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ABSTRACT

This paper investigates the application of the Kaiman Filter and the
General Exponential Smoothing techniques of forecasting. Both methods
are derived and the similarities and differences between them are dis-
cu;sed. The two techniques are then applied to the practical problem of
predicting weekly losses suffered by the U. S. Marine Corps units in the
I Corps Tactical Zone in the Republic of Vietnam. The mean absolute
error of the prediction is used as the criterion for choosing the better
of the two methods. Results are given for both techniques as well as
for the method of linear regression. In general the Kalman Filter pro-
vides the smalliest mean absolute error for the three mathematical models;
linear, growing sine with harmonics and frequency of sixteen, thirty-two,

and fifty-two weeks, and a constant model.
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I. INTRODUCTION

One of the problems in any forecasting technique 1s what to do about

additional data. That is, given a forecast based upon some data, how

does one go about updating this forecast when additional data is obtained?
Two such methods are discussed in some detail. These are the methods

known as the Kalman Filter, named for R. E. Kalman, and General Exponen-

tial Smoothing, a name ccined by Robert G. Brown.

1

Both the Kalman Filter and General Exponential Smeothing are derived

and comparisons made for any similarities and differences. Both tech-
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niques are then applied to the problem of forecasting losses incurred by

the U. S. Marine Corps operating in the I Corps Tactical Zone of the

TS el o N o, RN, TR A B0

Republic of Vietnam. The actual losses are expressed in weeks and cover

the period from December 24, 1965, tc April 6, 1968. Losses include all

Tt Vg
.

Marine Corps personnel who die as a result of battle as well as non-battle
causes. It also includes those personnel who must be evacuated from
Vietnam because of wounds or injuries received from any cause.

The basis for comparing the Kalman Filter and General Exponential
Smoothing 1ies in their similarities. In each case, a mathematical model
is assumed. The model consists of coefficients, which are unkown, and

functions, called fitting functions, whose values are known. The problem -

becomes one of estimating the coefficients, based upon previous data,

then using this estimate with the fitting functions to obtain a forecast.
The forecast error, the difference between what actually occurs and what
has been forecasted to occur, is weighed to obtain a new estimate of the

coefficients.
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A. THE MODELS

The models used for forecasting U. S. Marine losses are a linear

model,

c(t) = a) + a,t,

a growing sinusoidal with harmonics,

c(t) = (a1 + azt) + (a + ast)sin213-+

(a ay + aﬁt)ccs-?-Iti + a, svnﬂa— + ag cosi%£ ’

and a constant model,

C(t) = ay

In the second model, the forecasts were made for values of w of sixteen,
thirty-two, and fifty-two weeks.

The second model was chosen since there appeared to be some cycle in
the number of losses incurred. It was felt that losses would increase
as a result of increased enemy activity. Such activity was at a low ebb
during the time of the monsoon rains. During the dry period, the tempo
of enemy offensive actions increased for a time with a resultant iacrease

in Marine Corps losses.

B. NOTATION

The notation used above reflects that used throughout this paper.

The symbols a(t) or C(t) represent the forecast of losses for the tth

time period. The same symbols without the ~ above them are the observed

value or the actual losses during the period. It is also convenient

to adopt vector and matrix notation. Thus, an alphabetical symbol, such

T

as 3, will represent a column vector, while a’ will denote a row vector.

8




In general, a vector with a subscript will represent the vector at a
specific point in time. Matrices will be denoted by a capical alpha-
betical character. In the event the matrix symbol is subscripted, it

will denote the matrix obtained by taking the expected value of a col-
umn vector, the first subscript, multiplied by the transpose of the vector
denoted by the second subscript. A matrix with a single subscript is the

expected value of the vector represented by the subscript times its trans-

pose. For example,

T
Cap = E(ab ), and

c, = E(a).

II. THE KALMAN FILTER

Basic to every forecasting technique is the criterion which is used

8 1 ooty e SR a i et i S MOEIG)

to determine the forecast. In the case of the Kalman Filter, which esti-
mates the coefficieats of the model, the criterion is to minimize the
trace of the estimation error covariance matrix, Ce' where e is the:
unobservible error vector between the true value of the model coeffi--
cients and the current estimate of these coefficients. This estimate is
the minimum mean square error estimator. b
A fundamental theorem of estimation, called the Gauss-Markov Theorem,

is very important in any form of estimation. The theorem shall be stated

13
T

but no proof is provided.
Theorem: 1If ¢ is the vector of the observed data at times ty and x Q

is a linear function of g, x and § are random variables with moment matrices

Cx. C,,and C , and if C'l exists, then the linear minimum mean square-

Xg
estimate 3 of x given ¢ is




-1

x = cxec ? ’
_ =1.T
and Ce = Cx - CxeCe cxe .

Throughout this paper, the data will be assumed to be linearly

related to the vector x (or a). Thus,

e = Bx + v,

-~

where v is the measuremen® error or noise vector and B is an m x n
matrix whose rows are the vectors fT(t), the vector of fitting functions
evaluated at time t. For example, if o(t) = X; + Xt + v, the vector

of fitting functions fT(t) = (1,t) and the vector of coefficients
. .

x' = (%) . %)
- Then,
Cxe = E[x(Bx +‘!)T]
or Cxe = CxBT + va
and Co = E[Bx+ y)(Bx + x)T].
or e = Bc8 +BCc +clB +c, .

From the fundamental theorem,

= . T T T -1
X [ch + cxv][chB + chv + cxv + cv] 0 »

. T T, TRl “lre ol T
and ce C, - [CXB + va][chB + cva + BC,, + cv] [ch + cxv] .

Normally the vectors x and v are assumed to be independent. This,
with the assumption that E(v) = 0, implies that C,, is identically zero.

With this assumption, the above equations reduce to
: T T
x = CGB [BCXB + Cv]9

10
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. Trac g7 ~TrpeTqT
and Ce C, - CB [BCXB + cv] [ch] .

By the use of the matrix identities
(2.1) as'[c + B8] = a1+ 8Tc e YeTc,
and (2.2) (¢ +8'a"81! = ¢ - ca'een” + A3 Mec,
the following equations are obtained:
x = [+ 8Tc;'81 T8

and ¢, = [c; +8'c;leyl.

There still remains the matrix C which must be known before the
estimate ):( can be made. In general little information is available
concerning x. In this case it is reasonable to assume that the diagomal
elements of~cx are larger than any finite nu.wer. With this assumption,
c;‘ is considered to be 0. Then,

[BTc;'B]“BTc;‘e.

-~

and Ce

tc; ey,

A. THE KALMAN FILTER EQUATIONS

The foregoing has been the groundwork. Suppose that m observatioms,
g"'. have been taken and ::c"' is the minimum mean square error estimate
based upon the m observations. The matrix C: is available. In addition,

suppose that r additionp observations are taken. The problem is to
+n

determine the estimate g(" .
Since g'“ is available and is
;N - [BMT(C?)-]B“‘].]BMT(C’:)-] gm

il




Cﬂ a [BMT(C?)']BNJ'] .
Also, o = ™M+ V",
and g T ey e

- - -~

The noise vector v" is independant of the vector v'. This implies that
Ce+' is a diagonal matrix with elements Cc and Cc. By partitioning the

B™" into components 8™ and B" and the vector 6™ " into ¢ and er.

matrix
the new estimate
M- [(Cz)-] + BrT(c:)'lsr]-T[(Cﬂ)'lxm + BrT(c:)-ler]

-~

is obtained. Also,
-1 T =1, rqa-1
G = L(c)™ + 8" (cy) BT,

Then define K = Cg+rBrT(CC)'] . From equation (2.1),

= c:IBrT[CC + Brcl:BrT]'] .

X

From equation {2.2),

mr _ ¥R’
Ce = Co- KB'Cq .

