A Review of Combat Support Training

by

Ernest K. Montague and Morris Showel

HumRRO Division No. 3

November 1969

Prepared for:

Office, Chief of Research and Development Department of the Army

Contract DAHC 19-70-C-0012

HumRRO

HUMAN RESOURCES RESEARCH ORGANIZATION

This document has been approved for public release and sale; its distribution is unlimited.
CRDBES

December 22, 1969

SUBJECT: A Review of Combat Support Training

TO:

1. The research described in this report entailed observation of current training practices and problems in Army Training Centers as they relate to the wide range of individual ability in the Army enlisted population. The ultimate objective is to develop approaches to training and training methods that will ensure more effective training for both fast and slow learners.

2. Data were collected for 1300 soldiers in 23 classes of eight combat support courses at four Army Training Centers. The Field Wireman and General Supply courses were chosen for more intensive observation because these courses are given to trainees with a very wide range of ability, represent a variety of basic job procedures and physical skills, and have had relatively high attrition rates.

3. This report should be of interest to personnel concerned with selecting and organizing training content and methods in general, and to those concerned with training and utilization of low-aptitude personnel in particular.

FOR THE CHIEF OF RESEARCH AND DEVELOPMENT:

LYNN E. BAKER
US Army Chief Psychologist
Acting Chief
Behavioral Sciences Division
A Review of Combat Support Training

by

Ernest K. Montague and Morris Showel

This document has been approved for public release and sale; its distribution is unlimited.

Prepared for:
Office, Chief of Research and Development
Department of the Army
Contract DAHC 19-70-C-0012 (DA Proj 2Q062107A712)

HumRRO Division No. 3
Presidio of Monterey, California
HUMAN RESOURCES RESEARCH ORGANIZATION

Technical Report 69-19
Work Unit SPECTRUM
Sub-Unit 1
The Human Resources Research Organization (HumRRO) is a nonprofit corporation established in 1969 to conduct research in the field of training and education. It is a continuation of The George Washington University, Human Resources Research Office. HumRRO's general purpose is to improve human performance, particularly in organizational settings, through behavioral and social science research, development, and consultation. HumRRO's mission in work performed under contract with the Department of the Army is to conduct research in the fields of training, motivation, and leadership.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.
FOREWORD

The overall aim of Work Unit SPECTRUM of the Human Resources Research Organization is to develop procedures for selecting and organizing training content and methods for more effective training across the wide range of student ability now present in high density courses. This report of SPECTRUM I presents a review of current training practices and problems as they relate to differences in learning capacity between high and low aptitude soldiers. The magnitude and nature of these differences have been explored in SPECTRUM II. The information gained in Work Sub-Units I and II will be utilized in the development of effective methods of individualizing training being undertaken in SPECTRUM III.

The SPECTRUM I study was conducted by HumRRO Division No. 3 at Presidio of Monterey, California. Director of Research at the time of the study was Dr. Howard H. McFann.

Military coordination and support for the study were provided by the U.S. Army Training Center Human Research Unit. Military Chief of the Unit was LTC David S. Marshall.

HumRRO research for the Department of the Army is conducted under Contract DAHC 19-70-C-0012 and, for Training, Motivation, and Leadership Research, under Army Project 2Q06210A712.

Meredith P. Crawford
President
Human Resources Research Organization
SUMMARY AND CONCLUSIONS

Military Problem

With a greatly increased input of low mental aptitude (AFQT Category IV) trainees into the Army since mid-1966, new training problems have arisen and concern on this topic has become more acute with continuing training experience. These problems relate to the broad spread of individual ability to be handled instructionally in any given course and to the increasing need for functionalization of training.

Research Problem

With a requirement to explore methods of adapting military instruction to a wide range of individual ability, there existed a basic need to determine present practices and problems in training, the effect of such practices on the range of abilities now present in training, the degree of intensification of problems by the fact of wide range of student ability, and present training adaptation to these new problems.

Research Approach

During late 1966 and early 1967, data were collected from 23 classes of eight combat support courses in a typical training brigade. Attrition rates, educational achievement, and other statistical data from this initial review stage provided the basis for choosing two courses in the same brigade, Field Wireman and General Supply, for further intensive observation of training. These two courses were selected because they were given to trainees with a very wide range of ability, represented a variety of basic job procedures and physical skills, and had relatively high attrition rates.

For several weeks, each course was carefully observed with particular attention to:

1. The characteristics of the student population; spread of abilities; attrition patterns.
2. The actual training system as it works with the problem of wide range of ability, to include the presence or absence of clear training objectives, sequence and organization of course content, suitability of method to student ability, usage of facilities, instructor capabilities, and the general administrative support of training efforts.
3. The types and processes of student evaluation.
4. Efforts and methods in individualizing training.

After consolidation of the information thus gained, and the briefing of appropriate headquarters on the findings, the same type of observation was conducted at three other widely separated training centers (the basic Clerk course was substituted for the General Supply course at one of these posts). Class coverage was made at a 15% sampling level, with all phases of training represented.

Results

The research team observations indicated that there are many strengths and certain problems in present combat support training. The main strengths are in the fundamental
training structure and in the general dedication of instructors and administrators; they were not considered in detail in the review since the opportunity for improvement lies with the problems rather than existing strengths. The problems most common to all training centers observed were those related to practices crystallized in Army Subject Schedules and to the difficulties inherent in the very wide range of student ability.

The nature of the training system works against the less literate student and makes very difficult the simultaneous handling of Category I and Category IV students. The highly verbal nature of training objectives, the continuing prevalence of platform-centered instruction, and the heavy use of paper-pencil examinations in these occupational courses make a functional and job-related approach to instruction very difficult.

Attrition patterns show much higher levels of recycling associated with low AFQT category. Recycling remains the primary means of handling students in academic difficulty; although there is some remedial evening study work, this tends to be of a highly verbal nature.

The present system is not optimally oriented toward the handling of a wide range of abilities. High-level students are not challenged and low-ability students are not able to cope with the large verbal-academic components in these combat support courses. Logical aims for instructional change are increased functionalization toward job-related objectives, job-like instructional sequences, evaluation of a practical and job-like nature, and the development of means to fit training to ability level.

The implementation of USCONARC Reg 350-100-1, Feb 68, on the systems engineering of training will ameliorate some of these problem situations, but such systemic improvement will necessarily require considerable time and will not be directly concerned with problems of individual differences.

Conclusions and Implications

The results of the review of combat support training suggest several general conclusions regarding how combat support training could be made more effective. These conclusions, in turn, have implications for actions that can be considered for long- and short-range improvements in the training system, with special reference to wide range of aptitudes in the current Army input.

Key elements in improving the effectiveness of instruction for the wide range of abilities present in Army training courses are greater emphasis on job-related and behaviorally stated training objectives, functionalization of instruction, and evaluation based on job performance capabilities. While publication of USCONARC Reg 350-100-1 is a major step toward these ends, a series of additional and more immediate steps could be considered for improving various aspects of training. (They are not listed in order of importance or ease of implementation.)

Implications for Instructional Actions

(1) The role and use of Army Subject Schedules in the training system need reconsideration. The need is for greater flexibility and adaptability in meeting the growing demands for functionalization of training, individualization of training, and the various modes of programing of instruction.
(2) Consideration should be given to the use of a professional educator at each major training center, to serve as staff advisor on training matters, with particular reference toward rapidly changing training modes and needs and to the continuing functionalization and individualization of training.

(3) Both generally and locally, emphasis on practical and functional training can be increased and emphasis on platform-centered verbal instruction lessened by reducing the physical and temporal separation of verbal and practical instruction and by making verbal instruction a genuine working adjunct of practical instruction.

(4) There needs to be reconsideration of the role and use of the instructional committee in the scheme of instruction. The broadening and overlapping of these committees to the point of requiring individual instructors to handle longer functional sequences with a given group of students might well result in a more personal relationship between instructor and student and in a more functionally organized sequence of instruction.

(5) Administrative practices may be revised in several particulars: to make training goals and the success of the instructor in attaining these goals the key point of training inspection; to make the many administrative and other appointments which now have precedence over training into a recognized part of the weekly schedule; and to insure that combat support courses enjoy the same degree of command attention that is given combat training.

(6) Much consideration needs to be given to any means that will lead toward the setting up of concrete and specific standards of performance which each student must master before graduating. This implies a move away from the percentage system of grading performance.

Individualization of Instruction

The suggestions for possible actions toward improving training instruction in general could be expected to, in some instances at least, give especial assistance to lower-aptitude students. However, the basis for making specific suggestions for fitting instruction to the individual soldier is much less clear. Much more information is needed—for example, on the relative effectiveness of different instructional methods at different ability levels, and about the different motivations of trainees with differing abilities and background.

Promising approaches meriting further experimentation and consideration are:

(1) Track systems, with teaching method matched to track level and with different tracks finishing training in different time frames, that is, with training content held constant and varying training method and time.

