyes is the
very high gain which can easily be obtained. Neumann and liercher (29 have recently
demonstrated lasing in a laser pumped rhodamine 6G solution a millimeter thick with
cavity mirrors having a reflectivity of only a few percent. Experiments such as this
suggest that with a solution thickness of a few centimeters and with a samewhat higher
pumping density, superradiant emission should be observed.

Of particular interest is the case of pumping with picosecond duration pulses
from a mode-locked laser. The dye inversion is then a wave traveling with a velocity
equal to that for a pump pulse. This situation parallels that in Shipman's traveling
wave nitrogen laser. 30) Superradiant traveling wave emission has been observed from
several polymethine cyanine dyes pumped by a mode-locked ruby laser. This technigue
offers greater simplicity and ease than the more usual mode-locking technique (131)for
generating short dye laser pulses.

The experimental apparatus for observing traveling wave dye laser emission is
shown in “ig{39a). Evcitation of the dye was accomplished with a mode-locked ruby
lnor(132 wvhich produces & train of pulses each having a duration of from 2 to 5 psec
and a peak power of up to about 5 GW. A beam divergence of 1 mrad is typical for this
laser. The test cell containing the dye is 2 em thick and is wedged so that the windows
make an angle of about 10° to each other. The length of the cell was chosen to be
sufficiently long that stimulated emission could be achieved with a moderate dye
concentration, yet the cell was short enough that stimulated Raman scattering in the
solvent (methanol) was negligible. For photoelectric detection and for the far field
photographs, Corning CS-7-69 filters were used to separate the dye emission from the
ruby pump light. At full intensity a slight leakage of ruby light through these
filters does occur but this is small compared to the dye laser emission. The additional
filtering provided by the presence of the dye in the test cell reduces this leakage
to below detectability.

A superradiant traveling wave emission was observed for three dyes, cryptocyanine,
DDI (1, 1'-diethyl-2,2'-dicarbocyanine iodide) and DTTC (3,3'-Diethylthiatricarbocyanine
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iodide) each dissolved in methanol. The results for DTTC are representative. With
this dye the emission occurs in a 130 to 180 R wide band centered at from 7920 A to
8080 £ depending on the dye concentration. Maximum output occurs with a concentration
giving a band center at 7980 K. at this concentration the low level transmission at
6943 R through the 2 cm test cell corresponds to an optical density of 6.0. More
than 90 percent of the incident pump light is absorbed.

The output from the dye (Fig. 39b ) occurs as a train of pulses which follows
more or less the overall shape of the incident pump pulse train. Far field photo-
graphs such as that in Fig{39c)show that the emission takes place in a narrow beam
with an angular Adivergence of about 15 mrad. As in the case of pumping with a Q-
switched laser, 33) the direction of polarization of the output beam is the same as
that in the pump beam. With 1 joule of pump energy the total energy emitted in the
forward direction is generally from 10 to 30 mJ. The forward to backward emission
ratio wvas measured photoelectrically and was found to be about 100:1, thus confirming
the traveling wave nature of the device.

An attempt was made to measure the pulse width directly by the two photon
absorption-fluorescence technique. This was not successful. Howcver, the pulse
width can be inferred from other measurements. The high forward to backward emission
ratio indicates that the fluorescence decay time and, therefore, the pulse duration,
must be less than the 90 psec transit time through the cell. One indication of how
much less is given by the fact that, if the entrance window of the dye cell is sufficiently
thin, an emission occurs not only in the forward direction but alos in the direction
normal to the outside face of this window. This emission arises due to the amplifica-
tion of fluorescence radiation generated near the window, which travels through the
windov and is reflected back at the glass to air interface. The resultant emission
is shown in Fig{39d),where a window 1.5 mm thick was used. With a window twice as
thick, as was the case in Fig(393),nly a faint emission in the direction of the
window normal is observed even with the entrance face nearly perpendicular to the
pump beam. This indicates an appreciable decay of gain in a time equal to the difference
in the round trip transit times for the two windows. That is to say, the pulse duration
must be on the order of 15 psec or less.

That such short pulses are to be expected can easily be shown. In the frame of
reference moving with the emitted pulses the growth of the e?erﬁr density, W, per unit
frequency interval per unit solid angle follows the relation 134)

%%W(z.t) - hvs(v)BaN(z,t) = hus(v)ENp(z,t) (6.1)

where S(v) is the lineshape function, X and B are the Einstein A and B coefficients
per unit solid angle for given polarization and Ny and AN are the excited state
population and inversion in the dye, respectively. Saturation effects are ignored in
Bg. (6.1). In general N, and AN are functions both of position, 2, in the moving
frame and of time, t. However, if the difference in group velocities of the emitted
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dye laser pulse and the incident pump pulse is ignored, No and AN are not explicitly
dependent on time and BEq. (6.1) can be readily integrated.