Finally, the new estimate is

= ™ ke - B™X"] .

-~ - -~

These last three equations are the Kalman Filter. ([Liebelt 1967,
pp. 165-166] Note that succeeding estimates " are computed recursively

from the prior estimate gm_

12
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B. REMARKS

Notice that with the assumption that cv is known, neither I.( nor Ce
depend unon the data 6. These elements could be precomputed and re-
tained for later use as needed. Also, it is not necessary to assume
that the matrix c;‘ fs zero. If one has information about the distri-
bution of X, the elements of C_ can be computed and used in datermining
Ce.

The vector 5 may be thought of as a weighting factor applied to the
forecast error. Notice that the weight for any error is proporiional
to the inverse of the variance of the forecast. A large variance in
the measurement or noise for any particular forecast will cause the
error to be given less weight in determining the estimate of the coef-
ficients to be used in computing the next forecast.

The dimension of the matrix c:' is always r x r. If measurements
or observations are taken at each succeeding time period, C‘

v
quantity and is the variance of the measurement for that period. In the

is a scalar

event that the matrix cv is diagonal with the diagonal clements equal to
some constant raised to some power, the matrix t:e will reach a steady
state. That is,

mr
Ce = c':
The power to which the constant is raised corresponds to the time period

for which the observation is made.

13




IIT. GENERAL EXPONENTIAL SMOOTHING

As is the case in the Kalman Filter method, the 1inear model
X = As

is assumed, but rather than estimating x in order to minimize the
diagonal elements of some matrix, it is desired to minimize the sum of

.the weighted squared error,
m ~
r wile(d) - &(9)2? .
J=1

- I1f W 1s a diagonal matrix with elements (w],....wm). then

3 wiah) - 0T = D - 9Tt - B

Also, 1t is assumed that

where the matrix B is defined the same as in the discussion of the Kalman

Filter.
Dafine the matrix F to be BIWW'B. Then

[W(o - 6)1W(o - 6) = [e'A - o'WW'BF 1IF[6'AT - oTw'BF']"

T
- o'wWBF T[o"W'8d + oTWTwe .

The matrix F is positive definite. Therefore the choice of AT which

minimizes the above expression is

AT = wierl .

14




rrl

dnnas 1 8wt v S RO,

Finally,

x' = olw'BF! -

Notice that this is identical with the Gauss-Markov estimete with
e pip-) T o el
F B cv B and WM C'.

A. THE WEIGHTING VECTOR

A fundamental hypothesis of Exponential Smoothing is that the
vector of fitting functions f(t+1) must be a linear combination of F(t).
The matrix of coefficients of this combination, which does not depend
on time, is called the transition matrix, L.

From this,

f(41) = LE() ,
and o(t+1) = £(LTx(t1) ,
where x(t) = (Lhx(0) .

The fittina functions are always computed at the number of time periods
in the future for which the forecast is desired. This implies that the
present period fs always considered as the perfod t = 0. Then the
problem becomes how to compute ::z(t) recursively from ;:(,(t-l) so that

t i -
150 b [e(t-1) - :.((t)f(-i)’]z is minimized.

Define the matrix
T T
F(T) = £ b'f(-1)r (-1) ,
=0 -~ -

and the matrix F to be the limit of F(t) as t becomes very large. The
matrix F will exist {f each fitting function fi(t) is greater than the

square root of b-t,
15
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Let the data vector be

T
g(T) = & b o(T-1)f(-1) .
- =0 -

T
Then the 1”' element of the vector g(T) is = bke(T-k)fi(-k) .
- k=0

Then gT) = o(TIF(0) + bL7'g(T-1) ,
PS T i T ~
and F(T)x(T) = izo b f(-i)f (-1)§(T) .
But o(T-1) = F1-K(T) .
Hence, r(r)g(r) = g(m) .

Substituting the steady state matrix F and combining the two equation
for g(T), the expression

X(T) = e(T)F“f(O) + br"L"rg(T-l)

is obtained. [Brown 1963].

But be e = LT - o) T (o)
and £y = o’ .
Define the vector h to be F']f(O). Then the expression for x(T) becomes .

X(T) = ho(T) + ILT - hET(MIK(T-T) ,

or A(T) = LTx(T-1) + nle(T) - &(T)] .

This last equation is the Exponential Smoothing means of estimating the

model coefficients. [Brown 1963, pp. 174-177]. The vector h is the weight

of the forecast error applied in obtaining the new estilate%(T). Note ,
that g(T) is computed in a recursive way from )E(T-l).

16
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B. THE FORECAST BIAS
One may question the accuracy of the forecast cbtained by means of
Exponential Smoothing. It has been shown [Bessler and Zehna 1968] that
for the model C(t) = a+e(t),
where E[c(t)] = a
that the forecast is biased in the early stages by a factor of 1-b%,
where b is the weighting scalar appiied to past data. Since b is
between zero and one, then E[C(t)] = a
when bt has vanished. However, this shows that even where the mothe-
matical model is correct, there is an initial bias in the forecast.
Tkis may lead one to ponder what occurs when the assumed model is
incorrect. It has been demonstrated [Brown 1963, p. 128] that in the
case where the assumed model is

Efc(t)]) = a
but the data is actually corresponding to the model

E[c(t)] = a +at,

that E[C(t)] = a + at - azb(l-b)" .

after bt vanishes. Thus, even after 2 sufficient amount of time has

BB i s - o

elapsed so that bt = 0, the forecast is incorrect or biased by a constant

times the slope of the line through the data.

The next step was to determine if these results could be gemerslized.

To do this, the Exponential Smoothing equation
i) = LTa(e1) + nfe(e) - £1(1a(e-1)]

was examined. This can be rewritten as

17




- t-1 -
at) =z [T - heT()2*nc(t-k) + LT - hET(11%(0).

Then if E[C(t)] = gT(t)e ,

- t-1 ~
(Ee)) = £10) 2 LT ng (k2 + £ (DI,

The above expression is true in general when the assumed model is
C(t) = f(t)a+e(t)
and the data actually follows the modei
c(t) --. gT(t)g + e(t).
In order to compare this expression with those obtained previously for

the constant model, the values

L=1,
f(t) = 1,
and g(t) = 1

are substituted to obtain

ELC(e)] = z [-hl*ha.

k=

This can be written as
E[E(t)] = a[1-b%],

where b is 1-h. Thus the result is the same as before.
Next, it was desired to consider the situation where the data was
modeled by E[C(t)] = a , but the data actually obayed the mode!

18
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bty L

E[C(t) = a; + a,t.

Then substituting the values
V=,
(1) =1,
g'(t) = (1,t),

-

and al = (‘1' az)

-~

into the expression for E[C(t)], -

Py t“] k T
ELE(D] = [-h1°0,t)a, )" h .
k=0
This becomes E[E(t)] = (a]+a2t)(l-ht) - az(l-h)h'l(l-ht) .

When ht vanishes, the expression becomes
ELC()] = a, + ayt - a,(1-h)h~Y,

which 1s identical with the prior result with b = 1-h .

Notice that the expression for E[C(t)] has been used to determine if
a bfas exists when the correct mathematical model ic assumed as well as
to determine the amount of the bias when an incorrect model is assumed.
It was desirable to determine if the forecast was biased when the .assumed
linear model was correct. The equation then becowes

ELE()] = (ay+a ) (NEI-LTehe ()17 1= 70T (1)) B0

- a,fT)I-LTene () LT () IE1-LTeneT (1 )17}

(-0 T-heT N S - (- C-LTene T )1 0 Tone T )3T

19
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It became important to know if the vector [LT-pr(l)]th vanished as
t became large. If the vector fails to vanish, the foreca;t will remain
biased. The vector will vanish if the eigenvalues of‘[LTath(l)] are
all between minus one and plus one. To demonstrate this, ;et

T

A=1L —th(l), where A is n x n and nonsingular. Also, let the eigen-

values of A be Mys Mps o o .sMm_, where each m, lies between minus one

n
and plus one. Let Vis Voo + o oaVp be eigenvectors of A. These vectors
form a basis for E",

Then Avy = myv,

Avp = mpv, .
Also, if x is in E", then

X = v +.

