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ABSTRACT

A method is presented for determining the three-
dimensional virtual mass distribution asseciated with the
vertical girder vibration of ships. The method was de-
veloped for use with a lumped mass/weightless beam ship
represeitation and is based on a set of dipole distri-
butions along the ship axis. It provides a virtual mass
matrix with off-diagonal etlements and enables all the vi-
bration frequancies and shapes of the ship to be computed
from a single matrix equation. The usual metuod for
determining the frequencies and shapes uses a separate
mass matrix for each mode. The method is preferable to
the standard one for short or unusual ships #na mode
shapes, or where it is desirable to include all modes in
a single equation. However, if separate consideration
of each mode is acceptable, the standard technique is
simpler for normal ships.

ADMINISTRATIVE INFORMATION

The author of this report is a Senior Scientific Officer of the
Naval Construction Research Establishment at Dunfermline, Fife, Scotland.
During 1969, he was assigned duties as exchange scientist in the Ship Pro-
tection Division of the Department of Structural Mechanics, Naval Ship
Research and Development Center; his salary and expenses during this
assignment were paid by the United Kingdom. The work reported hereir was
performed under Naval Crdnance Systems Command Task UF17-354-304, with

funding support only for computer time and printing of the report.
INTRODUCTION

In problems concerned with the vibration of ships, it has long been
appreciated that the effect of the surrounding water must be ailowed for
if reasonably accurate predictions are to be made of the frequencies of
vibration and of the mode shapes. At almost all frequencies of interest,
the principal effect of the water is a very large increase in the effective
inertial mass of the ship; at heaving but at pitching frequencies, there is
also a considerable damping effect due to the generation of surface waves.
For many ships, the additional mass (virtual mass) due to the water is

between 1 1/2 and twice the total displacement of the ship and its effect
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is consequently very significant. Todd1 gives an historical survey of
the study of virtual mass and its application to ship vibration. Kaplan2
gives a comprehensive critical review of the litera:ure of the subject.

Most current methods of allowing fer the virtual mass are adap-
tations of a technigque introduced very early by Lewis.3 He noted that
because of the long slender nature of ships, the fluid flow around the
ship would be largely confined between tramsverse planes because of its
transverse motion and so could be approximated at each ship cross section
by the two-dimensional flow around zn infinite cylinder of the same shape
as the cross section. Such two-dimensionral flows are fairly easy to
determine. The method has since been called strip theory. Ton allow for
the existence of some flow parallel to the ship axis, Lewis computed the
exact kinetic energy for vibrating ellipsoids of rcvolution and also the
kinetic energies for the same ellipsoids of revolution under the as-
sumptions of strip theory. For any particular ship, the virtual mass
distxibution along the ship deduced from tlhe two-dimensional flow so-
lutions could then b2 reduced in the tatio of the two kinetic energies
calculated for an ellipsoid of the same length/beam ratio. This is still
the standard method of computing the virtual mass distribution and the
tvo-dimensional flows have been calculated for a much greater variety of
cross-sectional shapes than were given by Lewis. However, Tay1014 showed
that Lewis had not used the best possible boundary condition for his
exact ellipsoid solution. Taylor presented a different set of reduction
factors to allow for the three-dimensional flow effect. He also gave a
third set of reduction factors deduced from the transverse vibration of an
infinite circular cylinder with a sinusoidal distribution in the vibration
amplitude along its length. Most vibration calculations have used his
ellipsoid correction factor but at least one methods uses the cylinder
factor.

The above technique works very successfully for the pasic two or
thiree vibration modes, but it has several disadvantages. First, in

addition to the variety of three-dimensional flow correction factors

YReferences are listed on page 30.
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availabie, each type of reduction factor depends on the particular type
of motion; a different factor is required for each vibration mode. Lewis
gave correction factors for heaving, pitching, and two- and three-node
vertical vibration. Taylor gave a correction facter only for iwo-node
vibration. Since most methods cf computing the vibration frequencies in-
volve eigenvalues of either a differential equation or a matrix, this
means that a differsnt equation or matrix must be solved for each mcde;
this requirement considerably complicates programming a computer to carry
out the task. Moreover, for some shapes (as discussed at some length in
Reference 2), there is the possibility that the correction factor may vary
along the length of the ship, the reduction possibly being greater near
the ends than at the center. There is no present means of allowing for
such a variation. Finally, in one particular type of problem, namely the
hull whipping induced by underwater explosions, in order to be able to
deal with nonlinear effects conveniently it is necessary to represent the
equations of metion of the ship as a single matrix equation including the
effects of all modes simultanecusly. The present type of correction
factor, varying from mode to mocde, excludes such a representation. Even
in the completely linear case, the vibrations of a damaged ship involve
mode shapes for which no correction factors are available. These dis-
advantages prompted the presen. attempt to find an alternative method of

allowing for the virtual mass effect.
NATURE OF THE MODIFICATION REQUIRED

The present "strip theory" described above relates the force on
each transverse section of the ship to the motion of that section alone,
the overall (three-dimensional) correction factor being constant along
the length. If the ship is divided into n sections, with n large enough
that the variation in cross-sectional shape is small in each section,
then the vertical hydrodynamic force Fwi on the ith section is related to

the average vertical displacement Y of the section by

where dots denote differentiation with respect to time and ™ is the
3

virtual mass of the section. The equation for the forces on all sections

3
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of the ship may then be written in the matrix form

