
© 

o 

< 

o( 

THE  UNIVERSITY   OF  MICHIGAN 

Technical     Report     25 

CONCOMP 

January 1970 

A PROGRAMMING SYSTEM 
FOR THE SIMULATION OF CELLULAR SPACES 

Ronald F. Brenctar 

Reproduced by the 
CLEARINGHOUSE 

for Federal Scientific & Technical 
Information Springfield Va. 22151 

This document has been appcaw 
far public release and wtäm Bi 
disMbutioa {■ wliaitad 

111 \SZm m m % m 
D 

,11 



—— . .,:,..:-..- ■- . v"v-. 

i 

THE UNIVERSITY OF MICHIGAN 

Technical Report 25 

A PROGRAMMING SYSTEM 
FOR THE SIMULATION OF CELLULAR SPACES 

Ronald F. Brender 

CONCOMP:   Research in Conversational Use of Computers 
F.H. Westervelt, Project Director 

ORA Project 07449 

supported by: 

ADVANCED RESEARCH PROJECTS AGENCY 
DEPARTMENT OF DEFENSE 

WASHINGTON, D.C. 

CONTRACT NO. DA-49-083   OSA-3050 
ARPA ORDER NO. 716 

administered through: 

OFFICE OF RESEARCH ADMINISTRATION   ANN ARBOR 

January 1970 



ACKNOWLEDGEMENTS 

The generosity and support of many individuals and institutions have 

given me substantial assistance during the course of this work. I extend 

my appreciation of Professor John Holland, whom I value as a close friend, 

for serving so loyally as my Chairman; to Professor Arthur Burks for sup- 

porting this work both as a member of my committee and as Director of the 

Logic of Computers Group; to Professors Bernard Caller and Larry Flanigan 

for their interest and careful attention to so many details of the work; 

to the University of Michigan, the National Institutes of Health, and the 

Advanced Research Projects Agency for direct and indirect support in many 

ways; to Daniel Frantz and John Foy, long-time friends and talented system 

programmers, for creating much of the software foundation on which my 

implementation depends; to Thomas Schunior for his constant flow of ideas 

and techniques; to James Mortimer for his interest and courage in devel- 

oping his application of the system at a time when it was still in a state 

of considerable flux; to Jean Slater, Bonnie Dailey, and Jan McDougall 

for patiently typing the many drafts; to (Mrs.) Jinx Dawson for drawing 

many of the figures; to Richard Laing and Thomas Dawson, capable admini- 

strative assistants, for considerable help in coping with the Establishment; 

and to my wife, Maurita, for her devoted support of my efforts, for her 

tolerance when my studies occupied my time and attention, and for her 

valiant struggle with my manuscript to make it stylistically acceptable. 

To each goes my heart felt thanks. 

11 



I 

TABLE OF CONTENTS 

im 
1.  INTRODUCTION 1 

1.1 On Simulation 5 
1.2 Informal Definition of Cellular Spaces 6 
1.3 Concepts of Embedding § Interpretation 11 
1.4 Review of Several Cellular Models 13 

1.4.1 John Von Neumann 13 
1.4.2 Edgar F. Codd 15 
1.4.3 Larry K. Flanigan 17 
1.4.4 Marion Finley, Jr. 17 
1.4.5 John H. Holland 18 

2. ANALYSIS AND FORMULATION OF SYSTEM REQUIREMENTS 24 

2.1 Discreteness 24 
2.2 Cell Space Geometry 24 
2.3 Size of Simulation and Concept of Quiescence 27 
2.4 Neighborhoods 29 
2.5 Transition Functions 30 

2.5.1 Data Structure 31 
2.5.2 Parameters Called by Value 31 
2.5.3 Input-Output 33 

2.6 Input to Cell Space 33 
2.7 Output and Monitoring of Cell Space 34 
2.8 Interactive Requirements 35 
2.9 New Language or Old? 36 
2.10 Formalization 37 

3.  A LANGUAGE FOR CELL SPACE SIMULATION 40 

3.1 Procedural Aspects 42 
3.1.1 Lexical Format 42 
3.1.2 Primitive Data Types 44 
3.1.3 Declarations 45 
3.1.4 Executable Statements 50 

3.1.4.1 Assignment SO 
3.1.4.2 Unconditional Branch 54 
3.1.4.3 Conditional Branch 54 
3.1.4.4 Loop Statement 55 

iii 



• M 

l*SSL 
3.1.4.S Miscellaneous Executable Statements 56 

3.1.5 Literal Structured Variables 57 
3.2 Simulation Oriented Aspects 59 

3.2.1 Data Structures 59 
3.2.1.1 CELL Data Structure 59 
3.2.1.2 External and Initial Cell States 61 
3.2.1.3 Neighborhood, Size of Space and 

Edge Declarations 61 
3.2.2 Entry Points 63 
3.2.3 Operators 66 
3.2.4 Default Specifications ~         66 

3.3 An Example: MODS 67 

4. THE RUN-TIME ENVIRONMENT 70 

4.1 Keyboard Command Language 74 
4.1.1 Immediate Execution 74 
4.1.2 Deferred Execution via Micro-Program 79 
4.1.3 Commands for "undefined" Transitions 81 

4.2 The Display Facilities 82 
4.2.1 DISPLAY CELLS 85 
4.2.2 MULTI DEFINE 87 
4.2.3 DISPLAY PARAMETERS 90 

5. APPLICATIONS, EVALUATION S SUMMARY 93 

93 
93 

100 
101 
104 
105 
109 

111 

113 

5.1 Applications 
5.1.1 An Example From the Literature 
5.1.2 Current Work 
5.1.3 Related Problem Areas 

5.2 Evaluation 
5.3 Extensions 
5.4 Summary 

REFERENCES 

APPENDICES 

iv 



v 

I 

LIST OF FIGURES 

,Fig.ure Page 

a 

1.1 Exanple Space and Neighborhood Templates          ' 8 

1.2 Example Transition Function 10 

2.1 Embedding of Hexagonal Cell Space 26 

3.1 Example Data Structure Definition and Related Notation 47 

3.2 Syntax of Assignment Statement 51 

3.3 MODS Cell Space 68 

4.1 Conventional Computer Configuration 71 

4.2 Commands Without Parameters 75 

4.3 Commands With Parameters 76 

4.4 Commands for Deferred Execution 80 

4.5 State Transition Diagram for Display Images 83 

4.6 Command Menu 84 

4.7 Example Cell Space State Display 86 

4.8 Data Entry Menus 88 

4.9 Parameters Menu 91 

5.1 FM Cell Space 94 



" 

COMMENTARY 

ON A 

CONCEPT OF PLATO 

In performing a computation we do not handle objects of the real 

world, but merely representations of objects. We are like people who 

live in a cave and perceive objects only by the shadows which they cast 

upon the walls of the cave. We use the information obtained from study- 

ing the form of these shadows to make inferences about the real world. 

However, we are not merely passive observers of shadows cast by real 

objects. We modify reality and observe the new patterns of shadows 

cast by the nev configuration of objects. We go even further, forgetting 

altogether about the real objects that cast the shadows, treating the pat- 

terns of shadows as physical objects, and studying how patterns of shad- 

ows can be transformed and manipulated. 

Information structures are representations of real objects just like 

shadows on the walls of a cave. The programmer studies how information 

structures can be transformed and manipulated and in doing so learns 

something about objects represented by the information structures. 

However, the real computer scientist falls in love with information 

structures and studies their properties not only for what they tell 

him about the real world but because he finds them beautiful. 

Peter Wegner 
Programming Languages, 
Information Structures, and 
Machine Organization (1968) 
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ABSTRACT 

A PROGRAMMING SYSTEM FOR THE 

SIMULATION OF CELLULAR SPACES 

by 

Ronald Franklin Brender 

Chairman: John H. Holland 

Regular networks of similar interacting components constitute an 

important class of models in man/ disciplines,  from automata theory to 

parallel computer systems to biological systems.    Yet, no simulation 

system provides comprehensive facilities for studying such models con- 

veniently by computer.    Such a system is proposed and an implementation 

exhibited.    Careful attention is given to setting forth the guiding 

considerations in developing the final form of the system.    Primary among 

these is maximizing the usefulness of the system for supporting heuristic 

and interactive exploration of model behavior. 

Chapter 1 develops the notions of cellular spaces (regular geometry, 

neighborhood template,  transition function) and reviews models used by 

Von Neumann, Codd, Flanigan, Finley and Holland.    Chapter 2 analyses 

these models and formulates the requirements for building a simulation 

system suitable for a wide range of cellular models.    Chapters 3 and 4 

describe a total programming system for simulation.    A language is 

designed that provides novel constructs useful for cellular models.    A 

simulation support system provides on-line monitoring of model behavior 

  



on a graphic CRT and experimenter interaction with the system via keyboard 

and lightpen. Chapter 5 discusses several applications developed on the 

system, and evaluates and summarizes the work. Several appendices detail 

the implementation. 
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1.  INTRODUCTION 

John von Neumann made many contributions to the computing sciences in 

such diverse areas as electronic technology, computer organization, pro- 

gramming theory, and mathematical foundations.  Two contributions, in 

particular, have had an enduring impact and are closely allied to efforts 

reported here. 

Von Neumann's logical, universal space was defined to prove, for the 

first time, the logical possibility of a self-reproducing machine.  Since 

that time the formalism he originated has been elaborated and extended into 

many application areas and taken on many guises. These include the formal 

models of Myhill, Yamada and Amoroso, Codd, Holland, and many others. In 

addition many investigations of physical phenomena, such as vibrating 

membranes and weather systems, and of biological systems, such as neuro- 

logical networks and biological cell populations, have drawn heavily on 

that foundation. Formal models in these areas have been variously called 

cellular structures (Burks), iterative arrays (Holland, Hennie), tessella- 

tion structures (Myhill), tessellation automata (Yamada and Amoroso) and 

cellular spaces (Codd). We shall use exclusively the term "cellular space" 

as both a general name for all related concepts and for the particular 

models developed here. 

Von Neumann's second contribution concerns the manner in which com- 

puters are used in these investigations. In surveying von Neumann's con- 

tributions, Burks [IS] writes in this respect: 



The procedure which he [von Neumann] pioneered and promoted 

is to employ computers to solve crucial cases numerically and to 

use the results as a heuristic guide to theorizing. Von Neumann 

believed experimentation and computing to have shown that there 

are physical and mathematical regularities in the phenomena of 

fluid dynamics and important statistical properties of families 

of solutions of the non-linear partial differential equations in- 

volved. .. .Von Neumann believed that one could discover these 

regularities and general properties by solving many specific 

equations and generalizing the results. From the special cases 

one would gain a feeling for such phenomena as turbulence and 

shock waves, and with this qualitative orientation could pick 

out further critical cases to solve numerically, eventually de- 

veloping a satisfactory theory. 

This particular method of using computers is so important 

and has so much in connon with other, seemingly quite different, 

uses of computers that it deserves extended discussion. It is 

of the essence of this procedure that computer solutions are not 

sought for their own sake, but as an aid to discovering useful 

concepts, broad principles, and general theories. It is thus 

appropriate to refer to this as the heuriacia uae of computers.... 

[When the computations are compared with experimental data] the 

heuristic use of computers becomes simulation. 

Many investigations of these systems cannot be carried out without 

conputer assistance because: 

1) the behavior of these systems cannot be expressed in closed 

analytic form. The only way to determine the state of a system at a time 

t* given its state at t is to calculate the successive states at t, t+1, 

t*2,..., t'-l, t». 

2) The systems to be simulated must consist of at least several hun- 

dred entities to provide sufficient structure to be interpretable as rep- 

resenting interesting behavior. 



---——- 

3) The kind of behavior of interest in such systems involves time 

scales several orders of magnitude larger than the time scale on which the 

system must be simulated. 

4) Exactly what constitutes interesting behavior is itself not rig- 

orously definable. Either considerable computational power must be devoted 

to the task of recognizing interesting behavior as well as generating it, 

or on-line monitoring and interaction is a necessity to permit an experi- 

menter to use his insight to recognize the desired behavior. 

In spite of the important role that cellular models have played in 

much research, there are no computer languages available that have the right 

characteristics for generating and using simulations of cellular models. 

We are concerned here with filling that lack by designing and implementing 

a simulation language and system specifically oriented toward cellular 

models. Equally important, we seek to create a tool that will permit a 

computer to be used conveniently and heuristically. 

We have fulfilled our goals by 1} developing a run-time environment 

(or subsystem) for use in conducting cellular simulations, 2)    designing 

a language suited to specifying the characteristics of cellular systems, and 

3) implementing a compiler for that language. This work has been conducted 

on the computer facilities of the Logic of Computers Group« 

The heuristic utility of the system is accomplished in part by exploit- 

ing the high data rate and flexible graphic capabilities of the CRT display 

The Logic of Computers Group is a research unit within the Department of 
Computer and Communication Sciences of the University of Michigan. Its 
computer facilities include an IBM 1800 with disk bulk storage interfaced 
to a DEC PDP7 with graphic CRT display. 
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that we have available. The system is also quite flexible and modular, 

offering the experimenter a range of capabilities and the opportunity even to 

handle specific tasks in a non-standard fashion if desired. The system 

will, for example, allow the user to selectively monitor various charac- 

teristics of the simulated system, to halt, to save conditions, to modify 

the characteristics of the system, and to resume the simulation. The 

language provides to the user a natural and efficient manner in which to 

generate a simulation. Its notation resembles as much as possible the 

mathematical notation frequently used in describing such systems. 

We emphasize that the purpose of this investigation is the design of 

an implementable system which others will find has utility in conducting 

investigations in which cellular models are a method and not an end in 

themselves. Just what this author means by an implementable system is 

undoubtedly influenced by his own experience at doing an implementation 

in a particular operating environment and his personal prejudices about 

what is important and, hence, must be implementable and what can be rea- 

sonably compromised in the interest of limiting the effort required to an 

acceptable amount. Every effort will be made to make these biases explicit 

where they are recognized. 

The language of our system has aspects of two distinct types. The 

first of these is a programming language in which to express the significant 

computational aspects of cell state transitions. The second of these is 
- 

a command language which is employed during the course of a simulation to 

direct the global characteristics of the simulation system. In today's 

large scale, sophisticated computer systems the distinction between these 

aspects can be made arbitrarily small through the agency of incremental 



compilers, interpreted code, and dynamic loading (and unloading) of exe- 

cution modules. However, since one important characteristic of any simu- 

lation system is a fast execution rate, this author feels the above dis- 

tinction will remain useful for some time. 

This chapter develops the notions of cellular space and related con- 

cepts and concludes with a brief review of several models, some actually 

implemented and some not, that have influenced this investigation. Chapter 

TVo presents an analysis of the requirements for simulating cellular models 

and suggests a particular structure for a simulation system. Chapters 

Three and Four set forth a particular language and system specification de- 

signed to meet the requirements developed in Chapter TVro. This exposition 

is purposefully kept as independent of the pecular hardware and system 

constraints under which the author implemented the described system as is 

practical. Chapter Five reviews the application of this language to past 

and current work, suggests extensions and generally evaluates the utility 

of the model. Several appendices detail the actual implementation ac- 

complished by the author in the course of this research. 

1.1 On Simulation 

A system may broadly be any collection of components or elements each 

of which is characterized by giving its state at a given point in time. 

Moreover, a component may itself be a system, and hence a subsystem of the 

containing system. The state of a system as a whole is known if the state 

of each of its components is known. The state of the system as a whole is 

characterized by the states of its components. A succession of system 

states at particular chronological instants of time constitutes a state 

history,  which we will also call a record of the behavior of the system. 



A model of a system A is a system 6 that purports to represent the 

(relevant) properties of system A. Simulation  is the use of a model to 

produce (compute) chronologically a state history of that model, which is 

regarded as representing a state history of the modeled system. 

There are two basic strategies for doing simulation: the fixed 

time-step method and the next-event method. In the fixed time-step method, 

changes in system state (events) are assumed to occur only at times which 

are an integer multiple of a fixed unit of time called the time-step size. 

At each time-step each of the elements of the simulated system are examined 

to determine the new state to be used as its state for the succeeding time 

step. In the next-event method, changes of state may occur at arbiträr' 

points in time. At any given time, events may be "scheduled" to occur at 

some later point of time. The set of scheduled events is kept in a queue 

in chronological order. The simulation proceeds by selecting the event 

that is next in the queue and computing the effects of that event. (This 

may or may not involve scheduling further events. If the queue ever becomes 

empty, the system has reached a "steady state" and the simulation terminates.) 

The usual practice in both methods is to assume that, when multiple events 

occur at the same point in time, it will make no difference (for the pur- 

poses of the simulation) in what order they are actually performed by the 

simulator. 

1.2 Informal Discussion of Cellular Spaces 

A cellular space is a collection of functionally similar cells (or 

modules or units) which are connected to each other in a regular manner. 

1  
For our purposes, models are usually abstractly defined systems. 



  

Let us take for illustration a two-dimensional plane marked into squares 

of unit area. Let the center of some arbitrary square be called the origin 

and an obvious coordinate system be imagined for identifying a particular 

square relative to the origin. Such a system is regular in the sense that 

no matter where the origin is chosen, the space "looks" the same. 

Each cell has associated with it a set of cells called its neighbor- 

hood, whose states may take part in determining the behavior of the central 

cell.  Typically, the set of neighbors of a cell is determined in the same 

manner for every cell, and this determination is often closely related to 

the regular manner of interconnection or topology of the space. In our 

example one could choose the four cells which have a connon edge with the 

central cell as its neighbors. (See cells A and B of Figure 1.1) Another 

simple neighborhood is the set of eight cells whose centers are less than 

2 units distance from the central cell. (See cell C in the Figure). Note 

that it will often be useful to consider the central cell to be in its 

own neighborhood. 

Each cell may be characterized by giving its state. Each cell in the 

2 
cell space has its state drawn from the seme state space . 

The behavior of each cell is specified as a function F: S -»■ S 

Throughout this investigation, when speaking of a cell x and its neigh- 
borhood set of cells N(x), cell x will frequently be called the central cell 
of the neighborhood. While the word "central" is often intuitively inter- 
pretable in its common sense, it is introduced more importantly to avoid 
an awkward naming problem. 

2 
A state space  is the set of possible states. Do not confuse this with 

space state,  which is a particular state characterizing a cell space. Note 
that a state space need not be finite or even discrete. 
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where S is the state space, and 
N is the cardinality of the neighborhood set. 

The arguments of F are the states of the cells in the neighborhood of the 

central cell at time t and the value of the function becomes the state of 

the central cell for the next time step, t+1. The sequence of cell states 

of a given cell will be called the behavior of the cell. 

By calculating the function for every cell of the space, a new state 

assignment for the entire space is determined. The sequence of state as- 

signments for the entire space is called the behavior of the cell epaoe. 

To illustrate how "complex" behavior may be modeled in a "simple" 

space, consider Figure 1.2. The  space is again the two-dimensional 

Cartesian system and we will use as neighbors for a cell, the four cells 

with boundaries common to the central cell. Let each cell be in one of 

four possible states designated by the numerals 0, 1, 2, 3. Figure 1.2 

shows a possible state assignment for a portion of the space. Also shown 

in Figure 1.2 is a natural language statement of a transition function. 

If the given transition function is applied to this space, it is easy to 

see that the 1 to the right of the 2 in the figure will change to a 2, the 

2 to a 3, the 3 to a 1, and the rest of the space will remain unchanged. 

It is as though the pattern "3 2" were propagating along the path of I's. 

Indeed a little reflection will satisfy one that the given transition func- 

tion will allow the pattern to turn comers and to split at a junction of 

two paths and travel down both branches. 

Note that in such a simple cell space directionality of the "signal" 

has been obtained by representing it with two adjacent cells. As an al- 

ternative, a more complicated cell could be specified in which direction 
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of propagation was coded in the state of a.cell. Then a signal could be 

represented as a single cell on a path rather than as two cells. 

In cellular simulations there is a great deal of latitude in choosing 

between the complexity of a cell and complexity of interactions between 

cells. A given kind of behavior can potentially be modeled in many ways. 

This freedom of choice is analogous to working with thermodynamic systems; 

the art of the science of thermodynamics lies in deciding where to draw 

the boundary between system and environment in order to be able to get the 

information needed. Similarly, in working with cellular models there often 

is an art in deciding what behavior should be built into the cell state 

transition function and what part synthesized from groups of cells. There 

are many parameters to explore: the topological space itself, the neigh- 

borhood specification, the initial state assignment, the transition function. 

It is not at all obvious from examination of a transition function 

in some cell space what range of behaviors it can be used to model. Clearly 

the initial state assigned to a space is crucial to the resulting behavior. 

Conversely, given some system that one wants to simulate with a cellular 

space, there is no formal approach to finding such a space. One might 

consider these the "proto-typical" problem statements in working with cellular 

systems. 

1.3 Embedding and Interpreting 

The concept of embedding one model in another plays an important con- 

ceptual role in the applications of cellular model simulations. Informally 

a model A  may be said to be embedded in a model B if there exists a map 

■-"■ ■— — 
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n 
e: A » 2 from components and their states in A to sets of components and 

their composite states in B which preserves the structural and behavioral 

properties of A in the image model B. The inverse of an embedding e: A-^2 

is an interpretation of B in terms of A. 

Suppose M. and M- are two models. Then an embedding e of M. into 

M2 must satisfy the following: 

1) Distinct elements of M. map into distinct sets of elements of M-. 

2) Each (input, output) of an element of M. maps into an (input, 

output) of the image element(s) in NL. 

3) If input 1 of element a is connected to output o of element B, 

then in the image e(i) is connected to e(o). 

4) When a state of M. is the image of a state of NL, then the be- 

havior of M- does not depend on any inputs that are not in the image of the 

inputs of M.. 

5) The successor state(s) in M_ of the element image must be the image 

of the successor state in M,. 