Premultiplying each side by A,

Ax = a]AY] + ...+ anAY

-~

n’
Substitute to obtain

Ax = a]mlyl + ...+ anmnyn.

-

Repeating this process t times,

t
nvn'

-~ -

t t
A'x = amvy + ... +am

Each a: = 0 for sufficiently large t. Therefore,

Atx = 0.
Since this is true for all x in E", A*h = 0.

20




In phe case of the linear model, the eigenvalues are equal to
1 - (h] + hz)z']. These eigenvalues will be between minus one and pilus
one if h] + h2 lies between zero and four. The 9 for the linear model
is such that this is true, if b {s between zero and one. 7o demonstrate
this, recall that
ho= FH0),

-~

F e 3 b'f(-i)fT(-i) ,

i=0 -
T
and fi(t) = (1, ¢).
Plo-

(1-6)2  (1-b)37]

Then hT = (h], hz) = [l—bz, (l-b)z]. Hence,

“h, +h, = 2(1-b)%,

1 2

which is less than four and is greater than zero.

Therefore, the vector [LTwth(i)]th vanishes in the Tinear model for

all values of b which are between zero and one. Then
ELE()] = (apra t)f (D {1-LToheT(1)1 Th
SR A s SRV DY R (AT ) (e SRITTLICH) s
Thus the forecast is unbiased if
fT(l)[l LT @fT(l)]‘] h =1
and 1O I LT OIS DT - 0

For a specific example see Chapter V.

21
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C. EXPONENTIAL SMOOTHING COMPARED WiTH KALMAN FILTER
The Exponential Smoothing equation is a special case of the Kalman
Filter in the steady state. Recall that the matrix F was defined to be

T T, T 1

B'WWB. IfWW used in the Kalman

is equivalent te the matrix C;

Filter equations, then F!

is identical to the matrix Ce derived in
Chapter II. Thus, in the case of fitting functions consisting of poly-
nomials, exponentials, and sinusoidals, which can be generated by a
transition matrix, the Kalman Filter estimate becomes identical with
that ot Exponential Smoothing when Ce reaches the steady state. However,
since the Kalman Filter method does not require that the fitting func-
tions be generated by means of a transition matrix, it may be applied to
models other than those listed above.

The primary difference between the Kalman Filter and Exponential
Smoothing is the models for which they are valid. The Kalman Filter is ’
valid both in a dynamic system as well as in the steady state. The

Exponential Smoothing technique is strictly valid only in the steady

state.

22
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IV. FORECASTING MARINE LOSSES

In order to see how the Kalman Filter and the Exponential Smoothing
techniques compared, both methods, along witn linear regression, were
used to forecast U. S. Marine Corps losses in the Republic of Vietnam.
The actual data used included one hundred and nineteen weeks from
December 26, 1965, through Aprii 6, 1968. The losses inciuded those
Marines who either were killed or were wounded and evacuated from
Vietnam.

Three models were investigated. These were a growing sinuscidal
with harmonics with a cycle of sixteen, thirty-twe, and fifty-two weeks,

c(t) = a]+a2t+(a3+a5t)sin(pt) + (a4+a6t)cos(pt)
+ a7sin(2pt) + ascos(Zpt) .
a linear model,

c{t) = a + azt .

and a constant model,

c(t) = a.
The objective was to minimize the mean absolute error where the absolute
error for the tth forecast was the absolute value of C(t) - é(t). The
mean error and the estimated variance of the errors were included for

comparison.

Both the Kalman Filter and Exponential Smoothing require an estimate
of the coefficients 3(0) in order to begin forecasting. Captain Paul
William 0'Brien, U. S. Marine Corps, had studied the problem of
Exponential Smoothing in forecasting Marine monthly losses. [0'Brien 1968].

23
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Using a least squares line through the monthly losses from Marchk 1965
to December 1966 and the least squares Fourier fit through the deviations

about the regression lire, Captain O'Brien obtained initial values of the
coefficients for the growing sinusoidal model. The coefficients of the |

least squares line through the data were used as the initial values in the
linear model. These values were scaled by one-fourth and used as the ini-
tia) values for forecasting weekly losses. Thus the growing sinusoidal

mode] wasTinitialized with
a'(0) = (-36.45, 15.675, 62.61, 31.3975, .6325, .6325,

-35.1175, 54.76) ,

and the linear model with

al(0) = (-36.45, 15.675) .

A. FORECASTING WITH EXPONENTIAL SMOOTHING
In each model the value of the weighting factor by which the errors

were discounted was chosen to be the solution to
1-b" = .25,

where n was the number of coefficients in the model. The weighting
vector h used in the Exponential Smoothing equation was computed by

determining the steady state matrix F [Brown 1963]. Then

h o= E£(0) .

-~

The transition matrix in each model was determined by inspection,
remembering trignometric identities for sin(A+B) and cos{A+B).
The forecasting procedure involved several steps. These were:

Step 1; Initialize the vector a(0) and compute f(1).
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Step 2; Compute the forecast c(1) by

¢ = f(Na(0).

Step 3; Compute the forecast error

e(1) = c(1) - ¢(1).

Step 4: Obtain a new estimate g(l) by

3(1) = I.Ta_t(O) + I_)e(l).

Step 5; Compute the forecast 5(2) by

é2) = ().

Step 6; Repeat Steps 3 through 5 for each successive forecast

forecast with the appropriate time arguments.

The first model investigated was the growing sinusoidal with

harmonics. For this model the transition matrix is

0 0 1) 0
1 0 0 0
cos p sinp 0

-sinp cos p 0

0 0 0
0 0 0

P
L]
[oococo-a-ri

where p is 2» divided by the cycle length.

0
0
0

0

0 cos2psindp

0
0
0
O -sinp cosp -sinp cosp 0
0
] 0 -sin 2p cos 2p

Also

Q 9 o

0

cosp sinp cosp sinp O

© O 0 o ©

0

fT(l) = (1, 1, sin p, cos p, sin p, cos p, sin 2p, cos 2p).

The values of h used were, for the sixteen week cycle

25
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PT = (0.064709, 0.0011416, 0.025939, 0.12583, 0.00046034,
0.0022276, 0.020951, 0.059457),

for a thirty-two week cycle

h = (0.072061, 0.0012067, 0.056675, 0.12815, 0.00096984,
0.0021717, 0.042191, 0.049775),

and for a fifty-two week cycle

QT = (0.089418, 0.0013569, 0.10333, 0.13127, 0.0016449,
0.0020314, 0.063796, 0.029308).

The results obtained for this model for the three cycles are contained in

Tables 1 through III.
The second model was the linear model. The same procedure was followed

as outlined above. The transition matrix was

1 _ 0
L =
1 1
T
and f(l) = (]9]) ’

hl = (0.25, 0.01795) .