Fo=-M Yy (1]

-~

where Fw and y are column vecters and Mw is a diagonal matrix. This
standa;d strii theory equation clearly cannot be valid for general motions.
If one section of the ship is accelerating upward, it will certainly ex-
perience a downward hydrodynamic force and so dizgonal elements in M, are
necessary. However it will also Induce a downward fluid acceleration
around it as fluid moves to fill the space it is vacating. This fiow will
be around reighboring sections and so will induce a downward force on these
too. This means that for Equation [1] to be true, Mw should contain off-
diagonal elements. In fact, all elements of M, will be nonzero, but since
each section will principally affect its nearest neighbors, the magnitude
of the elements will decay rapidly away from the main diagonal. The
problem is to determine ihe elements of M. Since the general ship prob-
lem js very difficult, attention is directed first to the case of an

axisymmetric ship.
MATHEMATICAL MODEL FOR AN AXISYMMETRIC SHIP

For such a ship, it is possible to satisfy fairly well the fluid
boundary condition of equality of hull and fluid velocities along the
normals to the hull by means of a distribution of vertical dipoles dis-
tributed along the axis of the ship. This distribution should normally
be continuous, but if the ship is considered to be divided into a number
of sections and the number is large enough, then it should be reasonable
to assume that the line distribution ir each section i has a constant
strength My

Since the velocity potential at the point (r,8,z) due to a dipole
at the point (c,0,s) (referred to the cylindrical polar ccordinates of

Figure 1} is given by

¢ = u.X €03 2/2 , where u = - ¢ ,
[r%+(z-5) ]
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the potential due to a line distribution of dipoles of strength u, per

unit length and extending from zi-1/2 to zi+1f2 is

z
itvl/f2
[ ds

¢i(1,s,z) = by T COS ej —~;———-—~;-3/2
21_1/2 [r +(Z-S) ]

whence

5. <  FHan 2]
b = 1/2 1/2 t

[r2+(?-zi-l/2)2] [r2+(z-zi+l/2)21

The radial velocity u produced by the distribution is given by

a¢i us cos 6 2"21-1/2 Z'Zi+1/2

u(ed=- 557 = 2 1/2 ~ 172

T [r2+(z'zi_1/2)] [r2+(2-zi+1/2)2]

(3}

and the longitudinal velocity u, by

u_.(z) =- Eii =y, r cos 0 ! - 1 ey
zi 32 i 3/2 372

2 . 2 2. .2
[r +(“‘Zi+1/2) ] [r +(Z'Li_1/2} ]

The total velocities produced by all the distributions are therefore

n n

ur(z) =Z urj(z) and uz(z) =Z uzj(z)

j=1 =1

The boundary coundition at the hull is that the velocities of the »

fluid and the hull, resolved .in the direction of the normal to the huil,
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should be equal. Frr the axisymmetric shape considered, the angle A be-
tween the normal ¢o the hull and the radial direction is given by
A= - tan'l b” where b(z) is the radins of the ship and b” = db/dz. The

boundary condition is, therefore,

v cos -y bsin )= u. €os X + u_ sin A <y
L

where v{z) is the distribution of vertical velocity along the length. This
condition allows for both shearing and flexing of the ship. For the more
interesting, lower frequency modes of vibration, v’b will be small com-
pared to v since the wavelength will be much greater than the half beam.

A will also normally be small except possibly in the immediate neighber-
hood of the stern. The term v’b sin X will therefore be very small. The
flow along the ship, (uz) is produced partly by the variation in v along
the ship (i.e., by v”) and partly by the changing shape of the ship (b”).
It too will, therefore, normally be small when v° and b” are small. It is
generally possible then to simplify the boundary condition (Equation [5})

to
vV=au (61

except when rapid changes occur in either the ship underwater cross-
sectional area or in the velocity distribution along its length (e.g., for
high medes). This simplification in the boundary conditien slightly
reduces the amount of data needed to specify the ship and its motion. It
is roughly equivalent to neglecting rotary inertia in the dynamic equations
of the ship itself.