There are several properties of embeddings that should be noted. First, 

a single element in the domain model M. can be mapped into a set of elements 

of the target model M.. This means that elements of the model M. may be 

"simpler" than elements of M., but by combining several elements the state 

space and behavior can still be represented. 

Second, the image model may have "extra" elements not used in the em- 

bedding. These are no problem so long as the behavior of the elements of 

the image of M. do not depend on the behavior of elements not in the image. 

Third, the regular spacial organization of cellular models permits move- 

ment to be modeled in a qualitatively unique manner. In the example of a 

Holland [11] gives a more rigorous definition of embedding in terms of com- 
positions. 
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signal on a path just cited, the signal is said to move. But no thin^ 

moves, merely a pattern of states moves in a regular way. The uniformity 

of cellular mcdels makes this concept of a moving pattern possible. By 

extending the embedding function defined earlier to H a function of time, 

(but still satisfying all the given constraints at any particular time), 

the notion of motion within a cell space is readily subsumed within the 

notion of embedding. 

1.4 Review of Several Cellular Models 

The remainder of this section will briefly review several cellular 

models and their applications that have had a significant impact on our work. 

1.4.1 John von Neumann 

John von Neumann's establishment of the concept of cellular spaces is 

no less important than his many other contributions to the computing sciences. 

He set forth a system in which behavior readily interpretable as self-re- 

production could be modeled. 

Von Neumann's cellular space [1, IS] consisted of an infinite two di- 

mensional array of identical finite automata each of which may be thought of 

as a unit square with the aggregate covering the plane. The transition 

function for each cell depended on the state of the cell itself and on the 

state of the four "neighbor" cells which shared a common boundary with the 

center cell. All cells represented the same 29-state finite automata. A 

particular state is designated as the quiescent state  and the transition 

function provides that if all five arguments are quiescent then the value of 

the function is the quiescent state. Von Neumann further required that the 

infinite array have only a finite number of non-quiescent cells at the initial 

time t = 0. 
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Briefly, certain states represented transmission states which could 

be combined with other such states to provide passing of an activation sub- 

state fro» cell to cell analogous to conduction of a signal down a wire. 

Certain states enable logical functions such as AND and OR to be performed 

on such signals. The NOT logical function was not provided for reasons 

connected with representing construction in the system, and hence, the 

logical capabilities were not functionally complete. Von Neumann synthe- 

sized the NOT function from operations concerned with returning a cell to 

the quiescent state; thus a signal moving 'own a path could be stopped 

(negated) by opening the path ahead of it. Certain states were associated 

with changing the quiescent state of neighbor cells to any of the (non- 

active) non-quiescent states. 

Von Neumann showed how certain fundamental functional units, such as 

pulse encoders and decoders, could be formed by appropriate assignment of 

states to a contiguous group of cells. Increasingly higher level units 

were synthesized from these units. Finally he demonstrated how to build 

a tape controller and a universal constructor. This constructor is capable 

of reading a coded description of a cell configuration from a linear 

array of cells interpreted as a tape and constructing a device from the des- 

cription in a nearby quiescent region of the cell space. Putting a descrip- 

tion of the constructor itself on the tape and taking care for a few non- 

trivial details (e.g., a way to copy the original tape onto the newly 

constructed device and a way to provide the initial activation) he demon- 

strated a method for achieving the desired property of self-reproduction. 
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1.4.2 Edgar F. Codd 

The von Neumann system served as a direct inspiration for Codd's dis- 

sertation [2]. Codd investigated whether the mathematical properties of 

universal computation and reproduction could be achieved in a cellular space 

simpler than that used by von Neumann. 

Codd exhibited an 8-state, 5-neighbor (same neighborhood as von 

Neumann) space in which could be embedded a universal Turing Machine and 

a universal constructor interconnected to give a self-reproducing machine. 

The eight states are used roughly as follows: 

Zero represents the quiescent state. As with von Neumann, a finite 

number of cells may be non-quiescent in the initial configuration, and if 

all neighbors of a quiescent cell are quiescent then the cell remains 

quiescent for the next time step. State one represents a signal path. State 

two represents a sheathing or insulating state that surrounds a signal path. 

(The concept is analogous to that of a myelin sheath in neural systems.) 

Codd demonstrates that any desired machine can be "built" by changing ap- 

propriate zero states to one states and then later initializing the device 

by propagating a special sheathing signal along the path. This signal sur- 

rounds the path by two states as it propagates. State three is used to form 

uni-directional paths. States zero through three are further classed as 

inactive  states. 

States four through 7 are termed active  states and are used for signal 

states. The transition provides for conversion of one signal state into 

another so appropriate signals can be generated as needed. 

Through heirarchical constructions working from simple gates and 

directional paths to a tape unit and universal constructor, Codd's develop- 
• 
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ment closely mirrors von Neumann's (in spirit if not in detail) in demon- 

strating that his cell system has the desired properties. Codd further 

shows how any  eight state-five neighbor cell space can be simulated by a 

two state-85 neighbor space. Hence, all of his results immediately 

generalize to such a two state cell space. 

Of further significance here is the methodology used to find an ap- 

propriate eight state-five neighbor transition function. While von 

Neumann's approach was completely analytical, Codd's was largely empirical. 

Using a D.E.C. PDP-1 computer, he programmed a simple simulator to enable 

him to monitor the behavior of (a portion of) his state space. Successive 

state arrays were typed out on a typewriter. The transition function was 

table driven and where a previously unencountered combination occurred, 

the neighborhood and current state were typed out and Codd given the oppor- 

tunity to define the new state to be used. By incrementally defining the 

transition function and then observing the behavior provided, back-tracking 

as necessary, Codd gradually built up a transition function which exhibited 

the needed behavior. Several different neighborhood configurations were 

tried and abandoned during this exploration. 

It is important to note the heuristic and exploratory nature of this 

investigation. The visual pattern recognition and insight of the investi- 

gator play an important role in determining the course of the investiga- 

85 
tion. Since the number of transition functions possible is 8  (actually 

fewer after considering the symmetries Codd imposed) it is clear that ex- 

haustive search methods could not possibly be a practical approach to the 

problem. 
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1.4.3 Larry K. Flanigan 

Flanigan [6] investigated the electrophysiological properties of the 

A-V node (atrioventricular node) of mammalian hearts, both in the laboratory 

and via computer simulations. He developed a cellular model of the node 

based on anatomical and electrophysiological data and on earlier cardiac cell 

models. The model was concerned with the propagation of "excitation" from 

the atrial edge to the ventricular edge of the node and the role this ex- 

citation plays in coordinating contractions of the heart. His simulations 

enable him to suggest possible mechanisms for several important  classes of 

node behavior, both normal and pathological. And quite importantly his 

model supporcs the contention that cardiac behavior is explainable on the 

basis of a cellular system rather than a syncytium, i.e., as the result of 

the effects of local autonomous units rather than a single functional 

entity. 

Each cell of the model is described by a single transition function 

determining its behavior from its own state and that of (up to) six neigh- 

bors. Cell state is described by typically S or 6 parameters. A two 

dimension, six neighbor, hexagonal geometry was used. Networks of from 

approximately 40 to 300 cells were simulated with configurations having 

either an approximately rectangular shape or a "funnel" shape. Cells along 

the input edge were identical with the rest of the array except that they 

had "neighbors" lying outside the array. The state of these external "input 

cells" was explicitly controlled to provide the effects of external activity. 

1.4.4 Marion Finley, Jr. 

Finley is one of the most recent in a line of investigators beginning 

with D. 0. Hebb[8] and including Rochester [14], Holland [4, 14] and 
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Crichton [4]. These researchers have worked with various and increasingly 

sophisticated models of neural systems in an attempt to demonstrate the 

validity of the cell assembly concept postulated by D. 0. Hebb. Basically, 

a cell assembly is a collection of neurons that comes to operate as a 

functional unit as a result of its stimulus history. Finley claims that he 

was very close to this demonstration when the desire to graduate and lack 

of computer funds curtailed his investigation. 

His simulations typically involved 400 neurons in a two-dimensional 

rectangular array. The number of inputs received by each neuron (i.e. 

its neighborhood) ranged from 10 to 60 in various experiments. The pattern 

of interconnection, randomly generated at the beginning, was fixed during 

a single experiment. Thus each cell had an explicitly designated neighbor- 

hood. In later experiments the distribution of these interconnections was 

biased by the distance between two cells. Each interconnection was char- 

acterized by a "synaptic value" which determined the extent of influence of 

each of a cell's inputs. The behavior of these synaptic values as well as 

the statistical behavior of the network as a whole was studied in detail. 

1.4.5 John H. Holland 

Inspired in part by von Neumann's cellular space and seeking a more 

general formal basis for his study of parallel systems and adaptation, 

Holland [10] defined a class of iterative circuit computers. Iterative 

circuit computers are composed of a large number of identical modules 

operating in parallel in a synchronous fashion. Because of its compactness 

and strong relationship to the simulation model of this thesis, the 

following characterization is quoted from Holland: 
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The olasa  of iterative circuit computers is the set of all 

devices (automata) specified by the admissible substitution in- 

stances of the quintuple (A, A0, X, f,  P). Each particular quin- 

tuple designates a distinct interative circuit computer organiza- 

tion. Intuitively the five parts of the quintuple determine the 

following features of the organization: 

1. Selection of A  determines the underlying geometry of 

the array, particularly the dimension--thus, among other 

things A  determines whether the array is to be planar, 

3-dimensional or higher dimensional; 

2. Selection of A0  determines the standard neighborhood or 

connection scheme of modules in the array—thus A9  de- 

termines the number and arrangement of modules directly 

connected to a given module; 

3. Selection of X determines the storage register capacity of 

the module; 

4. Selection of / determines the instruction set and related 

operational characteristics of the module; 

5. Selection of P determines the path-building (addressing] 

capabilities of the modules. 

More formally, the admissible substitution instances of each of 

the five quantities are: 

U A must be some finitely generated abelian group having a 

designated set of generators, say an, g\,  ..,, g ,  with the 

restriction that no constraining relations involve g^. 

That is, the group is free on g^.    The positions of modules 

in the array are indexed by elements of the subgroup yl* 

generated by £;, ..., g .    The  time-step is given by the 

exponent of gQ.    Thus a = ^g g^    •.. g ^n,  an element of 

A,  specifies time-step t  at the module having coordinates 

Cjl» •••» iL)- By choosing the subgroup A'  appropriately the 

modules can be arranged in a plane, or a torus, or an n- 

dimensional array, etc. For example, HA'  is free on two 

generators g\, gi,  an infinite planar array is specified. 



k 

20 

If the constraining relations 
100 

100 
*71100     -    • 

g2—     '   e 

where e is the group identity, are added, a 2-dimensional 
torus 100 modules in each diameter (10,000 modules total) 

is specified. 

2. A   must be a finite set of elements, {a\,  ... (Xj),  belong- 
ing to the subgroup A1 of A.    For a module at arbitrary 
location, 4° specifies the arrangement of directly connected 

modules. Thus the modules directly connected to the module 

indexed by a = ^o* S'l'7 ••• dn* wil1 be the modules at 
t     jl * k. in * k.       .       fe.,     k 

a-f  " ^0 ^1    ii ... g£ in, where afgx ^ "- 9n in. 

For example, if there is a module at Ui$Ö2)  relative to 
generators git g2,  and directly connected modules are to be 

at coordinates Ui *  1. Jz),  (J1.J2 + 1). Ui -  1» J2). and 

Ui, Jl  - 1)» then A"  should be the set {g\,gz,g\x,g'2l\  where 
0'1 is the group inverse of g. 

3. X can be an arbitrary finite set. The set of internal states 

of the module is the set S * X x Y where Y is  the cartesian 
It k 

product n.  y., 7. = n. , {a. U 4»} and a. E 4°. That is, r     j»i 1' 1  j=l  j  T    j 
y is the set of k x k matrices with entry Y.. being a.  or $. 
The set X corresponds roughly to the possible states of the 
module's storage register; the set Y consists of the possible 
gate configurations for the paths—see the transition equa- 

tions below. 

4. / can be an arbitrary finite function of the form 

f :  {S [j *)k ■*■ S 

f determines the instruction set, that is, the permissible 
transitions of the storage register states—see the transition 

equations. 

5. P can be an arbitrary finite function of the form 

P : 5 -•■ y 

P determines changes in path gating--see transition equa- 

tions. 
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Having chosen (A, A0, X, f, P),  the behavior of the corresponding 
iterative circuit computer is completely determined by the following 

state transition schema: 

[5(a) will designate the element of 5 associated with a under 

the mapping defined recursively by the transition schema. Under 

interpretation 5(a) designates the internal state of the module 

with space-time coordinates (t, j.,  ...,j  ) corresponding to 

a s g   gv'"g ^n-    fhi*  convention will also be used for the 
components of 5 and, in particular, y..(a) will designate the 

value of element Y..  in the matrix y associated with a. Note 
T*1 71    in also, that g^a. - g0     gf    .. .g ^    designates the module at the 

same space coordinates as given by a« but at time £+ 1 rather 

than t.\ 
Hie transition schema for Yig^a)  determines the path-gating at 

time t + 1 in the corresponding module in terms of the internal state 

of the module at time t,  5(a). Under interpretation, if y..(a) - 
a. the gate is open so that information can be passed without  a time- 
v 
step delay from the module at a.a through the module at a to  the 

-1 3 
module at a.   a',  if y. .(a) ■ * the gate is closed. In other words 

y(a) tells how information is to be channeled through the module 

to its immediate neighbors; the matrices for these neighbors tell how 

the information is to be sent on from there, etc.  (Details of the 

information transfer are given by the transition equations for Sig^a)). 

ZjAdQ*) ' hjb)  if 0. .(a) * 0 and P. .(a) « a. 
»J TrJ TtJ IJ J 

* P- .(a) otherwise 
where P..(a) is the matrix element (t,j) of P(5(a)) 

and Q._.{a)  = faiq^iaj*) 

yhM s0i£WB) '* andp^(8) 'ah 
- 1 if P.Ä(6) " * 

■ ^h^hi (%*)     otherwise 
if 

where A,., , q. is the conjunction of the a.  0. 
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Under interpretation P..(a) specifies a proposed gate-setting for 

time t + 1 at the given module. Q-.(.a)  prohibits any change in the 
gate-setting, if there are any changes elsewhere in the path leading 
through that particular gate. This prohibition prevents the follow- 

ing unstable situations: 
1. A cycle of connections without delay (operation of modules 

belonging to such a cycle would in general be indeterminate). 

2. An indefinitely long chain of connections without delay 

(otherwise a possibility in certain interesting infinite 

arrays). 

The transition equations for Xig^a)  are given in terms of a function 
I: B -*■ S,  defined for a subset fl of ^4. Under interpretation I repre- 

sents input to the computer: 

Ugo«)  =/.pCS'Caia. 1),.... ^'(a^./c)) 

where f   is the projection of f on X 

and 5'(ß,i) = 5(0) ifiy^oa) » «., .... «t») 

and I(ß) is not defined 

■ I(ß) if y.(0oß) " (♦.••»» *) and -W e s 

' fis'a^W'B, i),..., 5'(yik(e)-e,fe)) 
otherwise 

where $& - $  and S'(<t».j) = $ 

Holland [9], Comfort [3] and others have discussed possible particular 

iterative circuit computers, including their set up, programming, etc. 

Holland [11] also shows that his ICC's contain a subset of composition-uni- 

versal compositions. Basically this means there exist ICC's in which any 

machine for computing a computable function may be embedded, anywhere in the 

ICC. 

Using Holland's formalism, we may define von Neumann's cellular space 

as follows: 

■   —n-i ■■——  ■'-" 
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1) A B the free group over two generators a., a,. 

2) A0 ■ {1, a., a2, a' , al }. Note that the group identity must be 

included in A0 in order that the domain of the transition function 

include the module itself. 

3) X = {1, 2, 3, .... 29} 

Y s Ye where Yo is a 5 by S matrix with all zero elements, i.e., 

no information "passes through" any cell to others. 

4) Vs e S, P(s)/y = Y0 

(weaker conditions would suffice but this is convenient.) 

5) F: S   -»• X and, further, condition 4 implies that F is completely 

determined by F restricted to X . 

The enumeration of F is not relevant here except to recall that von Neumann 

designated a quiescent state q E X and required that 

1) F(q,q,q,q,q)  = q 

and 

2) at most a finite number of modules be non-quiescent at time t = 0. 
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2. ANALYSIS AND FORMULATION OF SYSTEM REQUIREMENTS 

The review of cellular models in the previous chapter presents a 

diverse and challenging variety. Yet the strongly cellular character of 

these models suggests an enticing commonality that we shall seek to ex- 

plore and develop in this Chapter. By considering in turn each of the 

major characteristics of cellular spaces and by comparing the ways each 

has appeared in our examples, we shall work toward a single formulation 

suitable for a range of applications. 

2.1 Discreteness 

Cell spaces are discrete in time and space. Their highly parallel 

formulation is inherently closer to the fixed time-step method than to 

the next-event method. Moreover, a synchronous or fixed time-step model 

is considerably simpler to implement than a next-event model.  (Of the 

examples of Chapter 1 only Flanigan used a next-event form of simulation.) 

Therefore, we shall assume that cellular spaces are synchronous--that is, 

that a new state value is calculated for every cell at the same instant 

based on the current state of a space, and that the resulting configura- 

tion is the state of the space at the next time step. 

2.2 Uniform Connectedness 

We are concerned with "regular" networks of cells distributed over 

space. Holland's ICC model in terms of abelian groups gives the most 

24 
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general notion of regular arrangment seen in the several examples. A 

more general notion, in terms of finitely generated group graphs, is 

suggested by Wagner [16] who recognizes, however, two important reasons 

for restricting attention to the finitely generated abelian group 

graphs: 

1) such groups give rise to many "nice" structures such as planes, 

cylinders and toroids, and 

2) the theory of such groups is well developed and decidable in 

contrast to the general theory of finitely generated groups. 

To these reasons we can add: 

3) abelian groups give rise to a natural and physically interpretable 

coordinatization scheme, and 

4) data structures corresponding to the abelian group generator 

are rather straight-forwardly implementable while those of the 

more general group graphs are not. 

Flanigan's use of a hexagonal topology may appear to fall outside 

the abelian group formulation, but in fact does not. The hexagonal topology 

is easily obtained by choosing as neighbors those cells at coordinates 

N «((1,0), (0,1), (-1,1), (-1,0), (0,1), (1,-1)) relative to the central 

cell. This is apparent if one imagines the major axes to be at an oblique 

rather than right angle.  (See Figure C.2 in Appendix C.) 

Yamada and Amoroso [19] give a more complex hexagonal example with 

cells being centered on the vertices of covering hexagons and three neigh- 

bors besides the central cell. Figure 2.1 (taken from Yamada and Amoroso) 

shows how to embed this topology in the two dimensional framework by using 

oblique axes and introducing "dead" cells at coordinate points {(3m+2+n,n)| 
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(a)    HEXAGONAL CELL SPACE 

(b)    EMBEDDING IN SQUARE CELL SPACE 

Figure 2.1    EMBEDDING OF HEXAGONAL CELL SPACE 
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m, n t Z} and suitably extending the transition function . Similar tech- 

niques may be used for other configurations. 

For all of these reasons this author feels the abelian group founda- 

tion represents a good basis for a cellular simulation system. We shall 

take advantage of the coordinatization property and represent spaces and 

vectors in terms of the more intuitive coordinate notation. 

2.3 Size of Simulation and Concept of Quiescence 

To perform an actual simulation one is often faced with the problem 

of simulating a logically infinite space on a finite computer. A size 

must be determined and boundaries specified and even if the space is 

finite (and within the capacity of the computer) there is still the task 

of defining boundaries. 

Introducing boundaries in an "infinite" model raises the problem of 

what to do when calculating the transition function of a cell within the 

boundary which has a neighbor lying logically outside of the boundary. In 

models such as von Neumann and Codd used there is a very natural solution: 

structure the cell space data management routines such that when the state 

of a cell outside the actual simulation is required, then the quiescent 

state is given. This is consistent with the formal requirement that only a 

finite portion of the space is non-quiescent and, hence, everything outside 

This is handled for this case as follows: The cell state space, let us 
call it S, is enlarged by adding a new state D (the dead state) which is 
assumed only by the dead cells. For a transition function F, F(s., .... s-) 
= D if and only if s. = D. If s. / D but s_ = D then F(s1, ..., s-) is 
determined by s., s., s., and s, only. If s. ^ D and s, « D then Fts,, ..., 
s.) is determined by s., 8-, s- and s- only. With such constraints one has 
embedded the four neignbor hexagonal space of Figure 2.1a in a cartesian 
seven neighbor space. 
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the actual simulation is quiescent and will remain so by virtue of the 

transition function. 

A similar technique can be used in many biologically oriented 

models by substituting "background" for "quiescent". The simulated cells 

can be considered immersed in a "larger" mass of cells whose behavior is 

known and fixed.  A straightforward extension of this idea is to permit 

the background state to be varied as a function of time, or to be randomly 

varied from access to access during the same time step, or both. 