The results from this model are contained in Table IV.
The last model to which Exponential Smoothing was applied was the
constant model. With this model

L = 1,
iy = 1,

and h = 0.25.
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GENERAL EXPONENTIAL SMOOTHING RESULTS
GROWING SINE WITH HARMONICS
CYCLE LENGTH 16 WEEKS

LOSSES

61

64

84

53

87
116
19
108
167
405

89

85
339
208

80
116
141
133
125
158
164

82
203
139
133
198
151
140
175
359

1253
273
150
257
559
258

547
119
125

343

TABLE 1

ESTIMATED LOSSES

27

47

107
107
139
251

270
245
229
227
244
282
319
318
337
321

315
322
332
352

627
491

307

a1
418
426
451
353
317
k24

12

-18
-22

-43
-214
-154
-104

=96
-102

-118
-237
-115
-198
-188
-106
-164
-182
-157

-125
849
-354
-341
-91
252
-144
-121
-36
121
~332

~232
-287
-65




TABLE I (CONTINUED)

WEEK LOSSES ESTIMATED LOSSES ERROR
46 118 556 -438
47 96 580 -484
48 80 541 -461
49 262 467 -205
50 131 447 -316
51 85 408 -323
52 177 395 -218
53 106 434 -328
54 435 444 -9
55 145 512 -367
56 91 439 -348
57 126 338 -212
58 442 274 168
59 86 337 -25]
60 21 320 -199
61 153 340 -187
62 327 373 -46
63 191 429 -238
64 220 403 -183
65 336 367 -31
66 280 364 -84
67 237 357 -120
68 202 359 -157
69 300- 369 -69
70 273 407 -134
sl 389 412 -23
72 646 419 227
73 732 460 272
74 359 486 -127
75 400 397 3
% 76 253 362 -109
77 247 336 -89
78 249 350 -101
; 79 248 373 -125
- 80 536 376 160
81 249 426 -177
E' 82 256 363 -107
; 83 254 324 -70
g 84 315 333 -18
{ 85 208 406 -198
! 86 269 464 -195
: 87 203 525 -322
88 290 521 -231
: 89 608 495 113 ,
! 90 357 517 -160
91 260 439 -179
92 189 360 -1
93 166 317 -15
94 262 321 -59
95 216 n -155
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TABLE 1 (CONTINUED)

3 WEEK LOSSES ESTIMATED LOSSES
96 224 385
97 304 366
98 493 343
99 234 364

100 262 323
101 466 338
102 367 440
103 357 500
104 414 520
105 393 505
166 243 44
107 438 337
108 208 319
109 404 277
110 948 333
m 735 529
112 1056 585
113 787 656
114 1339 590
115 453 667
116 563 499
117 475 449
118 676 442
119 582 517

Mean Absolute Error = 170
Mean Error = -68.97
Error Variance = 4,42 X 104
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TABLE 11

GENERAL EXPONENTIAL SMOOTHING RESULTS
GROWING SINE WITH HARMONICS
CYCLE LENGTH 32 WEEKS

WEEK LOSSES ESTIMATED LOSSES ERROR
1 61 60 1
2 64 64 ) 0
3 84 €3 21
4 53 67 -14
5 87 65 22
6 116 77 39
7 119 101 18
8 108 125 -17
9 167 145 22
10 405 177 228

11 89 266 -177

12 85 241 -156

13 339 210 129

14 208 246 -38

15 80 231 -151

16 116 176 -60
17 141 140 1

18 133 120 13

19 125 108 17

20 158 : 106 52

21 164 125 39

22 82 153 =71
23 203 162 41

24 139 212 -73

25 133 240 -107

26 198 264 -66

27 151 301 -150

28 140 316 -176

29 175 321 -146

30 359 33 28

31 280 386 -106 ,
32 1253 404 849
33 273 681 -408 :
AN 150 619 -469
35 257 521 -264
36 559 466 93
37 258 505 -247
38 290 457 ~167
K ) 382 433 -51

40 547 446 101

41 119 509 -390

42 125 444 -319

43 85 39% ~-310

M 54 346 -292

45 343 302 41




4 A
; TABLE II (CONTINUED)
(I WEEK LOSSES ESTIMATED LOSSES ERROR
i a6 18 348 -230 ;
3 47 96 324 -228 :
H 48 80 297 -217 !
: 49 262 270 -8 i
< 50 131 300 -169
51 85 290 -205
52 177 271 -94
53 106 287 -181 ;
54 435 287 148 j
55 145 385 -240
56 9 389 -298
57 126 g1 -255 :
58 442 388 54
59 86 485 -399 :
60 121 464 -343
61 153 454 -301
62 327 451 -124
63 191 492 -301 |
64 220 480 -260 ‘
= 65 336 an -135 .
g 66 280 486 -206
t 67 237 473 -236
| 68 202 442 -240
69 300 401 -101
: 70 273 390 -17
g 7 389 373 16
B 72 646 391 255
g 73 732 476 256
; 74 359 564 -205
75 400 524 -124 .
. 76 253 496 -243 §
. 77 247 429 -182 1
. 78 249 374 -125 i.
79 248 334 -86
80 536 310 226 g -
81 249 378 -129
82 256 358 -102 3
83 254 347 -93 3
84 315 340 -25 E
85 208 352 -144 2
86 269 331 -62 =
87 203 331 -128 2
88 290 312 -22 =
89 608 320 288 -
90 357 15 -58 2
91 260 420 -160
92 189 394 ~205 =
93 166 353 -187 =
94 262 317 -55 3
95 216 321 -105 =
k)| b
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TABLE 11 (CONTINUED)

WEEK LOSSES ESTIMATED LOSSES ERROR
96 224 320 -96
97 304 329 -25
98 493 366 127
99 234 451 =217

100 262 446 -184

101 466 445 21

102 367 495 -128

103 357 498 -141

104 414 489 =75

105 393 488 -95

106 243 474 -231

107 438 417 21

108 208 423 -215

109 404 366 38

110 948 379 569

11 735 544 191

112 1056 617 439

113 787 754 33

114 1339 776 863

115 453 926 -473

116 563 781 -218

17 475 678 -203

118 676 564 112

119 582 531 51

Mear Absolute Error = 161
Mean Error = 74,73
Error Variance = 3.92 X 'IO4
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g TABLE 111
4 GENERAL EXPONENTIAL SMOOTHING RESULTS ‘
' GROWING SINE WITH HARMONICS ;
CYCLE LENGTH 52 WEEKS
WEEK LOSSES ESTIMATED LOSSES ERROR
1 61 63 -2
2 64 73 -9
3 84 79 5
4 53 87 -34
5 87 83 4
6 116 88 28
7 119 102 17
8 108 114 -6
9 167 123 44
10 405 147 258
1 89 235 -146
12 85 219 -134
13 339 203 136
i 14 208 260 -52
16 80 269 -189
16 116 238 -122
i 17 141 220 -79
18 133 2n -78
19 125 200 75
20 158 187 -29
21 164 185 <21
22 82 185 -103
23 203 161 42
24 139 175 -36
25 133 169 -36
26 198 163 35
27 151 177 -26
28 140 176 ~-36
29 175 174 [
30 359 183 176
k]| 280 244 36
32 1253 273 980
33 273 569 -296
34 150 535 -385
35 257 466 -209
36 559 435 124
37 258 491 -233
38 290 451 -161
39 382 426 -44
40 547 432 115
41 119 484 -365
42 125 4C8 -283
43 85 349 -264
44 54 294 - =280
45 343 245 98
33




TABLE ITI (CONTINUED)
LOSSES ESTIMATED LOSSES

118 292
96 278
80 259

262 247

LK} 292
85 296
177 287

106 307

435 302

145 389
91 376
126 346

442 327
86 397
121 352
153 320

327 302
191 335

220 324

336 324

280 358

237 372

202 373

300 366

273 389

389 403

646 449
732 559

359 672

400 657
253 649

247 596
249 545

248 501
536 462
249 509
256 466
254 431
315 402
208 394
269 359
203 347
290 320

608 323

357 416
260 422
189 398
166 356
262 313
216 306
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TABLE III (CONTINUED)

WEEK LOSSES ESTIMATED LOSSES ERROR

26 224 287 -63

97 304 275 29

98 493 289 204
99 234 355 121
102 367 363 16
104 414 407 7
106 243 440 -197
109 404 389 15
110 948 407 541
m 735 576 159
113 787 801 -14
114 1339 840 499
115 453 1016 -563
116 563 901 338
117 475 825 -350
118 676 730 54
Mean Absolute Error = 154
Mean Error = -67.78
Error Variance = 3.94 x 10
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TABLE 1V