Neither of the boundary conditions, Equations {5} and [6], can be
satisfied everywhere by the assumed velocity potential., However, either
can be satisfied at up to n "collocation" points along the ship and the
boundary condition will not be seriously violated anywhere if these pcints
are suitably chosen. The most convenient choice for the collocation
points is at the midpoints 24 of the ship sections, and satisfying

Equation [6] at these points gives
v 1 -
y == Au (71

Here b is the maximum value of b(z), & (z) is the vertical velocity of the

ship, and the matrix A = (aij) where

6
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2.-2.+2./2 2.-2.-2./2
2 (25-24+2./2) Gz
3op21 2 2, 1/2 2 2,2
. - - —z =L, /N
i [bi +(zi-hj+gj/2) ] [bi +(zi zj iJ/Z, ]
) i8)
2 . Yy
. bi (zi-zj+£j/2) ) bi (zi zj 2j/2)
3/2 3/2

2 2 2., Fn2
[bi +(zi-zj+ij/2) ] [bi +(Li~zj-lj,2) ]
Equation {[7] may then be inverted to determine the strengths y of the line
distributions necessary to satisfy the boundary condition, Equation {[6],
for the given velocity distribution y. This gives

p=>b A

-

The upward vertical force per unit length on the section at the

point z. is given by
&
i

f. = - 2.f p cos 8 b, d6
i i
)

where p = pé is the fluid pressure. Thus

n n W
. b .
f1 =- 2p J. bi $ cos 8 do =- 2p — E Bij uJ j. cos” 6§ do
0 ! j=1 0
n
- Job Y
B 2i 8ij j
3=1
where
2
) z2.~2.4%./2) 2.-2.-9./2
g, . = %l 1 ) J/ _ i) J/ ) [9]
ij b ) 5 1/2 ) . 1/2
[bi +(zi-zj+zj/2) ] [bi +(zi~zj-zj/2) ]

Since in any actual motion, conditions along the ship will be continuous,
the upward force/unit length at the center of the section will approximate

the average force/unit length over the whole section and the total upward

force Fi on the section will be approximately
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Fi = zi fi = - apb E Eij uj
j=1
that is

F=-mnpbBp=-3bpga’ ; [10}

vhere B is the matrix (Bij)‘ The required inertial water mass matrix Hv
Y

is therefore given by

M = ab% B A [11]

This metrix depends only on the shape of the ship and is completely inde-
pendent of the type of motion {or vibration mecde). With M, kngwn, the
force distribution for any vertical acceleration distribution y is readily
fourd. A short computer routine has been written to compute the non-
dimensional matrix BA-1 and the force distributions deduced from it, by

Equation [10], for given distributions of vertical acceleration.
COMPARISON OF RESULTS WITH KNGWN EXACT FORCE DISTRIBUT{QONS

Exact solutions are known for two forms of fluid flow that are
suitable for comparison, namely, the flows around a vibrating prolate
spheroid and around an infinite circular cylinder whose transverse
velocity varies sinusoidally along its length. The exact results for

both cases have been compared with the results from the foregoing anzlysis.

VIBRATING PROLATE SPHEROID

The methods involved in the solution of the flow about a prolate
spheroid are discussed in some detail by Lamb, (see page 139 of Reference
6). Lewis3 gave the first solution in connection with transverse shear
vibrations and Taylor4 gave a second solution using a different, more
realistic boundary condition involving both flexure and shear. This type
of motion has also since been investigated by Landweber and Macagno.7
In principle, the vibrating ellipsoid can be solved exactly for
any arbitrary transverse velocity distribution but in practice only dis- )
tributions represented by low order polynomials are required. Using the

analysis outlined in the Appendix, a short computer routine was written




P e ® i LT D it Slmadan i st aa S 7 ander e d Lt

T TCASTIG 7Y

St o
RNSF R S Y VUL § Ty

o

to evaluate the force distribution on am ellipsoid with a velocity distri-

bution representable by

5
v(z) = 2 v (z/2)"!
n=1

where z is the distance along the axis of symmetry from the center of the
ellipsoid of length 2a (see Figure 2). This velocity distribution is
sufficient to approximate heaving, pitching, and the first three whipping
modes of ship vibration. The boundary condition used in the solution is
that of Taylor and ailows for flexure as well as shear.

Figures 3 and 4 compare the transverse force distributions given
by the approximate analysis with the vaiues given by the exact solution
and also with the values given by the stxip method, using the Lewis
correction facturs since these are available for four of the five mcdes.

The values used for the coefficients (vl,...,vs) for these cases are

given in Table 1.