This is a powerful technique for simulating a large or infinite 

space and at the same time it maintains the simplicity of writing the 

transition function independent of concern for boundary conditions and 

configurations. 
.4- 

One service that would be very helpful for the simulator to perform 

is to monitor the state of cells that are "near" the boundary to detect 

states that would, if part of the neighborhood of a cell outside the 

boundary, lead to a change of state for such an exterior cell. This would 

allow he experimenter to detect a "spread" of non-quiescent activity be- 

yond the point where the validity of the simulation may be questioned. This 

is, of course, easiest to perform in spaces having small neighborhoods (i.e. 

small in distance from central cell) and a well-defined quiescent or back- 

ground state. The ideal solution would be for the simulation system, on 

detecting such a situation, to expand the boundaries of the actual simula- 

tion to include the newly "active" cell and keep going. A more realistic 

approach might be to allow the investigator to specify the new boundaries 

(subject to the same system constraints on specification as were followed 

originally) and then to continue with the expanded simulation. 
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Alternately one can avoid some edge problems by using Holland's 

observation that abelian spaces are easily made cylindrical or toroidal 

by adding certain constraints to the group. In some simulations this 

kind of "wrapping-around" could be more suitable than the quiescent/back- 

ground approach suggested above. (A possible example is the propagation 

of a "wave" of activity in a neural network.) This approach also provides 

a simple way to "close" a finite group of cells on itself without impos- 

ing an unwarranted "stabilizing" effect. Clearly this, too, can be ac- 

complished at the level of the data management routines without requiring 

any consideration at the level of the transition routine. 

Both of the above may be useful where a regular neighborhood con- 

figuration is desired. The problem of edges is also reduced in finite 

spaces where each cell has an explicit neighborhood completely contained 

in the space. Finley's simulation is an example of this. 

But sooner or later a boundary must be specified—if only to de- 

termine storage requirements in a computer. To this author's knowledge, 

no one actually doing cellular simulation, with the exception of Flanigan, 

has been concerned with providing boundaries more complicated than simple 

rectangles. In his case the boundary was a simple convex polygon. Thus, 

until further motivation arises, it should be sufficient to provide a 

facility to define a boundary for a cellular simulation as being an arbi- 

trary convex polygon. A simple way to define a polygon in a two dimensional 

space is to list the coordinates of the vertices in clockwise order. 

2.4 Neighborhoods 

Once the cell space geometry is determined it is usually possible to 

give a uniform specification for the neighborhood. One can think of a fixed 
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template that covers a cell's neighbors when some fixed point of the 

template is on the central cell. This concept finds natural expression as 

an n-tuple of vectors in the coordinates of the underlying space. The 

i  element of the n-tuple represents a displacement which when added to 

the coordinates of the central cell gives the i  neighbor,of that cell. 

A single template is defined which is applied uniformly throughout the 

space. 

In simulations where the neighborhood must vary from cell to cell a 

method will be proposed for making that specification part of each cell's 

data structure. Further there is no reason that part of the neighborhood 

cannot be uniform across the space and part be cell dependent. 

2.5 Transition Functions 

The writing and rewriting of the transition functions used throughout 

an investigation is likely to require a significant amount of an investi- 

gator's effort. There is much need, therefore, to make the language for 

expressing transition functions both powerful and oriented toward the 

particular requirements of cellular simulations. 

Transition functions are, by their very definition, local rules of 

behavior that are applied throughout the space. A central quality of a 

transition function language should be this "localness". Since it is a 

function, it will suffice to construct it as a subroutine called by the 

simulation executive with the states of neighboring cells as its arguments. 

The only characteristic of the cell geometry and neighborhood template that 

is essential in constructing the transition function is the number of 

neighbors (arguments). 
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2.5.1 Cell Data Structure 

Each cell of a space has the same data structure which, except for 

the number of computer words required to represent that structure in com- 

puter storage, need not be known to the simulation system. It is not the 

purpose of this dissertation to develop or investigate languages with 

data structure capabilities as such. However, the availability of such 

capabilities is believed to be so useful in coding cellular simulations 

that basic though powerful data structure facilities will be included in 

the particular language exhibited in Chapter 3. 

In any systematic approach to data structures an important adjunct 

is: 

1)    an ability to define operators to augment the pre-defined ones 

of the language. 

and 

2) the ability to write constants of the newly defined data types 

in a natural manner. 

Both of these capabilities will be prominent in the language developed in 

Chapter 3. 

2.5.2 Parameters Called by Value 

The method of calculating the next state of a cell space requires the 

simultaneous parallel calculation of the next state of each cell of the 

space followed by a simultaneous and instantaneous change of each cell to 

that new state. The result is the new cell space state. But a simulation 

on any real computer (perhaps excepting IIliac IV) proceeds serially cell 

by cell. Clearly the next state of a cell cannot be immediately substituted 
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into the data structure upon calculation--the cell is potentially the 

neighbor of some cell whose transition is yet to be calculated. 

This implies that the parameters of a transition function must be 

called by value and cannot be modified by the transition function itself. 

The value of the function is a state description which must be saved 

separately from the current  cell space state until each cell's next  state 

has been computed. When a new state has been computed for all cells, the 

next state can be considered the current state and the computation of a 

new next state begun. 

This can be implemented by using two data areas, each sufficient to 

completely represent the state of the space. One area contains the cur- 

rent space state and the other contains the next space state while it is 

being computed, and the roles are reversed for the successive time steps. 

Although this requires twice the storage needed to simply represent the 

space state, it is in general the only satisfactory technique. 

In some spaces with simple geometry and small neighborhoods, more 

specialized techniques could be employed. For example, in the Von Neumann- 

Codd simulations at most the equivalent of one row plus one cell need be 

stored in duplicate.  In more complex cases, one could search for scanning 

algorithms that were based on the neighborhood relation in such a way to 

systematically complete some "compact" region of cells and expand regularly 

from there to eventually cover the whole space. Parnas [13] has developed 

some formal techniques for reducing both the space and computation require- 

ment of simple spaces and neighborhoods. However, our desire to permit 

arbitrary neighborhoods, such as Finley used, and even dynamically changing 

neighborhoods, as in Holland's ICC's, clearly implies that nothing short of 

full duplication of the cell space data structure will suffice. 
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2.5.3 Input-Output 

A language for transition functions obviously needs no input-output 

capabilities in the usual sense; it is simply a function. However, be- 

cause some interaction with the transition function may be quite useful 

at various times in an exploratory simulation, some rudimentary I/O    * 

facilities are recomnended. 

2.6 Input to Cell Space 

Inputs to a cell space are states which are not specified by the 

transition function but which are controlled independently outside of the 

cell space. It has been suggested that an additional "dummy" entry be 

included in the neighborhood of each cell which, by convention, is not 

the state of some cell but rather input for the central cell. This has 

the conceptual inelegance of grouping two quite different functions into 

the neighborhood concept. Further, all "real" neighbors of a cell have 

states drawn from a common state space, while the state space of the input 

will quite likely be different. 

Yamada and Amoroso [19] formalize input as a set of possible transition 

functions that may be applied to the space. The input determines which 

transition is used on any given time step and the same one must be used 

for every cell in the space. This, however, does not permit modeling 

of spacially distributed inputs. 

Yet another approach is to consider certain cells to have their states 

controlled externally and not by the transition function. 

Because none of the above notions of input is sufficiently flexible 

to fulfill a variety of requirements, we have developed the following quite 

different approach. Consider that there are a finite number of input streams. 
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An input stream  is a function of time only with values in some designated 

state space. Which stream is used as the input of a given cell is desig- 

nated by the value of a substate of that cell's data structure. This 

permits input to be spacially distributed in a natural manner (even with 

dynamically changing spacial distributions) and the state space of the 

input to be conveniently distinct from that of the cell itself. Alter- 

nately, if the input state space and cell state space (except for the 

input designation) are the same, then the transition function can, under 

appropriate conditions, assign the input value as the state of the cell. 

2.7 Output and Monitoring of Cell Space 

In spaces with quite simple state spaces, the state is readily 

represented by one of a small number of distinguishable graphics. Of 

crucial importance is the ability to see the states of cells in their 

spacial arrangement. In working with a complex state space, consisting 

perhaps of several independent substates, it is difficult to represent the 

full state of many cells in a compact and intuitive manner. There is 

little previous experience to draw on. Our experience indicates that one 

does not usually need to know the full state of a group of cells; rather 

some characteristic property (often a particular substate) is sufficient 

to convey the desired information. 

Such properties may be computed by a set of auxiliary functions which 

we refer to as mope or mapping functions. Each map is a function from the 

cell state space into some distinctive set of symbols.  These symbols are 

We admit to being motivated in part by the available hardware. The 
display (a D.E.C. 338) has a character generator that allows faster execution 
and more compact data tables than in other plotting modes. Moreover, the 
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chosen to be heuristically suggestive of the value of the property rep- 

resented and uniform in size to permit easy presentation on CRT display. 

We have adopted the strategy of having the state of a cell mapped 

into a "character" to be used to represent its state to the experimenter. 

After each update of the state of the space,  the display mapping can be 

computed for each cell of the space,    id the resulting graphics displayed 

in their spacial arrangement.    Provision should be made for several such 

mapping functions, perhaps with distinct character sets, to be able to 

view different aspects of the space state. 

2.8    Interactive Requirements 

A range of commands will be required to effect control of a cellular 

simulation.    A list of such commands could be made arbitrarily long as 

more and more general and powerful commands are constructed and more 

specialized requirements included.    The following kinds of capabilities 

are minimal and should be included in any cellular simulation system. 

1) Specify important characteristics of a cellular simulation: 
transition function 
neighborhood 
boundary 
edge convention, etc. 

2) Simulate for a given number of time steps while monitoring the 
behavior. 

3) Change the display mapping function used to designate cell state 
characteristics. 

4) Provide general capabilities for changing the state of individual 
cells. 

character set is user defined from control tables in a reserved area of 
memory so that a "character" may in fact be any figure that is desired. 
At most 128 such characters may be specified, of which one must be an 
"escape character mode" pseudo-character. 
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5) Provide a capability for interacting with the transition function 
itself, to change parameters, etc. 

6) Provide a mechanism for a transition function to indicate a 
"not-defined" condition and perform interaction with user to de- 
termine what to do without upsetting the logical integrity of the 
simulation. 

7) Save a given cell space state with appropriate identification for 
later possible use. The saved data should contain sufficient co- 
ordinate information for the purposes of the restore operation. 

8) Restore the current cell space state from a given named file area. 
If boundary information differs, provide an option for keeping 
the parts that overlap. 

9) Provide facilities to conveniently define input streams. 

2.9 New Language or Old? 

Available languages do not provide the kind of data structure flexi- 

bility that is important in cellular simulation. Simulation languages 

are typically orientated toward models with diverse elements with ir- 

regular interconnection topologies; they are concerned with statistical 

measurements such as average waiting time, length of queues, etc. and 

usually ignore the problem of simultaneous change of state of independent 

elements of the model. All of these characteristics make available 

languages awkward tools at best for performing cellular simulations. 

New language constructs and the attendant checking and enhanced ex- 

perimental useability are important to successful exploitation of cellular 

space models. We have given a formulation of cellular spaces that is 

broad enough to cover a variety of applications and rich in structure not 

provided by existing general purpose languages. In Chapter 3 a new 

language encompassing our formulation is developed which will substantially 

aid in conducting cellular simulations. It should be understood that while 

the author has implemented this language, it is the suitability of the 
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language that is important, and not his particular implementation.  Most 

important is that the language, however implemented, be suited to the task 

of simulating cellular spaces. 

2.10 Formalization 

This section concludes by formalizing the structure of the class of 

models realizable in our system. This characterization is based on the 

simulation system actually implemented in order to more concisely describe 

that system. It is presented here because the notation will be useful 

later in describing some of the details of the actual system. 

Let Z be the set of integers both positive and negative; then Z ■ Z 

is an infinite two dimensional cartesian plane which we call P. Sp is a 

cellular space iff 

Sp C P u E 

where card (E) = 1 and E O P = $, and Sp O P is circumscribable by a convex 

polygon. 

Edge effects are defined by a function 

e: P ■* Sp 

such that 

Va[a c Sp s^e(a) ■ a]. 

The function e provides the mechanism for "wrapping around" to form cylinders, 

etc., as well as supplying a "default" state for neighbors outside of Sp; 

the constraint preserves the identity of cells within Sp. 

Implementation of such a new simulation language may be possible in one 
of the emerging "extendable" languages, such as MAD/I. Unfortunately none 
was available in a form suitable for our use. We have worked entirely in 
assembly language for the IBM 1800. 
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Hie general neighborhood N, i.e., common to all cells of the space, 

is an ordered set of elements of P: 

N = (A., A-, .... A ) where each A, e P 
X    & It x. 

The A. are displacements from the central cell. 

The state S of a cell consists of three parts: 

S * X ■ N' ■ M 

where 

X is normally interpreted as the cell state 

N* is the local neighborhood, and 

M is an input selector. 

While X is the part that is usually considered the "state" of a cell, the 

formal inclusion of N* and M will be exploited to provide dynamically 

changing neighborhoods and inputs. In particular N* may be functionally 

dependent on the time step and location while N is independent of both. 

The total neighborhood of a cell a e Sp is simply N (a,t) » N ♦ N'(a,t), 

where "•»■" here means the ordered concatenation of ordered sets. 

Input is defined as a function of an index, or selector, and time: 

I: {1, ...» m} ■ T -► Q 

Each I (m,•) represents an input stream, and which input stream corresponds 

to a cell is determined by a substate of the cell data structure. Tne 

input to cell a is thus given by 

I (M(a,t), t). 

The transition function f, 

f: S ■ S ■ ... • S ■ Q -» S 



äy 

S(a,t*l) = fCsCeCa+Aj), t), .... S(e(a+An+n,), t), I(M(a,t), t) 

Note that edge effects are incorporated within this formulation. 

Output functions 0. map from the state space to a finite number of 

displayable graphics: 

0.: S *  {Gj, .... Gn},n ^ 127. 
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3. A LANGUAGE FOR CELL SPACE SIMULATION 

The Cellular Space Simulation Language is a procedure oriented 

language designed to facilitate the writing and simulation of cellular 

space models. It provides a full complement of arithmetic and logical 

operators; a facility for defining structured data types and operators 

on those data types; and various data types, operators, and statements 

intrinsic to the simulation environment in which the translated object 

program will be executed. 

The grammar for the language is syntactically an operator grammar. 

The lexical format is free form with respect to the input medium. The 

basic logical unit is the construction (terminated by a semicolon) in 

order to facilitate error recovery insofar as possible. Statements 

are one or more concatenated constructions. A sequence of statements 

is a program. 

In describing the language we shall use the following conventions 

and notations. Example sections of source coding will be on separate 

lines with double indenting to keep them distinguished from the describing 

text. Source words are always in capital letters and this is also a 

useful cue. Syntactic descriptions of the language grammar will use 

a variation of the more common BNF notation. 

Syntax will be described in its production (rather than reduction) 

form, e.g., 

<A> •+■ B <C> ■•s*. 

which nay be read "the non-terminal symbol <A> may be replaced by the 

40 
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symbol B followed by the non-terminal <C>". Tall square brackets will be 

used to designate several mutually exclusive possibilities, of which one 

must be present. Thus, 

<A> <C> 
X <L> 

B 

may be considered a shorthand for the two productions: 

<A> ■*■ X <L> <C> 

<A> -»• B <C> 

the  latter will often be simplified by not repeating the left side, as in: 

<A> -* X <L> <C> 

-  B <C> 

Curly brackets will be used to indicate a sequence that may be repeated an 

arbitrary (possibly null) number of times.  If sub- and superscripts follow 

the right bracket, they are interpreted as minimum and maximum number of 

repetitions, respectively. Thus, 

<A> ■*■ X {Y} 

describes the same collection of terminal strings as 

<A> ■»■ <A> Y 

*   X 

and 

is shorthand for 

<A> ->• (X)^ z 

<A> ■* xz 

-»■ xxz 

-♦• xxxz 
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We will not be concerned here with the subtleties of the differing parsing 

trees that might result from alternate interpretations of these shorthands. 

We distinguish between a description grammar which is used to convey the 

language to users, and an implementation grammar which is used explicitly 

for syntax directed parsing. Since we are primarily concerned with 

describing a language, the above conventions are both a convenience and 

in some cases more intuitively meaningful than a comparable BNF expression. 

We admit that this dichotomy of grammars leaves ample opportunity for 

conflict and inconsistency between the description and the implementation. 

But since the compiler currently implemented used syntax directed methods 

only at the level of expressions and assignment statements, there is no 

formal implementation grammar for many aspects of the system. Accordingly, 

we will not be too embarrassed to occasionally use a suggestive non-terminal 

symbol such as <integer constant> without anywhere giving a syntactic 

definition of the symbol. The intention will be clear, and will accurately 

convey much semantic information about what is actually required by the 

compiler. 

Summaries of the syntax, keyword tables, etc., may be found in Appendix 

A. Implementation of the compiler is discussed in Appendix B. 

An example of a transition function written in this language is 

exhibited and discussed at the end of this Chapter. The reader may find 

it helpful to refer to Figure 3.3 for examples while reading the Chapter. 

3.1 Procedural Aspects 

3.1.1 Lexical Format 

The lexical unit of the language is the atom. An atom  is defined as 

1) any of the non-alphanumeric characters except spaces or 
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quote, e.g. ♦ - / %, 

2) any string of alphanumeric characters delimited by 

non-alphanumeric or space or quote (period is considered 

a numeric and dollar sign an alphabetic), 

3) any string of characters enclosed in quotes, (a quote 

character may be included within a quote string by two 

quotes in succession). 

Note that space itself is never an atom and may always, and must sometimes, 

be used as a delimiter between atoms. For example, 123 is one atom while 

1 2 3 is three atoms. 

Lexically a oonstruotion  is any sequence of atoms (except semicolon) 

which is followed by a semicolon. Note that the semicolon is considered 

part of the construction. Thus, the following construction consists of 

14 atoms: 

AX = A(5) ♦ B[l, P$T]; 

A atatement  consists of a given number of constructions concatenated 

together and satisfying certain constraints. The statements of the 

language will be developed in detail shortly. 

A numeric atom  is an alphanumeric atom consisting of only numeric 

characters and at most one period. An alphabetic atom is an atom of only 

alphabetic characters. A \-atom is an alphanumeric atom which is not a 

numeric atom and not a reserved atom (i.e., not used as a keyword or for 

any other predefined purpose). A-atoms may be used as variable names or 

labels, defined as operators, etc. 

If the first atom of a construction is a X-atom and the second a colon 

then the A-atom is implicitly defined as a constant of type LABEL.  (See 3.1.2). 
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In general, the language allows only one kind of use for an atom. 

For example, no atom could be both a defined data type name and a label 

even though the correct use could almost certainly be inferred from the 

context. However, the dual use of "-" (minus sign) as both a unary and 

binary operator is so pervasive that it has been explicitly accommodated. 

3.1.2 Primitive Data Types 

The primitive data types of the language are: 

1) INTEGER 

2) REAL 

3) BOOLEAN 

4) LABEL 

5) TEXT 

6) FUNCTION 

Each of the above atoms is a keyword whose use in the language is re- 

served for this particular purpose. 

In general, the variables of the language may be of any of the above 

types. Constants of the above types will be recognized by their lexical 

properties as follows: 

1) An INTEGER constant is any numeric atom without a period. 

2) A REAL constant is any numeric atom containing exactly one 

period. 

3) BOOLEAN constants are the atoms TRUE and FALSE. 

4) LABEL constants are any A-atom that occurs in the label field 

of a statement. 
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5) TEXT constants are recognized by their containing quotation 

characters. 

6) FUNCTION name constants must be explicitly declared as 

explained later. 

3.1.3 Declarations 

There are two general declaration statements: DECLARE... and DEFINE.. 

The first simply assigns a given attribute to each of a series of X-atoms. 

The form of the statement is:     " ■ 

DECLARE <type>: <A-atom list>; 

For example: 

DECLARE REAL: A, B, C; 

DECLARE INTEGER:  X, Y, GEORGE; 

would establish A, B, and C as real valued variables and X, Y, and GEORGE 

as integer valued variables. 

Acceptable X-atoms for the <type> are any of the primitive data type 

names or any of the defined data type names (as explained below). 

TVo types of composition operations are available to generate data 

structures more complex than the primitives. TTie simpler of these is the 

fixed length array. The form is: 

DEFINE «a-atom> ARRAY <type> SIZE <integer constants 

The interpretation is that the first <X-atom> is defined as a <type> name 

which identifies a data structure consisting of a fixed number, given by 

the <integer constant?, of elements all of which are of type given by 

the <type>. Tims, to declare A an array of five reals and B a square 

array of seven by seven integers one writes: 
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DEFINE REALS ARRAY REAL SIZE 5; 

DECLARE REALS : A; 

DEFINE INT7 ARRAY INTEGER SIZE 7; 

DEFINE SQINT7 ARRAY INT7 SIZE 7; 

DECLARE SQINT7 : B; 

The second composition operation provides for the definition of a 

block  of contiguous data whose elements may be of diverse types. Blocks 

have also been called component structures or structured variables. The 

form of the statement is: 

DECLARE <X-atom> BLOCK [<type list>]; 

For example: 

DEFINE QQSV BLOCK [REAL, INTEGER, INTEGER]; 

specifies that QQSV is a type name referring to a block consisting of a 

real number followed by two integers. 

Either operation may be composed either with itself or with the other, 

thereby allowing complex data structures to be constructed in hierarchical 

fashion. By convention, the same structure may not  be given more than one 

name. 

Components of a complex data type may be identified by a subscript 

following the data name. Subscripts are interpreted from left to right 

as identifying a lower data type in the hierarchical description of the 

data structure. Figure 3.1a presents a somewhat involved example. 

In order to conveniently refer to primitive elements of a cell's data 

structure, we shall sometimes speak of an ordering of the fields of a data 

structure. A field is a substructure which has a primitive type. Field 

f precedes  field f- if in the subscript notation for referring to the 

respective fields, the subscript designation f. lexigraphically precedes 
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DEFINE INT3 ARRAY INTEGER SIZE 3; 

DEFINE QQSV BLOCK [REAL, INT3]; 

DEFINE VSQQ ARRAY QQSV SIZE 3; 

DECLARE VSQQ:  ABC; 

ABC 

ABC (2) 

ABC (2,1) 

ABC (1,2) 

ABC (3,2,1) 

ABC (1,2,7) 

Is of type VSQQ 

QQSV 

REAL 

INT3 

INTEGER 

undefined 

3.1a 

INTEGER 

Field  1 2 5 6 8 9 10   11   12 

3.1b 

Example Data Structure Definition and Related Notation 

Figure 3.1 
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the subscript designating fJ. In Figure 3.1a, ABC (1,1) precedes 

ABC (1,2,3) which precedes ABC (2,1), etc. Since this clearly gives a 

linear ordering, we shall speak of the first field, second field, etc. 