(2) Holding time constant, but utilizing separate tracks to provide different amounts of material to different levels by different means, and giving added material to upper tracks.

(3) Integration of all students, with higher aptitude students acting as tutors for lower level students, and with suitable recognition or reinforcement to these student leaders.

(4) Small team training, with training for each individual ceasing immediately upon the mastery of required skills and knowledges.

These and other possible avenues require further study.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background and Purpose</td>
<td>3</td>
</tr>
<tr>
<td>Background</td>
<td>3</td>
</tr>
<tr>
<td>Military Problem</td>
<td>4</td>
</tr>
<tr>
<td>Research Problem</td>
<td>4</td>
</tr>
<tr>
<td>Research Approach</td>
<td>5</td>
</tr>
<tr>
<td>Method and Procedures</td>
<td>5</td>
</tr>
<tr>
<td>Collection of Data</td>
<td>5</td>
</tr>
<tr>
<td>Analysis of Observations</td>
<td>7</td>
</tr>
<tr>
<td>The Training System</td>
<td>8</td>
</tr>
<tr>
<td>General Considerations</td>
<td>8</td>
</tr>
<tr>
<td>The Student Body</td>
<td>10</td>
</tr>
<tr>
<td>The Conduct of Training</td>
<td>12</td>
</tr>
<tr>
<td>Objectives</td>
<td>12</td>
</tr>
<tr>
<td>Organization and Sequence of Instructional Content</td>
<td>13</td>
</tr>
<tr>
<td>Instructional Practices</td>
<td>14</td>
</tr>
<tr>
<td>Evaluation of Students</td>
<td>15</td>
</tr>
<tr>
<td>Attempts at Individualization of Training</td>
<td>16</td>
</tr>
<tr>
<td>Conclusions and Implications</td>
<td>17</td>
</tr>
<tr>
<td>Implications for Instructional Action</td>
<td>17</td>
</tr>
<tr>
<td>Long-Range Command Actions</td>
<td>17</td>
</tr>
<tr>
<td>Possible Actions at the Local Level</td>
<td>18</td>
</tr>
<tr>
<td>Individualization</td>
<td>19</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>23</td>
</tr>
<tr>
<td>Tables</td>
<td></td>
</tr>
<tr>
<td>1. Combat Support Course Representation in Initial Sample</td>
<td>6</td>
</tr>
<tr>
<td>2. Distribution of Students in AFQT Categories, by Course, in Initial Sample</td>
<td>6</td>
</tr>
<tr>
<td>3. Graduation and Recycling Record of Students by AFQT Group,</td>
<td>7</td>
</tr>
<tr>
<td>all Courses, in Initial Sample</td>
<td></td>
</tr>
<tr>
<td>4. Educational Status of Combat Support Students by AFQT Category</td>
<td>10</td>
</tr>
<tr>
<td>Figure</td>
<td></td>
</tr>
<tr>
<td>1. Reading Test Performance of 326 Soldiers, Grouped by AFQT Category</td>
<td>11</td>
</tr>
<tr>
<td>and Education Level</td>
<td></td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
</tr>
<tr>
<td>A. Training Observation Sheet</td>
<td>25</td>
</tr>
</tbody>
</table>
A Review of
Combat Support Training
BACKGROUND AND PURPOSE

BACKGROUND

Two distinct classes of problems are being recognized by military training personnel as of major importance in their mission to provide large numbers of men with instruction for practical application in military occupational specialties (MOSs).

First, the problems surrounding the instruction of students of very low and very high academic abilities at the same time and in the same framework have become a matter of acute interest in the past few years. Traditionally, military education systems, like civilian systems, have used a curriculum providing standard blocks of material to students of all aptitudes at the same time and pace. Attempts to individualize treatment took the form of delaying the promotion of slow students and accelerating the progress of able students.

In an earlier era, when civilian school groupings were moderately homogeneous after the seventh or eighth grade, this lockstep treatment of time and material did not present an insuperable problem. In recent decades, however, the extension of public schooling—and military training—to a vast range of students has brought serious problems of communication and instruction from or related to the principle of lockstep instruction. Students handicapped by low ability, by difficulties in communicating, or by culturally influenced deficiencies have repeated work or have passed along from grade to grade without really learning tool subjects that are essential to learning in the typical occupational course or performing in a job. At the same time highly able students have been held back to the point of boredom and disinterest.

In recent years extensive efforts have been, and are now being, made to develop approaches that would provide students of high, medium, or low ability with materials and learning pace more nearly appropriate to their particular capabilities and backgrounds. Such attempts to fit instruction more closely to the individual student have usually been termed individualized or individually managed instruction. These approaches show much promise, but not enough time has passed to allow their general effectiveness to be fully measured.

The second class of problems has led to the present comprehensive Army effort to clarify the objectives of training, relate training more closely to job function, and revamp evaluation procedures toward a more valid testing of student skills and supporting knowledges. Such “functionalization” in military occupational training is productive for the entire range of students but seems of particular value in the attempts to meet the needs of the lower-level students.

Making changes of this nature is not an easy process. A long heritage of academic and departmentalized platform instruction has made it difficult to move training goals and methods (even in combat support or military occupational courses) away from long-standing subject-centered approaches and toward job-centered and functional learning tasks and tests. The Army’s concern and its commitment to the necessary program of changes is evidenced by the promulgation of USCONARC Reg 350-100-1, Feb 68, on the subject of systems engineering of training (1). Progress being made in this area is
demonstrated by the recent course modification and changes in the Army Medical Corpsman Course and the Radio Operators' Course.\footnote{Both of these efforts were part of HumRRO Work Unit SUPPORT. The medical course is described in a HumRRO Technical Report in preparation (2), dealing with the effect of an integrated Basic Combat Training/Advanced Individual Training sequence of instruction in the Medical Corpsman training program (MOS 91A10). Portions of the program are already being implemented in corpsman training. The development of modified radio operator training is described in another HumRRO Technical Report in preparation (3), and a new Army Subject Schedule 11-05B20 for Radio Operators is soon to be published.}

MILITARY PROBLEM

Army training systems are being confronted by these types of problems in almost all aspects of training and to an increasing degree. Research and observation have long indicated that highly able students could finish Army training courses in a very short time or, given the same time, could successfully handle additional advanced material, but logistical and administrative considerations have made it desirable to maintain a single-group training.

Since mid-1966, however, the introduction of a large number of men of lower aptitude from the draft and from enlistment has placed considerable strain upon the traditional instructional system and has reopened the question of how best to train men of such a wide range of ability as those now going through the training centers. A variety of research efforts have been aimed at defining, studying, and devising solutions to training problems arising from this wide range of aptitudes.

RESEARCH PROBLEM

One such research and development project is HumRRO Work Unit SPECTRUM, one phase of which is described in this report. The objective of SPECTRUM is “to develop procedures for selecting and organizing training content and training methods for high density combat and combat support Military Occupational Specialties in order to achieve more effective training at all aptitude levels.” The overall study is made up of three Work Sub-Units: SPECTRUM I, SPECTRUM II, and SPECTRUM III.

While the SPECTRUM I staff was making a detailed study of combat support courses as they are now constructed and conducted, concurrently the staff of SPECTRUM II studied the specific relationships between aptitude level and complexity of task in a controlled series of experiments in a work laboratory situation. That study (4, 5) has demonstrated that high or low performance is related to high or low general aptitude across a variety of learning tasks, from the most basic simple visual response task to the learning of multiple verbal and visual symbols. Of much interest were the sizable difference between high and low ability groups and the consistency of this difference from task to task. SPECTRUM III, now beginning, is a series of studies of miniature training situations, aimed at determining the effects of various training methods on different ability levels and different complexities of learning task.

SPECTRUM I, which is described in this report, was undertaken for several reasons. There was a need to observe variations of presently used training methods and to consider these as material for experimentation in SPECTRUM III. There was a need to study the reactions of and adaptation of local trainers to the increasing input of Category IV persons, with reference to the general attitude and approach of training personnel as well as to their technical adaptations. Also, as specific information on the differences between high and low aptitude soldiers emerged as findings in SPECTRUM II, it was desirable to observe the learning behavior of these men in the daily training routine. In brief, a survey of training objectives, practices, evaluations, and changes in these areas as they relate to student differences was a necessary step in relating field and laboratory work.
RESEARCH APPROACH

Combat Support Training Brigades at four Army Training Centers were visited in 1967 and early 1968. Certain courses, to be described later, were chosen for intensive observation because they represented a wide range of physical and mental skills, had an adequate sampling of all levels of student ability, and were experiencing difficulties of high attrition or recycling. The research team observed instructional practice and method, obtained information on common problems and on problems especially related to ability range, and looked for both strengths and weaknesses that might be exploited or modified in future planning.

The observations at different centers indicated that there were, indeed, many strengths and that many good technicians were being trained. It was equally evident that certain common problems were reducing training efficiency, markedly in some instances, moderately in others. In particular, the introduction of growing numbers of students of low academic ability accentuated those problems in present Army Training Schedules that relate to verbalized objectives and highly verbalized instruction and evaluation.