TABLE 1

Coefficients for the Ellipsoid /ibration Shapes

Coefficient |
\Y \Y V. \Y v
Mode ! 2 > 4 5
lleave 1 0 0 0 0
Pitch 0 1 0 0 ¢
2-node Vertical -0.200 0 1 0 0
3-node Vertical 0 -0.429 0 1 0
4-node Vertical 0.0274 0 -0.534 1 0 1

The first four mode shapes are those used by Lewis, although the exact
analysis used the better Taylor boundary condition. The Lewis correction
factor and the approximate three-dimensional analysis both use the shear
type boundary condition, and the three-dimensional analysis also assumes
that the rate of change of the radius along the length is small. The

fifth mode shape has been chosen to have nodes at 0.155L, 0.38L, 0.62L,



and 0.845L, where L is the total lergth. These are about the ccrrect
positions for destroyers, but the resulting shape gives rather toc much
prcainence to the ends and too little to the central section.

For the L/B=10 eliipsoid, the results for both the three-dimensional
and the two-dimensional {strip theory} approximations agree well with the
exact analysis anid there is iittle to choose between them. The three-
dimensional approximation is slightly betier near the center of the
ellipsoid where changes in the radius are smallest, but the two-dimensional
approximation is better at the ends where the radius is changing rapidly.

The results for the L/B=5 ellipsoid are very similar but the di-
vergence from the exact soluticn is quite serious near the ends for both
approximations for modes as low as the second vibration mode. Once again,
there is very little to choose between the two approximate methods.

For most ships in which vibration frequencies are particularly im-
portant, the L/B ratio is near 10 and both the strip theory and the new
three-dimensional approximation should give good results. The divergence
near the ends for the lower L/B ratio is caused by using the approximate
form of the boundary condition, Equation [6]. From this point of view,
the ellipsoid is rather a poor shape since the radius changes extremely
rapidly near the ends. The radius changes are much less severe for
typical ship forms, and either approximate method would give better
results. Use of the exact boundary condition, Equation [5], would be
simple in the case of the ellipsoid because the velocity distribution and
rate of change of radius are easily defined, but is scarcely worth the
effort for ship forms (unless rotary inertias are being considered). This

point is considered later.

INFINITE CIRCULAR CYLINDER

Taylor4 was the first to consider this case. The infinitely long

circular cylinder was assumed to have a transverse velocity distribution

v(z) = Vv, €0s kz

Taylor gave the velocity potential for this distribution as

10




v_ X. (kr)
o1
¢ = ———————~Cos 8 cos kz

k K;(kb)

where b is the cylinder radius and K1 is a modified Bessel functicn of

the second kind. The force distribution may be found as before and is

T r. .2V, Ky(kb)
f(z) =-2 jp cos 8 b dg =- 2pb j;} cos ¢ df =- apb” - cos kz
0 kb Ki(kb)

(force/unit length)

The wavelength X of the velocity distribution is 1 = 2a/k,

Since the approximate analysis is based on a body of finite length,

it cannot give a uniformly good representation of the infinite cylinder.
However, if it is used to represent three complete wavelengths of the

cylindex, the flow in the central wavelength should be approximately

LoVt

correct. With three wavelengths, the program restricts the number of
sections in each wavelength to six. Table 2 compares the results from the
approximate analysis with the exact results. In this case, the cylinder
is of uniform diameter so that the boundary conditions, Equations [5] and
{6], in the three-dimensional approximation are equivalent. Inaccuracies

in the solution are due either to the coarseness of the representation or

R L i ¢4

to the finite length of the cylinder in che three-dimen: 10nal approxi-

i mation.
1 TABLE 2
Values of f(z)/npbz\'/0 for an Infinite Cylinder
: P /2 /6 /2 5276 | 7-76 | 372 | vi-z6 | 13-/ 1 s-72 |17-/6
b 5  exact | -0.448 0 | o0.448 | 0.448 0 | -6.448 | -0.448 0 | 0.448
3-D | -0.445 | -0.0002 | 0.445 | 0.445 | -0.0014 | -0.445 | -0.452 | -0.0240 | 0.383

: 10 exact | -0.631 o |0.631 | 0.631 0 | -0.631 | -0.631 0o | o0.69
] 3-D | -0.609 | -0.0003 | 0.609 | 0.609 | -0.0013 | -0.611 | -0.616 | -0.0189 | 6.51
E‘ 15  exact | -0.762 o |o0.762 | 0.762 o | -0.762 | -0.762 0 | 0.762
; 3-D | -0.741 | -0.0001 | 0.741 | 0.741 | -0.0004 | -0.744 | -0.745 | -0.0096 | 0.676

20 exact | -0.826 0 0.826 | 0.826 0 -0.826 | -0.826 0 0.826
3-D -0.839 | -0.0007 | 0.839 | 0.839 0.0007 } -0.839 | -0.840 | -0.0015 | 0.823




Eobs A0 afid 7

TR

CHOIET YRS

T

ST S Lot et )

SRR S Lt ¥ Lk

T TR T T TN

Rl

AES LA UM

R22INE ¥ ¢

TR

TR I

AT

BAhHCEDEN <2 )