(One may equivalently think of drawing the "structure tree" of a data 

type, and then numbering the endpoints from left to right as illustrated 

in Figure 3.1b). 

Either unary or binary operators may be defined on any available types. 

If a previous operator definition exists, it is replaced. A precedence 

is required for binary operators to place each new operator in appropriate 

relationship to other operators. 

An operator definition consists of 1) a header statement, 2) a 

'/Ody consisting of a sequence of statements written in the language and 

3) the "ENDOPR;" statement. 

The forms of the header statement are: 

DEFINE <A-atom> UNARY <type>, <type>; 

DEFINE <A-atom> BINARY <integer>, <type>, <type>, <type>; 

Each of the <type> names must be previously defined. The <integer> 

gives the precedence and the last <type> gives the type of the result. 

The  other <type> (s) specify the required arguments. 

The body of the definition may be empty.  If it is, then a subroutine 

CALL to the operator named will be generated with two or three arguments 

which are addresses of the appropriate data.  If the body is non-empty, 

then it will be assumed to define a routine to compute the needed result. 

Arguments may be referred to by the form % <integer> where the ordinal 

value of the integer constant specifies the argument. 
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The last statement delimits the scope of the operator definition. 

As an example, suppose that variables of type REAL3 are being used 

to represent vectors in a three dimensional  (physical) space.    An operator 

1 2 for evaluating the dot product of tvfo vectors might be defined as follows:   ' 

DEFINE REAL3 ARRAY REAL SIZE 3; 

DEFINE $D0T$ BINARY  15,  REAL3,  REALS,  REAL; 

%3 = %1(1)*%2(1)  + %1(2)*%2(2)  + %1(3)*%2(3); 

ENDOPR; 

The PARAMETER declaration is designed to allow mnemonic names to be 

used in place of integer constants (primarily when used as subscripts.) 

This declaration is recommended to resolve the awkward choice resulting 

from block data types. A numeric subscript is non-intuitive but gives 

a known compile time data type, while a heuristically choosen and suitable 

valued variable does not permit a known compile time data type. Use of 

a parameter removes the problem. 

The form of the statement is 

PARAMETER { ( \{,}l  <integer constant>)}; 

It consists of a series of ordered pairs. The first of the pair is 

replaced by the second whereever encountered. For example the following 

Note the quite different meanings of the words "dimension" and "vector" 
when used in their physical and computer science senses.  In this example, 
a three dimensional vector in physical space is represented by a one 
dimensional array (vector) or size (length) three. 

Although not necessary, we find it convenient to use X-atoms whose 
initial and final characters are dollar sign as binary operators, and 
A-atoms with final (and not initial) dollar sign as unary operators. 
This practice is followed through out this thesis. 
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PARAMETER (XYZ 12)  (ALPHA, 0); 

X ■ ABC(XYZ, ALPHA); 

is equivalent to 

X ■ ABCCia.O); 

Note that the parameter substitution becomes effective at the point 

of definition and is not retroactive to previous statements. Also, note 

that parameter atoms may not be "chained". Further, the substitution 

is actually performed before syntactic parsing and hence, the integer 

constant is actually used by the parser. This permits the type result 

of a subscript of a BLOCK structure to be known at compile time. 

3.1.4 Executable Statements 

The basic executable statements of the language are an assignment 

statement, an unconditional branch statement, conditional branch 

statements, and an iteration statement. Several miscellaneous statements 

are also available. 

3.1.4.1 Assignment 

The most basic statement of the language is the assignment state- 

ment. The most succinct way to present the acceptable forms of this 

statement is via the productions of a grammar. Such a description is 

found in Figure 3.2. 

The following observations are made about this description: 



i>i 

<assign ment> -♦■ <left des> = <exp> 

<left des> -»■ X 

-f X (<exp list>) 

<exp list> -> <exp> 

-♦• <exp list>, <exp> 

<exp> -► <exp> 6 <exp> 

•* *» <des> 

-> <des> 

<des> -► <left des> 

■+ (<exp>) 

■+ XI  (<exp list>) 

-* X! 

-*■ <lsv> 

<des> ■+ (<assignment>) 

<lsv> -* [<exp list>] 

Syntax of Assignment Statement 
Figure 3.2 
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1) The symbols X, 6, and ^ are not particular terminal symbols but 

designators for the class of X-atoms, binary operators and unary operators 

respectively. The lexical parsing actually performs the necessary assign- 

ment of an atom to these classes, if appropriate, prior to parsing. 

2) An explicit "operator", i.e. the exclamation mark, is used to 

designate function calls. This convention is similar to that of MAD [12]; 

however a different atom has been chosen to avoid another usage for the 

period (which is used in MAD). 

3) In this descriptive grammar the production 

<exp> •*  <exp> 6 <exp> 

obviously introduces an ambiguity into the resulting language. In contrast 

to typical applications, the grammar rules are not used here to establish 

the relative precedence of a multitude of binary operators. In contexts 

where an ambiguity exists in parsing an input string, as for example in 

A + B * C 

the order of association is resolved by an extra-grammatical attribute of 

all binary operators, its (single) precedence value. The resulting 

organization has the virtue of making the grammar invariant with respect 

to the number and relative precedence of binary operators, and accordingly 

new binary operators can be introduced with absolutely no impact on the 

syntactic parser. 

A special compile time binary operator, atom "@", is used for various 

purposes. The operator accepts as a left operand an argument of any type 

and as right operand only an argument of type TEXT. The intention is to 

allow ad Jioc extentlons to the compiler with a minimum of effort. Three 
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immediate applications are the following: 

Where BLOCK data structures are used with variable subscripts, in 

general the <type> of an expression is not determinable. 

For example: 

DEFINE ABLE BLOCK [INTEGER, REAL]; DECLARE ABLE: MARY; 

X » MARY (I); 

MARY (I) will be of type INTEGER if I has value 1, and type REAL if I has 

value 2. However, the compiler does not support dynamic data types at 

run time, and the type of every (sub-) expression must be known at compile 

time. Thus, the above assignment could not be compiled as it stands. 

By using the @ operator followed by a <type> atom, such situations may be 

resolved. 

Thus, 

X = MARY (I) 8 "INTEGER"; 

would compile and treat MARY (I) as an integer regardless of the value of 

I. The operator may also be similarly used to override a known <type> in 

favor of a different one. 

At some point it may be desirable to introduce new primitives 

which have lexically the same constant forms as existing ones. 0.5 is 

the most natural lexical representation whether the atom is REAL or FIXED- 

POINT. But 

0.5 g "REAL" 

0.5 e "FIXEDPOINT" 

clearly indicates which conversion is desired. 
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Real constants in the commonly available scientific (or E-) format 

can be conveniently introduced by using the exponent as the second 

argument thus: 

0.5 § "£25" 

1.873 § "E-6" 

3.1.4.2 Unconditional Branch 

The form of the unconditional transfer is 

GOTO <exp>; 

where <exp> is of type LABEL. Control passes to the statement with 

the designated label. 

3.1.4.3 Conditional Branch 

The conditional branch statements are of the following forms: 

IF <exp>; 

ORIF <exp>; 

ELSE; 

ENDIF; 

These are interpreted the same as the compound conditional in the 7090 

MAD language [12].  In particular, note that exactly one "ENDIF;" must 

follow the "IF..." to determine the scope of the sequence. The 

"ORIF..." may be used any number of times, and the "ELSE;" at most 

once. These statements delimit mutually exclusive sequences of statements 

of which the first true condition will enable its corresponding body 

to be executed. 

If IF, ORIF, ELSE, and ENDIF represent their respective statements 

and a any valid sequence of statements, then the following defines legal 

uses of the conditional branch: 
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<legal IF> -»■ IF a{ORIP a} {ELSE o}J 

3.1.4.4 Loop Statement 

Hie loop statement is of the form: 

LABEL1: LOOP <assignment>; <exp>; <exp>; 

END IF 

LABEL2:  ENDLOOP; 

LABELS:  ... 

Tlie interpretation of this statement is similar to that of 7090 MAD. 

The left side of the assignment specifies the controlled variable for the 

loop. The assignment is performed, then the second expression is evaluated. 

If TRUE, the loop is terminated; otherwise, the loop body is executed. 

The  loop body may not be executed at all. The ENDLOOP statement returns 

control to the loop header statement where the controlled variable is in- 

cremented by the first expression and the termination test performed again. 

For example: 

I = 5; 

LOOP X(I) = DATA(I); ÜATA(I); X(I)$GT$ 0; 

X(I) = 0; 

ENDLOOP; 

is equivalent to 

I = 5; 

X(I) = DATA(I) 

GOTO Tl; 

T3:      X(5) = X(5) + DATACI); 

Tl:     IF X(I)$GT$ 0; 

GOTO T2; 
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BNDIFj 

X(I) = 0; 

GOTO T3; 

T2:     CONTINUE; 

3.1.4.5 Miscellaneous Executable Statements 

The miscellaneous statements include: 

1) CONTINUE; 

This serves as a convenient way to introduce a label. 

2) EXECUTE <exp>; 

This allows direct subroutine calls. 

3) PRINT <exp. list>; 

READ <X-atom list>; 

These are not properly part of the simulation language. They are included 

for diagnostic and developmental purposes and may be a suitable nucleus 

for I/O statements of a "free standing" language. They are also a convenience 

in developing and debugging transition functions. 

4) RETURN; 

This statement terminates the transition function and returns control to 

the run time system. 

5) ENDPROG; 

This indicates the physical end of the program. 

If program execution "flows into" this statement it will be functionally 

equivalent to a RETURN. 
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3.1.5 Literal Structured Variables 

A literal struatured variable  (abbreviated LSV) is a non-primitive 

variable or constant whose data structure is explicitly represented in 

its lexical representation in a rather natural manner. For example, 

if data type ALPHA is defined by 

DEFINE ALPHA BLOCK [REAL, INTEGER, INTEGER]; 

then [1., 2, 3,] is an instance of a constant of type ALPHA. Further 

if: 

DEFINE BETA ARRAY REAL (2); 
DEFINE GAMMA BLOCK [INTEGER, BETA]; 
DECLARE BETA: ABC; 
DECLARE GAMMA: DEF; 
DECLARE REAL: X; 

then [1, [2., 3.]] and [1, ABC] are LSVs of type GAMM. 

Literal structured variables may be used anywhere to the right of 

an assignment operator where a variable of the same type would be used. 

To continue the last example, if = (assignment) is given its usual inter- 

pretation, then the statement 

DEF = [1, [5., 7.]]; 

would be functionally equivalent to 

DEF[1] - 1; 
DEF[2,1] = 5.; 
DEF[2,2] = 7.; 

and 

DBF = [2, ABC] 

would be equivalent to 
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DEF  [1]  = 2; 
DGF  [1,1]  = ABC  [l]j 
DEF  [2,2]  = ABC  [2]; 

More generally 

DEF *   [I,  ABC +   [X,  0.5]]; 

corresponds to 

DEF(l) = 1; 
DEF(2,1)  = ABC  (1)  + X; 
DEF(2,2)  = ABC  (2)  + 0.5; 

The above examples illustrate the meaning of operations involving 

LSVs and do not describe the order in which the computations are performed. 

See Appendix B for a discussion of the implementation of LSVs. 

An LSV has a <type> which may be inferred from its lexical form. 

Thus, in the above examples, the occurrence of [1, [2., 3.]] is sufficient 

to recognize that its type is GAMMA. Accordingly, there must be a declaration 

for each type of LSV that may occur. 

Subscripts may not be used with LSVs, e.g. , 

[1. [2., 3.]] (2) 

is not an acceptable alternative for 

[2., 3.] 

While such an interpretation is quite natural in the context of the present 

development, it does not add anything to the language, and indeed, detracts 

by allowing the user to obscure what computation is being performed. 

We note that structured variables are not manipulated via pointers, 
i.e., the whole data block is physically moved during an assignment operation. 
However, there are certain approaches that can be used to minimize physical 
data movement with an LSV. 
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3.2 Simulation Oriented Aspects 

Certain data type names, operators and statements arc included in the 

language explicitly for the simulation model. These will be described 

in three groups: data structures, entry points, and operators. 

3.2.1 Data Structures 

3.2.1.1 Cell Data Structure 

The X-atom CELL is reserved as a <type> naming the data structure for 

the cells of a simulation. The user must include a "DEFINE CELL..." 

statement that specifies this information. The global variable NEWSTATE 

is implicitly declared to be of type CELL. The value of NEWSTATE becomes 

the value of the current cell on the next time step. The value NEWSTATE 

on entry to the transition function is the current state of the current 

cell. Thus substructures not assigned new values by the transition function, 

if any, will remain unchanged. 

The preferred way to refer to cells is as elements of the array variable 

CELLS. Thus, CELLS (1) is the first neighbor of the current cell, CELLS 

(2) is the second, etc. Further subscripting may be used to refer to 

substructures of the cell data state. One may imagine that the following 

declarations have been made: 

DEFINE CELLARRAY ARRAY CELL SIZE ?; 

DECLARE CELLARRAY: CELLS; 

where the size of the  array may not be known at compile time. 

One may of course assign a value to a variable, e.g., LN, and then write 
CELLS(LN) to refer to the "left neighbor" if such mnemonics are convenient. 
Chapter Five comments further on this naming problem. 

• 
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1 

The declaration 

DIMENSION <integer>; 

is used to implicitly define the attribute type COORD as 

DEFINE COORD ARRAY INTEGER SIZE <integer>; 

Variables of type COORD are interpreted as relative vectors in the coordinate 

space of the cell space. 

Moreover, it is permissible for the definition of type CELL to include 

one or more components of type COORD. This allows the cell state itself to 

specify some (or all) of its neighbor cells. Since this specification is 

used at run time and is part of the cell state specification, it follows 

that a dynamically changing neighborhood can be modeled. The neighbors 

specified in the current cell by components of type COORD are automatically 

accessed and made available as neighbors through subscripts of variable 

CELLS. No explicit attention need be given to the difference between the 

general neighborhood and the local neighborhood, except that the local 

neighborhood can be changed for successive time steps by the transition 

function. 

A variable called INPUT may be accessed to obtain the input to the 

current cell provided: 

1) A component of attribute type SELECTINPUT is included in 

the definition of attribute type CELL, and 

2 
2) An attribute type is DECLARED for the variable. 

The linkages to input routines are specified at the time of loading 

the simulation system. Note that the component of type SELECTINPUT is 

In the current implementation, the DIMENSION is fixed at 2 and may not be 
changed. 

2 
In the present implementation, the attribute type is predefined as INTEGER 

and may not be changed. 
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an integer whose value may be changed at run time. 

3.2.1.2 External and Initial Cell States. 

The cell state to be used for the external cell is declared via: 

DECLARE EXTERNAL:  <value>; 

The value must be a variable or constant which is of data type CELL. 

It may be an LSV provided no operators are present. 

Similarly, the initial state of the space may be declared by: 

DECLARE INITIA,'.  <value>; 

where the <value> is as above. 

Declaring either of the external or initial states is optional. If 

no initial state is given, it is the users responsibility to establish his 

desired starting state.  If the EXTERNAL state is not declared and an 

external cell state is required by the simulator, a vector of all zeros 

will be used.  (See the discussion under Default Specifications, 3.2.4.) 

3.2.1.3 Neighborhood, Size of Space and Edge Declarations. 

The declaration 

DEFINENBHD {<coordinate>}1Jax; 

is used to define the general neighborhood relation, common to all cells 

of the space. <coordinate> is a constant LSV of type COORD. Neighbor 

cells correspond with subscripts of variable CELLS in the order given in 

the neighborhood definition. The five neighbors so commonly used might 

be defined thus: 

DEFINENBHD  [0,0]  [1,0]  [0,-1]  [-1,0]  [0,1]; 

This might be done with the U command or from a previously saved state, 
as discussed later. 
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If data type CELL contains elements of type COORD, these will correspond 

with successive subscripts of CELLS in the order in which they occur in 

the specification of type CELL (i.e., following the numbers for general 

neighborhood). 

To specify the size of a simulation, use 

DEFINESIZE {<coordinate>}™ax; 

where <coordinate> is an LSV of type COORD. For example 

DEFINESIZE [-5,-5]  [-5,5]  [5,5]  [5,-5] 

defines a square array of eleven by eleven cells. At least three coordinates 

are required to define a polygon. Coordinates are assumed to be given in 

clockwise rotation around the figure. 

Hie action of the simulator when accessing states for cells outside 

the space boundaries (as discussed in 2.3) may be one of several standard 

options, or the experimenter may elect to specify his own. 

The declaration is 

<label> 

DEFINEEDGE XWRAP 

YWRAP 

m  TORUS t 

If a <label> is given, the <label> is defined as an entry point to a 

procedure to perform the desired action. At entry the global variable 

LOCATE of type COORD contains the coordinates needing modification. The 

edge routine should modify LOCATE to lie within the cell space and RETURN. 

Alternatively, if a RETURN is executed with LOCATE unchanged, then the 

The ordering used is the lexigraphic order defined earlier. 
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System will attempt to use an EXTERNAL cell value. 

The declaration is optional. If not used, any reference outside the 

space will access the EXTERNAL cell value. 

Intuitively the XWRAP option causes the right edge (increasing x 

direction) to be "wrapped around" and made adjacent to the left edge (de- 

creasing x direction). Since the shape of the space may be any convex 

polygon, rows of constant Y may be of differing length. Thus each row 

will be wrapped independently of the others. YWRAP is similar. The TORUS 

option wraps in both directions simultaneously. (Care must be taken to 

handle cells that exceed the X and Y limits simultaneously in order to 

be able to define the wrapping). Note that if the space is rectangular, 

these options will give the usual respective cylindrical or toroidal 

geometries in a Cartesian space. If the shape is not rectangular, these 

transformations are at least well defined (and, I venture, at least as 

reasonable a notion of wrap around as can be formulated). 

TTie actual transformations are tedious to define. They are given in 

Appendix C (Section C.2.1). 

3.2.2 Entry Points 

In addition to the transition function itself it is desirable to 

include in the same body of code several entry points to procedures for: 

1) Providing certain commands intrinsic to the particular model 
being simulated. 

2) Providing the needed MAP functions for displaying cell states. 

The name of the transition function itself is declared via: 

DECLARE <X-atom> NAME; 

the <X-atom> must also satisfy the naming conventions of the operating 
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system and is intended to identify the object code to the operating system. 

Experience has shown the utility of two additional entry points, to 

perform certain operations before and after a full transition of the cell 

space has been computed. Accordingly the declarations 

DECLARE <A-atom> PRETRANSENTRY; 

DECLARE <X-atom> POSTTRANSENTRY; 

are provided. These enable the transition routine to accumulate certain 

kinds of statistics or perform other kinds of "housekeeping" services 

for the transition function. 

Entry points to mapping functions are declared thus: 

DECLARE <X-atom> MAPENTRY <integer>; 

The <X-atom> is a label in the program. The <integer> must lie in the 

range zero to nine and associates an external number to be used to select 

that map. 

The mapping function has one implicit parameter, the variable NEWCELL. 

The result of the map must be an integer in the range 0 to 126 which identifies 

the graphic image that will be used to display the cell state. The result 

is made known to the system by assigning the value to the system defined 

INTEGER variable GRAPHIC. 

Typically one map will be desired for each field of a cell's state, 

but any others may be used as desired. 

The "user" entry point is declared thus: 

DECLARE <A-atom> USERENTRY; 

The X-atom, a LABEL, so declared is the entry to whatever personal commands 

the experimenter wishes to define with his particular simulation. This 

entry point is entered as a result of typing the "U" command on the keyboard 
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followed by a text string as explained in the next chapter. This string 

is collected and made available to the USER entry in the system defined 

integer array USERINPUT. USERINPUT (1) is the length of the array for this 

call. The  array will contain one integer (the character code) for each 

character and a three entry sequence for each converted data constant. 

The form of a converted data constant is 1) the character for "=" (equals), 

2) one of the characters "B'!, "I", or "R" for BOOLEAN, INTEGER, or REAL 

designating the type of the constant and 3) the value itself.  For example, 

the typed input string 

uAlB=I-70 ^RS^BTRUE" 

results in the USERINPUT array containing: 

USERINPUT (1)     =   14 
= code for letter A 
« code for letter 1 
s  code for letter B 

code for letter = 
code for letter I 
integer value -70 
code for letter space 
code for letter = 
code for letter R 

■  real value 8.2 
*  code for letter = 
=   code for letter B 

USERINPUT (14)    =   boolean value TRUE 

This allows a reasonably complex command interpreter to be written quite 

easily. 

To allow for command checking and reporting of ill-formed user commands, 

the USER routine must set the system defined BOOLEAN variable USEROKAY 

either TRUE or FALSE to indicate the command was accepted or rejected, 

On machines where the representation of real values requires more memory 
(words, bytes) than integers, this (unfortunately) must be explicitly 
recognized by the USER routine in scanning the USERINPUT array. 
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respectively. A rejected command will be reported to the experimenter 

via the console keyboard-printer. 

3.2.3 Operators 

Hie unary operator UNDEF$ requires an operand of type TEXT. It is 

basically a call to the run time system declaring that (for what ever reason) 

the transition function for the current cell is undefined and a value can 

not be returned. A later section will discuss the effect this has on the 

system and actions men to the user for handling this situation. 