This report is an attempt to review those problems that seemed to have the most effect in reducing efficiency in combat support training, and in a preliminary way to discuss possible remedial actions. The report is focused on problems rather than on existing program strengths, since the possibilities for constructive action center in finding solutions for the problems. Most of the attention has been given to problems in the context of the local training situation, although systemic considerations do enter in. Over time, the actions outlined in USCONARC Reg 350-100-1 (1) will gradually influence some of these areas, but implementation had not begun at the time of this review.

SPECTRUM I observations are confined to training. Other areas will need attention in the effort to make the best use of men of all aptitudes during their Army service. In this connection, HumRRO Work Unit UTILITY is organized to study the performance of Project 100,000 personnel in daily work and in progress made within the military framework. HumRRO Work Unit REALISTIC (6, 7, 8) is analyzing the reading, listening, and arithmetic skills required for major MOSs, and developing guidelines and methods for lessening the differences between these skill levels as now required on jobs and the range of trainee aptitudes available for these jobs.

METHOD AND PROCEDURES

COLLECTION OF DATA

Since courses that handled large numbers of men at all levels of ability were the major interest, the groundwork for this review was laid in late 1966 and early 1967 by collecting data on eight of the nine combat support courses conducted at one Army Training Center. The courses in this initial study, which included 23 classes and more than 1300 students, are listed in Table 1. Student aptitudes, analyses of course content, instructional and evaluation procedures, and student achievement and attitudes were among the data obtained.

By the time of this study, the input of a large number of new accession Category IV soldiers had been in effect three or four months and a wide distribution of aptitudes was reflected in the trainee population in most courses. This distribution of students is shown in Table 2 as it existed in the initial sample.

The General Supply and Field Wireman courses were selected for further, more detailed study because of the wide range of abilities of the trainees in these courses and because lower ability students were having considerable trouble in them. Between them, the two courses reflect a wide range of physical and mental skill requirements.
Table 1

Combat Support Course Representation in Initial Sample

<table>
<thead>
<tr>
<th>Number</th>
<th>Course Duration (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Classes</td>
</tr>
<tr>
<td>70A10 Clerk</td>
<td>3</td>
</tr>
<tr>
<td>71B20 Clerk Typist(^a)</td>
<td>3</td>
</tr>
<tr>
<td>71H20 Personnel Specialist(^a)</td>
<td>3</td>
</tr>
<tr>
<td>94B20 Food Service</td>
<td>2</td>
</tr>
<tr>
<td>76A10 General Supply(^b)</td>
<td>4</td>
</tr>
<tr>
<td>36K20 Field Wireman(^b)</td>
<td>2</td>
</tr>
<tr>
<td>63B20 Wheel Vehicle Mechanic</td>
<td>3</td>
</tr>
<tr>
<td>64A10 Light Vehicle Driver</td>
<td>3</td>
</tr>
<tr>
<td>05B20 Radio Operator Course(^c)</td>
<td>None</td>
</tr>
</tbody>
</table>

\(^a\)Input is entirely from Clerk Course 70A10.
\(^b\)Course selected for study in depth.
\(^c\)This course, already under study in Work Unit SUPPORT (3), was not used for the present study.

Table 2

Distribution of Students in AFQT Categories, by Course, in Initial Sample

<table>
<thead>
<tr>
<th>AFQT Score and Category(^a)</th>
<th>Course</th>
<th>Total (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10-30 IV (%)</td>
<td>31-64 III (%)</td>
</tr>
<tr>
<td>70A10 Clerk</td>
<td>16</td>
<td>38</td>
</tr>
<tr>
<td>71B20 Clerk Typist</td>
<td>7</td>
<td>40</td>
</tr>
<tr>
<td>71H20 Personnel Specialist</td>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>94B20 Food Service</td>
<td>18</td>
<td>65</td>
</tr>
<tr>
<td>76A10 General Supply</td>
<td>34</td>
<td>39</td>
</tr>
<tr>
<td>36K20 Field Wireman</td>
<td>24</td>
<td>42</td>
</tr>
<tr>
<td>63B20 Wheel Vehicle Mechanic</td>
<td>14</td>
<td>37</td>
</tr>
<tr>
<td>64A10 Light Vehicle Driver</td>
<td>30</td>
<td>48</td>
</tr>
<tr>
<td>Overall</td>
<td>20</td>
<td>42</td>
</tr>
</tbody>
</table>

\(^a\)The Armed Forces Qualification Test (AFQT) is a paper-and-pencil test administered to all new enlisted persons. Mental categories are then defined by centile rank.

There tends to be a higher proportion of high ability soldiers in the clerical courses, due in part to the literacy requirements in clerical work. The relatively low proportion of Category IV persons in Clerk Typist and Personnel Specialist courses reflects the process of selection from the basic Clerk course to these two advanced courses.

The achievement records for students in all courses is summarized in Table 3 in terms of graduation, recycling, and dropout records. It is quite apparent that AFQT group and academic success are positively related.

It needs to be remembered that these data portray the situation in late 1966 and early 1967. Changing administrative practices in handling low level students through 1967 and 1968 may well have changed failure and recycle rates from those shown in Table 3.
Table 3
Graduation and Recycling Record of Students
by AFQT Group, all Courses, in Initial Sample

<table>
<thead>
<tr>
<th>AFQT Group</th>
<th>Graduate With Class (%)</th>
<th>Academic Recycle (%)</th>
<th>Adminis-trative Recycle (%)</th>
<th>Adminis-trative Drop (%)</th>
<th>Other Dropb (%)</th>
<th>Total (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 93-100</td>
<td>98</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>89</td>
</tr>
<tr>
<td>II 65-92</td>
<td>92</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>406</td>
</tr>
<tr>
<td>III 31-64</td>
<td>89</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>551</td>
</tr>
<tr>
<td>IV 16-30</td>
<td>77</td>
<td>12</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>238</td>
</tr>
<tr>
<td>10-15</td>
<td>52</td>
<td>25</td>
<td>20</td>
<td>0</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>Overall</td>
<td>88</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1309</td>
</tr>
</tbody>
</table>

a This table includes early transfers to other schools, listed here as successful graduates, but does not include several students whose final records were not found.

b Includes persons in confinement, hospital, or AWOL. Only one person, from Category III, was an academic drop.

for the initial sample. Continuing observation of several posts suggested that the attrition rates of late 1967 and early 1968 reflected implicit policy (i.e., maintaining a low attrition rate) as well as actual student success or failure in learning course content, particularly at the lower ability levels. During this period, with an increase in Category IV population and with no noticeable change in training techniques, attrition rates tended to hold steady or diminish.

These observations on problems of evaluation were given added weight by the differences in learning levels recorded in the studies of SPECTRUM II (4) and in a 1965 study (9) of the Category IV soldier in basic training. These studies and Army basic training statistics agree in showing that while most soldiers do indeed complete basic training, there is a performance gap between the most and least able. This gap increases as training progresses and becomes more complex,\(^1\) and the whole problem of attrition remains full of questions.

Following analysis of data from the observation of the initial 23 classes, and briefing of and conference with military training authorities on findings from the initial stage, the review was continued in more detail and on a broader scale. The General Supply and Field Wireman courses selected for intensive observation were studied in detail at various periods during early and mid-1967. Research team members attended more than half of all classes and field exercises in these courses and made careful observations of instructional method, content, facilities, and resources. In addition, during early 1968 similar observations were made on these courses at three other widely separated training centers (the Clerk Course was substituted for an unavailable Supply Course in one instance). In this part of the review, research team observations covered 15% samples of all aspects of training. At all centers, brief visits were made to other combat support courses.

ANALYSIS OF OBSERVATIONS

While a training system may be analyzed or observed in many ways, in this research the primary objective was to gain information regarding the existing training of a diverse

\(^1\) A typical report of the greater difficulty of New Standards men in handling advanced courses is an unclassified report from the Office of the Assistant Secretary of Defense (Manpower and Reserve Affairs), 16 Feb 68, describing attrition rates in various military courses.
and wide range of students, to note the special problems arising from this wide range and from efforts toward individualization of training, and to observe adaptation to these problems by students and instructors in the system.

In observations and subsequent analysis and interpretation, the research team concentrated on four general areas throughout all stages of the review:

The Student Body. Information was gathered on student aptitude and attitude and on the range of aptitudes involved in combat support courses, as well as on the progress and outcome of specific categories of students as they worked through the courses. The greater part of this information came from classroom and field observation of students, from school records, and from some interviews.

The Conduct of Training. Since training is closely tied to what teachers and students see as the goals of training, information was sought on the type and clarity of training objectives and the degree to which these were couched in terms of performance, either for learning or for evaluation. Secondly, information was collected on the actual conduct of training, in both structure and function. Included were the relationship of course and examination content for greatest learning efficiency, the relevance and adequacy of instructional method and use of physical resources to accommodate the extraordinary range of students, and the general effectiveness of both everyday pedagogy and administrative training support. Prolonged observation was the source of information. The observation sheet used for recording data is shown in Appendix A.