T

S haiid

RAR 2 ack f a2l

it R aia™ T Ay

iy

P T o ey

e

For all values of A/b, the forces are clearly verv accurate near the
center, being within 4 percent of the exact value in all cases. The
points given were the only ones used, indicating tne coarseness ¢f the
representation; it is equivalent in a ship representation to using 20
points to represent the fifth vibration mode (six nodes). Since the
values from the three-dimensional approximation are constant to at least
z/) = 7a/5, the differsuices from the exact result zre attributable to the
coarse mesh rather than to the finite length. For the A/b - S case, the
lengths of =ach section are nearly equal to their radii whereas for the

A/b = 20 case, the sections are nearly nine radii long.
APPLICATION OF THE TECHNIQUE TO NONAXISYMMETRIC SHIPS

Clearly it would be possible in principle to extend the threes-
dimensional approximation by adding distributions of higher multipoles
along the ship axis and determining their strength by satisfying a
boundary condition around the circumference of the ship as well as along
its axis. This would, however, require very large amounts of data to
represent the ship shape as well as the inversion of a very large matrix.
The success of the strip method using Lewis sections for the cross-
sectional shapes points to simplexr approaches.

In the solution of the two-dimensional flows about ship-type cross
sections, although the velocity rnotential may in fact consist of a super-
position of two-dimensional multipoles of all orders, the added mass of
each section depends only on the dipole term, the shape of the section
determining its strength. In the three-dimensional case, it should,
therefore, be approximately correct to zccount for the shape of the
section via the strengths of the dipole distributions.

Since the original work by Lewis, it has been customary to represent
the added mass per unit length of the two-dimensional cross sections in

the form

where b is the half beam uf the section and C is a constant depending on

the scction shape. Values for C have been computed for a great variety of

12
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shapes.3’4’8'12 The above value for the added mass is also that due to a

circular cylinder of radius

bequiv = VT [12}

For a nonaxisymmetric ship then, each cross section mzy be compared with
the known shapes and C determined. Then Equation [12] gives the appro-
priate radius tfor an axisymmetric approximaticn to the actual shape. There
are no reasonably simple nonaxisymmetric three-dimensional flows with

exact solutions which can be used for comparison, but the procedure should
give reasonable results. Certainly in the 2Z-node vibration mode, in the
central scction of the ship where the added mass is most important, the
technique will give very good answers since the flow in this region is
very nearly two-dimensional and the method is exact in the two-dimensional

case.

APPL1CATION TO SHIP VIBRATION

Most current techniquess’13 for the determination of ship natural
frequencies by purely theoretical means depend on finite-element lumped
mass approaches. These represent the ship as a series of lumped masses
interconnected by weightless elastic beams. All applied forces, including
distributed inertial forces and moments, are approximated by equivalent
point forces and moments applied to the lumped masses. It is then
possible to compute a stiffness matrix K such that when no moments are
applied, the forces F vequired at the masses to statically maintain a

given displacement shspe y are given by

F=Ky

Neglecting buoyancy forces and rotary inertia (these can easily be included

if desired), the only forces on a ship in still water are inertial forces

FI and hydrodynamic forces P If the values of the lumped masses are
Mysoee,m
=—\"
Ffp=-My
13




where M is the diagonal patrix with elements (mi). The hydrodynamic
forces are given by Equations {10}, i.e.,

Fo = MY

-~

with M as given in Equation [11].
The equation of ship motion is then

.

Ky=F=-M -My [13]

-~

-~

i.e. (M+Mw)};+xy=0

The nztural vibration frequencies are the eigenvalues of this matrix
equatior and the mode shapes are the corresponding vectors. In the strip
method for the hydrcdynamic flow, M and Hw are both diagonal matrices.

Since K is symmetric, the equatior can then be transformed into

-1/2

where S = (1 + M) 7% ¢ 1 + Mw)‘l/ Zandz = o+ )Yy

S is symmetric and its eigenvalues are easily found by any-of the standard
routines for eigenvalues and vectors of symmetric matrixes. For the strip
method, however, M depends on the mode shape being investigated and a
different matrix S must be used for each mode.

In the proposed three-dimensional analysis, the matrix M, is found
as a full matrix with a dominant diagonal but no zero elements. Equation

{13] may then be written
y+S. y=0 ; S =@+M) Tk
ol 17 ! 1 W

and the eigenvalues found directly. S1 will not, however, be symmetric,
and this restricts the available range of cowmputer routines. The full M,
matrix is actually not symmetric but the degree of asymmetry is not

large except for extreme shapes. It may be artifically made symmetric by

replacing all elements mwij by 1/2 ( .). This procedure was

mwij * mwj1
carried out for the examples used to check the three-dimensional theory and
in no case did it change the resulting forces by more than 3 percent. Since

the vibration frequencies depend, approximately, on the square root of the

14
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mass, this difference is negligible.