The results are shown in Fig.(L40) for an excited state population of the form

N, (t) = N(e~to/TE _o7t0/Tr) (6.2)

Here the position, z, has been replaced by t, = z/v, where v is the common group
velocity. For the polymethine cyanine dyes, a fluorescence decay time of t¢ =50 psec
would seem to be a reasonable estimate frcm the present experiments. The population
risetime would be the longer of the pump pulse duration or the Franck-Condon time 135)
for the dye. A value of T, = 2 psec, corresponding roughly to the pump pulse duration,
was chosen.

From Fig. 21 it can be seen that a fairly modest gain will give a substantial
pulgse sharpening initially. However, once the dye laser pulse duration becomes
comparable to the pumping pulse duration, or more accurately, to the inversion risetime,
a considerable increase in gain is required to achieve even a slight decrease in
pulse duration. If the dye laser emission builds up to the point that the gain
saturates, then there may be an additi~nal pulse sharpening due to the nonlinear
amplification. (L36)

Although this technique has been demonstrated only for a single class of dyes
all emitting in the infrared region of the spectrum, it should be possible to obtain
vigible region emigssion in other dyes by pumping with the second harmonic of either
a mode-locked ruby or neodymium laser. However, the longer lifetimes of most of the
other common laser dyes would necessitate a very high gain or possibly strong satura-
tion in order to obtain picosecond pulse durations.
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BACETE-G, Section 7

OTHER AREAS OF INVESTIGATION
T.1 Stimulated Emission fram laser Produced Plasmas

The possibility of obtaining coherent radiation from laser produced plasmas is
of great interest and some preliminary experimental and theoretical investigations of
this possibility have been carried out. The production of ultraviolet radiation by
laser action is hampered by the very fast spontaneous population decay which typifies
this region of the spectrum. For efficient excitation, the pumping source must have
a rise time comparable to >r less than the spontaneous decay time. Conventional
optical and electrical punping scurces are capable of rise times in the nanosecond
region. A thousandfold improvement in this figure can be achieved through the use of
picosecond laser pulses. The most general scheme for pumping would be the production
of & pliama by laser induced breakdown in the material which is to lase. The inversion
could then be achieved by the same mechanisms as in the more usual electrical discharge
lasers, although the electronic temperatures are much higher in the present case.

_ Some general cons:lderationaoare treated here and applied to the possibility
of obtaining emission fram the 3371 A line in nitrogen and from metal vapors.
The corsideration can be extended to shorter wave lengths. Some experimental
observitions of fluorescence from metal vapors are also presented.

The gain coefficient for an inverted lossless medium is

o = huBg(Au) AN —_

where B is the Einstein B coefficient, g(Av) is a linewidth function and AN, the
inversion. It is convenient to define a gain cross section, ¢, such that

_o_ _ huBg(a
o = Iy = WBela) (7.2)

In many of the low pressure, high temperature superradiant lasers which have been
made to operate, doppler broadening is the most important line broadening mechanism,
For the purposes of discussion, let us temporarily assume that this is so in our
case also. Then at line center 1

8w = 0) = 2(42)° £l (7.3)

where Aup is the doppler width (FWHM). This gives

0T 0. B gB =09 R i (7.4)
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vhere A is the Einstein A coefficient. This ylelds
] 0. 2 A -2 2 -L
o G2, e v 12 % 10708G5) (7.5)

Since A is the reciprocal of the rediative decay time, all of the quantities in
the above relation are msasuradle.