The Evaluation of Students. While evaluation of students is hardly a separate entity from the training system above, it is of such importance that it was given particular attention. Of special interest were (a) the problem of evaluating the lower-level student who is not proficient in either note-taking or handling written examinations, and (b) the efforts to make evaluation a more functional and practical procedure for all students. Information was gained by observation and by collection of samples of tests being used in evaluating various kinds and stages of instruction.

Individualization of Training. All training systems serving a range of students of necessity make some modification in time allotments of instructional content or method in an effort to reach as many students as possible. This effort may range from extra study time for certain students to sophisticated programs given at various levels, and may include a general lowering of instructional presentation in an effort to ensure that low-aptitude trainees are reached. Because of the growing need for and importance of modifications directed toward the differences among individual trainees, particular attention was paid to present training attempts of this sort.

Throughout the review, the emphasis was on training technology within the local training systems. Larger systemic matters or problems were addressed only tangentially and briefly, although final consideration of the sum of the local observations has some systemic applications and implications.

THE TRAINING SYSTEM

GENERAL CONSIDERATIONS

A training system consists of people, equipment, policies, procedures, and facilities organized to reach certain implicit or stated training goals. The framework of the combat support training review has been presented and important facets will be discussed in some detail. Since training statistics are available in official reports, this report has been directed toward describing, and attempting some analysis of, the observations of practices and problems encountered in trying to conduct training that will reach large numbers of students including both very high and very low ability.
Before turning to specific review areas, it is appropriate to note the existence of local command policies and interpretations, usually unwritten, that influence the identity and character of training units to the point that different centers present markedly different pictures to the observer, even though written policies are quite similar. While there is no lack of strong and intelligent leadership at high levels at the centers, it is apparent that there are differences in the degree of command interest in combat support training as such, and in the thoroughness of training leader knowledge of modern pedagogy and of military training and training research developments in recent years. Since these factors are of much import in handling the training of a wide spectrum of students, they will be discussed briefly:

Upper level officers are intensely interested in training per se. However, with the effects being visible to varying degrees, there is an imbalance in the personal interest of these men—all line officers—in combat support course content as compared with combat course content. All leaders identify with combat courses. Identification is much more variable with large segments of support-type instruction dealing with supply records, typing, telephony, and other more mundane areas that make up these occupational courses. Manifestations of lack of identification vary, but tend to include sentiments that more military-type content (and thus presumably less technical training) would “make better soldiers” of the trainees, and that technical service officers would be handicapped as technical school leaders because they would tend not to bring about the needed soldierly qualities. Where such attitudes were present at command levels, they were reflected in similar feelings at lower levels in training administration and were accompanied by less effective combat support training, which in turn intensifies problems stemming from range of aptitudes among trainees.

The second point is no easier to document but seems also to be pervasive and can have equally strong effects on the training of lower aptitude soldiers. Professional officers generally have some practice, much interest, and often considerable pride in their training ideas and techniques. Yet only part of them are familiar with the progress in educational techniques and concepts. Army schools have tended to reserve the position of Educational Advisor for experts in education (although they may utilize them more in administration than in educational observation and planning). Training centers, however, are dependent on the educational expertise of unit commanders, training officers, and instructors. Predictably, at the centers, in those technical support courses where subject knowledge is simply not within the province of the commander or training officer, their attention tends to be on the form or the logistics of the courses. The result is that training observation, inspection, and reporting in such courses are more vigorously concerned with instructor agreement with the Army Subject Schedule for the course than with the truly educational aspects of the instruction. Instructors, keenly aware of the nature of training inspection, then tend to be reluctant to make instructional changes even though they may recognize changes are needed to meet changing input or conditions.

The combined effect of these factors, when strongly present, is very noticeable at all training levels. While generally detrimental to all combat support training, the effect is particularly marked on lower level soldiers, for in these situations less attention is paid to the special technical needs of these students.

Related to these general considerations are the occasional problems arising from the dual organization of housekeeping and training functions that is now prevalent. If training and administrative-housekeeping demands conflict, the odds are high that the latter will prevail, particularly in the scheduling of medical, administrative, and housekeeping activities. A soldier is estimated to lose about one-sixth of training time to these functions—a loss that can be absorbed by the very apt student but is not at all well handled by the less apt third of the group, particularly in skill courses which demand practice to achieve proficiency.
In the following sections are more specific observations on the training problems created by a wide spectrum of student abilities, and some analysis and discussion of possible approaches to dealing with these problems.

THE STUDENT BODY

Typical student weekly input at a given training center runs from 30 to 50 students for the General Supply Course and from 50 to 100 students for the Field Wireman Course. An idea of the range of abilities of trainees in the courses at the time this study began was given in Table 2. As the input of Category IV persons has stabilized, it may occasionally contribute up to 40% of a given class, but normally runs somewhat lower.

Seasonal fluctuations in the input are quite noticeable to instructors. Summer months in recent years have been characterized by heavy input of National Guard and Enlisted Reserve soldiers of much higher academic status and ability than the Regular Army and inducted soldiers who make up the bulk of the classes during the remainder of the year.

While the range of aptitude stemming from trainee origin or seasonal inputs is great and is a training problem of magnitude, it is the consistent and broad spread of individual talents within each class that is at once striking and creative of difficulty for instructors. It is one thing to conceptualize from training statistics and attrition figures an abstraction called a “class” or “course.” It is quite another to encounter daily and weekly the task of teaching the same material simultaneously to men who can barely read and to men with advanced degrees in the arts and sciences. This topic will be discussed further in following sections.

From many samples of soldiers at various AFQT levels in SPECTRUM I and II research and from Department of Defense statistics regarding Project 100,000, there emerge consistent findings with regard to the aptitude and educational qualifications of the men in the lower AFQT categories. As an example, the civilian educational record of 326 soldiers in five classes in Field Wireman, Light Vehicle Driver, and basic administration courses in one training center early in 1968 is presented in Table 4.

The percentage of Category IV high school graduates in this sample approximates the 40 to 45% typically reported in Department of Defense periodic reviews of Project 100,000. However, the amount of formal education completed is not necessarily a good predictor of trainability in the lower AFQT brackets. Completion of high school, or of eight or nine grades, may not mean that basic reading and arithmetical competences are at these levels.

Table 4

<table>
<thead>
<tr>
<th>AFQT</th>
<th>High School Graduate</th>
<th>Non-Graduate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Category I</td>
<td>13</td>
<td>87</td>
<td>2</td>
</tr>
<tr>
<td>Category II</td>
<td>60</td>
<td>77</td>
<td>18</td>
</tr>
<tr>
<td>Category III</td>
<td>88</td>
<td>61</td>
<td>55</td>
</tr>
<tr>
<td>Category IV</td>
<td>40</td>
<td>44</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>201</td>
<td>62</td>
<td>125</td>
</tr>
</tbody>
</table>

The graph compares the actual reading test ability of groups of designated educational level (grades of school completed) and shows the considerable

1 California Survey of Achievement, Reading, Junior High Level; McGraw-Hill, 1959. This is a group test. Because of its medium range, lower scores are distorted upward, higher scores downward, resulting in less apparent difference between groups than is actually the case. Data were gathered jointly for Work Unit SPECTRUM and Work Unit REALISTIC purposes.
Reading Test Performance of 326 Soldiers, Grouped by AFQT Category and Education Level

AFQT Category IV

The designated percent of students in each group have grade reading levels lower than that indicated by the centile marker.

Distribution of groups of less than 10 is shown by individual plots.

Group populations are indicated by baseline numbers in parentheses.

AFQT Category III

AFQT Category II

AFQT Category I

Figure 1
difference between AFQT categories. Each bar shows the position of the 90th centile and the 10th centile of that group in terms of reading ability score (grade reading level) and shows also the reading level position of the median or middle score in that group.

To take an example, the second bar from the left indicates that of the group in Category IV which completed 10th or 11th grade, the person in the 90th centile position, very high in the group, was at the grade reading level of 8.8; the middle person in the group was at grade reading level 6.6; and the person at 10th centile, low in the group, was at grade reading level 5.6. In contrast, that group in Category II which had finished 10th or 11th grade demonstrated grade reading levels, in the same respective centile positions, of 13, 10.6, and 8.3.

Clearly, completion of 10th or 11th grade for Category IV people has a much different meaning in terms of possession of basic skills than does completion of the same amount of schooling for Category II persons. Indeed, the bulk of non-graduate Category II persons surpass the graduates of Category IV. Assuming ninth grade reading level as the minimal competence needed to read high school or college level manuals or texts, even with difficulty, it appears that approximately half of the total group fall below this level of reading competence.1

It is thus evident that the potential of reading as a learning device for Category IV and much of Category III is not high. The implications are several. Textbooks and workbooks to be used by lower-aptitude personnel will need rather radical reappraisal and rewriting, to include photographic and other visual helps. The relevance of the typical “study hall” remedial work for Category III and IV persons will bear re-study. Tutorial and other practice sessions will need to be considered, with minimally theoretical and maximally functional training as the overall aim for such trainees.