A standard Cheleski decomposition

routine14 may then be used to generate a matrix L such that

T

LL = (% + M)

Equation [13} then transforms into

where S. = LYK LT s

2

z+S

[ )

may again be found by standard symmetric routines,

Frequencies and mode

recently or

a World War I1

COMPARISON WITH FULL-SCALE SHIP VIBRATION RESULTS

, is now symmetric and its eigenvalues and vectors

shapes for overall null vibrations were measured

z500-ton destroyer, HMS ROEBUCK.

Table 3 com-

pares measured frequencies with those calculated using both standard strip

theory and the three-dimensional flow approximation.

The strip theory

results were obtained by using Lewis three-dimensional correction factors

since these aré available for heave, pitch, and the first two vibration

modes and could be estimated for the third and fourth modes by extrapo-

lation.

Also included in the table are the results calculated for the

three-dimensional flow approximation using the full boundary condition,

Equation [S], as described later.

TABLE 3

Measured and Computed Frequencies for a Destroyer

(Frequencies are given in hertz)

Computed

3-D Flow Using

3-D Flow Using

Mode Measured | Strip Method Equation [6] Equation [5]
Heave -- 0.20 0.20 0.20
Pitch -- 0.22 0.23 0.23
First Vib 1.68 1.04 1.64 1.66
Second Vib 3.35 3.16 3.20 3.22
Third Vib 4.97 4.92 4.96 5.00
Fourth Vib 6.63 6.90 6.96 7.03




The resuits of all three methods are clearly fairly reasconable and
there is very little to choose between them. The three-dimensional flow
theory using the approXimate boundary condition, Equation [6], gives
resuits very similar to the strip method using Lewis correction factors.
Since the approximate boundary condition, Equation [6], is equivalent to
the Lewis original one, the agreement really is a justification of the use
of strip theory. The results for the three-dimensional flow with the more
exact boundary condition, Equation [5], were slightly better and reduced
the error in the first mode frequency from 2 1/2 to 1 174 percent. The
strip thecty gave the same, improved, result for the first mcde frequency
when the Taylor rather than the Lewis correction factor was used. How-
ever, Taylor dees not give values for the reduction factor for the other
modes. For the strip theory results, z separate three-dimensional factor
had to be applied for each r:xde.

The differences between the ccmputed and measured frequencies, how-
ever, were slightly larger than the differences between the computed
values themselves, indicating that the remaining errors were probably due
to factors orner than the hydrodynamics. Thexe is still some doubt over
the ship mass distribution, the material to be included in calculating
the stiffness distribution along the ship, and, probably most impurtant,
the best method for calculating the shear area distribution along the ship.

The calculated mode shapes were practically identical for the three
methods; they are compared with the experimental shapes for the first
three vibration modes in Figure 5. The difference between the measured
and calculated shapes for the first two modes was less than the scatter in
the experimental values, but there was a definite difference between the
shapes near the bow for the third mode.

The computer program which produced the results for both the three-
dimensional flow approximations is a modificaticn of part of the FORTRAN

IV program described in Reference 13 and is run on an IBM 7090 computer.

16




USE OF THE FULL ROUNDARY EQUATICN

Where fairly sharp changes occur in the cross-sectiocrnal shape, the
three-dimensional fiow approximation can be imprecved by using the full
boundary condition {Equation {5]) in place of the approximate conditien
(Equation [6]). Using the finite element/2umped mass approach, with n

masses, the elastic nature of the ship may be represented by the equation

[-A B f
Q =LBT ClLx

where : and Q are n-component veciors that respectively represent the

tm

o

forces and moments which must be app11ed to the lumped masses to maintain
statically the displacements y and bending rotations Y (¥ excludes shear
deformations). A, B, and C will be (n x n) matrixes whose elements are
given 1n Reference 13. In vibration application;, the forces and moments
are just the ineftial and hydrodynamic forces and moments acting on the

regions around the lumped masses. F and Q will, therefore, be given by

M ool ylinM, n

f < wi w2 X
R v

where M and R are diagonal matrixes whose elements are the ship masses and

M M.,
w3

rotary inertias at the lumped-mass positions. The matrixes M 2
Y

>
and Mw4 will be hydrodynamic mass and inertia matrixes. "
The above elastic matrices are of order (2n x 2n), and there are
several alternatives for the hydrodynamic formulation. The number of
sections on which the dipole distributions are defined may be doubled or
the same number of listributions may be kept, but the distributions them-
selves must be given a linear variation instead of being constant. With
each technique, c¢ither the full or the approximate boundary conditions
could be used although the full condition is the more appropriate. To
determine the unknown strengths of the 2n dipole distributions, 2n col-

location points would be required. As an alternative, the same dipole

17
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distribution can be assumed but be made to satisfy the full boundary con-
dition. It can be used to calculate both the forces and the moments at
the lumped masses. This latter technique is in accord with using rotary
inertia terms in the elastic representation of the ship instead of dou-
bling the number of elastic sections and lumped masses, and is adopted
here.