GENERAL EXPONENYIAL SMOOTHING RESULTS

LINEAR MODEL
WEEK LOSSES ESTIMATED LOSSES ERROR
1 61 n 50
2 64 42 22
3 84 65 19
" 53 88 -35
5 87 94 -7
6 16 109 7
7 119 128 -9
8 108 142 -34
9 167 148 19
10 405 170 235
n 89 257 -168
12 85 227 -142
13 339 201 138
14 208 258 -50
15 80 260 -180
16 116 222 -106
17 141 203 -62
18 133 196 -63
19 125 187 -62
20 158 177 -19
21 164 179 -15
22 82 182 -100
23 203 159 44
24 139 178 -39
25 133 173 -40
26 198 166 32
27 151 181 -30
28 140 177 -37
29 175 n 4
30 359 177 182 '
3] 280 236 4
32 1253 257 996
33 273 568 -205
34 150 504 -355
35 257 418 -161
36 559 384 175
37 258 449 -191
33 290 406 -116
39 382 382 0
40 547 391 156
41 19 448 -329
42 125 360 -235
43 85 295 -210.
44 54 233 -179
45 343 177 166
46 118 223 -105

36




TABLE IV (CONTINUED)
WEEK LOSSES ESTIMATED LOSSES ERRCR
47 96 189 -93
48 80 157 =77
43 262 128 134
50 131 162 -31
51 85 148 ~63
52 177 124 53
53 106 134 -28
54 435 120 315
55 145 210 ~65 P
56 91 190 -99 b
57 126 159 -33 !
59 86 232 -146 ‘
60 121 190 -69
61 153 168 =15
64 220 204 16 i
65 336 209 127 ;
66 280 248 32
67 237 261 .28
68 202 257 -55
69 300 243 57
70 273 262 n
A 389 269 120
73 732 416 316
74 359 524 -165
, 75 400 491 ~91
] 76 253 477 -224
77 247 422 -175
78 249 377 -128
79 248 343 -95
80 536 317 219
81 249 385 -136
{ 82 256 349 -93
83 254 324 -70
84 315 304 11
x 85 208 307 ..99
| 86 269 277 -8
| 87 203 273 -70
88 290 250 40
89 608 259 349
90 357 363 -6
92 189 337 -148
93 166 294 -128
9 262 254 8
95 216 254 -38
96 224 239 -1

37




i i

WEEK LOSSES
97 304
98 493
99 234
100 262
101 466
102 367
103 357
104 4
105 393
106 243
107 438
108 208
109 404
110 948
m 735
112 1056
n3 787
114 1339
115 453
116 563
17 475
118 676
119 582

Mean Absolute Error =

Mean Error =
Error Variance =

TABLE IV (CONTINUED)

ESTIMATED LOSSES

128
-2.21
3.67 x 10?

231
249
321
296
286
340
351
357
377
387

377

536
609
761
794
984
857
793
716
8

ERROR

73
244
-87
-3
180

27

57
16
-144

-169
74
595
199
447
26
545
-531
-294
-318
-40
-136




TABLE V

GENERAL EXPONENTIAL SMOOTHING RESULTS

CONSTANT MODEL
9

WEEK LOSSES ESTIMATED LOSSES ERROR

1 61 0 61

2 64 35 29

3 84 47 37

4 53 | 61 -8

5 87 58 29

6 116 67 49

7 N9 81 38

8 108 92 16

9 167 9% 4]
10 405 115 290
1 89 191 -102
12 85 164 -79
13 339 144 195
14 208 194 14
15 80 197 -n7
16 116 168 -52
17 141 155 -14
18 133 151 -18
19 125 147 -22
20 158 i 17
21 164 ‘ 145 19
22 82 150 -68
23 203 133 70
24 139 151 -12
25 133 148 ~15
26 198 144 54
27 151 158 -7
28 140 156 -16 |
29 175 152 23 |
30 359 158 201
31 280 208 72 ‘
32 1253 226 1027
33 273 483 -210 |
34 150 430 -280 :
35 257 360 -103 :
36 559 334 225
37 258 391 -133
38 290 357 -67
39 382 341 4
40 547 351 19%
4 19 400 -281
2 125 330 -205
43 85 279 -194
“ 54 230 © 176
45 343 186 157
46 N8 225 -107
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121

191

237
202

273

732
359

253
247
249
248
536
249
256

315

269
203

357

189
166
262
216
224

TABLE V (CONTINUED)
ESTIMATED LOSSES

199
173
150
178
166
146
154
142
215
198
7
160
230
194
176
170
209
205
299
240
250
247
236
252
257
290
379
467
440
430
386
351
326
306
364
335
315
300
304
280
277
259
266
352
353
330
295
262
262
251

ERROR

-103
-93
112
-47
-81

31
-48
293
-70

-107
-45

-144
-73
~23
157
-18

15
127

-13
-45

21
132
356
353

-108
-40
=177
-139
-102
-78
230
-15
-79
-61

15
-96
-1
-74

31
342

-93
-141
-129

-46
-27




TABLE V (CONTINUED)

WEEK LOSSES ESTIMATED LOSSES ERROR
97 304 44 60
98 493 259 A
99 234 318 -84

100 262 297 -35
107 466 288 178

102 367 332 k

103 357 M 15

104 414 345 69
105 393 362 3

106 243 370 -127

107 438 338 100
108 208 363 -155

109 404 324 80

110 948 344 604
m 735 495 240

112 1056 555 501

113 787 680 107

114 1339 707 632

115 453 865 -412

116 563 762 -199

1z 475 712 -237

118 676 €53 3

n9 582 659 -77

Mean Absoiute Error = 122
Mean Error = 20.26
Error Variance = 3.48 X 10*
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In this model the initial estimate of a(0) was taken to be zero. Also,

since the initial forecasts are biased by I-ht, the method of finite

exponential smoothing [Bessler and Zehna 1968] was used. With this

procedure, the weight given the forecast error in determining the new
value of a(t) is h(l-ht)'l rather than the constant h. This method
increased the initial forecasts and as ht vanished, the forecasts
became identical with those using the constant h throughout. These

results are in Table V.

B. FORECASTING WITH THE KALMAN FILTER

The Kalman Filter requires, in addition to the initial value of
?(0), the value of c;' in order to forecast. In the models investigated,
the matrix C, was not known. However, since the basic model was

C = Ba+yv

-

and in forecasting one time period in advance, Cv is a scalar, it was
decided that C, could be estimated as the variance of the forecast error.
Accordingly, the current estimate of the error variance was used as the
value of Cv in the Kalman Filter equations.

The initial valve of ce was obtained from the equatfon

c, = [87c;'e1.

This required at least two forecasts in order to estimate Cv. So that
a better estimate could be made, C, was initialized after ten time
pericds. The forecasts for these ten periods were obtained by using
the initialized value of 2(0).

The forecasting procedure was:

Step 1; Initialize g(lO) = 9(0).
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Step 2;

Step 3;

Step 4;

Step 5;

Step 6;

Step 7;
Step 8;

Step 9;

Obtain the forecasts for the first ten periods from
¢rt) = bl(t)a(10).
Compute the forecast errors, e(t), for these ten

periods and the mean error, e.

Obtain an estimate of Cv from

1 10 2
C *mtl[e(k)°a.

v k=
Initialize Ce by

- T~1,9-1

ce(m) (8 Cv B] .

Obtain new forecast é(ll) by

o) = b'(1Ma(10).

Compute forecast error e(11) and the new error mean, e.
Obtain new estimate of Cv from
11 2
Cvgﬁi [e(k)-a.
k=1
Compute weighting vector K by

K = C10b(1N)C, + Pr(ll)ce(lo)?(ll)]'].