THE CONDUCT OF TRAINING

Objectives

Consideration of the problems of training men with a wide range of aptitude must start with the statement of the course objectives—the performance expected of a student upon completion of the course of instruction. Based on the job for which the student is being prepared, the objectives should determine training content, instructional sequence, and evaluation standards for student performance. They need to specify clearly the behavior desired, the degree of adequacy of performance required, and the conditions that will affect performance. Instead of specifying that a student must be able to change tires, for example, the objective statement should specify the type of tire, tools available, environmental conditions expected, and reasonable time criteria.

The main source of objectives for combat support courses is the Army Subject Schedule for the course. Observation in this study indicated that a major difficulty in the objectives, as far as the lower level student is concerned, is that a high proportion call for verbal knowledge rather than job skill, emphasizing “nice-to-know” knowledge regarding the task as much as job performance. Objectives stated in this manner lead directly to verbalized and written instruction and to the same type of evaluation.

Several excellent works have appeared on this topic in the last few years to provide guidance and assistance to personnel developing statements of performance objectives, and materials based on them. Mager (10) deals with the importance of specifying the various components of the statement of objectives. Ammerman and Melching (11) and Smith (12) provide in some detail the steps involved in translating work performance

1 Initial studies of HumRRO Work Unit REALISTIC show that a majority of publications commonly used in combat support training are written at the college level.
criteria into training and test criteria. In the past two years, USCONARC has developed two important publications. The first is USCONARC Pamphlet 350-14, *Training, Student Performance Objectives* (13), which deals with the actual generation of training goals from field jobs to school tasks. The second is USCONARC Reg 350-100-1, *Systems Engineering of Training* (1), which provides detailed and specific concepts aimed toward the accomplishment of thorough task analyses and the conversion of these analyses into viable and workable instructional objectives; it provides as well a general timetable for the redesign of existent school and training center courses.

Since training centers use objectives derived from the Army Subject Schedule with little change, it is increasingly important that they be the result of actual task analyses. Revision of courses under USCONARC Reg 350-100-1 works toward the goal of task analysis, but the problem will remain major for some time to come. While communication regarding schedules is open between training center and proponent school, procedure for modification of programs is unwieldy and it is difficult for local instructors to make more than minor modifications of objectives.

Organization and Sequence of Instructional Content

With minor exceptions, organization and sequence of instruction at all posts visited followed the appropriate Subject Schedules. This means that instruction is set up in isolated subject blocks, many conveniently tailored to the weekly unit of time. Under these circumstances artificial boundaries tend to rise; separate faculties grow and become semi-autonomous training structures with their own modes and examinations; functional training becomes less likely. If, for example, pole-climbing is taught as an isolated skill, it is not clear that wire-tying and telephone-connecting are the key skills and that pole-climbing is a tool to enable telephones to be connected.

Many blocks in the General Supply and Wireman courses observed were indeed relatively isolated. While the bright and able student, with his practice from high school or college, probably can master and integrate these seemingly unrelated blocks into a coherent whole, there is growing evidence that the average or below average student is not very capable of welding these unrelated facts and principles together so easily. The work of HumRRO Work Unit SUPPORT I and II and earlier curricular studies suggests that all students, not only slow learners, benefit by a sequence and organization of content into what may be called a functional context.

This functional concept, in contrast to the sequence of blocks of instruction, specifies the adding of meaning and interrelationship to the material being taught. The goal may be reached in different ways, but will involve acquainting the student with the objectives of the course and allowing a brief overall view. His first learning will be related to his present background of knowledge and skill, presented in terms and ways he already knows. Added materials, as he continues, will be related both to past learning and to the job for which he is being prepared. At all times, relationships between the course content and the job are kept open. In some ways, training may imitate the job and the job environment. In brief, every effort is made to make the actual context of training a functional and joblike one.

Implementation of such functional approaches probably would require drastic changes in the format of Subject Schedules or, as in the case of courses in which most of the instruction is given by programed materials, some sort of new format.

Meanwhile, the cause of the lower level student, in particular, would be helped by recurring practical exercise of important skills and knowledges introduced in previous weeks. In the courses observed, there was little opportunity for such practice. In addition, certain tool courses could become the vehicle for functional learning, as in using typing to learn Army forms. Often, now, such courses are rather isolated and self-contained.
Such emphasis on functionalization of training would call for the broadly or generally informed instructor, capable in several areas, and would discourage the development of rather narrow, subject-bound instructors capable of deep instruction in their own specialties (deeper than is needed or desirable for this instruction) but not well informed in adjacent skills.

References of aid in clarifying these concepts are Shoemaker's (14) article on the functional context method, Chapter 5 of Smith's volume on The Design of Instructional Systems (15), and an address by McClelland (16).

Instructional Practices

This topic has been the target of a vast amount of research and writing and many references are available. Smith's bibliography (17) on instructional systems is an excellent source book and his previously mentioned publication (12) on objectives has many implications for instructional methods. The publication most used by military teachers is FM 21-6, Techniques of Military Instruction (18); it is an excellent presentation of training methods for the more able student but does not touch upon the need for or methods of individualization made necessary by the increase in numbers of low ability students. Finally, the various Army Subject Schedules direct and influence much of what is done in this respect.

In this review the primary concern was the degree of relevance of present practices to the broad range of trainee abilities now represented in these occupational classes. The need for greater functionalization of material was pointed out in discussing organization of the material of a curriculum. While the greater share of combat support jobs and training would seem well suited to a highly functional and practical method of training, only Food Service and Vehicle Mechanic courses appear to have progressed far in this direction.

The instructional equivalent of a low degree of course functionalization is a high ratio of verbal presentation to actual practice of skills. In the courses observed, most teaching blocks were preceded by one to six hours of verbal introduction, although in most of these blocks a few minutes of introduction at the work site, followed immediately by practice, would be of more value to most students—particularly to the lower level students who have difficulty with large amounts of purely verbal material.

Trainers at one center estimated the proportional amounts of time used in the presentation of knowledge, as opposed to the practice of skills, as follows:

- General Supply: 86%
- Clerk: 60%
- Mechanic: 38%
- Field Wireman: 35%

Research team observations suggest that these estimates do not exaggerate.

A high ratio of verbal presentation involves three disadvantages for all students. It reduces the already small amount of time available for skill practice; it separates, often by hours, explanation and practice; it allows no easy way of determining which students are grasping the explanation. The handicap for the lower third of the class is apparent to the observer, as these students cannot take adequate notes and do not do very well in remembering what has been said. (The boredom of the upper quarter of the class is likewise apparent, but this aspect of the instructional problem will not be pursued in this discussion.)

What is needed is more of a mixture of brief explanation and demonstration followed immediately by ample, well-supervised, and corrected practice that is continually related to the actual job. This would be an improvement but would not, of
course, make a change in the lockstep pace which is the same for all students. Students of widely different abilities need in some way to progress as they master the material.

The ability of the instructor to manipulate environment, aids, facilities, and persons is an important element in maximizing the input of skill or knowledge to all levels of students. Because there seems to be a general tendency to isolate audiovisual or other types of training assistance as semi-autonomous disciplines, it is well to stress that all facilities are part of the total training activity; they are valuable insofar as their use is grounded in good understanding of the instructional process and the objectives of training. Thus, in preparing a manual for all levels of students, regulations should not merely be copied in their original language. In generating tape or film, it is not enough to represent a man talking; the advantage of the lens is its power to bring close for emphasis, or to move into the distance for overall comprehension, or to juxtapose related actions—any or all so as to clarify meaning and increase understanding, particularly for the less gifted student.

In the courses observed nearly all instructors had sufficient technical knowledge and taught it enthusiastically. The rapid turnover of instructors and the increasing number of very young instructors have limited the number of people who could become good general teachers across broad but related areas, but this is not a crucial problem. Pedagogical knowledge varied, as would be expected.

Perhaps the greatest shortcoming observed was the number of extraordinarily impersonal instructors, who tended to address themselves to a point beyond the student body, to overuse technical nomenclature, to speak in a monotonous singsong. Whether this was the end result of years of committee instruction is difficult to say; where it was present, it had obvious deadening effects on the interest of students at all levels.

EVALUATION OF STUDENTS

Student testing serves at least four functions—determination of student progress, diagnosis of student knowledge, diagnosis of the instructional system, and motivator for those being judged. To these might be added its occasional utility as a teaching device—more potential than practiced. Although publications on the topic are plentiful, the two sources most used by Army instructors are Chapter 12 of FM 21-6 (18) and Appendices E and F of USCONARC Reg 350-100-1. An added military reference is Smith’s report on quality control in training (19).