3.2.4 Default Specifications 

Careful attention has been given to designing the system with a 

natural set of default specifications for use where some declarations 

are not given by the user. The following default conventions have been 

adopted: 

SELECTINPUT need not be used. If not used, no input is possible. 

EXTERNAL and INITIAL state values have a default specification con- 

sisting of an appropriate number of (machine) zeros to "fill-up" a constant 

of type CELL. 

Pre- and Post-transition entries need not be declared. 

OEFINENBHD will default to the standard five neighbor neighborhood: 

[0,0] [1,0] [0,-1] [-1,0] [0,1]. 

DEFINESIZE will default to the largest square array that can be 

2 
accommodated by the implementation. 

On the current computer, hardware zeros will interpret as a BOOLEAN 
FALSE, an INTEGER "O", and a REAL "O.O". 

2 Currently 32 by 32 as follows:  [1,1] [1,32] [32,32] [32,1]. 

1 ' —■-- ' 
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DEFINEEDGE will default to using the EXTERNAL state value. 

A default USER routine that will always respond with an error to 

any input is provided. When RETURNing from a USER routine it is only 

necessary to explicitly set the value of USEROKAY if it is to be TRUE. 

All maps default to returning a value of zero. 

3.3 An Example: MODS 

As a simple example we shall consider a cellular space in which the 

computational aspects of the transition function are trivial. The transition 

function simply computes the sum modulo 8 of the neighboring cells. We 

shall use the common five cell neighborhood. With appropriate choice 

of initial states such a cell space will exhibit a behavior that is 

esthetically quite pleasing to observe. 

In order to make the example a bit more interesting, the state of 

each cell is defined to consist of a SELECTINPUT field as well as the 

INTEGER field that represents the "logical state". The transition function 

tests the SELECTINPUT field and if non-zero assigns the next cell state 

from INPUT rather than doing the normal computation.  (One can imagine this 

as providing a "forcing function" in the cell space.) 

The transition function and cell space specification is shown in Figure 

3.3 to which the following annotations are offered: 

Lines 1-5 simply declare the various entry points. Lines 6-8 define 

the CELL data structure and declare some variables. Line 9 declares what 

state is to be used for external cells. Lines 10-11 define the size and 

Lines in the program listing are referred to sequentially from the begin- 
ning of the program or relative to a program label. Comments and blank 
lines are not included in this count. 
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*TIIIS IS THE NAMH Of: THE TRAflJI I Tl OM ROUTINE ; 
DECLARE MÜDC flAflE; 

•THESE DECLARE THE USER AMD 3 MAP ENTRIES; 
DECLARE JSERR USERENTRY ; 
DECLARE HAPl .MAPENTRY 1; 
DECLARE ISAP.: MAPENTRY 2; 
DECLARE MAP5 MAPENTRY 3; 
DECLARE INTEGER: T.M; 

*A CELL CONSISTS OF TWO INTEGERS, THE FIRST OF WHICH 
IS THE INPUT SELECTOR; 

DEFINE STATE DLOCK < SELECTINPUT, INTEGER >; 
DECLARE STATE: CELL; 

*THE TYPE OF THE EXTERNAL CELL STATE IS IMPLICITLY 'CELL'; 
DECLARE EXTERNAL:EXT; 
DEFINENDHD    <0/0> <0/l> <1,0> <-l/0> <0/-l>; 
DEFINESIZE <!,!> <1/2C> <2C/20> <20,1>; 

MOD8:    IF CELLS(1,1) $NE$ 0; 
*'INPUT' IS IMPLICITLY OF TYPF INTEHER; 
••NEWSTATE' IS ALSO IMPLICITLY OP TYPE SAME AS 'CELL'; 

NEl'STATE(2) = IMPUT; 
% ELSE; 

T»0; ^A 

«, ••NUMriEIGH' - THE NUMBER OF MEIOIIDORS - IS A CLPPAL VA^I/CLt 
% OF TYPE 'INTEGER'; 
% LOOP N-l; 1; 'I $nT$ NUMNEIGH; 
% T « T + CELLSCN^); 
C- ENDLOOP; 
^ NEWSTATE(2) » T-(T/8)*S; 
^ END IF;        RETURN; 

USERR:   IF ,,»,, $EU$ USERINPUT(2) $AND$ USERINPUT{3) SEQS "I"; 
EXT (2)=USERINPUTU); 
USEROKAY » TRUE; 

ELSE; 
USEROKAY ■ FALSE; 

ENDIF;  EXT(l) »U;  RETURN; 

MAPI: GRAPHIC * NEWSTATE(l);   RETURN; 

MAP 2: GRAPHIC  » NEWSTATE(2);   RETURN; 

MAPS: IF  NEWSTATE(2) $GT$   3; 
GRAPHIC  -  I»; 

ELSE; 
GRAPHIC  «   0; 

ENDIF; 
RETURN; 
ENDPROG; 

MODS   CELL   SPACE 
FIGURE   3.3 

: 
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neighborhood of the space. 

Lines MODS to MOD8+8 give the transition function. If there is input 

to the cell (line MODS), the input value becomes the cell state (line 

M0D8+1). Otherwise (line MOD8+2) the values of all neighbors are summed 

(lines M0D8+3 to MODS+6) and the modulo S result becomes the cell state 

(MODS+7). If the user is confident that the neighborhood declaration 

would always contain five neighbors then lines M0D8+3 to MODS+6 could 

readily be replaced by the simpler: 

T=CELLS(1,2)+CELLS(2,2)+CELLS(3,2)+CELLS(4,2)+CELLS(5,2); 

Lines USERR to USERR+5 give a routine to change the value of the 

external cell state under keyboard control. 

The remaining lines define map functions to display the SELECTINPUT 

field, the INTEGER field or a function of the INTEGER field. 

Note that the value of the EXTERNAL variable EXT is undefined at 

compile time. The user is advised define it with his "U" command before 

any transitions are computed. 

• 
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4. THE RUN TIME ENVIRONMENT 

The Run Time Environment is the collection of routines and supporting 

software that is assumed to be available at the time that a simulation is 

taking place, exclusive of what is typically called system software. That 

is, the Run Time Environment is the application oriented subsystem, although 

details of its form will naturally be influenced by the form of the under- 

lying system software. 

The particular hardware on which this author worked consisted of two 

dissimilar small general purpose computers, one with a graphic display and 

the other with a disk storage unit. The two computers are interfaced to 

provide interactive processing and sharing of bulk storage and display 

facilities. For the purposes of this exposition the fact of two CPU's is 

not relevant. While the potential for parallel processing has been exploited 

to some extent, this is not crucial to the formulation of the system to be 

developed here. Accordingly the description of the Run Time Environment 

presented in this Section will not assume more than the conventional 

computer configuration shown in Figure 4.1. Further details of the two 

computer implementation may be found in Appendix C. 

In preparing a simulation for the CSS there are a number of distinct 

specifications and programs that must be supplied. These are: 

A. Specifications 

1. Cell State Data Structure 

2. Neighborhood Relationship 

70 
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CPU 

I 

Keyboard-Printer 

Display with LightPen 

Conventional Computer Configuration 
Figure 4.1 
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3. Size of the Cell Space 

4. Initial State of the Cell Space 

B. Programs 

1. Transition Function 

2. Mapping Function (s) 

3. User Defined (personal) Commands 

4. Input Function (s) 

The cell state data structure (A.l) and the general neighborhood 

relationship (A.2) are specified as part of the transition function (B.l). 

The neighborhood may be redefined at run-time by keyboard commands provided 

the number of neighbors remains unchanged. The size of the cell space (A.3) 

is specified with the transition function (B.l) or commands that result 

in a dynamic assignment of core storage. 

The initial state (A.4) of a cell space may be established in one 

of two ways: 

1) Using the "DECLARE INITIAL:..." statement, or 

2) Using the Restore command (discussed shortly) to establish 
the current state from a previously save state space. 

In cases where it is not sufficient to use the "DECLARE..." statement 

to specify the initial state, it will be expedient to prepare a special 

transition function whose sole purpose is to assign the desired state to 

the space. This state can then be saved by the Keep command (discussed 

shortly) for later use. 

Preparation of a transition function (B.l) is essentially an "off-line" 
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activity with respect to the simulation proper. A transition function is 

written in the language defined herein, then compiled, and loaded. Loading 

passes control to the Run Time Environment to accept the remaining 

specifications and user commands, and then start the simulation. Mapping 

function(s) (B.2) and user commands (B.5) are included with the transition 

function. Inputs (B.4) are defined via a keyboard command after the system 

is loaded. 

The steps required to initiate a simulation will not be discussed 

here. These actions are heavily dependent on the operating system and its 

job control language. It is useful, for example, to be able to specify 

and re-specify transition function routines dynamically. However, where 

dynamic storage management and dynamic loading are not available and where 

core is too scarce to permit simultaneous loading of several alternative 

transition routines (as was the case for this author) certain sometimes 

awkward compromises are necessary. These considerations are on the fringes 

of the objectives of this thesis. The particular scheme used by the author 

is described in Appendix C. It is left to the reader to supply the simple 

on-line commands necessary for some of these "nice" features. 

Once a simulation has been initiated a number of command facilities 

are available to provide the user with control'over the course of the 

simulation. Most of the commands may be given either from the keyboard 

or via light buttons on a display menu. For various reasons, other of the 

commands may be given only from the keyboard or from the display. 
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4.1 Keyboard Command Facilities 

A nunber of commands are provided at the system keyboard-printer 

(a 33KSR) for controlling the action of the simulator. Most commands 

are executed immediately as read in from the keyboard. Section 4.1.2 

will discuss a simple facility for constructing micro-programs to be 

executed by the command interpreter. 

A command consists of one, two or three contiguous letters (i.e., 

not separated by space, carriage return or other non-letter) or any other 

single character, (except space and carriage return which are ignored.) 

Commands may have parameters and the form of these is dependent on the 

particular command. 

4.1.1 Immediate Commands 

The most basic commands, all of which require no parameters, are 

tabulated in Figure 4.2. The brief explanation contained there should 

adequately explain the function of each, except for Back-up. Further 

commands are tabulated in Figure 4.3 and discussed here. 

Hie Back-up command restores the state of the simulation to that of 

the previous time step. This is possible because of the duplicate 

data structure adopted as discussed in Chapter 2. In general, transition 

functions are not backwards deterministic (i.e., the state at time t can 

not be uniquely determined from the state at time t+1). Accordingly 

Back-up may only be performed if there is a valid preceding state data 

structure to which to refer. For example one may not Back-up from the 
« 

initial state or immediately after a Restore operation. 
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Command 

N 

Mnemonic 

Next time step 

Back-up 

Simulate 

Explanation 

Compute next time step 
and display under current 
map. 

Back-up to previous time 
step and display under 
current map. May be done 
only once at a given time. 

Compute successive time 
steps and display under 
current map until halted. 

H 

C 

0,1,...,9 

Halt 

Clear and reset 

Redraw 

Map Numbers 

Debug 

Halt simulation. 

Clear and reset simulation 
to its initial conditions. 

Re-compute image for this 
time step-presumably after 
changing the map. 

Select the indicated map 
number for subsequent images. 

Call in and transfer to 
system debugging facilities. 

PIC Picture Activate shutter control on 
movie camera to take a - 
picture of the current cell 
space display. 

Commands Without Parameters 
Figure 4.2 
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Command Mnemonic Parameter Explanation 

Keep current 
space state 

File number, 
0 or N 

Save current state 
of cell space in 
designated logical 
file 

Restore File number Restore saved state 
of cell space to be 
current state. 

U User Character 
String 

Call USER entry point 
in transition function 
with character string 
as parameter. Provides 
extension of command 
language. 

Input Input Stream Define cell inputs. 
See text for elaboration. 

TTL Title Character 
String 

Declare title to use 
on cell space display. 

Commands with Parameters 
Figure 4.3 
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The two commands K (Keep) and R (Restore) are concerned with 

check-pointing and recovery of a given cell space state. The Keep 

command must be followed by an integer parameter, then by one of the 

letters "0" or "N". The integer is interpreted as the name of a file 

in the logical file system where the state information is to be stored. 

The letter designates whether this is to be an old or new file. If old, 

the previous contents will be replaced; if new, a new file will be 

created and the data written into it. If old is specified and no file 

exists, the operation is aborted and an error message given. 

Hie Restore command is simply the inverse, i.e., the current cell 

state is established from the external file. 

The following data is preserved by the Keep operation in order to 

check for proper reloading: 

1. Title and current time step 

2. Number of words per cell 

3. External cell state, if any 

4. Description of cell space boundaries 
(internal data structure) 

5. State of the cell space 

During the Restore operation items 2 and 4 will be compared with the 

corresponding current simulation data, and if the same, the operation 

proceeds. If not the same, the user may elect to proceed anyway under the 

following assignment rules: 

Let A be the cell space currently in core, with a a coordinate variable. 

Thus, A(a) is the state of the (single) cell at coordinates a. Similarly 

for B and 6 defined in the file. 
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1) If ye SA andyeSg,  then A(Y) = B(Y). 

2) If YE S. and YC S- and E is the external state for S-, then A(Y)  ■ E. 

3) Otherwise A(Y) ■ "undefined". 

The intent is to allow a means, albeit less than ideal, to change 

the boundaries of a simulation in "mid-course" and proceed. 

The command USER is intended to allow extensions to the command 

language to provide operations dependent on the particular model being 

simulated. A character string is collected with data constant substrings 

being converted to binary form, and the USER entry point of the transition 

function is called giving the string as parameter. This string may be 

interpreted in any desired manner to provide whatever special functions 

are needed. Exit from USER returns a value TRUE or FALSE indicating all 

okay or some error. If an error is indicated, it will be reported via the 

normal command language error messages. 

Data constant substrings are indicated by a leading "■" (equal sign), 

followed by a letter indicating the desired type conversion, followed by 

the constant itself. The constant is converted according to the indicated 

type. For convenience, the "I" may be deleted for integer constants and 

the single letters "T" and "F" will serve as the boolean constants TRUE and 

FALSE respectively. In any case the USERINPUT array will have the "full" 

form as described in 3.2.2. 

INPUT is defined from the keyboard via a command 'I' with a parameter 

string that defines a sequence of integer values. 

The form of the command is: 

<I command> •* <integerl> {<repeat group>}|j 

<repeat group> •♦ (<integer2> <repeat group>) 

■»■ {<integer>} 
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where 

<lntegerl>   specifies the input selector for this input stream. 

R      specifies that when the input has "finished", it will 
restart at its beginning. This is equivalent to an 
additional layer of parentheses with an infinite count. 

T      specifies that when the input has finished, it will 
not restart; it is a one time only input. 

A <repeat group> is a string of integer values optionally surrounded 

by parentheses with a repetition count <lnteger2> following the left paren- 

thesis. Nesting Is permitted. 

Using this command quite complex input streams over the set of integers 

may be defined. In fact, the set of input streams corresponds to the regular 

events over the alphabet consisting of the set of integers.^ 

4.1.2 Deferred Execution via Micro-Program 

A group of commands is concerned with defining and "executing" a 

micro-program built up of other commands. There are tabulated in Figure A.4. 

The command SAV simply saves in an internal character buffer all following 

characters up to and including "if" (pound sign). Even carriage return is 

saved so that the length of a micro-program is not restricted to a single input 

line. The command GTM will cause control to pass to the micro-program which 

the command Interpreter will process until one of several terminating condi- 

tions occurs. A micro-program may be invoked more than once. 

To verify this requires that the three operations used to describe regular 
events (concatenation, union, and star) have equivalents in this command 
description. Note that a regular expression describes a set of regular events 
whereas an input command describes exactly one Input. Concatenation of symbols 
is available as such in defining inputs. The union operation is available 
as alternative Input definitions. The set of input definitions which are the 
same except for the value of a given repetition count corresponds to the set 
given by the star operator, eg. {X* } ■ { (yX)|y Is a non-negative integer). 

• 
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Command Mnemonic Parameter Explanation 

SAV Save micro-program  Char string Save micro-program 
for deferred execution. 
Char. String is 
terminated by "#" 
character. 

GTM Go to micro-program   No Transfer control to 
micro-program 

Start repeat Count Start repeat loop 
in micro-program 

End repeat No End of repeat loop 

Terminate        No 
micro-program 

Terminate micro-program 
if sense switch 17 
is "on". 

Commands for Deferred Execution 
Figure 4.4 
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There are three commands that can be used within micro-programs that 

can not be used otherwise. The two commands "(" and ")" must occur in 

balanced pairs; nesting is allowed to a depth of S. The pair of parentheses 

specify a sub-string that is to be repeated a given number of times. This 

repetition count must immediately follow the "(" and the remainder of the 

string is the repeated part. For example the following input 

"X SAV (2 IX 2X (2N)) #GTM" 

is equivalent to 

"X SAV IX 2X N N IX 2X N N #GTMU 

The command "?" will cause a micro-program to terminate if sense 

switch 17 of the computer is on. 

A micro-program will terminate for any of the following reasons: 

1) running off the end (a normal case) 

2) executing "?*' with switch 17 up (normal case) 

3) executing SAV or GTM (errors) 

4.1.3 Commands for "Undefined" transitions 

An invocation of the UNDEF operator will cause the following sequence 

of events: 

1) The current space transition computation is suspended. 

2) A message announcing the occurrence and concluding with the 
TEXT operand is typed on the console printer. 

3) If a micro-program is in process, it is suspended. Control 
returns to the keyboard. 

4) The Cell Space Display is displayed with a "box" around the 
cell at the undefined transition position. 

At this point the user has available the full resources of the simulation 

system for examining the conditions leading to the situation and correcting 

them as appropriate. In this "suspended" status the following commands may 
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not be used: Next, Simulate, Back-up and Restore. 

There are two conunands available to resume the simulation or return 

to normal. "OVR" (over) starts the entire space transition over again. 

The box Is removed from the offending cell, and if a micro-program was in 

progress, It is resumed. "CAN" (cancel) simply declares that no attempt 

will be made to resume, the box is removed and control stays at the keyboard. 

After either of these commands, all commands are once again legal. However, 

Back-up can not be performed after Cancel since the partially completed 

state transition computation destroys the previous time step state. 

4.2 The Display Facilities 

Control of sequencing of the various kinds of display is provided by 

the popular light button and state transition concepts. The initial display 

is a command menu allowing selection from a number of possibilities. All 

buttons result in the performance of some commands, many of which will entail 

display image transitions. Figure 4.5 Illustrates the display transitions, 

which will become clearer as we proceed. Figure 4.6 shows the initial command 

menu. 

A limited amount of user editing is provided via two "control" light 

buttons near the lower edge of the screen: "CANCEL" and "C.R.". Light 

buttons are queued as they are selected and are processed when the "C.R." 

is selected. "C.R." may be considered an end-of-file, or carriage return, 

indication. Selecting the CANCEL button will clear the current command 

queue. Since in practice at most two or three commands are stacked at a 

time, more complex queue display or editing is not provided. 

When a button is selected, the display provides positive indication of 

the "hit" by blanking all of the screen except the hit button for approximately 
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Command Menu 
Figure 4.6 
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one-half second. The button is insensitive to the light pen during this 

period. This duration was empirically determined to be long enough to 

prevent unintended multiple hits of the same button, but not so long as to 

interfere with rapid sequential choice of light buttons. 

Those commands which may only be given from the display are described 

here. They are 1) DISPLAY CELLS, 2) DISPLAY PARAMETERS and 3) MULTI 

DEFINE. 

4.2.1 DISPLAY CELLS 

The basic display form for most monitoring activity is illustrated 

in Figure 4.7. The image consists of a) three identifiers shown along 

the lower edge, b) the actual cell space state under the current mapping, 

and c) a dot approximately at the middle of each of the four edges used to 

"move" the cell space state image. 

The three identifiers are, in order: 

1) The mapping number used to construct the current state display, 

2) An arbitrary title defined by the user via a keyboard command, 
"TTL", 

3) The time step of the simulation in progress. 

These identifiers provide a simple and systematic means to document 

display results, for example, on film. But they also aid in reminding 

the user just where he is in the course of a simulation. In addition to 

their information content any of these identifiers serve as an "escape" 

light button for invoking the display command menu. 

The cell state space is displayed in the major portion of the screen. 

Its outline and arrangement are determined by the corresponding commands 

described previously. The state of a cell is represented by a symbol or 



86 

Example Cell Space Display 
Figure 4.7 
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graphic, one of 127 that the user can define by coding his desired symbols 

for the display character generator. 

The availability of only 127 different symbols or graphics may seem 

like a strong restriction on the user's ability to monitor the state space. 

In practice, however, even in neural network simulations with quite large 

cell state spaces (i.e., describable by several integer and/or real variables) 

the judicious selection of a small set of mapping functions and heuristist- 

ically meaningful graphics can actually enhance the experimenter's insight 

concerning the performance of the system. 

The DISPLAY CELLS data structure is arranged to enable the image 

to be viewed at any of four "scale factors" (xl, x2, x4 and x8) available 

on the display hardware. Particularly at the larger scale factors, only 

part of the image may fit on the screen. The four edge dots serve as light 

buttons causing the cell state image to move "underneath the display window" 

in the corresponding direction. The movement is discontinuous and incre- 

mental at a rate of approximately 2 cell sizes per second. 

4.2.2 MULTI DEFINE 

One way in which to make on-line changes to the cell space state is 

via the MULTI DEFINE command. This initiates a sequence of display trans- 

itions as follows: The display image of Figure 4.8 requests the user to 

enter, as an integer, the number of the field of the CELL data structure 

to be changed. This is done by selecting the appropriate sequence of light^p» 

buttons terminated by the "C.R.". 