The vertical velocity at the ith mass is 9i and the angular

velocity is ?i. Therefore, substituting for the angle A, the full boundary
condition [5] at the position z, is

n I

- . . . _ . _ . _—L -
yi * b0yt Yy o 25 [urj("i) b “zj(zi)] =2 2: %5 Y5 (14]

j=1 j=1

where
-3/2 -
- 2 2 2 pA
= < - 2 - -7 -
S35 7 %35 * 0 3Py {[bi v (2 23‘*23/“)] [bi * (2472

-3/2
7]

Equation [14] may be written in matrix form as

+ B L

Ay
b2 ¥

1 .
t e

where B is the diagonal matrix with elements bibi’. The strengths of the
dipole distributions are then

web? Bty +p? Bl B

~

t 2o

[15]

Given the strengths of the dipole distributions, from Equation [15], the
velocity potential is given by

18




where ¢. is defined in Equation [Z]. This leads to a vertical force

f(z)dz on a length dz of ship; f(z) is given by

n

2 -2z zZ -2
~ E ' j-1/2 j+1/2 .
£(z) =- 7p - -1/ 7 - i1/ u.  [16]
i=1 |02+ z-z. ,,)2 2 2|12
- j-1/2 b” + (z—zj+1/2)

The hydrodynamic force and moment on the :'Lth section are therefore

Zi41/2 Zi+1/2
F. = s £f(z) dz and Q = -g (Z-Zi) f(z) dz
2i-1/2 2i-1/2
whence
n n
o= D, TR P A !
j:l j-"—'l

in these, cij and dij are given by

-1/2 X, -a a,+1/2+7
- . .2 . - 171 1 1+
cij/gi (1+0i ) <r1+-rl_ r2++..2_> t 77 log <_—_——°‘1'1/2+r1_) -

Ny
PR
fa—y
o+
(=2
ey
[\S]

Cadiom. 4

Xy=0ty . c;L2~r~l/2+r2+
1 ) N17Z %8 Vo T1/2er
L2 2 2-
<1+b. )
i 1
~2.+8./2 .~2.-%./2 .bI/%. - 7
i Z.-2.+ J/ 237 RJ/ . i b1b1/£1+x1 . bi/SLi x;bJ
wherexl- . , x2—~T——~,al———2———,81=——T—
i i 1+b; 1+b?
i i
1/2 1/2
_ 2 2 . _ 2 2 .
Ty, = [(ozl+1/2) + Bl] S [(al-l/Z) + 81] , with
similar expressions for oY 82, r2+ and rz_ ,

2 1 2 1/2
dij/fti = <1+b£> [(a1+1/2)1”1+ - (a1~1/2)r1_ - (a2+1/2)r2+ + (02-1/2)1*2_]
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With these values and uniform length sections,

-

F ¢ k!

= - 7pb> [17]

Q b AL

(@]
e~}
[

!

[ ]
v -]
¢ =

where € and D are the matrixes (cij) and (dij), which gives the hydro-

dynamic matrixes Mwl’ sz, MwS’ de. The equatior of ship vibration is
then

M
M+ Mwl dwz y A B y
I ) = 0 [18]
Mw3 R+ Mw4 Y B ¢ Yd
Since the rotary inertia corrections are small, the matrixes M R, and

. w3’
Mw4 will be small. If they are neglected, the equation for Y gives

and the y equation becomes

-1 _T] - -1 T
[M+Mwl-Mw2C B]Z+[A-Bc B])~1=0 [19]

20
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This equation is similar to Equation {[14] but allows fully for the effect
of changing cross sections and bending defermation in the boundary con-
dition.

The force distributions given by Equation [16] for the vibrating
ellipsoids described earlier have been added te Figures 3 and 4 where these
differ appreciably from the earlier results. The great improvement in t':e
accuracy of the results for the higher modes is very marked, particularly
for the smaller length/beam ratio ellipseid. The results with the full
boundary condition are everywhere almost identical to the exact values.

In computing these values, the slopes b” of the ellipsoids were
estimated numerically from the given radii b at the collocation points in
order o reduce the amount of data needed to specify the shane of each
ellipsoid to that normal for strip-flow calculations. Since this method
is clearly adequate for the rather extreme slopes involved in ellipsoids,
it shoul’ also be satisfactory for ships where shape changes are less
severe. Thus in applications to ship vibration, even the more exact form,
Equation [19], of the three-dimensional flow approximation need involve
no more data than presently necessary for the usual strip method.