Of the problems relating to the presence of a wide spectrum of ability in combat support training, inadequate and misleading evaluation was the most widespread and one of the most severe. The problem has various sources and takes multiple forms but may be discussed under four main types of difficulties:

(1) The greater portion of the tests at nearly all Centers were paper-and-pencil in character. The proportion of academic grades determined by written test (usually multiple choice) ranges from 20% in Driver courses to nearly 100% in Clerk courses, with the average for all combat support courses at about 60%. The fact that these are occupational skill courses makes reliance on written evaluation particularly ineffective as a measure of proficiency. Category IV persons, with their low verbal skills, are clearly handicapped in attempting to compete with Category II persons in the medium of the written test, and are being tested on something other than their knowledge of the job.

(2) The written tests, based as they are on data and facts of secondary importance, measure memory for such facts rather than performance skill and are low in job validity. Again, the slow student fares badly on such a test even if he has the desired performance skills.

(3) Some of the tests are of questionable validity in regard to distinguishing between trainees of differing proficiency. In repeated recycling, poor students may tend to learn the tests as such, rather than a broader body of skills and knowledges of which a
test is a sample. The formalized 70% passing score does not specify whether the items passed are *must know* items or non-essential knowledge; both have equal weight in pass-fail decisions.

(4) In the performance tests that are used, standardization of testing tends to be low. Some evaluators used checklists; some did not. Some gave general instructions; others were specific. Some measured group performance (where apt students can carry the load); others measured individuals.

Cogent reasons exist for some of these difficulties. There is an inevitable relationship between verbalized objectives and instruction, and verbalized measurement. Precise grades on a 70% basis are a requirement and some poor students must, after all, be moved on after appropriate recycling. In addition, the design of any training system poses the question of whether the persons providing the training should also provide the evaluation of the training.

Present evaluation does not seem to be meeting the need for distinguishing various levels of performance by a broad range of students. In the absence of strong methods of individualized training and evaluation, there is no adequate solution to the problem of when to move the lower level students to their next assignments. Research team observations suggested that a moderate number of lower ability students were moving on without having mastered the skills.

ATTEMPTS AT INDIVIDUALIZATION OF TRAINING

Individualization of training is based on recognition of individual learning differences among students, and the goal is to fit training and evaluation to these differences to the end that instructional objectives are reached as efficiently as possible for all students. In systems with relatively homogeneous groupings of students, the advancement of apt students and the repetition of work for the slower student have long been utilized. With the introduction of large numbers of students of all levels of ability, a reappraisal of methods of individualization in military training courses is much to the point.

Most of the observed efforts toward individualization were, as noted above, essentially remedial and aimed almost solely at slow students. In one training center studied, some systematic effort was being made toward prevention of student failure by pre-instruction rather than remediation-after-failure, but this effort was hampered by the demands of the larger single-track system.

Make-up sessions and “study halls” were the most common attempt at solution. Effectiveness varied. The best involved Saturday morning sessions with vigorous instructors helping students in small groups. The least effective involved automatic week-end restriction following academic failure (without tutoring or help during the week-end) and assignment to study hall for three evenings during the following week. Since typical study hall procedure involves study from texts and notebooks, the questionable reading ability of most slow learners minimized the effectiveness of this approach. In addition, this remediation was conducted while new material was being introduced during the day, nearly a week after the original failure.

A second and more successful approach to individualization was the attempt to counter the impersonal tone of the system by assigning advisors and counselors to the trainees. The vigor and success of this approach varied from center to center, but at all centers staff and commanders were active in these counseling efforts and in efforts to make reasonable decisions about student disposition.

The third and most direct remedial action was that of recycling the failing individual to allow him to repeat work with which he has had difficulty. Observation suggested that graduation after recycling tended to be more a function of learning the test than learning the material; it did not seem that using the same verbal approach for another week had much effect in the case of the usual failing student with reading and learning difficulties.
The demands brought about by the presence of large numbers of students of low ability require reappraisal of the entire question. Remediation does not seem sufficient to these demands. Possible approaches will be touched on in the final chapter, but recognition and statement of the problems come more readily than do solutions.

CONCLUSIONS AND IMPLICATIONS

Three related key issues—inadequately stated objectives, overly verbalized instruction, and ineffective student measurement—have run through this review in one way or another. Basically, these are systemic difficulties and the successful implementation of USCONARC Reg 350-100-1 over the next few years will probably ameliorate them significantly. The regulation specifically and straightforwardly deals with establishing adequate objectives, developing instruction built around these objectives, and generating tests of skill and knowledge that relate directly to job performance.

A fourth key issue, individualization of instruction to better serve the wide range of talents now present in Army input, is not directly treated by provisions of the regulation (although its principles are necessary in dealing with any given level of ability). For this reason, the action implications in the areas covered in the SPECTRUM I review are discussed in two major groupings, those related to curriculum engineering in general and those bearing on the specific problem of individualization.

IMPLICATIONS FOR INSTRUCTIONAL ACTION

These curriculum-related implications arising from the review of current instructional patterns are dealt with in terms of broad, long-range undertakings and short-range local options. In some cases there is overlap in that implications have both long- and short-range facets. While these candidates for Army action are discussed primarily in terms of training per se, the actions often would have special significance for the problems of training to fit a wide range of aptitudes.

Long-Range Command Actions

Four areas of need or desirability can be noted as subjects for high-command action with long-range implications.

The first is the oft-stated need for the rapid working-up of job-related and behaviorally defined training objectives for occupational courses. This program is already under way with the publication of USCONARC Pam 350-14 and Reg 350-100-1. Development of objectives will need to be followed by development of workable machinery to review, update, and feed these objective statements into training channels.

The second need is for the drawing up of genuinely functional, well-integrated curricula for these occupational courses, along with the appurtenances thereto. This might call for considerable revision in the format of the Subject Schedules. For example, the transformation of an entire course into programed instruction would require an entirely new concept and format which could take into account the varying speeds of different levels of students. In the case of courses not entirely programed, there is need for the development of much guided and recurrent “hands-on” practice; of clear and understandable written or audiovisual programs where necessary; of workbooks in clear and uncomplicated language; of good prototypes of successful models, mockups, and aids. Along with these curricula aids there would need to be clear statements of performances which would be required in locally handled examinations.

Third is consideration of the desirability of appointing a professional educator of high competence at each training center. Not concerned with problems of training
schedules but with problems of curricula, instructional technique and procedures, examina-
tions, and overall instructional efficiency, he might work at staff level in advising and
consulting with brigade trainers. Similar to medical and legal staff in function, this person
would provide professional educational guidance and continuity at each center.

Finally, the responsibilities and roles of proponent school and training center make
it eminently desirable that communication relating to proposing and implementing
instructional change be as free and open as possible.

Possible Actions at the Local Level

There are some actions that might be considered now at the local level, quite apart
from the longer-range aims and projects of USCONARC Reg 350-100-1. Primarily, these
actions would be related to functionalization of training and curriculum and to the better
evaluation of students.

(1) Less verbal and more practical or functional training sequences. With higher
level permission, several approaches might be attempted. In particular, sequences involving
both knowledge and skill learning could be programmed in such a way as to intersperse,
systematically, practice and explanation in the field; for example, the student would learn
nomenclature as he worked with the new materials. This integrated sequence could
replace the several hours of platform explanation followed by several hours of practice.

(2) More effective handling of personnel, both instructor and student. At this time
it often happens, in group exercises, that abler students participate more vigorously and
with greater understanding, to the point that less able students often do not get the prac-
tice they need and to which they are entitled. Frank use of these highly able students as
tutoring assistants who could provide guided practice for slow students would be benefi-
cial in both classroom and outdoor problems.

Closely related is the proper utilization of assistant instructors and those stu-
dents who are designated as class leaders. In some centers, these persons are now used
only to report to visiting inspectors or functionaries. Other centers have a more effective
plan that might well be adopted much more widely: the assistant instructors are used
vigorously in the classroom or in the field as circulating teachers, and class leaders are
used as acting noncommissioned officers with responsibility and authority.

(3) Improved training sequence, and better utilization of training personnel and
facilities. With higher level permission, some modification could be made in the present
instructional system of isolated committees and content blocks. Personal interest in stu-
dents as working individuals is not possible when the instructor will work with that stu-
dent for only a week. Greater efforts to loosen committee boundaries, to encourage some
cross-teaching and cross-supervision, with certain instructors following students for longer
than the present one-week block would result in greater instructor-student interchange.

The physical counterpart of a changing atmosphere is the changing of the
instructional space from a platform-centered formal classroom to a workroom with tables
and chairs, with ample space for circulation of supervising instructors.

Tied also to the work atmosphere and the loosening of committee boundary
lines is the possibility of using experienced and able instructors to handle integrated
several-hour work exercises, combining review and practice (and evaluation) over major
material and skill covered to that time, these to be held two or three times during the
typical course.