Step 10; Obtain new estimate a(11) from

Step 11;

e(ll) = 3(]0) + l_(e(ll).

Compute new value of ce(ll) from

Ce(11)

T
Ce(IO) - !(l? (n)ce(m).

43




Step 12; Repeat Steps 6 through 11 with the appropriate
time arguments for each successive forecast.

In general the value of cv will be different from Ce. An exception
is in the constant model where they are identical. In this model the
computation of § in Step 9 above involved the old estimate of the error
variance as the value of Ce and C, was the most recent estimate of the

forecast error variance.

C. FORECASTING WITH LINEAR REGRESSION

The method of Least Squares was applied to the data using the
linear model. The procedure employed was to fit the least squares line
through the first twelve weekly loss figures. The coefficients of this
line were used to obtain a forecast of losses for the thirteenth period.
A new line was fitted to the thirteen observations and the new coeffi-
cients used for the next forecast. This procedure was continued through

each succeeding time period.
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TABLE Vi

KALMAN FILTER RESULTS
GROWING SINE WITH HARMONICS
CYCLE LENGTH 16 WEEKS

WEEK LOSSES ESTIMATED LOSSES
1 61 47
2 64 28
3 84 19
4 53 37
5 87 ' 76
6 116 115
7 119 129
8 108 107
9 167 53

10 405 10

n 89 -7

12 85 384

13 339 =191

14 208 1146

15 80 -269

16 116 -590

17 141 189

18 133 539

19 125 468

20 158 285

2] 164 189

22 82 100

23 203 -61

24 139 80

25 133 91

26 198 131

27 151 231

28 140 255

29 175 250

30 359 235

31 280 278

32 1253 242

33 273 603

34 150 a4

35 257 272

36 559 221

37 258 322

38 290 275

39 382 236

40 547 226

41 119 273

42 125 191

43 35 183

44 54 ’ 223

45 343 288

45

ERROR

14

65
16
n

-10

109
395

-299
530
-938
349
706
-48
-406
=343
-127
-25
-18
264
59
42
€7
-80
-115
-75
124
0

1011
=330
-291
-15
338
-64
15
146
321
-154
-66
-98
-169
%5




TABLE VI (CONTINUED)

WEEK LOSSES ESTIMATED LNSSES ERRUR
46 ng - 435 -317
47 96 453 -357
48 80 an -331
49 262 339 -77
50 131 340 -209
51 85 330 ~-245%
52 177 342 -165
53 106 389 -283
54 435 387 a8
55 145 422 =277
56 91 321 -230
57 126 197 -7i
58 442 118 324
59 86 178 '-92
60 121 180 -59
61 153 220 -67
62 327 261 66
63 191 306 ~115
64 220 275 -55
65 336 234 102
66 280 237 43
67 237 256 -19
68 202 £33 -91
69 300 332 -32
70 273 374 101
n 389 366 23
72 646 339 307
73 732 33 401
74 359 329 30
7% 400 268 132
76 253 258 -5
77 247 253 -6
78 249 265 -16
79 248 272 -24 ,
80 536 260 276
81 249 293 -44
82 256 265 -9
83 254 269 -15
84 315 312 3
85 208 393 -185
86 <69 448 -179

87 203 484 -281




TABLE VI (CONTINUED)

WEEK LOSSES ESTIMATED LOSSES ERROR
97 304 273 3]
98 493 257 236
99 234 290 -56
100 262 308 -46
101 466 363 103
102 367 45% -92

103 357 510 -153
104 414 513 -99
105 393 476 ~-83
106 243 406 -163
107 438 318 120

108 208 295 -87
109 404 274 130

110 948 310 638

11 735 409 326

112 1056 444 612
13 787 485 302

114 1325 463 876
115 453 503 -50

116 563 451 112
117 475 448 27

118 676 459 217
119 582 492 90

Mean Absolute Error = 166
Mean Error = 11.33
Error Variasnce = 6.28 X 104
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TABLE VII

KALMAN FILTER RESULTS
GROWING SINE WITH HARMONICS
CYCLE LENGTH 32 WEEKS

WEEK LOSSES ESTIMATED LOSSES ERRCR
1 61 60 1
2 64 63 1
3 84 €3 21
4 53 61 -8
5 87 62 25
6 116 69 47
7 119 82 37
8 108 102 6
9 167 127 40

10 405 156 249

11 89 184 -95

12 85 =75 160

13 339 179 160

14 208 1155 -947

15 80 617 -537

16 116 969 -853

17 141 -362 503

; 18 133 162 -29
| 19 125 246 -121

20 158 183 -25

2 164 173 -9

22 82 117 -35

23 203 -102 305

24 139 215 ~76

25 . 133 153 -20

26 , 19 165 33

27 . 151 345 -194

28 340 266 -126

29 175 227 -52

30 359 291 68

3 280 608 -328

32 1253 505 748

33 273 1782 -1509

34 150 1007 -857

35 257 258 -1

36 559 -12 571

37 258 198 60

38 290 32 258

39 382 21 361

40 547 144 403

41 ne 384 -265

42 i 156 -31

43 85 50 35

44 54 -21 75

45 343 -67 410
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TABLE VII (CONTINUED)
{ WEEK LOSSES ESTIMATED LOSSES ERROR
45 118 102 16
47 96 75 2
48 80 47 33
49 262 24 238
50 131 89 42
51 85 85 0
52 177 73 104
53 106 105 i ;,
54 435 124 mnm |
55 145 240 -9% 3-
56 9 278 -187
57 126 308 -182
58 442 351 91
59 86 466 -380
: 60 121 480 -359
61 153 492 -339
62 327 495 -168
63 191 518 -327
64 220 482 -262
6% 336 436 -100
3 66 280 412 -132
67 237 367 -130
1 68 202 315 -13
§ 69 300 263 37
70 273 244 29
B 4 389 227 162
72 646 245 401
6 73 732 324 408
i 74 359 amn -52
. 75 400 396 4
76 253 384 -131
77 247 332 -85
78 249 279 -30
79 248 229 19
80 536 184 352
81 249 206 43
82 256 168 88
83 254 142 112
84 315 127 188
85 208 134 74
86 269 133 136
87 203 156 47
88 290 177 113
89 608 222 386
90 357 325 32
9 260 an -
92 189 391 -202
93 166 391 -225
94 262 381 -119

95 216 379 -163




TABLE VII (CONTINUED)

WEEK LOSSES ESTIMATED LOSSES ERROR
96 224 361 -137
97 304 340 -36
98 493 332 161
99 234 358 -124
100 262 334 -72
101 466 322 144
t 102 367 347 20
- 103 357 356 1
E 104 414 365 49
105 393 382 n
| 106 243 393 -150
107 438 374 64
108 208 384 -176
109 404 351 53
110 948 348 600
| m 735 419 316
B 112 1056 444 612
13 787 500 287
114 1339 504 835
115 453 565 -112
116 563 504 59
17 475 460 15
18 66 414 262
119 582 404 178

Mean Absolute Error = 189.5
Mean Error = 7.64
Error Variance = 9.05X 104
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TABLE VIII