The results given by Equation [i9] for ship vibration have also
been computed for the destroyer case given earlier. The frequencies com-
puted are given in the last column of Table 3 and show a slight improve-
ment in the predicted first mode frequency. Again, the values of b were
estimated numerically from the equivalent radii at the collocation points
so that no extra data were required in the calculation. As expected, the
improvement resulting from the use of the exact boundar condition,
Equation [5], instead of the approximate form, Equation [6], was much less
marked for the ship than for the ellipsoid. The mode shapes for the

destroyer showed no significant change.
CONCLUSIONS

A method is proposed for approximating the effects of the full
three-dimensional flow around a ship undergoing transverse vibration. It
provides an alternative to the "strip theory'" usually used in the calcu-

lation of vibration frequencies.
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Although the matrixes involved are slightly mcre complicated to
set up, all vibration frequencies and mode shapes car be found from the
eigenvalues and vectors of a single matrix equation. In the strip method
it is necessary to consider a different matrix equation for each mode
shape. The same data are required for either the three-dimensional
approximation or the strip method.

where unusual mode shapes are involved (e.g., for damaged ships
with a very weak section} or for the more extreme shapes of ship (small
length to beam ratios), the proposed method will give better results than
with strip theory. Otherwise, if separate consideration of each mode 1s
acceptable, strip theory is easier to apply and gives very similar
results.

The close agreement between strip theory results and those from
the three-dimensional analysis indicates that the remaining discrepancies
between the experimental and computed vibration frequencies and shapes are
largely attributable to inadequacies in the specification of the elastic
stiffness characteristics of ships, such as cross-sectional inertia and
shear area, rather than to inadequate representation of the hydrodynamic

forces.
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APPENDIX

EXACT SOLUTION FOR TRANSVERSE VIBRATION OF AN ELLIPSOID
OF REVOLUTION

The coordinate system used to solve this problem is the ellipsoidal
set (¢, u, ) illustrated in Figure 2. The curves g =comst and u =const
represent confocal {and so orthogonal) systems of ellipsoids and hyper-
boloids of two sheets, respectively. In terms of the cylindrical polar
coordinates (r, 6, z),

1/2 1/2

k2 (1ad

Lo}
1}

L]

Kgop

If ¢ = %, Tepresents the given ellipsoid, which is assumed to be of total

172
length 2a and maximum diameter 2b, then k = (a2 - bz) and

2 -1/2
&y = (1 - 87) where

8 = b/a [A-2]

1f the vertical velocity distribution along the axis of the ellipsoid is
v(z/a), then the boundary condition on the surface of the ellipsoid will
be

-~

h dz

== = [\-‘ cos A -gib sin A] cos X {A-3]

s—Co

which allows for the rotation of cross sections due to bend.ng. If v(z/a)
is a polynomial of degree N, then the solution for the velocity potential
can be written (see Reference 6) as
N+1
o = a QI(*) Pl(') cos 8 (A-4
- n ‘plo) Tplh) oS A-4]
n=1
where Pi(u) and Q;(c) are associated Legendre functions of the first and
second kinds, respectively.

Substituting this expression for ¢ into Equation [A-3] gives

N+1 1
a_kv(.)_.tzk;.gz=_zad‘2n| a7,
b s a " dn n dg |__ du

n=1 =%
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N+l

(since z=ap on the ellipse). Since also v(z/a) = Z Vo un-i , the
equation becomes n=1
N+1 dp d Ql N+1
—nlb_m al= _S [1 (n-1) 92] v "t
dn ak dg |, °n 4 i R e
n-1i ] n=1
b €9
Putting A, T TSR 3l % and “ntegrating from 0 to u gives
C—;o
N+1 N+1 2
B} 1 - 1-(@-Ds” 2
E A [Pn(u) Py(0)] ) L
n=1 n=1

so that
N+1

-’
E "1 - (n-1)8" .

Am = (m + 1/2) ————é%——l——-° Vo Imn ,m=1, ..., N +1)
n=1

where

+]
Imn S un Pm(u)du =0, n <nor (n-m}) odd
-1

_ 5 n(n-1)...(n-m+2)
“ (n+m+1) (n+m-1) ... (n-m+3) ’

(n-m) even

Thus, given the values Vo the A and hence the a are easily found.
With the coefficients a known in Equation [A-4], the force distri-

bution f(z) on the ellipsoid is given by

n
©
G e

w
f(z) -2 j b(z) p cos 8 d8 where p
o

so that
N+1

£(2) = - mob() D4, h(s) Ph(2/a)
n=%

28




\ 2
A short computer routine has been written to compute values of £(z)/mob”,
given b/a and Vi--es Ve for a series of values of z. For the routiae, N
is restricted to 4 since this is sufficient to represent the vibration

modes of principal interest.
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