(4) Modifications in administrative support and review. Increased familiarity with
the job objectives of combat support training on the part of training officers could bring
about desirable modification of training inspection, moving from emphasis on agreement
with printed subject schedule to emphasis on the success with which instructors were
proceeding toward the instructional goals. Appendix A provides headings around which
the inspector might make comments on training. These inspections might gradually be
accomplished by company commanders and selected instructors as well as by S-3 persons, and need to have the strongest command support and recognition.

Administratively, the loss of time incurred by students in handling administrative activities which have precedence over training and which grossly interfere with the training capabilities of lower level students could be ameliorated by routine scheduling of company and other details as part of the weekly training schedule.\footnote{Such scheduling of administrative details is part of the pending Army Subject Schedule 11-05B20 for the training of Radio Operators (MOS 05B20) and has been made official at five training centers by USCONARC letter of 4 June 1968, Subject: Training Program for Radio Operator (05B).}

The problems of student evaluation are not simple. The questions of proponent school role, of committee evaluation of students, and of the development of true performance tests will bear study. Nevertheless, some desirable changes could be made locally and without great difficulty. One brigade, for example, reversed the usual ratio of 60\% written and 40\% performance test to a ratio of 40:60 in one year.

In this same vein, it may well be feasible for evaluation committees, using clear objectives and criteria, to administer most evaluations and not only the final field exercise. Additionally, it might be feasible and would be desirable to increase the use of integrated work tests and reviews at regular intervals throughout training.

In any event, a seemingly minimal requirement would be to have able instructors from all departments work in the development of all tests, and to have a board of able instructors pass on tests and items in terms of their relevance, practicality, format, and scoring weight.

INDIVIDUALIZATION

While there are numerous implications for action to improve various aspects of the engineering of training, the situation is less clear with regard to the challenge of devising systems that will fit instruction better to the background and abilities of the individual soldier. Many answers are needed. We know little about the relative effectiveness of different instructional methods at different ability levels; little of the effects, socially or educationally, of isolating ability levels for training purposes; and little about the different motivations of soldiers of differing abilities. We know only that the need for both information and consequent action is considerable.

Any scheme for individualization envisions diagnosis of individual status and the prescription of a choice from one or more curricula to fit the individual case. Recognizing the considerable individual differences in speed and depth of learning, plans may differentially adjust either available time of instruction or amount of material to suit the case. Time and content are the two basic ingredients, and options are numerous.

Given these two ingredients, the challenge is to fit them simultaneously to different levels of background and ability. One option is to set up a two- or three-track system in which the same content is given in each track, although in ways appropriate to the ability level of the students. With amount of content stable, and with teaching method matched to track level, the varying levels of students would finish their courses at different times—say at four weeks, six weeks, and eight weeks—depending upon track level. Such a system probably would not require a great deal of additional personnel and equipment; the upper portion of these classes, properly rewarded, could complete this work in a fraction of the present time and with much less instructional aid than is now given. There are, however, social and administrative problems attached to the isolation of different ability groups. The impact of these is difficult to estimate at this time.

Another approach would hold the time allotment constant but would utilize separate tracks to provide considerably different amounts of material by very different means to the students of the different levels. It is entirely conceivable that the upper level student could quite easily handle material presently given in separate advanced courses. Such
an approach would again assume the utilization of well-written programs, video programs, and training exercises, in different ways for different levels. It would assume also the means of motivating successful students by appropriate promotion or award of advanced MOS.

Still another possibility would provide for greater integration of different levels of students. Such an approach would utilize the higher level student as an active part-time tutor for the inept student. It would have some common instruction at the beginning of the course, but would require certain able students to take considerable extra work and to act as leaders and tutors in the latter three-quarters of the course. Again, it is assumed that the taking of such responsibility and extra work would be reinforced by suitable advancement in one way or another.

Regardless of the approach to be taken, information is badly needed. Much has to be learned of the relationship between method of training and level of student ability and of differential motivating practices for different types of students and some research is under way in these areas. In SPECTRUM III, study has already begun on the relative effectiveness of certain teaching methods for fast and for slow students. HumRRO Work Unit APSTRAT, now beginning, will use findings from SPECTRUM III and from already present training knowledge as the basis for setting up entire training sequences in combat support courses. These experimental sequences will field test various strategies aimed at handling different levels of students in different ways to maximize their learning potential. Tested and workable methods may later be available to help in the everyday handling of the pervasive problem of the need for individualization of instruction.
LITERATURE CITED
AND
APPENDIX
Literature Cited

Appendix A

TRAINING OBSERVATION SHEET

Combat Support Survey

Course, MOS ______________ Date, Time __________ Observer ______________

Instructor ______________ Period __________ Place ______________

Stated Objective ______________

% Time Distribution of Instruction: Lecture ______ Conference ______________

Demonstration ______ Practical Exercise ______ Test ______________

I. Student Body Information: (obtained by administrative means)

II. Instructor: (mark with X at or between descriptors)

A. Manner

 1 2 3

 helpful, adequate disinterested, encouraging
 encouraging

B. Prof Knowledge

 1 2 3

 full, organized adequate vague, uncertain

C. Help and Supervision

 1 2 3

 helpful, insightful routine discouraging

D. Pedagogical Skill

 1 2 3

 molds aids & methods routine mechanical, not to good instruction a teacher
 to good instruction

E. Describe & Evaluate: (needs, innovations, lacks)

III. Content of Course and Tests (Appropriateness to objectives; functional sequencing
and good integration of material)

A. Material

 (Content) 1 2 3

 appropriate, fair inappropriate, vague,
 must know nice to know

25
B. Material (Sequence)

1 2 3
functionally fair arbitrary block,
integrated lack of sequence

C. Examination (Content)

1 2 3
appropriate, must know fair inappropriate, nice to know

D. Describe & Evaluate:

IV. Methods (Appropriateness to student, to material, to objectives)

A. Instruction (Method)

1 2 3
appropriate fair inappropriate

Type ________________ (L, C, Demo, Test, P. Ex.)

Describe and Evaluate:

B. Examination (Method)

1 2 3
appropriate fair inappropriate

Type ___________ (group, written practical, individual, etc.)

How Administered __________ (subtle help: coaching? no help?
group score? individual score?)

Comments, Recommendations:

V. Use of Resources (mastery of material environment and aids)

A. Use of Classroom

1 2 3
student centered fair platform centered

Describe and Evaluate:

B. Use of Training Aids

1 2 3
meaningful routine meaningless

(Specific use and appropriateness; adequacy of usage;
relation of aids to material, students, and objectives;
instructor controlling or controlled by aids?)

Describe and Evaluate:
C. Outdoor Problems

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>appropriate</td>
<td>unnecessary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(appropriateness for outdoor exercise)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>good</td>
<td>fair</td>
<td>poor</td>
<td></td>
</tr>
<tr>
<td>(degree of participation of all students in all phases)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>good</td>
<td>fair</td>
<td>inadequate</td>
<td></td>
</tr>
<tr>
<td>(general fidelity and adequacy of exercise)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>actual teaching-learning value</td>
</tr>
</tbody>
</table>

Describe and Evaluate:

D. Student Materials (Tools, objects, workbooks, equipment, etc.)

Types used:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ample</td>
<td>barely</td>
<td>inadequate</td>
<td></td>
</tr>
<tr>
<td>(adequacy of amount and quality of equipment)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>good</td>
<td>fair</td>
<td>poor</td>
<td></td>
</tr>
<tr>
<td>(adequacy of usage of equipment)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Describe and Evaluate:
A REVIEW OF COMBAT SUPPORT TRAINING

Technical Report

Ernest K. Montague and Morris Showel

December 1969

DAHC 19-70-C-0012
2Q062107A712

Technical Report 69-19

This document has been approved for public release and sale; its distribution is unlimited.