L st
v

KALMAN FILTER RESULTS
GROWING SINE WITH HARMONICS
CYCLE LENGTH 52 WEEKS

KEEK LOSSES ESTIMATED LGSSES ERROR
1 61 63 -2
2 64 74 -10
3 84 82 2
4 53 94 -41
5 87 -45 132
6 116 -79 195
7 1198 14 105
8 108 200 -92
9 167 272 -105
10 405 357 48
11 89 738 . -64
12 85 550 -455
13 339 90 249
14 208 12 96
15 80 -78 158
16 116 -322 438
17 141 -375 576
18 133 -391 524
19 125 -569 694
20 158 -1997 2155
21 164 8194 -8030
22 82 7445 -7363
23 203 5585 -5382
24 139 3774 -3635
25 133 2474 -2341
26 198 1713 -151%
27 151 1335 -1184
28 140 1058 -918
29 175 850 -675
30 359 706 -347
31 280 710 -430
32 1253 597 656
33 273 1214 -94]
34 150 799 -649
35 257 398 -141
36 559 192 367
37 258 242 16
38 290 65 225
39 382 -47 429
40 547 -90 637
4] 119 -75 194
42 125 -295 420
43 85 -537 622
44 54 -989 1043
45 343 -3151 3494
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LOSSES

118
96
80

262

131
85

177

106

435

145
91

126

442
86

121

153

327

191

220

336

230

237

202

300

2713

389

646

732

358

400

253

247

249

248

536

249

256

254

315

208

269

203

290

608

357

260

189

166

262

216

TABLE VIII (CONTINUED)

ESTIMATED LOSSES

52

4022
1478
960
755
803
751
698
727
708
877
836
777
747
865
788
740
710
747
720
703
720
10
684
649
641
623
631
689
750
724
707
663
624
590
561
583
559
540
525
522
504
498
481
479
%27
527
509
478
443
423

ERROR

-3904
-1382

-493
-672
-666
-521
-621
-273
-732
-745
-651

-779




TABLE VIIi (CONTINUED)

WEEK LOSSES ESTIMATED LOSSES ERROR
96 224 395 -1n 1
97 304 368 -64
98 493 351 142
99 234 359 -125

100 262 328 -66

101 466 302 164

102 : 367 303 64

103 357 291 66

104 414 280 134

105 393 278 115

106 243 276 -33

107 438 257 181

108 208 270 -62

109 404 255 149

110 948 271 677

11 735 358 377

112 1056 14 642

113 787 506 281

114 1339 560 179

115 453 675 -222

116 563 677 -114

117 475 690 -215

118 676 689 -13

19 582 710 -128

Mean Absolute Error = ¢51
Mear Error = -359.186
Error Yariance = 17.47 x 105

e
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TABLE IX

KALMAN FILTER RESULTS

LINEAR MODEL
WEEK LOSSES ESTIMATED LOSSES ERROR
1 61 -2] 82
2 64 -6 70
3 84 10 74
A 53 26 27
5 87 4] a6
6 116 57 59
7 119 73 46
8 108 88 20
9 167 104 63
10 405 120 285
n 89 135 -46
12 85 122 -37
13 339 127 212
14 208 185 23
15 80 209 -129
16 116 203 -87
17 141 203 -62
18 133 206 -73
19 125 206 -81
20 158 204 -46
21 164 208 -44
22 82 210 -128
23 203 200 3
24 139 209 -70
25 133 207 -74
26 198 203 -5
27 151 210 -59
28 140 209 -69
29 175 206 -31
30 359 208 151
3 280 234 46
32 1253 247 1006
33 273 286 -13
K’ ] 150 294 -144
35 257 298 -4)
36 559 305 258
37 258 324 -66
38 290 330 -40
39 382 337 45
40 547 348 199
4] 119 366 -247
42 125 364 -239
43 85 361 =276
a4 4 357 -303
45 343 351 -8

54




TABLE IX (CONTINUED)

WEEK LOSSES ESTIMATED LOSSES ERROR
46 1ns 358 -240
47 96 355 -259
48 80 350 -270
49 262 344 -82
50 131 347 -216
51 85 343 -258
52 177 337 -160
53 106 335 -229
54 435 329 106
§5 145 340 -195
56 91 336 -245
57 126 329 -203
58 442 324 118
59 86 335 -249
60 121 328 -207
61 153 322 -169
62 327 318 9
63 191 323 -132
64 220 321 -101
65 336 320 16
66 280 325 -45
67 237 327 -96
68 202 326 -124
69 300 324 -24
70 273 327 -54
71 389 328 61
72 646 334 312
73 732 353 379
74 359 374 -15
75 400 378 22
76 253 383 -130
77 247 382 ~135
78 249 380 -131
79 248 378 -130
80 536 377 159
81 249 388 -139
82 256 385 -130
83 254 384 -130
84 315 382 -67
85 208 383 -175
86 269 380 -1
87 203 379 -176
88 290 375 -85
89 608 375 233
90 357 388 -3
91 260 390 -130
92 189 388 -199
93 166 384 -218
94 262 379 -117

95 216 377 -161

e
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TABLE IX (CONTINUED)

WEEK LOSSES ESTIMATED i.OSSES
96 224 374
97 304 372
S8 493 372
99 234 380

100 262 377

101 466 376

102 367 382

103 357 385

104 414 387

105 393 391

106 243 394

107 438 3N

108 208 396

109 404 392

110 948 395

111 735 416

112 1056 429

113 787 450

114 1339 462

115 453 485

116 563 488

117 475 494

118 676 497

119 582 505

Mean Absolute Error = 141
Mean Error = -15.33
Error Variance - 4.18 x 104

ERROR

-150
-68
121

-146

<115

-15
-28

-151
47
-188
12
553
319
6c7
337
877
-32

-19
179
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TABLE X

KALMAN FILTER RESULTS
CONSTANT MODEL

WEEK LOSSES ESTIMATED LOSSES ERROR
1 61 0 61
2 64 0 64
3 84 0 84
4 53 ] 52
5 87 29 58
6 116 77 39
7 119 80 39
8 108 103 5
9 167 103 64

10 405 163 242

11 89 164 -75
2 85 117 -32

13 339 94 245

14 208 136 72

15 80 208 -128

16 116 208 -92

17 141 149 -8

18 133 142 -9

19 125 137 ~-12

20 158 131 27

21 164 157 7

22 82 158 -76

23 203 153 50

24 139 207 -62

25 133 198 -65

26 198 165 3

27 15 198 -47

28 140 196 ~56

29 175 171 4

30 359 175 184

31 280 176 104

32 1253 260 993

33 273 267 6

34 150 273 -123

35 257 264 -7

36 559 258 301

37 255 2N -13

38 290 259 3

39 382 287 1.

4c 547 305 24

4] 119 317 -198

42 125 247 -122

43 85 164 -79

44 54 12 -58

45 343 7 266
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TABLE X {CONTINUED)

WEEK LOSSES ESTIMATED LOSSES ERROR
46 118 123 -5
47 96 118 ~22
48 80 110 -30
49 62 96 166
50 131 141 -10
514 85 133 -48
52 177 120 57
53 106 176 -70
54 435 174 261
55 145 228 ' -83
56 91 166 -75
57 126 125 1
58 442 126 316
59 86 132 -46
60 121 %0 31
61 153 120 33
62 327 140 187
63 191 141 50
64 220 19 29
65 336 194 142
66 280 198 82
67 237 270 -33
68 202 264 -62
69 300 242 58
70 273 299 -26
71 389 298 91
72 646 360 286
73 732 371 361
74 . 359 505 -146
75 400 401 -1
76 253 400 -147
77 247 391 -144
78 249 317 -68
79 248 266 -18
80 536 252 284 ’
81 249 268 -19 ‘o
82 256 250 6
83 254 255 -1
84 315 254 6
85 208 305 -97
86 269 304 -35
87 203 277 -74
88 290 254 36
89 608 290 318
90 357 290 67
91 260 356 -96
92 189 353 -164
93 166 302 -136
94 262 223 39
95 216 262 -46
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TABLE X (CONTINUED