The next image requests a value for the field in the appropriate 

data type. Currently supported are the three data types BOOLEAN, INTEGER 

and REAL. 
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Data Entry Menus 
Figure 4.8 
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Data Entry Menus 
Figure 4.8 (Concluded) 
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The next image is the cell space display. Light pen hits on a cell 

will result in the indicated value replacing the value of the indicated 

field of the cell. Successive hits will result in the same assignment to 

multiple cells. The mode is terminated by escaping to the command menu. 

A variation on this sequence occurs when displaying cells as a direct 

result of the DISPLAY CELLS command. Pointing at a cell will initiate the 

specify field-specify value sequence with the substitution performed for 

one cell only. Pointing to another cell initiates the sequence again. 

In both cases, at the time the cell state is updated a new image for 

the cell is computed via the current mapping function and substituted in 

the display data structure. Thus, if the current map is functionally depen- 

dent on the field changed, the user will get positive indication of the 

state change. 

4.2.3 DISPLAY PARAMETERS 

Hitting the DISPLAY PARAMETERS light button causes a transition to 

an image such as shown in Figure 4.9. The names of various system variables 

of interest to the user along with their current values are displayed. 

Those that can be changed by the user are light pen sensitive, while the 

others are not sensitive and are somewhat dimmer. A change is initiated 

by pointing to the name or its value. A new image requests a new integer 

value for the parameter. 

"XLLC" and "YLLC" are the X and Y coordinates, respectively, of the 

Notice the nice manner in which the ability to manipulate the space state 
assignment on a cell by cell basis gives expression to the concept of 
embedding developed in Chapter 1. 
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Parameters Menu 
Figure 4.9 
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lower left corner of the display window. Changing these values is an 

alternate way of moving the cell space portion of the DISPLAY CELLS 

image. "CURRENT X" and "CURRENT Y" are the coordinates of the most recent 

cell pointed to by the light pen or which currently is indicated by 

the box. "SCALE" is the hardware scale factor currently in use. Only 

values 1, 2. 4 and 8 are permitted for this variable. "IMAGE NAP #" and 

"TIME STEP" are for informational purposes only. "EXIT* causes a return 

to the main command menu. 



5. APPLICATIONS, EVALUATION AND SUMMARY 

This chapter illustrates the use of our simulation system in several 

application areas, evaluates the completeness and suitability of the system, 

and recommends areas for further development. 

S.l Applications 

5.1.1 An Example from the Literature 

To illustrate the use of the simulation system on a realistic problem, 

we have chosen an example from the literature which we will discuss in 

some detail. The work chosen was reported by Rochester, Holland, Haibt and 

Duba [14]. It is chosen because it requires many of the more unusual capa- 

bilities of our system, and is not too large to develop in a reasonable 

amount of space. The authors describe several simulation experiments per- 

formed to investigate and test the concept of Hebb concerning the formation 

of cell assemblies of neurons. We shall discuss one of their models called 

the FM or frequency model. 

For maximum clarity, throughout the balance of this subsection we shall 

indicate the authors'specification in italics. The remaining text illustrates 

how to accomplish those requirements. The resulting program as a whole is 

shown in Figure 5.1. 

There are 512 neurons arranged in a cylinder 16 units high and 32 
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DECLARE 
DECLARE 
DECLARE 
DECLARE 
DECLARE 
DECLARE 
DECLARE 
DECLARE 
DECLARr 

MAPENTRY 1; 
MAPENTRY 3; 

FM NAME; 
CfID   USERENTRY; 
MAPO  MAPENTRY   0;   DECLARE   MAPI 
MAP2  MAPENTRY   2;   DECLARE  MAP3 
MAPtj   MAPFMTRY   U; 
INTEGER: X I ^X IDAR^X.I^JRAR.ni .RJ.XP.X^D; 
IMTEGER ; N 
FUMCTIOM: X.P; 
BOOLEANJHEM; 

/ ■ ' / 

/ 

^ 

<15/7> <15/ DEFINFSIZE <-lC,-8> <-16/7> 
DEFINEEDfiE Xl/RAf; 
DEFINENBIID <0/C>; 
DEFINE AFFER ÜLOCK <COORn/RrAL>; 
DEFINE STATE ARRAY INTEGER SIZE «♦; 
DEFINE CELL DLOCK <AFFrR/AFFER/AFFFR/ArFER/ 

AFFER,AFFER,SELECT IHPUT/STATE>; 
DEFINE EXTERNAL : < <<0,0>,C>,<<0,0>,0>,<<0,C>,0>, 

<<0,Ü>,0>,<<0/C>,C>,<<0,G>,0>,0,<ü/3,7,i.ü> >; 
PARAMETER 
PARAMETER 

(   ISTATE 
(FAT 10  3) 

I) (FREQ 1)   (   FREQDAR 
(R,l*)   (SELECT  7); 

) 

FM:     IF GEN; 
*TIIIS COMPUTES THE 

LOOP 
CCMNECTIONr- ^/ 

ELSE; 

RANDOM 
N-l; 1; N $GT$ G; 
NEWSTATE(N,1,1) ■ RANPI(17)-S; 
NEWSTATE(N,1,2) » RANDI(17)-C; 
NE17STATE(N,2) - 0; 

ENDLOOP; 
GEN • FALSE; 

*TIIE NORMAL 
NORMAL: 

TRANTITION COMPUTATION; 
XI - CELLSd, ISTATE,FRrQ); 
XIBAR « CELLSd, ICTATE,FRrorAn); 
Rl - CELLSCl,ISTATE,R)*31/32 + (XI - XITAP) 

fPS 2; 
XPD «"o; X^ « 0; 
LOOP 'K; 1; N $0T1Ü 7; 

XJ » CELLS(N,irTATE,rpro). 
XJPAR  =   CELLS(N,I STATE,FPronAR); 
RJ   »   31*CELLS(N,ISTATE,R)/32   + 

(XJ   -   XJPAR)   $P?   2; 
ST   "  NEi;STATC(N,2)   *   SORTl (Rl *P.J); 
ST1   «   31*ST/32   +   (XI   -   XIBAR)* (XJ   -   XJf?AR) 
NEWSTATC(N,2)   =   STl/SORTKRI *RJ ); 
XP   "XP   +  RJ*XJ; 
XPD  »   XPD   +  ABS$(RJ*XJ); 

ENDLOOP; 

FM CELL SPACE 
FIGURE 5.1 
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XP   »  1.25*XP/XPn; 
DTI   ■  Dl (rlEU5TATF.(ICTATC/^ATlr,)/X,,); 
MEWSTATLdSTATC.rATin)   «   DTI; 

*TIIE   CHECK  FOP.  AM   INPUT  NFUROfJ   COMES  HERE; 
IF  NEW5TATE(SELECT)   $Ea$   Ü; 

MEWSTATEdSTATE.FREQ)   »   XKXP.DTl); 
ELSE; 

MEWSTATE(ISTATE.FREQ)   -   IMPUT; 
ENDIF; 

NÜRMAL1: NEWSTATE( ISTATE, FREQCAR)   -   (33*XIBAR   +  X\)/'J2   ; 
ENDIF; 
RETURN; 

CMD: IF   USERItlPUT(3)   $EO>$   "G"; 
GEN   ■   TRUE; 

ORIF   USERINPUT(3)   $EQ$   "S"; 
NN   «   USERINPUT(6)@MINTEGERn; 

ELSE; 
RETURN; 

ENDIF; 
USEROKAY  ■  TRUE; 
RETURN; 

*TIIE   FIRST  MAP   CONVERTS   '„TinüTS   TO   INTEGER  J,   0   tlZt   J   %\.t*   6«»; 
flAPO: GRAPHIC«   (NEWSTATE(NM,2)+1.)*32; 

RETURN; 
flAPl: GRAPHIC   =  NEUSTATEC I STATE.rREn); 

RETUR'!; 
MAP2: GRAPHIC   «NEl.'STATEC I STATE.FRFnQAR); 

RETURN; 
MAP3: GRAPHIC  =  NEl/STATEC I STATE.FATIG); 

RETURN; 
nkPk:   GRAPHIC   =  NEWSTATE(I STATE,R); 

RETURN; 

ENDPROG; 

FM   CELL   SPACE 
FiouRr 5.1 (cnvcLUPPn) 
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units around. 

DEFINESIZE [-16, -8] [-16, 7] [16, 7] [16, -7]; 

DEFINEEDGE XWRAP; 

The neighborhood varies from cell to cell, being randomly generated 

at the start of an experiment and fixed thereafter.    To accomplish this 

requires that the neighborhood be given as part of the data structure 

of each cell. Their model provided six inputs (i.e., six neighbors) 

for each cell. To this we shall add the cell itself, making a total of 

seven neighbors. Further, this neighborhood has a distance bias that 

provides that cells within a distance of 8 units may be interconnected; 

those more distant may not.    To make a cell part of its own neighborhood 

represents a general neighborhood.  It is accomplished by: 

DEFINENBHD [0, 0]; 

Each input  (afferent synapse) is characterized by a synapse weight 

that varies between  -1 and -fl.  It is convenient to associate the neighbor 

coordinates and the synapse weight into a substructure as follows: 

DEFINE AFFER BLOCK [COORD, REAL]; 

Each cell then contains six such substructures to give the six neighbors 

and their respective synapse weights. 

The state of each cell is further characterized by four variables 

as follows: 

FREQ - FREQUENCY OF NEURON FIRING,   0 & FREQ *  15 

FREQBAR       - average frequency,  0 $ FREQBAR i IS 

FATIG - fatigue,  0 < FATIG < 7 

R -a smoothing variable, 0 $ R $ 255. 
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We shall define the STATE of each neuron thus: 

DEFINE STATE ARRAY INTEGER SIZE 4; 

Certain of the neurons are stimulated externally by an "outside" 

driving force.    Thus we must declare a SELECTINPUT field. 

Combining all of these, the type CELL is defined by: 

DEFINE CELL BLOCK {AFFER, AFFER, AFFER, AFFER, AFFER, AFFER, 

SELECTINPUT, STATE]; 

For convenience we define the following names for referring to parts 

of the CELL data structure: 

PARAMETER (ISTATE 8) (SELECT 7) (FREQ 1); 

PARAMETER (FREQBAR 2) (FATIG 3) (R 4); 

For external state we choose a neuron with itself for all six 

neighbors, all synapses of zero weight, and intermediate STATE: 

DECLARE EXTERNAL:  [ [0,0], 0],  [ [0,0], 0],  [ [0,0], 0], 

[ [0,0], 0], [ [0,0], 0],  [ [0,0], 0],  [7, 7, 3, 0]; 

Since the initial state requires the random generation of a neigh- 

borhood pattern for the space,  no INITIAL state will be declared. 

Rather the following code may be used to compute this information. 

LOOP N; 1; N $GT$ 6; 

NEWSTATE(N,1,1) = RAND!(17) - 8; 

NEWSTATE(N,1,2) = RAND!(17) - 8; 

NEWSTATE(N,2)  =0.; 

ENDL00P; 

NEWSTATE(ISTATE)  = [7, 7, 3, 0]; 

The function RAND! (X) is a random number generator with integer parameter 

whose value is an integer I, 0 i I < X. line expression in the example 
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limits connections to 16 by 16 square centered about a cell.  It is only 

slightly more difficult to limit connections to a radius of 8 units 

about a cell. This code may be thought of as a transition function even 

though it is functionally independent of its arguments. 

If the cell is to be an input cell, it will have a non-zero 

SELECTINPUT field. The following code assigns the cell firing frequency 

for the external input: 

NEWSTATE(ISTATE, FREQ) = INPUT; 

Finally, for a normal cell transition, the main transition function 

may be invoked. Since this section of code is lengthy, it is not repeated 

here. Refer to lines NORMAL to N0RMAL1 of Figure 5.1. We shall not 

develop the coding for the cell behavior in detail since it is a 

straight-forward computation. Rather, let us call these three pieces of 

code Initt Input,  and Normal  respectively. TTiey may then be combined as 

follows: 

DECLARE FM NAME; 

FM:     IF GEN; 

Init 

ELSE; 

Normal 

IF NEWSTATE(SELECT) $NE$ 0; 

Input 

ENDIF; 

ENDIF; 

GEN = FALSE; 

RETURN; 
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To cause the BOOLEAN variable GEN to be TRUE we will define an input 

comnand 

"U   G" 

via the following: 

DECLARE CMD USERENTRY; 

CMD:     IF USERINPUT(3)$EQ$ "G"; 

GEN = TRUE; 

ENDIF; 

The general protocol is as follows: 

1) Compile and load system, 

2) Type "U  G" command to set variable GEN, 

3) Type N command to cause transition to establish the 

initial state. 

4) This state may then be kept, if desired, to be used later. 

This completes the coding of the simulation proper. There remains 

to provide the mapping functions for displaying the state. Four obvious 

maps display the four INTEGER variables comprising the STATE: 

MAPI:        GRAPHIC = NEWSTATE(ISTATE, FREQ); 

RETURN; 

MAP2:        GRAPHIC = NEWSTATE(ISTATE, FREQBAR) ; 

RETURN; 

MAP3:        GRAPHIC = NEWSTATE(ISTATE, FATIG): 

RETURN; 

MAP4:        GRAPHIC = NEWSTATE(ISTATE, R); 

RETURN; 

To display the synapse weights requires six more maps; these can be 
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collapsed into one map by using a "U" command to select the synapse field: 

MAP0:       GRAPHIC = 32*(1. ♦ NEWSTATE (NN,2)); 

RETURN; 

Augment the user entry as follows: 

GRIP USERINPUT(3) $EQ$ "S"; 

NN = USERINPUT(6); 

USEROKAY = TRUE; 

This completes the program. The entire program is shown in 

Figure 5.1. 

We emphasize that the resulting program should not be construed as 

the ideal or unique implementation of the neural model.  It is one solution 

that can serve as a framework for following-up on the reported work. 

Considerable development in many directions is possible depending on the 

interests of the investigator.  It demonstrates, however, the relative 

ease with which cellular models may be accomplished in our system. 

5.1.2 Current Work 

James Mortimer (Logic of Computers Group) is currently investigating 

a class of neurophysiological models that have been implemented on the 

simulation system.  He has defined a cellular model characterized roughly 

as follows: 

1) The model consists of 400 cells in a rectangular sheet, each 

cell corresponding to a small anatomical region of the cortex. 

2) Each cell represents a population of each of five distinct neuron 

types lying within each anatomical region. 

Because the Run Time Environment preceded the language compiler, Mortimer's 
programs are implemented in a mixture of FORTRAN and assembly language. 
His implementation is completely compatible with the RTE described here. 
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3) The state of a cell is the frequency of firing of each neuron 

type. 

4) A uniform neighborhood rule is used with the number of neighbors 

counted in the dozens. 

5) Input (external electrical stimulation) is provided to each of 

the neuron types. 

6) A quasi-linear, frequency-modulated model of neuronal behavior 

is used to define transition behavior. 

Mortimer's goals include, 1) finding a physiologically acceptable 

set of model parameters that allows spontaneous, stable activity to 

persist in all neuron types, 2) demonstrating that alternating excitatory 

and inhibitory inputs induce an alternating pattern of high and low 

frequency firing, and 3) investigating the hypothesis that there exist 

distinct excitability states in the cortex in which incoming signals are 

processed in fundamentally different ways. 

Roger Weinberg and Erik Goodman, (Logic of Computers Group) are 

modifying a program of Weinberg and Berkus [17] which simulates the 

known major chemical processes of a single cell in order to run multiple 

cell simulations under the present system. They hope to explore several 

adaptive and growth processes, such as competition for environmental 

resourses, conditions for normal versus explosive (cancerous) growth 

behavior, and conditions for competitive versus cooperative interaction. 

5.1.3 Related Problem Areas 

We should like to point out two additional problem areas that have 

not been important motivators in the development of our simulation system 

but in which, none-the-less, our system has potential applications. We 
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introduce them here to further demonstrate the broad applicability of 

the concepts of cellular models and hence of programming tools embodying 

those concepts. 

Relaxation methods used for solving partial differential equations 

fit well within the framework of this simulation system.    Consider the 

case of the two-dimensional Laplace partial differential equation: 

3x2 3y2 

Each cell of the model may represent a small area (of size delta-X 

by delta-Y) and the state of each cell represents the value of the function 

at the center of the cell. Delta-X and delta-Y thus gives the fineness 

of the approximating mesh. The equations are rewritten in terns of finite 

differences and the neighborhood is defined to be large enough to include 

the cells needed to compute these differences.  In this case, the familiar 

five cell neighborhood suffices. 

Suppose we have the local states as shown below: 

Y 

Then second order partials are approximated by the second order differences 

32f i  V2f 

3y' vy 
• (fa - fi) - 

«  f3 ♦ f5 - 2fi 

(fi - fs) 

and 

3f2    ^ 

3x2 

V2f 

Vx2 
(f2   -   fl)      "      (fl -   f-) 

s f2  ♦  f4  -   2f1 
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The Laplace equation requires that these sum to zero: 

(f2 ♦ fn - 2fi) ♦ (£3 * fj - 2^) = 0 

or 

fl = (f2 ♦ f3 ♦ fu ♦ f5)/4 

The transition function then consists of computing the new state of a 

cell as the average of its neighbors. Successive time steps are computed 

until the space state converges sufficiently to stable values. 

The technique generalizes to higher order and non-linear partial 

differential equations and in general our simulation system should be 

a suitable vehicle for solving such equations whenever relaxation methods 

are appropriate. We note that forcing functions (input) and boundary 

conditions (external state) are easily accomplished in the system. 

Ulam [18] and others have worked with certain problems concerning 

the growth of patterns. Starting from a regular arrangement of cells 

(such as squares of equilateral triangles) and some initial configuration 

of non-blank cells, additions to the current configuration are defined 

for successive time steps. Growth rules typically consist of local rules 

or conditions for a noft-blank state cell to "extend" to an adjacent cell. 

For example, Ulam discusses the following rule for a two-dimensional plane 

of squares: 

"Our growth is in the plane subdivided into regular squares. 

The starting configuration may be an arbitrary set of (closed) 

squares. The growth proceeds by generations in discrete intervals 

of time. Only the squares of the last generation are "alive" and 

able to give rise to new squares. Given the n  generation, we 

See also work by J.C. ilolladay and R.G. Schrandt. 
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define the (n+1)  as follows: A square of the next generation 

is formed if 

a) it is contiguous to one and only one square of the current 

generation, and 

b) it touches no other previously occupied square except if the 

square should be its "grandparent". In addition: 

c) of this set of prospective squares, of the (n+1) generation 

satisfying the previous condition, we eliminate all those 

that would touch each other. Agian there is an exception 

for those squares that have the same parent; these are allowed 

to touch." 

Hie variations on such growth rules are bountiful, the richness 

and apparent complexity of the resulting figures is substantial, and the 

difficulty in obtaining analytical results is frustrating. After studying 

the growth of figures from temporal and spacial points of view, Ulara asserts 

that 

"the geometry of objects defined by recursions and iterative 

procedures deserves a general study - they produce a variety of sets 

different from those defined by explicit algebraic or analytical 

expressions or by the usual differential equations." 

We point out the intimate relation of these figures to the cellular 

model and simulation capabilities developed here, and suggest our system 

is a suitable tool for studying these problems! 

5.2 Evaluation 

The primary consideration in the evaluation of this system is the 

extent to which it presents a language and programming environment that 

simplifies and shortens the effort required to initiate a simulation. 

We know of no conclusive way in which to demonstrate that our system is 

optimal in this respect. However, we are confident that we can substantiate 

that it is better in this respect than previously available languages 



105 

and facilities. 

It is clear that to do a simulation of a cellular space in some other 

general purpose language must require at least as much effort as in the 

Cellular Space Language. The computational aspects of state transition 

routines can in general be met only by the full resources of an algebraic 

language.  (Clearly if we restrict our attention to a special class of 

cellular simulations, e.g., Von Neumann-like spaces, more special purpose 

languages such as simple tabular languages might be a more natural and 

compact representation.) But in addition to providing the transition 

function, the "cell space properties" must still be provided in other 

languages. The needed concepts and data structures for the space and 

neighbor specification, for example, simply are not available in existing 

languages and must be synthesized afrash for each application. To illu- 

strate, in the simulation performed by Planigan approximately forty lines 

of Fortran coding are required to define his neighborhood relationship, 

while in the author's system this is accomplished by a single declaration. 

Moreover, any change in the neighborhood relation is correspondingly easier 

to effect. 

5.3 Extensions 

There are several areas in which the current systems design could 

be expanded, either to enlarge the range of cellular models that can be 

conveniently accommodated or to increase its general suitability as an 

interactive programming system. 

The- most important constraint of the present system that ought to 

be relaxed is the fixed number of dimensions of cellular spaces. Few, 

if any, changes are required to the specification of the Cellular Space 
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Language itself in order to handle higher dimensional spaces. Most 

changes would come in the implementation of the Run Time Environment, 

but even these are quite simple to introduce. The reason that this gener- 

alization has not been included from the beginning lies more in the area 

of the heuristic utility of the resulting system than in the difficulty 

of implementation.  It is not at all clear what kind of display facilities 

beyond that already provided would be sufficient to permit the exper- 

imenter to adequately cope with the higher dimensionality. The display 

problem is distinct from most of the three dimensional graphic research 

being performed today since removal of hidden parts or perspective views 

are generally not relevant to the simulation problem. We conjecture 

that the ability to display the state of arbitrary planes or "lamina" 

through such a higher dimensional cell space is the best that can be pro- 

video. Such displays do not extend the heuristic support of the system 

to any considerable extent. 

For certain classes of simulations, the state space of the cell 

(or of particular substates of a cell) is sufficiently small that the 

mapping functions may be used to define a one-to-one relationship between 

that (sub)state and the set of graphics used to display the (sub)state. 