Inammxwm—ormmmmwwmmn,
the prodominant optical losses are due to free-free absorption37),
The loss coefficient is given by the celedrated formula

K = 3.1z 103 g(_iﬂ_‘. (1.6)

2

vhere Z is the degree of ionization, N is the ion density, T is the plasma tempere-
ture, hu is the photon energy in ev, and

¢ = 0.5 ta (242 10T (1.1
233
The total power gain coefficient is
G wag-K = Nfg - 3.1 x 10°3} "
: (7.8)
()

whu'ct-ﬁ!.

laser generated plasmas in gases typically haye high plassa temperutures
and & high degree of ionization, The values T = 5 x 10” °K and Z = 5 are represen-
tative of the conditions vhich might be achieved. The free-free losses for such
a plasma are indicated in FigJ{lil)as a function of wavelength and of pressure. It
has been assumed that the ion density is equal to the particle density.

o

For the 3371 A line, the doppler width is aup * 8,5 x 10" sec “1 at
S 3 10° :xuéggb?mttw decay time for this line is 4O nsec, giving A - 2,5 x
107 . se values give for the line center gain cross section

o = 1.25 x 10°1% ea?, (7.9)
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this, and the free-free sbeorption given ia Figiil), the gain coefficient can
caleulated as & Nmetion of the and of the fructioma] inversion, f.
result is showm ia Figli2), For £> 10 ° superredisnt emission will ocowr in
a.ru length. On the other hand, if the fractioml irversion is less than
£3 10 7, the net gain will almys be negative 00 that ocecillation will bde
impossidble. It shuuld be noted tiat fram our estimated croes section and the
asasuwred gain coefficient, the frectiomal imversion achi in a conventioral
nitrogen discharge laser is calculated to de £ 6 x 10°7.

.?:

ol e

To estimte gain for a ¥V line ve assume that the dijole mament of the
33 £ 1ine tn ritrogen is representative. If the princijal brosdening mechanisn
is doppler brondening (probadly not & very fon), theu the gain cross
secticn is the same, mamely @ = 1.29 2 10°" en . The most important effect of
decreasing the wavelength is to decreanss the free-free sbsorption (see FPig. Al).
The net, gain coefTicient vs wavelength and jpressure is shown in rig.(83) for
£f=10 . The peak gain is seen t0 increase and ave to higher presswre with

decressing wmvelength.

In recent years swperrediant emission has been cbserved in metal vapors
such as those of 1ead, copper, tinc, cadmium and saagmnese. Excited vapors of
such metals can be produced by focussing & laser beam onto a surface of the solid.
To ouwr imowledge & definitive (Mdﬁomum oﬂauuun-}n plasm
has mde only for cardvon. ™he pertinent paremsters are T ¥ ) x

1027 and 3 <2 < 6. Tor want of better data, we shall take T « 10° °K,
X e 1019, 2 « 5 for the metals. The oversll gain coefficient is then

6« 20" 1w - 1.1 x 10002, (7.10)

Por copper vapor A = }.3 x }of sec"l ant ¢ « 8 10°1% ca? at 10° %k, Similarly

for 1ead A « 2.2 x 10° sec”) and 0 = 7.2 2 10°1" at 10° °k. The net gain coeffictent
for eopper and lead are plotted ts e function of £ and ) in Pigsii)and(is) Amine
fraction inversion of 10 to 10°7 is needed for swermdiant emission.

The calculations outlined adove are very rough. Xevertheless, the results
are sufficiently encouraging that an experimental effort las been undertaken to
obeerve stimulated exission in laser produced plasmas. The experimsntal apjaratus
is showm in Figdh6). 1n the initial experiments, the mide-loched niby laser dean ws
focuseed with a cylinirical lens onto the target and no resomator vas wed. The
samples included copper, lead, tine and cadmium. The visidle region emission was
cbeerved vith a fast S-& photodiode looking down the axis of the cylindrical plassa.
It w3 hoped that the gain might be high to chserve superrediant emfssion. Although
such was not the case, & mmber of interesting results were ocbtained,
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indicates that the rdy laser should be focussed into s small & volume as possible.

It iz planned that further sxgerimer.e in this ares vill te conducted. These
experimntls have teen deferred awiting the completion of & 10 jaule, subteanosecond
mloe seodyniun laser Maclliity that is under construction at this labtomtory.

7. Nonlisear Projpagation Effects

Vhen an intente 1ight vave propegates through & Kerr active liquid, the
irtensity depondent index of refraction oas lesd to a wariety of offects such as
reifefotuning, self-phace nodulation and steepening ond altemtiocn of the state of
polarization of the vave., During thie period, comcideration laes been gives Lo the
intter effect and ceversl conclusione have teen reached., It has brets RBOVR fOr some
tine that vhen an elliptically polarized vave progagates through such s Liquid, the
srientation of the axis of the ellipee are rotated by an amount proportionsl to the
pradect of the flelde along the major and the ninor axis and the distance traveled
(Feference 177).This effect hag Leen used o mearure some Of the nolinear coefficients
)f the Liquid (Referemce 138).A powetat nore gemeral approach 10 this efiect hae
toen oarried out and it har been concluded that lisear polarization iz sn unetable
rnofe of propagatios in such & liguid waile eircular polarization s s meutrally
ctable nofe., The agalyeir hme aleo beer extended 10 the case Whrre an additiomal
| lrear birefringence, such 8 could te profuced ty am extermal electric fleld, is
precent. This investigation iz estill in progrees; an cutline of the sethod of
appronch and sow of the sain results ls given telcy. A more detalled discuceion
vill te reported upon completion of the amiyels,