Combat support training was observed at four Army training centers, with particular reference to training objectives, methods, and student evaluation, especially as these relate to increasing individualization of training. Training problems most relevant to individualization were in the areas of highly verbally-oriented objectives, a high degree of verbal instruction, and a high degree of use of written examination for evaluation of student performance. The addition of large numbers of soldiers of low academic ability has intensified these problems and has added new questions of appropriate training methods for the simultaneous training of students of a wide range of ability.
Key Words

<table>
<thead>
<tr>
<th>Abilities</th>
<th>Aptitudes</th>
<th>Combat Support Training</th>
<th>Individual Differences</th>
<th>Training Methods</th>
<th>Training Objectives</th>
<th>Training System Analysis</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
</tbody>
</table>

Unclassified

Security Classification
<table>
<thead>
<tr>
<th>1</th>
<th>STRATEGIC PLANNING GP CORPS</th>
<th>2</th>
<th>SYS DEVEL CORP SANTA MONICA ATTN LIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CMF OF MILIT WST DA ATTN GEN REP WA</td>
<td>3</td>
<td>DUNLAP & ASSOC INC DARENICA MOUNTAIN VIEW</td>
</tr>
<tr>
<td>3</td>
<td>US USA 10TH SPEC FORCES GP FT DEVENS</td>
<td>4</td>
<td>RAC ATTN LIB MCLEAN VA</td>
</tr>
<tr>
<td>4</td>
<td>BANK CORP AMERICA WASHINGTON</td>
<td>5</td>
<td>SUSTAINMENT GP CORPS AMHERST</td>
</tr>
<tr>
<td>5</td>
<td>CMF OF MILIT WST</td>
<td>6</td>
<td>2ND CSM EQP CORP SAMSON</td>
</tr>
<tr>
<td>6</td>
<td>CO 13TH SUPT CG US COAST GUARD</td>
<td>7</td>
<td>OF SO CALIF ELEC PERS RES GD</td>
</tr>
<tr>
<td>7</td>
<td>CUET CA</td>
<td>8</td>
<td>COLUMBIA U ELECTR RES LABS ATTN TECH EDITOR</td>
</tr>
<tr>
<td>8</td>
<td>MRTCH INTEG CORP BESCH ASSOCIATES</td>
<td>9</td>
<td>2ND CSM EQP CORP AMHERST</td>
</tr>
<tr>
<td>9</td>
<td>US MILITARY TRN GD APT DEF TRN FAIRFAX VA</td>
<td>10</td>
<td>OF UMG LEARNING RGT CO MILIT TRN</td>
</tr>
<tr>
<td>10</td>
<td>WESTERN ELECTRIC CO INC NY</td>
<td>11</td>
<td>OF UMG LEARNING RGT CO MILIT TRN</td>
</tr>
<tr>
<td>11</td>
<td>HUMAN RESOURCES CO</td>
<td>12</td>
<td>2ND CSM EQP CORP AMHERST</td>
</tr>
<tr>
<td>12</td>
<td>3RD CSM EQP CORP AMHERST</td>
<td>13</td>
<td>TECH INFO ENSR CORPS DATA SERA N AMR AVN INC COLUMBUS OH</td>
</tr>
<tr>
<td>13</td>
<td>5TH CSM EQP CORP AMHERST</td>
<td>14</td>
<td>CHVLMN CORP MILDIV DEPT ATTN TECH INF OC</td>
</tr>
<tr>
<td>14</td>
<td>7TH CSM EQP CORP AMHERST</td>
<td>15</td>
<td>AVCO CORP AVCO MSL SYS DIV ATTN RSLB MILLEN WASHINGTON</td>
</tr>
<tr>
<td>15</td>
<td>NAVY RES INSTR SSS GRIFFISS AFB</td>
<td>16</td>
<td>FOR RHONDA CORPS GD WASHINGTON MILLEN</td>
</tr>
<tr>
<td>16</td>
<td>USAF AIR SQM CO</td>
<td>17</td>
<td>EDUC ENG D C S FELIX LA</td>
</tr>
<tr>
<td>17</td>
<td>1STM HEL CORPS GD ATTN GD CALIF</td>
<td>18</td>
<td>GEN DYNAMICS DOMINA DIV ATTN RSLB MILLEN</td>
</tr>
<tr>
<td>18</td>
<td>HOMANUDENT TECH PROD GD US COAST GUARD</td>
<td>19</td>
<td>20TH CSM EQP CORP AMHERST</td>
</tr>
<tr>
<td>19</td>
<td>HS 1ST EXEC OFFICER GD</td>
<td>20</td>
<td>ELEVATOR CORP GD INDIANAPOLIS</td>
</tr>
<tr>
<td>20</td>
<td>25TH CSM EQP CORP AMHERST</td>
<td>21</td>
<td>BIRD INTEGRATED SYSTEMS GD INDIANAPOLIS</td>
</tr>
<tr>
<td>21</td>
<td>31ST CSM EQP CORP AMHERST</td>
<td>22</td>
<td>BIOTECHNOLOGY AEROSPACE SYS DIV M 87-93 BOWERS CO SEATTLE</td>
</tr>
<tr>
<td>22</td>
<td>OF FOR RES INSTR SSS ASU</td>
<td>23</td>
<td>ISHA RES CO EN STUFT DIV ARV LIB</td>
</tr>
<tr>
<td>23</td>
<td>5TH CSM EQP CORP AMHERST</td>
<td>24</td>
<td>HUGHES ALLSEY COMPANY GD CLEVELAND CITY CALIF</td>
</tr>
<tr>
<td>24</td>
<td>USAF AIR SQM CO</td>
<td>25</td>
<td>BATTLEFIELD MEMORIAL INST COLUMBUS LABS ATTN RACE D</td>
</tr>
<tr>
<td>25</td>
<td>10TH CSM EQP CORP AMHERST</td>
<td>26</td>
<td>DIR CTR FOR RES INSTR SSS TECH U OF MICH</td>
</tr>
<tr>
<td>26</td>
<td>20TH CSM EQP CORP AMHERST</td>
<td>27</td>
<td>EDITION TCN RES ARRIB AMR SOC GD DIRS U OF PENN</td>
</tr>
<tr>
<td>27</td>
<td>OF FOR RES INSTR SSS ASU</td>
<td>28</td>
<td>CTR FOR RES INSTR SSS MILIT TRN</td>
</tr>
<tr>
<td>28</td>
<td>5TH CSM EQP CORP AMHERST</td>
<td>29</td>
<td>4TH CSM EQP CORP AMHERST</td>
</tr>
<tr>
<td>29</td>
<td>7TH CSM EQP CORP AMHERST</td>
<td>30</td>
<td>1ST CSM EQP CORP AMHERST</td>
</tr>
<tr>
<td>30</td>
<td>OF FOR RES INSTR SSS ASU</td>
<td>31</td>
<td>2ND CSM EQP CORP AMHERST</td>
</tr>
</tbody>
</table>

Notes:
- This list includes a variety of organizations and companies, including military and tech firms.
- There are references to U.S. government agencies and universities across the country.
- The list is organized alphabetically by organization name and includes contact information such as ATTN, C/O, or ADDRESSEE.
HUMAN RESOURCES RESEARCH ORGANIZATION
300 North Washington Street • Alexandria, Virginia 22314

President
Executive Vice-President
Director for Operations
Director for Program Development
Director for Research Design and Reporting
Treasurer and Director for Business Affairs

Dr. Meredith P. Crawford
Dr. William A. McClelland
Mr. Arnold A. Heyl
Dr. Robert G. Smith, Jr.
Dr. Eugene A. Cogan
Mr. Charles W. Smith

RESEARCH DIVISIONS

HumRRO Division No. 1 (System Operations)
300 North Washington Street
Alexandria, Virginia 22314

Dr. J. Daniel Lyons
Director

HumRRO Division No. 2
Fort Knox, Kentucky 40121

Dr. Donald F. Haggard
Director

HumRRO Division No. 3
Post Office Box 5787
Presidio of Monterey, California 93940

Dr. Howard H. McFann
Director

HumRRO Division No. 4
Post Office Box 2086
Fort Benning, Georgia 31905

Dr. T. Owen Jacobs
Director

HumRRO Division No. 5
Post Office Box 6057
Fort Bliss, Texas 79916

Dr. Robert D. Baldwin
Director

HumRRO Division No. 6 (Aviation)
Post Office Box 428
Fort Rucker, Alabama 36360

Dr. Wallace W. Prophet
Director

HumRRO Division No. 7 (Social Science)
300 North Washington Street
Alexandria, Virginia 22314

Dr. Arthur J. Hoehn
Director
HUMAN RESOURCES RESEARCH ORGANIZATION
300 North Washington Street • Alexandria, Virginia 22314

President
Executive Vice-President
Director for Operations
Director for Program Development
Director for Research Design and Reporting
Treasurer and Director for Business Affairs

Dr. Meredith P. Crawford
Dr. William A. McClelland
Mr. Arnold A. Heyl
Dr. Robert G. Smith, Jr.
Dr. Eugene A. Cogan
Mr. Charles W. Smith

RESEARCH DIVISIONS

HumRRO Division No. 1 (System Operations)
300 North Washington Street
Alexandria, Virginia 22314

Director

Dr. J. Daniel Lyons

HumRRO Division No. 2
Fort Knox, Kentucky 40121

Director

Dr. Donald F. Haggard

HumRRO Division No. 3
Post Office Box 5787
Presidio of Monterey, California 93940

Director

Dr. Howard H. McFann

HumRRO Division No. 4
Post Office Box 2086
Fort Benning, Georgia 31905

Director

Dr. T. Owen Jacobs

HumRRO Division No. 5
Post Office Box 6057
Fort Bliss, Texas 79916

Director

Dr. Robert D. Baldwin

HumRRO Division No. 6 (Aviation)
Post Office Box 428
Fort Rucker, Alabama 36360

Director

Dr. Wallace W. Prophet

HumRRO Division No. 7 (Social Science)
300 North Washington Street
Alexandria, Virginia 22314

Director

Dr. Arthur J. Hoehn