For such cases it would be particularly useful if the experimenter could 

use a menu consisting of the set of possible graphics to assign state values 

as well as display them. Indeed, even in problems with a many-to-one 

mapping, the graphics may be sufficiently characteristic of the state 

that it would be adequate, for the purposes of the simulation, to use 

the graphics to assign a particular state (from among those which map 

into that graphic). A possible implementation would provide for the 
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specification of "inverse maps", which would be used quite similarly to 

maps, except that their domain would be the set of graphics and their 

range the cell state space. 

Thomas Schunior (Logic of Computers Group) has suggested an idea 

for making more efficient use of core storage in many simulations. He 

would partition the state of each cell into a private part and a public 

part. The private  part of a cell state space is that sub-state space 

which does not functionally take part in the state transition of any other 

cells. The public  part consists of the remainder of the state space. 

The private state information need not be stored in the redundant form 

adopted earlier since it clearly will not be accessed after being changed. 

For the same reason, this data could even be kept on a bulk storage device 

and streamed in and out of core in synchronism with the algorithm for scan- 

ning the cell space during a transition. The obvious advantage is that 

the size of simulation that can be represented with a given amount of core 

storage is increased. Moreover, experience with the computational require- 

ments of typical simulations indicates that good advantage could be taken 

of bulk storage in this manner without introducing input/output delays 

due to accessing the bulk storage. 

A more subtle issue is raised by the following consideration.  In 

certain biologically oriented models, it is quite natural to think of a 

cell as causing  a change of state in some neighboring cell. Formally, 

this is easily accomplished in our cellular model; though it may entail 

enlarging the neighborhood of each cell so that the transition function 

might "look to see" if some neighbor would be causing a change. But the 
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point of view is somewhat awkward. We suggest a notion of output neighbor- 

hood which gives the range of influence of a cell. Our previous notion 

of neighborhood might then be better called the input neighborhood or the 

domain of dependency of the cell. The obvious formal problem is that 

any given cell may be in the output neighborhood of several cells which 

are attempting to cause mutually exclusive changes.  (Holland faced a simi- 

lar problem in defining the path building rules for his ICC's.)  But 

where resolution procedures can be introduced, or where it can be shown 

that inconsistent behavior can not be generated, such an expanded model 

may be a better framework for study, in the sense that it more closely 

mirrors the way certain systems are conceptualized. 

We recognize that the subscript notation for referring to the neighbors 

of a cell is hardly the most intuitive manner of doing so. Whenever 

possible, one would like to employ mnemonics, such as"RTCELL" for the 

cell to the right. It is clear, however, that because of the freedom in 

defining the neighborhood relationship and because the neighborhood can 

even change dynamically, no naming convention can possibly be both suitable 

to implement and heuristically useful to most people. The best solution 

to this dilemma is probably the inclusion of a generalized parameter 

facility in the Cell Space Language. Such a facility would permit a user 

to define, for example, "TOPCELL" to mean "CELLS(3)" in order to refer to 

a particular neighbor more conveniently, and then to be able to write 

an expression such as "TOPCELL(1,NN)" to refer to substates of the cell. 

Such a facility is useful in almost any language, not just a language 

for cellular simulations. Accordingly, we have not included a parameter 
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facility within our language. 

A potentially valuable extension not included for similar reasons 

is the provision of a run-time symbol table. This, together with an 

appropriate run-time interpreter or "debugger", would be a valuable tool 

in the testing of new models. 

We speculate that a valuable adjunct to any interactive system that 

purports to enhance the heuristic capabilities of its users is a facility 

for maintaining an automatic history of all actions taken by the users 

over some prescribed period of time. This would permit them to better 

keep track of activities during a complex exploration, and even permit 

the reconstruction at a later time of the exact circumstances of a space 

behavior whose significance may not have been realized when it occurred. 

Whether the utility is worth the cost of implementation we leave for 

others to explore. 

5.4 Summary 

Regular networks of similar interacting components constitute an 

important class of models in many disciplines, from automata theory to 

parallel computer systems to biological systems. A number of significant 

applications of such models have been surveyed and drawing upon that and 

related material, a programming system has been proposed for conveniently 

simulating such models. Careful attention has been given to setting 

forth the motivations behind the final proposed form. Lastly, several 

applications developed on the system have been discussed in order to 

integrate the development and demonstrate the utility of the system. 

The final measure of the success of this effort must rest with 
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those who will now attempt to approach the system as a tool for doing 

their simulations. TWo such efforts are well underway. To these and 

others go the task of further validating and extending the premise of this 

thesis: that an integrated and viable programming system can be created 

for simulating a broad range of cellular spaces. 

i 

i 
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APPENDIX A.  SUMMARY OF THE LANGUAGE 

This section is a collection of figures summarizing the major features 

of the simulation language. In addition to presenting a descriptive syntax 

for the language, several figures detail the operators and associated data 

types that are defined in the current implementation. In these latter 

figures the following abbreviations are used: 

B 

I 

Ic 

R 

Tl 

BOOLEAN variable or constant 

INTEGER variable or constant 

INTEGER constant only 

REAL variable or constant 

TEXT variable or constant of exactly one character 

Strictly speaking the atoms = and ! are not operators in the formalism 

used here. However, it is useful to think of = as an operator that accepts 

any two arguments of the same type. In addition, the appropriate conversion 

will be performed when assigning as INTEGER value to a REAL variable, or a 

REAL value to an INTEGER variable. 
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«ieclare part> ■* DEFINE A ARRAY <type>  SIZE <integer>; 

■* DEFINE X BLOCK (<type-list>]; 

•*■ DEFINE A UNARY  <type>,  <type>; 

•*■ DEFINE A BINARY <integer>, <type>, <type>,<type>; 

+ ENDOPR; 

•*■ DEFINENBHD  {<coordinate>}; 

+ DEFINESIZE  {<coordinate>}"aX; 

+    DEFINEEDGE 
XWRAP 
YWRAP 
TORUS 

A 

DECLARE A NAME; 

DECLARE A MAPENTRY  <integer>; 

DECLARE A USERENTRY; 

DECLARE A PRETRANSENTRY; 

DECLARE A POSTTRANSENTRY; 

DECLARE <type>:  <A-list>; 

PARAMETER { ( A {,}£ <integer constant> ) }; 

Declarations of the Language 

Figure A.1 



118 

<executable> ■♦IF <exp>; 

■•> ORIF <exp>; 

♦ ELSE; 

-► ENDIF; 

♦ LOOP   <assignments <exp>; <exp>; 

♦ ENDLOOP; 

♦ <assignment>; 

♦ CONTINUE; 

•*■ EXECUTE <exp>; 

♦ GOTO <exp>; 

-»• RETURN; 

♦ ENDPROG; 

Executable Statements of the Language 
Figure A.2 
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<assignment> ♦ <left des> ■ <oxp> 

<left des^ ♦ X 

-*   \    (<exp llst>) 

<exp list> ♦ <exp> 

♦ <exp list>, <exp> 

<exp> *   <exp> 6 <exp> 

■*■    *   <des> 

♦ <des> 

<des> ♦ <left dcs> 

♦ (<exp>) 

♦ AI  (<exp list>) 

- Ai1 

♦ <Isv> 

<des> ♦ ^assignment >) 

<lsv> ■♦ I<exp list>] 

Syntax of Assignment Statement 
Figure A.3 
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GRAMMAR . 

<STMr>                                  • .    <BEG*> <ASSIGNMENTS 
<STMr> .    <BEG*> <EXP> 
<ASSlGNMIiNT> i    <LEFT DES--*> <EXP> 
<LEFT DES—*>                  • •    <LEFT DES> ■ 

<LEFT DES> •    <LAMBDA*> 
<LEFT DES>                        • ■    <LAMBDA-(*> <EXP LIST> ) 
<LAMBDA-(*> •    <LAMBDA*> ( 
<LAMBDA*> •    LAMBDA ' 

<EXP LIST> ■    <EXP> 
<EXP LIST> •    <EXP LIST-.*> <EXP> 
<EXP LIST--*> ■    <EXP LIST> 
<EXP> •    <EXP-THETA*> <EXP> 
<EXP>                                   • .    <DES> 
<EXP-,mElA*> •    <EXP> THE FA 
<DES> •    <PHI*> <DES> 
<PHI*> •    PHI 
<DES> ■    <LEFT DES> 
<DES> .    <(*> <EXP> ) 
<DES> •    <LAMBDA-I-(*> <EXP LIST> ) 
<DES> .    <(*> <ASSIGNMENT> ) 
<DES> .    <LSV> 
<LAMBDA-!-(*> ■    <LAMBDA-1*> ( 
<LAMBDA-!*> ■    <LAMBDA> 1 
<(*> •    ( 
<LSV> •    <LSB*> <EXP LIST> R 
<LSB*> .    LSB 
'•DES> .    < LAMBDA-!*> 

RSB 

Note: THETA 

PHI 

LSB 

RSB 

binary operator 

unary operator 

left structure bracket, [ 

right structure bracket, ] 

Augmented Operator Grammar for Statements and Expressions 
Figure A.4 
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Prccudural* Cell Space Related 

INTEGER 

REAL 

BOOLEAN 

LABEL 

FUNCTION 

TEXT 

DECLARE 

DEFINE 

ARRAY 

SIZE 

BLOCK 

UNARY 

BINARY 

ENDOPR 

ENDPROG 

IF 

ORIF 

ELSE 

ENDIF 

LOOP 

ENDLOOP 

GOTO 

CONTINUE 

EXECUTE 

RETURN 

CELLS 

COORD 

CELL 

INITIAL 

EXTERNAL 

INPUT 

SELECTINPUT 

DEFINENBHD 

DEFINESIZE 

DEFINEEDGE 

XWRAP 

YWRAP 

TORUS 

LOCATE 

NAME 

USERINPUT 

USEROKAY 

(* The operators of Figures A.6 and A.7 are also reserved atoms.) 

Reserved Atoms - Keywords 

Figure A.S 
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Operators 

1. ♦ - * / 
$P$ 

2.  $EQ$ $NE$ $GT$ 
$GE$ $LT$ $LE$ 

Type of Argumc nts Type of Result 

I 
I 
R 
R 

I 
R 
I 
R 

I 
R 
R 
R 

I 
I 
R 
R 

I 
R 
I 
R 

1 
B 
B 
B 

4.  $BITAND$ $BIT0R$ 
$BITXOR$ 

5.     $RS$    $LS$ 
(right and left 
shift) 

6. $EQ$ 

I I 
Tl I 
I Tl 

I Ic 
Tl Ic 

I Tl 
Tl I 
Tl Tl 

I 
Tl 
Tl 

I 
Tl 

B 
B 
B 

Binary Operators 
Figure A.6 
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Operators 

1. - ABS$ 

Type of Argument 

I 
R 

Type of Result 

I 
R 

2. N0T$ 

3.  BITNOT$ 

4.  FIX$ 

5.  FLOAT$ 

Unary Operators 
Figure A.7 
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$RS$ $LS$ $B1TANÜ$ 70 
|BIT0R$ $BITXOR$ 

$P$ 60 

50 

40 

$EQ$ $NE$ $GT$ 30 
$GE$ $LT| $LE$ 

$AND$ 20 

$OR$ 10 

Precedence Values For the Binary Operators 
Figure A.8 



APPENDIX B.  COMPILER IMPLEMENTATION 

The compiler is relatively conventional in organization. It consists 

of a lexical processor for extracting atoms from the input stream, followed 

by a syntax driven analyzer which produces an intermediate text form commonly 

called triples. A second pass processes the triples and as its output produces 

source code in 1800 assembler format. This source must then be assembled 

via the 1800 monitor system. 

B.l Pass 1 - Source Code Reduction 

B.l.l Lexical Scan -° 

Each atom is assigned a lexical type based on the lexicographic 

characteristics of the atom. The set of lexical types constitutes the 

terminal vocabulary of the syntactic parser. The complete set of lexical 

types and their defining characteristics is presented in Figure B.l. 

The lexical parser is basically a finite state acceptor that reads 

individual characters from the input until a terminating state is reached. 

Depending on the final state, the terminating character may be included 

in the atom being assembled, or saved to start the succeeding atom. Each 

character is assigned a class code (running from 0 to 6); this code actually 

drives the finite state acceptor. To make this organization feasible we 

have minimized the multiple use of characters, e.g., period ".", in different 

contexts while attempting to avoid an overly artificial lexical appearance. 

Characters are classified as follows: 
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Binary Operators 6 ♦ - • / 

and X-atoms defined as 

binary operators, e.g., $EQ$ 

Unary Operators 

and X-atoms defined as 

unary operators, e.g., ABS$ 

Punctuation - with each 

character a distinct 

catagory in Itself [ 1 ( ) , 1 - : ; 

Keywords Each predefined, e.g., IF, LOOP, 

DECLARE, REAL 

All others X-atoms 

Lexical Types of the Language 

Figure B.l 
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Illegal Characters 

Numerics 

Alphabetics 

Space and Newline 

Quote 

Punctuation 

Other Legal Characters 

After each atom is collected, its lexical type i» determined from 

its symbol table entry if the atom is predefined or has occurred before; 

otherwise the lexical type is X. The output of the lexical scan is a 

sequence of pointers to the symbol table entries for the atoms of an input 

line. Entries are created as needed for new atoms. 

8,1.2 Syntactic Parsing 

Of the many possibilities for syntactic recognition of expressions, 

we choose to modify a technique developed by Cries [4] employing Augmented 

Operator Grammars.  Cries' technique has the following advantages over 

most other syntax recognizers: 

1) It has the speed advantages of left-to-right without back-up, 

bottom-top techniques used with the operator and precedence grammars. 

2) The recognition algorithm gives the symbol to which to reduce a 

"handle", as well as detecting the handle proper. 

3) The organization of the recognizer permits extra-syntactic activities, 

such as triple generation, to occur at many points in handle reduction. 

(This is important in the handling of LSVs in our compiler. For example, 

a triple is generated by the atom "<" which marks the start of an LSV.) 

Our modification of the AOG technique concerns the handling of binary 

operators. In the operator grammars, the precedence of binary operators 

is indicated in the grammar itself. Consider the "typical" grammar 
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<term> ♦ X 

♦ <terin> * X 

<exp>           ♦ <tenn> 

♦ <exp> ♦ <term> 

where X is a terminal class consisting of variable names in the language. 

The higher precedence of multiplication (*) over addition (+) is explicitly 

part of the syntax. This results in a syntactic description that becomes 

longer as each new operator is introduced  Moreover, a new parser must 

be logically generated each time a new operator is introduced, since it 

involves a change in the syntax. Floyd [3], for example, would have to 

calculate new f and g functions. In practice this is often not too difficult 

to do because the high degree of regularity among the grammar rules is re- 

flected in the recognizer. The fact remains, however, that the augmentation 

must be explicitly accommodated by the parser. 

In the modified form employed by this author, the following (simplified) 

syntactic description is used: 

<exp>    ■*■   X 
♦ <exp> 6 <exp> 

where 6 represents the class of binary operators, e.g., * * /.  Thus 6 is 

a terminal class of the grammar. 

It is clear that such a grammar is, of itself, ambiguous; the precedence 

information is lacking. This information is essential to be able to parse 

the following: 

<exp>. 6. <exp>_ 9- <exp>. 

Let f be a function from the class of binary operators 6 to the natural 

numbers, f: 9 -»■ N. Parse the sentential form by associating first on the 
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left if fCep > f{e2).    This yields: 

<exp >. 

<exp>1    <exp>. j   ^^2 

If fCe.) < f(62), then associate first to the right. This yields: 

ei 

<exp>1 

<exp>-     <exp5 
/\ 

The function f: 6 ->■ N corresponds exactly to the usual notion of 

arithmetic precedence for the binary operators. Moreover, defining a new 

binary operator consists of declaring some atom a to be an element of the 

class 6 and associating with it the value f(a). 

Another departure from conventional parsing techniques occurs in the 

handling of literal structured variables. In order to provide additional 

information to the routines that will expand triples, we take advantage of 

the fact that extra-syntactic actions can occur each time an initial segment 

of a production is reduced. This enables us to provide more efficient run 
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time code than can be done with the result of an operator analysis. 

In order to facilitate the manipulation of cell states by the space 

state data management routines, we must maintain the data structure of each 

cell as a contiguous block of memory. In addition, data structures which 

allow "pointers" impose an overhead in memory requirements that is unjust- 

ifiable since all cells of the space must have the same data structure. 

The requirement of a contiguous, non-pointer data structure means that 

if LSVs are parsed and interpreted in the usual manner, then an excessive 

and unnecessary amount of physical data movement will result. Consider the 

following: 

DEFINE INT3 BLOCK  [INTEGER,  INTEGER,  INTEGER]; 
DECLARE INTEGER: A,  B,  C, D; 
DEFINE QRST BLOCK  [REAL,   INT3]; 

The expression 

[1.,   [A+B, C, D]] 

might be parsed as follows: 

The usual inside-out method of generating code results in the following 

sequence of operations: 

1) Select a temporary location, compute A+B and save it there. 

2) Select a temporary storage area for the inner block and move A+B, 
C and D into place. 
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3) Select a temporary storage area for the outer block, and move 1. 
and [A+B,C,0] into place. 

Clearly much of this data movement is unnecessary if, at the bottom 

of the parsing tree, one can know where the data will eventually be needed 

at the higher level(s). With such information, the following shorter sequence 

of operations could result: 

1) Select a temporary for the outer block. 

2) Compute A+B and save into place. 

3) Move 1., C, ani D into place. 

The necessary information can be extracted and saved in the triple storage 

in the course of parsing LSV structures. The details of this process will 

be the subject of further work. 

B.1.3 Statement Processor 

Generally a statement is made up of a keyword followed by an expression. 

Recognition of the keyword causes a dispatch to the appropriate routine for 

handling that language construct. These routines may themselves directly 

output triples and may also call on the expressior parser to "parse out" 

an expression and output triples. Detection of global errors, such as 

unbalanced LOOP... ENDLOOP and IF...ENDIF pairings, are performed by these 

routines. 

B.1.4 Intermediate Program Representation 

The result of pass one processing is represented by three kinds of 

tables: the triple table, the symbol table, and the structure table. 
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The triple table represents the executable portion of the program. The 

symbol table contains entries for all atoms used in the program, together 

with their properties or attributes. The structure table represents the 

data structures defined by the piogram, either explicitly or implicitly. 

B.2 Pass 2 - Object Code Generation 

The second pass over the source program - now in its intermediate 

form - produces as its output the machine language program to be executed. 

This "object" program is represented as 1800 Assembler source coding to be 

subsequently assembled. 

The symbol table is first examined for the information needed to build 

the transition routine control block. This control block is the primary 

linkage between the compiler and the Run Time Environment.  Its structure 

and interpretation is discussed C.2.3. 

Next is the processing of the triple table. Each triple is viewed as 

a macro call which directs the action of a simple macro expander. Macro 

definitions are of two types: symbolically defined and built-in. 

The symbolically defined macros are written in a simple macro 

language. The definition set is read in and stored for interpretation at 

the beginning of pass 2. Local object code optimization [1,2] is accomplished 

as part of these macros through conditional transfers and predefined attribute 

tests, e.g., "Is the needed result in the accumulator?" "Is the argument 

a constant?" Nested, but not recursive, calling of macros is provided. 

"Built-in macros" are subroutines which handle some of the more complex 



133 

tasks, such as processing LSVs, and perform some intermediate level code 

optimization e.g., allocation of index registers, and subscript optimi- 

zation. The output of these routines are macro calls to symbolically 

defined macros. 

The final step is allocation of storage for program variables and 

constants, LSVs, and the temporary work area. 

B.3 Pass 3 - Assembly 

The assembly source language is accumulated in a work area on disk. 

When complete, control is passed to a modified version of the 1800 assembler 

which accepts its input from this work area. Normal assembler control cards 

may be included in the input deck to govern the listing of the program 

and symbol table, to save the object code, etc. 
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APPENDIX C.  RUN TIME ENVIRONMENT IMPLEMENTATION 

The Run Time Environment provides facilities for maintaining the cell 

space data base, invoking the transition routine, receiving and interpreting 

user commands, and maintaining the displayed description of the cell space 

state. 

The simulation system is distributed along functional lines between 

the two computers with the PDP-7 handling user interaction and maintaining 

the display, and the 1800, with its larger memory and bulk storage, handling 

the basic computational load. Because two different kinds of CPU's are in- 

volved, no attempt at load sharing is possible except by explicit choice of 

the programmer. 

The implementation will be described first in terms of the available 

hardware. Then the organization of the software on the respective machines 

will be discussed, and finally the intermachine protoc Is will be detailed. 

C.1 Hardware Configuration 

The hardware configuration on which the simulation system is implemented 

is unusual. See Figure C.l. The hardware consists of two computers, (1) 

an IBM 1800 with disk and (2) a DEC PDP-7 with CRT display. The display is 

the DEC 338 display modified by substituting a PDP-7 for the PDP-8 computer 

of the 338. This specially built ,,337,, is the prototype for DEC's 339 dis- 

play system. 

The two computers are connected by two interfaces. All of the current 

work has been performed using the slower word-by-word direct program con- 
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trolled interface because the high-speed interface was not completed. 

This interface gives a data rate of approximately 300 words (16 bits/word) 

per second. While acceptable for small simulations, this rate is definitely 

an annoying factor for larger simulations. 

The high-speed interface was designed by this author and John L. Foy, Jr. 

with the requirements of this computer configuration specifically in mind. 

This interface features a master-master control organization and unusually 

flexible formatting of data movement. The interface may be fully controlled 

by either computer separately or by both cooperatively. Data movement is 

via a variable length circular shift register providing selectable frame 

sizes (effective word size). When completed and integrated into this simu- 

lation system, the flexibility and high-speed of the interface will help 

to obviate many of the problems of working with this two computer complex. 

C.2 1800 Organization 

The 1800 may be considered the "real" simulation machine and is the 

logical controller of the total computer system. The data base and all 

user provided routines reside on the 1800. It communicates with the PDP-7 

to generate the cellular displays and to accept and act on the operator's 

commands. 