Ve consider the progagation of an optical pulse in a liguid having an
anisotropic molecular polarizability. For the present, ve vill sesume that the
sslecular reoricntation tise, v, o short compared to the duratiom of the pulse.
For typieal 1iguids such ae C8, amd c6 0., v i= a fev pleoseconds to sbout 30
pleccecords. 1In thie case ve Tind that’the polarization in the 1iquid can be
written as

13 we® o "I)l . 'a - ’in . "L Ci » ’m (1 ln
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Here the £irst term represents the oriisary linear polarizability, the second term
an intersity depemient tut lsotropic polarizability m tu)uld terz an anisotropic
polarizability, Ve vrite the optieal fleld as 8, and allcv for the
progsence of 8 dc field E. The direction of propagstion vill te taken as the «2

axie and the direction of the dec ficld vill define the «+x axie. The aalsotropic

fart of the polarizability sy then be expressed as

L
P. - .lh o} (7.12)

vith & » l‘:" and b l(t ¥ - 'ﬁ ™he fields my bLe ealeulated frow the umual
=V s4ly var-'ng envelope !oa.

] -tk:
:5 e ﬁ P © (7.13)

Subetitution of Bea. (7.11) and (7.12) tnto Bq. (7.13) yields u set of two ccupled
equntions in cx snd C’. It {s eomvenilent to vrite
l -
) ! ™ L L 4 ‘x',(")
X,y  ox,oy (7.1)
] Beamting the ioal and lwngimmry parte of By, (7.13) givee four e?um for
‘a' !”, (" and 0’. Cwe integral followe immediately, f.e., It | |£ I -

conatant as vould bte expected ninee the material fc loselese. Ve mny una vrite

)
C“*leod!

v Petm (7.19)

Fimmlly, rolving for ¢ « 0 . 0 ve find that the {sotropic part of W nonl iwar
polarisation drope Out m e otuua tvo equations for & nnd ¢.

%iénvleﬂﬁ,ﬂ!ﬂe ein 24 (7.16)

‘ ﬂ ‘ . 3 -
a $eov vi(coe 24 - 1)coe @
¢ vhere v = '& y V_ = 'ﬁ‘ 22

ke o

Theee tvo eguations descrite completely the state of polarization of the wave
az 1t propagates. The lsotroplc part of the norlincar response does not enter
tecause It doee notl change the state of polarization.
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Eqestions(7.16) 4o mot lead to & direct solution for 9(Z) and ¢§(Z)however, it is
poraible to find & solution for ¢ as a function of 6. We find

A 2 2._l-1
o’ § -;%(oon M -con ) oin’ t, sin 3,] I'“ 3‘] (7.17)

anowocmmm that are deterained by the initial comditions of polari-

ation. This equation yields trajectoriez of ¢ vz &, the semce of traversal of theee
Leing deternined by Bquation (7.16). These are plotted schematically in Figure(Miqfor

the cnse v, = O and Mh@))faryoxo. For the case v, « O, the curves are the

the usual rotating rolarization ellipse. The points sin ¢ = 21, 8 = ¢ n/4 are the
tve sensos Of circular polarizsticn. They are neutrally stable, as they are surrcunded
bty the trajectories. The case of linear polarization, ¢ = 0, & arbitrary is seen to
te unstable as all trajectories diverge from this line. The case v, / O corresponds
to the presence of a linear birefringence. Here the trajectories split into two
classes deponding on the initisl conditions ani the intensity. Ome type i2 similar
to the case v, = O and corresponds to a rotsting (snd distorted) elliptical polariza-
tion. The other corresponds, for exanple, tc an initial linear polarization at an
angle §. The polarization then tecomes elliptical, rotates and Lecomes more circular.
After mesing through the circular state, the polarization contimues to rotate wvith
increasing ellipticity until it tecoms linear at <2, 1In the degenerdte case [ « 0,
thece trajectories siaply vecome A « constant, ¢ -yOZn-yhmnemcuytm
Egs. (7.16). This is Just the induced birefringence and the phase difference between
X and y components increages linearly vith distance. The trajectories on a plot of