WEEK LOSSES ESTIMATED LOSSES ERROR
96 224 262 -38
97 204 241 63
98 493 296 197
99 234 302 ~68

100 262 254 8

101 466 261 205

102 367 267 100

103 357 355 2

104 414 356 58

105 393 400 -7

106 243 398 -155

107 438 391 47

108 208 438 -230

109 404 437 -33

110 948 406 542

m 735 415 320

12 1056 660 396

113 787 813 -26

114 1339 788 551

115 453 798 -345

116 563 581 -18

117 475 563 -88

118 676 548 128

119 582 637 -55

Mean Absolute Error = 109
Mean Error = 41.33
meror Va-ianca = 093 x 193
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LINEAR REGRESSION RESULTS

LOSSES

339
208
80
116
141
133
125
158
164
82
203
139
133
198
151
140
175
359
280
1253
273
150
257
559
258
290
382
547
119
125
85
54
343
118
96
80
262
131
85
177
106
435
145

126

TABLE XI

ESTIMATED LOSSES

60

196
252
256
224
208
201
193
184
184
185
170
179
176
172
178
177
174
177
203
217
350
351
337
336
369
366
366
376
402
383
366
347
327
334
320
306
291
292
283
27
266
257
272
265
255

ERROR

143
-44
-176
-108
-67
-68
-68
-26
-20
-103
33
~40
-43
26
-27
-37

182

1036
-77
-201
-80
223
-111
~76
16
171
-283
-258
-281
-293
16
-216
-224
-226
-29
-161
-198
-94
-160
178
-127
-174
-129




| TABLE XI (CONTINUED)

; WEEK LOSSES ESTIMATED LOSSES ERROR
58 442 248 194
59 86 263 =177
60 121 253 ~132
61 153 246 -93
62 327 241 86
63 191 248 ~57
64 220 246 -26
65 336 246 90
66 280 253 27
67 237 256 -19
68 202 256 -54
69 00 255 45
70 473 259 14
7 389 261 128
72 646 270 376 J
73 732 293 439 ;
74 359 319 40
75 400 323 77
76 253 330 =77
77 247 329 -82
78 249 327 -78
79 ' 248 326 -78
80 536 324 212
81 249 337 -88
82 256 336 -80
83 254 334 ~80
84 315 333 -18
85 208 334 -126
86 269 331 -62
87 203 330 -127
88 290 327 - -37
89 608 327 281
90 357 342 15
91 260 345 ~85
92 189 343 -154
93 166 339 -173
94 262 334 -72
95 216 333 =117
96 224 330 -106
97 304 327 -23
98 493 328 165
99 234 337 -103

100 262 334 -72

101 466 333 133

102 367 340 27

103 357 343 14
61
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TABLE XI (CONTINUED)

WeEK LOSSES ESTIMATED LOSSES ERROR
104 414 346 68
105 363 350 43
106 243 354 -1
107 438 352 86
108 208 357 -149
109 404 353 51
110 948 357 591
1 735 380 355
112 1056 395 661
113 787 421 366
114 1339 437 902
115 453 472 -19
116 563 474 89
117 4r5 480 -5
118 676 484 192
18 582 493 89

139
9.9

Mean Absolute Error

Mean Error

Frror Variance = 4.53 X 10°
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V. CONCLUSIONS

In the case of the iinear model, it was shown in Chapter III that

EC(E)) = (ap+a,t)f (DII-LTsh £1()T7T
- 2y £ OI-L+h €TI0 £T(I0E-LToh £1()T7

for large t and when the actuai data was such that

E[C(t)] ay + azt.

Then, E[é(t)] 2y + ayt + a,.

This showed that when the assumed model was correct, the forecast was
biased by the slope of the data line. In the case of the problem of
forecasting the Marine losses, the least squares 1ine through the one
hundred and nineteen points had slope 3.41. This suggested that Exponen-
tial should have produced a forecast which i5 3.41 more than the actual
data, or an error of -3.41. The actual mean error was -2.21. Ailso, the

Exponential Smoothing forecast would be above the linear regression fore-

cast when the losses were increasing and below when they were decreasing.
The results bear this out, although not around the time periods when the
actual losses changed directions. For example, the losses increased
during the time periods thirty-seven through forty. The Exponential

Smoothing forecast with the 1inear model exceeded the linear regression

forecasts during these periods. The losses then decreased during the
periods forty-one through forty-four. The Exponential Smoothing forecast
was above the linear regression forecast for the forty-first week but it

then was below the linear regression forecasts through forty-four.
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The results obtained with the Kalman Filter and the growing sine model
were generally comparable with the results with Exponential Smoothing.
This is evidenced in Figure 7. The exception was the sine model with a
cycle length of fifty-two weeks. The Kalman Filter forecast for this
model fluctuated badly for the initial forecasts. However, the last
seventy weeks of the data produced a mean absolute error of -321.71 and

a mean error of -208.71. The last forty weeks produced a mean absolute
error of 219 and a mean error -24.08. When these results are comparad
with the overall mean absolute error of 651 and the mean error of -359.16,
it appears that the forecasts were 1mf>rov1ng as the effects of the initial
forecasts were dampening out. Thus, the model whould not be totally dis-
missed, especially since the Exponential Smoothing results with the cycle

| length of fifty-two weeks did not vary greatly from the results when &

cycle length of sixteen and of thirty-two weeks was used. The Kalman

Filter technique assumes that the forecast error variance is known. For
the problem investigated, that variance was estimated, which was a variation
on the Kalman Filter. If the true variance had been known, the results of
all the wmodels with which the Kalman Filter was used might have been im-
proved.

With the models used in forecastfﬁg Marine losses, the simpler the
model, the better the results. Captain 0'Brien found that the 1inear model
produced better results than the more complicated growing sine model for
the prediction of monthly Marine losses [0'Brien 1968]. The same was true
for the weekly forecasts. In addition, the even sizpler constant model
produced even better results. However, 1f the actual cycle period had been
used rather than an estimate, the results of the Exponential Smoothing with
the growing sine model might have been greatly improved. The period léngth
can be determined as described in R.G. Brown's book[Brown 1963, p. 66-75].

n




In general, the estimated mean of the forecast errors was not zero.
For example, the Kaiman Filter with the constant model, on the average,
forecasted forty-one fewer losses than actually occurred. With this

information, a better policy would have been

C'(t) = C(t) + u,

where u is the mean forecast error, é'(t) is the estimated losses and
é(t) is the forecasted losses from the method used. The variance of the
forecast error will not be changed by this modification since é(t) would
still be computed using C(t-1) - é(t-]). However, the mean error, where
the error is

e'(t) = c(t) - C'(t),

will be zero.

Finally, the results indicated, as evidenced in Figure 7, that even
when an estimate of the forecast error covariance matrix Cv is used, the
Kalman Filter results do not differ greatly from those of Exponential
Smoothing. Since, except for the constant model, the Kalman Filter is
more complicated than either the Exponential Smoothing or the Linear
Regression methods, either of these latter methods should be used when
cv 1s unknown or when no computer facilities are available. When Cy is
known and a computer is available, the Kalman Filter technique might
provide better resultc than either of the other two methods.

Under the criterion chosen, the minimum mean absolute error, the
Kalman Filter method using the constant model was the best forecasting
"method. This method could be easily used for forecasting Marine losses

in Vietnam. The calculations for this constant model are relatively

simple and can be accomplished with a calculator without the aid of a
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computer. The calculation of the estimate of the forecast error varjance
is the most complicated portion of the constant model. The mean absolute
error and the variance of the forecastlerrors achieved with this model
compare favorably with the data mean of 294.6 and variance of the data of
5.21 X 104. Using this model would be more beneficial than merely using
the data mean as the forecast of the losses for the next time period.
Because of the difference between the two variances, one would be more

certain of a minimum error with the Kalman Filter constant model.
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GENERAL EXPONENTIAL SMOOTHING PROGRAM
This program computes successive weekly forecasts for the model
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KALMAN FILTER PROGRAM

This program computes successive weekly forecasts for the growing

sinusoidal model with a cycle length of 32 weeks.
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