Program listings are not included in this report because 1) they are 

lengthy, 2) the system is written in assembly language, and 3) the hardware 

configuration is unique. Rather we have attempted through flowcharts and 

discussion to make the organization of the system clear enough that others 

could adapt it if they so desired. 
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C.2.1 Cell Space Data Structure and Management Routines 

The data structure chosen to represent the cell space consists of 

an ordered set of variable length blocks. Each block represents a row 

of cells parallel to the X axis. Access to each block is made via three 

vectors giving the minimum X coordinate of the block, the maximum X 

coordinate, and the base of the block in memory, respectively. This organ- 

ization is sometimes called the address table technique.  (This "base" is 

really a displacement from a storage area beginning since two identical 

data structures must be manipulated.) 

The algorithm for computing the base of a cell given its X and Y 

coordinates is as follows: 

Let C(X,Y) be the displacement of the cell at coordinates 
X and Y, and NWPC be the number of words per cell required to 
represent the state of a single cell in memory; then: 

1. If Y > YMAX or Y < YMIN then C(X,Y) is undefined; 
else go to 2, 

m 

2. If X > XMAX(Y) or X < XMINCY) then CCX.Y) is unde- 
fined; else go to 3. 

3. I - Y-YMIN + 1 
C(X,Y) = (BASE (I) + X - XMIN(I) + 1) * NWPC 

To illustrate, the cellular space with boundary 

DEFINEBDRY  [-2,-2]  [-2,0]  [0,2]  [2,2]  [2,0]  [0,2]; 

may be drawn as shown in Figure C.2. The three arrays, XMIN, XMAX, and 

BASE for this space are also shown in Figure C.2. The "center" cell with 

coordinates [X,Y] = [0,0] may be accessed at location C(0,0) = BASE(0-(-2)+l) 

+ 0 - XMIN(0 - (-2) + 1) + 1 = BASE(3) + 0 - XMIN(3)+1 = 7 + 0 - (-2+1 = 10 

relative to the base of the space data structure. 

• 
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DEFINESIZE [-2,2]   [-2,0]   [0,2]   [2,2]   [2,0]   [0,2] 

\   \  \ \v   \ «. 
\ 

-v-v-> 
In the data area of the data structure appears sequentially 
the rows of the cellular space, beginning with YMIN and XMIN: 

C(-2,-2), C(-l,-2), C(0,-2), 

C(-2,-l), C(-l,-l). C(0,-1), C(l,-1). 

C(-2,0),... 

C(0,2), C(l,2), C(2,2) 

In the address table appears dimension information and the 
location of the beginning of each row in the data area: 

YMIN: 2 
YMAX: 2 

BASE(I) XMIN(I) XMAX(I) 

1 
2 
3 
4 
5 

0 
3 
7 

12 
16 

Example of Cell Space Data Structure 
Figure C.2 
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Figure C.3 presents the logic of the cell accessing routine, GETST. 

Note that the default handling of external conditions is trivially handled 

by a "dummy" external cell procedure that simply returns on being called. 

The standard external cell procedure routines are now easily presented 

in terms of the cell space data structure. The flowcharts are shown in 

Figure C.4. 

All references to the cell space data base are made via the two routines 

GETST for accessing cells, and PUTST for assigning a value to cells. These 

routines work from five global parameters: X and Y, coordinates of the 

relevant cell; OLDGT and OLDPT, base addresses of the arrays to access for 

GETST and PUTST respectively (these are different during a transition, but 

will have the same value when changing a state via light pen commands); an 

index register where the base of the appropriate cell is produced as the 

value of these routines. 

C.2.2 Simulator Organization 

The main routine of the simulation system, CELSP, consists primarily 

of a simple command dispatcher for directing commands from the POP-7 to the 

appropriate routine. The main routine also performs initialization when 

the system is first loaded. See Figure C.5. Except for computing the 

state transition, we simply list the major routines and briefly indicate 

their functions in Figure C.6. 

The organization of the transition computing routine is shown in 

Figure C.7. That flowchart together with the discussion in Section C.2.3 

describes this rather complex operation. 
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i       / 

{EntTyJ    GETST 

Compute 
Displacement 

Is displacement 
Undefined? 

Yes No 

XP 
YP 

X 
Y & 

Call External 
Cell Procedure 

I 
Is XP $EQ$X 
and YP $EQ$Y? 

No Yes 

1 
Is there an External 

Cell State? 

Yes 

Supply "pointer11 

to External State 

Flow Chart of Cell Accessing Routine 

Figure C.3 
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(jntry)      YWRAP 

T 
Set Y - YMIN ♦ 

y modulo (YMAX-YMIN*!) 

(Entry j 

\   Is YMIN<YiYMAX?  | 

No 

1 

& 

| 

Yes 

) 

Set X » XMIN(Y) 
♦ X modulo(XMAX(Y)- 

XMIN(Y) +1) 

(Exit   ) 

Flow Charts for Standard External Cell Procedures 

Figure C.4 
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CELSP: 

No 

/ 

QEntr^ 

Perform 
\ Initialization 

T. 
Delay an amount 
Proportional to 
value in data switches 

I 
Poll PDP-7 for a 
Command.  Is there one? 

Yes 

Is TBIT 
"on"? 

No 

Look up in table 
/ and call appropriate 

■' routine.  

Yes ill 
Perform Transition 
and update display 
image 

Report success or 
failure to PDP-7 
via command 7 

Simulate: 

Halt: 

Entry TBIT - "on 

.Entry 
TBIT 

on  ■ —> 

"off" -i-^ 
Indicate, 
Success 

Exit 

Flow Chart of Main Simulation Routine: CELSP 

Figure C.5 
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Routine Name Summary of Function 

PARAM, ATDIM, SPEC7 

KEEP. REGO 

USERS 

INPUT 

$QR$ 

$QR$, $QFA$ 

MULTI 

DEFAL 

Read and set up user control data in the 
simulator control area, fill in default 
conditions where needed; Compute the ad- 
dress table based on boundary fpedifica- 
tion and allocate core as needed; Define 
configuration to PDF-7 (Command 6). 

Save and Restore the current state space 
on an external file. 

Collect parameter string from PDP-7, 
assemble in USERINPUT area, then call the 
USER entry. 

Accept input from PDP-7 and set up control 
tables for the input stream being defined. 

A service routine for PDP-7--converts 
character string to floating point binary 
form and returns value. 

Look at the "field table" of the cell 
data structure and return the displacement 
and data type of the ith field. $QF$ also 
reports these to the PDP-7. 

Accepts X, Y coordinates, field number, and 
data value from PDP-7 and substitutes into 
current space state. Return image of the 
modified cell as computed by the current 
mapping function. 

A collection of default routines which are 
selectively used if the user does not de- 
clare a feature in his program. 

Major 1800 Routines and Functions 

Figure C.6 
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\EntTy) 

Point  •PUTST'  at 
"new" state area 

< Call Pre-Transition Routine > 

Iterate over all cells 
of the space. Let X,Y 
be coordinates of cur- 
rent cell 

Accesr value of current 
cell and save at 
NEWSTATE 

Access values of general 
neighbors and store in 
CELLS in order 

Are there local neighbors? 

No Yes 

Access local neighbors based 
on values in NEWSTATE 

T 
Flow-Chart of Transition Computing Routine 

Figure C.7 
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i. 
Does current cell 
expect input? 

No 
Yes 

Get value of appropriate 
input stream based on 
SELECTINPUT field of 
NEWSTATE and save in INPUT. 
J 

\Call Transition Function     ^> r  
Is transition undefined: 

No 

Put NEWSTATE 
into "new" data 
am  

Yes 

Terminate command 
5 to PDP-7. 

Done with Whole Space? 

No 

© 

Yes 

Make new data 
area the current 
state 
A 

Send command 2 to PDP7 
giving X,Y, parameter 
string       

Call Post- 
Transition 
Routine  S 

Set flag indicating no 
back up possible, conmand 
failed. 

Iterate over whole space, 
computing image with 
current mapping function 
and send to POP7 

Indicate command 
success, back-up 
possible.  

Exit 

(Exit) 

Flow-Chart of Transition 
Computing Routine 

Figure C.7 (Concluded) 
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Five different commands may be given by the 1800 to the POP-7. Ex- 

cept for the first, each command initiates a preplanned sequence of data 

exchanges between the two machines. (This kind of organization was re- 

quired by the limited capabilities of the available interface. ) These 

commands are: 

1. Poll for a POP-7 command. 

2. Initiate processing for an undefined transition. 

5. Update the cell space display file as computed by the cur- 

rent mapping function. 

6. Define the current cell space configuration to the POP-7. 

7. Report to the POP-7 the success or failure of the last com- 

mand accepted from it via command 1. 

C.2.3 Structure of Transition Routines 

The program produced by the compiler consists of three logical parts: 

1) a subroutine call to CELSP with a parameter pointing to 2) a control 

block containing a description of a simulation to be performed and used to 

establish linkages for running the simulation and 3) the set of routines 

(transition function, maps, external cell procedure, etc.) constituting 

the simulation. This section will describe the control block which pro- 

vides primary linkage between the compiler and the running environment. 

Figure C.8 is an annotated listing of the contents of the control block. 

It is divided into sections each identified by an integer. For convenience 

We expect that the new interface will permit more flexible interactive 
procedures, such as, directly changing control locations in the opposite 
machine without the necessity of cooperation from the opposite machine. 

2 
Numbers correspond to the codes used by the two computers. 
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* 
* 1. STATE SPACE 
* 
MWPCU DC 2         MO. WORDS PFR HELL UNPACKFD 
NWPC  DC 2         HO. WORDS PER CELL PACKED 
PACK# DC 0        ADR: PACK IMP, ROUTI ME 
UNPK# DC 0        ADR; UNPACKING ROUTINE 
* 

* 2. NEIGHBORHOOD 
* 

NNEI  DC 5        NO. OF GENERAL NEIGHBORS 
NLIS  DC $NBR     ADR: NEIGHBOR LIST 
NEIG« DC Ü        ADR: NEIGHBOR PROCEDURE 
INEI« DC 0        ADR: INITIAL NEIGHBOR PROCEDURE 
DX    DC 0        COSINE OF AXIS ANGLE 
DY   DC 0        SINE OF AXIS ANGLE 
* 
* 

* 3. SIZE OF SIMULATION 
* 

M    DC k                    NO. OF VERTICES 
♦(MAXIMUM OF Id VERTICES) 
*KX AMD KY ARE LISTS OF VERTEX POINTS FOP X AND Y, RFS". 
* THE XS 
KX    DC 0        MUST BE ZERO 

DC 1        "LOWER LEFT" 
DG 1        "UPPFR LEFT" 
DC 20       "UPPER RIOHT" 
DC 20       "LOWER RIGHT" 
OP.G KX+16 

* THE YS 
KY   DC 0        MUST BE ZERO 

DC 1        "LOWER LEFT" 
DC 20       "UPPER LEFT" 
DC 20       "UPPER RIGHT" 
DC 1        "LOWER RIGHT" 
ORG KY+16 

TRANSITION ROUTINE CONTROL BLOCK 
FIGURE C.8 
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* 

* k,   EXTERNAL AND INITIAL STATES 
* 

EL IS  DC     EXT      ADR: EXTERNAL CELL STATE VALUE 
EXTC* DC     C        ADR: EXTERNAL CELL PROCEDURE 
ILIS  DC     0        ADRs INITIAL CELL STATE VALUE 
IN IS* DC     0        ADR; INITIAL STATE PROCEDURE 
* 
* 
* 5. TRANSITIONS 
* 
BEFR# DC     0        ADR: pnF-TRANSITIOM CNTRY 
AFTR# PC     0        ADR: POST-TRANS ITIOM ENTRY 
TRAN# DC     HOPS     TRANSITION ROUTINc f:»!TRY 

* 

• C. DISPLAY MAPPIMfi ROUTINES 
* 

MAP*  DC 0        ADR: ENTRY TO MAP 0 
DC MAPI     ADR: ENTRY 
DC MAP2     ETC. 
DC MAP3 
DC 0       n 
DC 0 
DC 0 
DC 0 
DC 0 
DC 0        #9 

* 

• 7. MISC 
* 

USER# DC USERR ADR: USER ENTRY 
FLDTB DC $FLD ADR: FIELD AND DISPLACEMENT TABLE 
CORB# DC COMPILER VERSION 
CELNB DC 0 APR: LOCAL NEIGHBOR TABLE 
INSLT DC $INPT ADR: INPUT SELECT FIELD 

TRANSITION ROUTINE CONTROL BLOCK 
FIGURE C.8 (CONTINUED) 
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* 

* 
$MBR 

EMD  OH   FIXED   LEMOTII   PART 

"CEMTRAI. CELL" 

"UP" 

* 

$FLÜ 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

DC 
DC 
DC 
DC 
DC 

0 
0 
0 
1 
1 
0 
-1 
0 
0 
-1 

2 
0 
1 
2 
2 

"RIGHT" 

"DOV/fJ" 

"LEFT" 

TWO FIELDS PER CELL 
DISPLACEMENTS: 0 TO FIELD 1, 
1 TO FIELD 2. 
DATA TYPES: BOTH INTEGERS. 

$INPT DC     0        FIRST WORD IS INPUT SELECT FIELD. 

END OF CONTROL BLOCK 

VARIABLE STORAGE AMD USERS ROUTINES FOLLOW. 

TRANSITION ROUTINE CONTROL BLOCK 
FIGURE C.8 (CONCLUDED) 
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we shall refer to lines relative to these sections, e.g., line 6.2 is the 

second line in section 6. The values shown in the Figure are the values 

that are generated by the compiler for the MODS cell space listed in 

Figure 3.3. 

Line 1.1 gives the number of machine words required to represent 

the state of a cell.  Line 1.2 gives the number of words per cell in the 

unpacked format manipulated by the transition routines. Provision has 

been made in the run time system (but not supported b) the language) to 

use a different data format within the cell space data structure as com- 

pared with that manipulated by the transition function. For example, 

several boolean variables could conveniently be packed into a single word 

in the data base but are most conveniently mainpulated on a one-per-word 

basis by the transition routine. This facility has not been exploited 

and is not discussed further. 

Lines 2.1 and 2.2 define the general neighborhood. Line 2.1 is the 

number of neighbors and 2.2 is a pointer to a block twice that length 

giving, in the order declared, the relative X and Y displacements of 

neighbors. 

Lines 3.1 to 3.5 define the boundary of the cell space with the X and 

Y coordinates listed in order in spearate vectors. The example defines a 

25 by 25 square boundary. 

The initial and external states are declared in lines 4.1 to 4.4. 

Line 4.1 is a pointer to the value to be used for external cells, when 

needed. Line 4.3 is a similiar pointer for the initial state. The pointers 

are zero if no value is declared. The address of the external cell procedure 

is given in line 4.2. If zero, default handling is provided. 
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Line 7.2 is a pointer to a table that provides the data displacements 

and data types to the run time environment.  The first word of the block 

gives the number of fields of a cell,  call this NFPC. Following is a 

block of length NI;PC whose i  entry gives the displacement relative to 

the base of a cell of the itx  field.  Next follows another block of NFPC 

words whose i  entry represents the data type of the i  field, encoded 

as follows: 

BOOLEAN 1 

INTEGER 2 

REAL 3 

all others 0 

Line 7.3 contains the version of the compiler that produced this 

program and is used by the Run Time Environment to provide compatability 

with older versions while developing and debugging a new version of the 

compiler. 

Local neighbors are indicated by line 7.4 which is a pointer to a 

local neighbor table.  The first word of this table is the number of local 

neighbors, NLNB.  Following is a block of size NLNB whose i , entry is the 

relative displacement of base of the i  data item of type COORD designating 

the local neighbor values.  For example, if the state of cell was defined 

as 

DECLARE STATE BLOCK (INTEGER, COORD, COORD]; 

DEFINE STATE: CELL; 

then the following table would be generated: 

On the 1800, a 16 bit word machine, real numbers arc represented by two 
words of storage. Thus, the number of fields may be less than, or equal to, 
the number of words in line 1.1. 
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DC 2 

DC 1 

DC 3 

two local neighbors 

first COORD is at second word 

second COORD is at fourth word. 

If input is declared, then line 7.5 points to a wo.d containing the 

displacement of the field determining the input stream. 

C.3 PDP-7 Software 

The PDP-7 code consists primarily of three parallel tasks. These tasks 

are 1) keyboard command language task, 2) display maintenance task, and 

3) PDP-7/1800 communication task.  In fact, it is difficult to divide the 

program quite this cleanly, since control flows among these tasks, some- 

times in parallel fashion, and sometimes, serially. Several other service 

tasks are invoked from time to time for various special purposes. 

The keyboard task is more or less the master task.  It accepts input 

either 1) from the display when the command menu is up or 2) from the key- 

board at all times. Specific commands may cause the display to be changed 

and/or infcrmation to be passed from PDP-7 to 1800 via the communication 

task. Commands invoked by this task may accept arguments from the keyboard 

and are responsible for their own format control and error detection. The 

•U' and 'I' commands, for example, do not interact with the 1800 until the 

entire command input is processed and accepted; then the data is shipped 

in a "burst". 

When sending commands to the 1800 for processing, the keyboard task 

waits after each command for a success or failure response, (via command 7). 

If success is reported, the command interpretation continue; if failure 

is reported, then the current command sequence is aborted, the micro-program 
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(if any) terminated, an error message given, and processing initialized for 

new commands. 

The display management task is several relatively independent tasks, 

one for each display image. Once a display is established, it is main- 

tained via interrupts from the display hardware. 

For the menu type images, the display is built from a series of button 

control blocks. Each control block contains: 1) X and Y coordinates at 

which to place the button on screen, 2) a pointer to the text to comprise 

the button, 3) a bit indicating if the button is to be light pen sensitive, 

and 4) if light pen sensitive, a parameter to be saved in a buffer upon a 

light pen hit. Two special buttons, CANCEL and C.R., either empty the 

buffer or release the buffer to be read by the command processor, respec- 

tively. 

A second major component of the display task is the display cells 

section. The entire cell space output image as produced by the mapping 

functions is kept in PDP-7 core. A routine called BLi <M produces a set 

of control tables to drive the display to show the portion (if any) of the 

space logically in the display window.  Since the output state data is not 

changed or edited when moving the display window, the 1800 need never be 

aware of the current window position or its logical edges. 

Light pen hits may invoke special tasks, such as, transmitting cell 

identity during a MULTI DEFINE operation and handling the updated map value. 

The communication task acts like a funnel to control the multiple tasks 

that may want to interact with the 1800.  The communication task itself is 

controlled by commands from the 1800.  One of the commands means in effect 
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"Give me any command you may have for me."   The communication task then 

enables the data transfer routines to be seized.    Since several data trans- 

fers in either direction may be involved in command execution, the data 

transfer routines must be explicitly released by the using routines when an 

interchange is completed, in order to let any further commands" fall through", 

C.4    Communication Protocols 

This section describes the communication protocols used between the 

1800 and PUP-7 during data exchanges.    These protocols are tabulated in 

Figure C.9.    The following conventions are used in this Figure: 

There are two columns, with the left column representing data sent 

from the 1800 to the PUP-7 and the right, the converse.    Numerals down the 

left side of the page designate independent command sequences.    Within a 

given sequence, capital letters are used to designate changes of transfer 

direction.    For example,  in the first command the 1800 sends the command 

and the POP-7 responds with either a zero (indicating no PDP-7 command at 

present) or by initiating a PDP-7 command.    In the second command, informa- 

tion is passed only to the PDP-7 and no response is involved. 

Most commands from the PDP-7 do not involve a command sequence of 

their own but many result in 1800 initiated commands,  such as updating the 

cell space display. 
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1. 

3. 

1800 PDP7 

A. Command 1 
B. a. 

b. 
Zero    "nothing for you" 
non-zero is command code 

2.        A.    Command 2 
X and Y coordinates of 

undefined transition 
a string of text characters 

terminated by zero 

A. Command 5 
B. Return 0 
C. Map Number 
D. Return 0 
E. Time Step Number 
F. Return 0 
G. The cell graphics, 

one for each cell 
H. Return 0 

4.        A.    Command 6 
B. Return 0 
C. Values of YMIN, YMAX 

Values of arrays XMIN, 
XMAX and BASE 

Values of DXDY  (slope 
of axis) 

Number of fields per cell 
End-of-file 

D. Return 0 

1800/PDP-7 Interactive Protocols 
Figure C.9 
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1800 PDP7 

5.        A.    Command 7 
Success or failure of 

previous command 

6.   A. 0,1,2,3,...,9,N,B,S,H,C,X,E 

7.   A. Command "U", "I" 
A string of characters and 

values 
End-of-file 

8.   A. Command "M" (light pen hit) 
X and Y coordinates of a cell 

field number 
value 

B. Display character for 
current map 

9.   A. Command QF 
Field nuniber 

B.  Data type of given field 

10. Command QR 
A string of numerals, period 

or negative sign terminated 
by zero. 

1800/PDP-7 Interactive Protocols 
Figure C.9  (Continued) 
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1800 PDP7 

B.    a.    If valid conversion: 
Non-zero code word 
Value  (2 words) 

b.    If not valid: 
Zero code 

11.      A. Command 
B.    Number of words per cell 

Number of fields per cell 
Contents of address table 
External Cell State value 
The Cell Space State 
End-of-file 

12.      A. Command R 
B. Request one word 
C. Number of words per cell 
D. Request one word 
E. Number of fields per cell 
F. Request address table 
G. Contents of Address table 
H. If same boundry,  skip to J' 

Else, request external cell 
state value 

K. External cell state value 
L. Request Cell Space State 
M. Cell Space State 
N. End-of-file 

1800/PDP-7 Interactive Protocols 
Figure C.9  (Concluded) 
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