¢ ve & are tvo vertical linces at £ @,

It e snticipated that further vork vill be carried out i{n <he aralysic of these
polarization effects. Amlytical solutions for a(2) and §(Z) have teen obtained and
vill be discussed in a later preport. It would also be of intereet to extend this
aralyeie to nonlinear =ateriale vith a more complicated spatial symmetry, i{.c., non-
lincar crystale such as calcite. It {2 expected that these nonlinear polarization
effecte vill be isportant in the propagation of high pover pulses in dielectric
nrdin, particularly ia the polarization effects in self-trapped filaments.
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SCHEMATIC REPRESENTATION FOR THE BAECKLUND TRANSFORMATION
GIVEN BY EQ. (2-37)

FIG. 2



3920479-21 FIG. 3

DIAGRAM FOR SEQUENCE OF TRANSFORMATIONS GIVING 4/7 PULSE
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3920479-21 FIG.5
PROPAGATION OF A 4 PULSE IN AN ABSORBING MEDIUM
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SECOND TYPE OF ZERO 7 - PULSE
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THIRD TYPE OF 7 - PULSE
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1920479-21 FIG. 9

BREAKUP OF 6 PULSE AS DERIVED FROM SEQUENCE
OF TRANSFORMATIONS SHOWN IN FIG. 4
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3920479-21 FIG. N

PROPAGATION OF 7w — PULSE IN AMPLIFIER
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SPATIAL DEVELOPMENT OF PHOTON ECHO
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$920479-21 FIG. 13

PULSE PROFILE INCLUDING LEVEL DEGENERACY-Q(2) TRANSITION
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SOURCE MOVING ALONG OPTIC AXIS

CIRCULAR SECTION

OPTIC AXIS
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SOURCE MOVING TRANSVERSE TO OPTIC AXIS
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CONTOURS OF INTEGRATION USED FOR EVALUATION OF
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N20479-21 FIG. 18

APPARATUS FOR MEASURING CHIRP CHARACTERISTICS
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TWO-PHOTON ABSORPTION-FLUORESCENCE DISPLAY OF CHIRP
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STIMULATED RAMAN SCATTERING IN CCl,

o) INTERLEAVED STOKES AND LASER PULSE
TRAINS.THE FIRST PULSE IN EACH PAIR IS
THE LASER PULSE

b) TWO-PHOTON ABSORPTION-FLUORESCENCE
STOKES PULSE WIDTH MEASUREMENT

- ¢) TWO-PHOTON ABSORPTION-FLUORESCENCE

STOKES PULSE WIDTH MEASUREMENT
——f ,—-20 psec
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RAMAN SCATTERING IN METHANOL

| 1 L | M|
2700 2800 2900 3000 . 3100

FREQUENCY SHIFT, cm~!

a) SPONTANEOUS SPECTRUM

b) STIMULATED SPECTRUM IN THE BENDING MODE

I | | I
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SELF-TRAPPING IN METHANOL - STOKES LIGHT

o) FULL LASER INTENSITY (100%) b) 70%

c) 50% d) 30%

FIG. 24
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SELF-TRAPPING IN METHANOL

a) LASER

b) STOKES

c) ANTI-STOKES
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SELF-TRAPPING IN ACETIC ACID-STOKES LIGHT

o) COLLIMATED BEAM

b) FOCUSED BEAM
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STIMULATED VIBRATIONAL SCATTERING IN SFg

a) LASER - INCIDENT AND TRANSMITTED

b) STOKES
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SELF-TRAPPING IN N0 AND CO;

a) N20 - LASER LIGHT

¢) CO, - STOKES LIGHT

FIG. 29
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FIG. 30

POLARIZATION OF ROTATIONAL SCATTERING IN N20
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a) STRAIGHT LAMP
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CIRCUIT FOR RELIABLE LAMP TRIGGERING
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FIG. 35
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J920479-21 FIG. 36

o) LAMP PULSE

b) OUTPUT OF COUMARIN LASER PUMPED BY LAMP

0.5 usec/div
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FAST-RISE DYE LASER FLASHLAMP

20 nsec/cm

o) OPEN ARC

) CONFINED ARC
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OUTPUT OF MODE-LOCKED COUMARIN DYE LASER

SWEEP SPEED: 100 nsec/div
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TRAVELING WAVE DYE LASER

FAST PHOTODIODE
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