
CO 

lO 

o 

Q 
< 

Z 
o 
I— 

< 
Ü 
>-> 
J 
& 

< 

W 
X 
H 

O 

W 

o 

Q 
Z 
< 

«! 
O 

tu 
U 
Ü 
< 

w 

öS 
H 

0) 
a 
o 
Q 
e 
x: 
o 

c 
o 
«-> 

u 
o 

o c 
U n 

o 
s .-* 

15 
o   . 

a) cd 

co a 

w CO 

1^ 

CM 



This decumwif ha« b*«n «pprevcd 
for public raUat« and tola;  Its 
distribution It unllmllod. 

Reproduced by tho 
CLEARINGHOUSE 

for Federal Scientific & Technical 
InforTiation Springfield Va. 22151 

TM-738/035/00 

Tree Acceptors and Some of Their Applications 

SCIENTIFIC REPORT NO. 8 John Doner 

24 July 1967 

D D C rropom rar __ ^"^ 

CAMBRIDGE RESEARCH LABORATORm|)(r]rr'r     "^   '^CPfT^ 
AEROSPACE RESEARCH, USAF ,J UTl 

r      MAR   10  1970 

Jlibi^lLUuiifi 

Proporod for 
AIR FORCE 
OFFICE OF  
BEDFORD, MASSACHUSETTS   01730 

and 
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH 
OFFICE OF AEROSPACE RESEARCH, USAF 
ARLINGTON, VIRGINIA 

B 

Contract Monitor:   Thomot V. CriHitkt   Data Scloncot Laboratory 

Monitorod by:   R. Swonton, SRIR (APOSR)   Suppartad by: 

SDC* Indapandlt Roaoordi »rotram: 

Contract F1WJ867C000«,   ProflroaMiln« (Altorithmia) 

Lonfuoaot, Proloat No. 5632, 

Talk No. S63J05, and Grant No. AF/AFOSAMM3/67 

«art. Unit No. M3S0S01 

^ 



nSEKi i 
ntn 

JIN MTf »CTIM 

mmma 
i«ru.* i« 

nraiHwi HMUIHOT -MtS 

OKI.      t;»IL 11 a üe^ll 

/ 

^u .lifled requestors may obtain additional copies  from the 
Defense Documentation Center.    All others should apply to the 
Clearinghouse for Federal Scientific and Technical  Information. 

• ■J 



APCRL-öö-OOS1* 

4 / 

XM-738/Q35/00 

Tl Ei 
The work reported herein was supported by 
SDC and Contract FigSZÜSjOOOOQ,  Progranmlng 
(Algorithmic) Unguages; Project No. 5632, 
Task No. 563205; Work Unit No. 563205OI; 
and Grant No. AP-^P08R-1203-67. 

SCIENTIFIC REPORT NO. 8 

MS 

:: 

Tree Acceptors and Some of Their Applications 
by 

John Doner 
2k July I967 

Monitored by:   Contract Monitor 
Thomas V. Griffiths 
Data Sciences Laboratory 
R. Swanson,  SRIR (AFOSR) 

Prepared for 
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES 

OFFICE OF AEROSPACE RESEARCH, USAF 
BEDFORD, MASSACHUSETTS    OI73O 

and 
AIR FORCE  OFFICE OF SCIENTIFIC RESEARCH 

OFFICE OF AEROSPACE RESEARCH7 USAF 
ARLINGTON7 VIRGINIA 

SYSTEM 

DEVELOPMENT 

CORPORATION 

2500 COLORADO AVE. 

SANTA MONICA 

CALIFORNIA 

90406 

This document has been approved for public 
release and sale; Its distribution Is unlimited. 



> 

> 

t 

24 July 1967 1 TM-738/035/00 
(Page 2 Blank) 

ABSTRACT 

This paper concerns a generalization of finite automata, the "tree 

acceptorn/' which have as their inputs finite trees of symbols rather than 

the usual sequences of symbols. Ordinary finite automata prove to be special 

cases of tree acceptors, and many of the results of finite automata theory 

continue to hold in their appropriately generalized forms. The tree acceptors 

provide new characterizations of the classes of regular sets and of context- 

free languages. The theory of tree acceptors is applied to a decision problem 

of mathematical logic. It is shown here that the weak second-order theory of 

two successors is decidable, thus settling a problem of Buchi. This result is 

in turn applied to obtain positive solutions to the decision problems for 

various other theories,e.g. the weak second-order theories of order types built 

up from the finite types, «), and 71 (the type of the rationale) by finitely many 

applications of the operations of order type addition, multiplication, and 

converse; and the weak second-order theory of locally free algebras with only 

unary operations. 
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TREE ACCEPTORS AND SOME OF THEIR APPLICATIONS 

INTRODUCTION 

I 

This paper concerns a generalization of a part of finite automata theory. 

We shall define a generalized finite automaton, called a "tree acceptor," 

which has as its inputs finite trees of symbols instead of the usual sequences 

of symbols. Ordinary finite automata prove to be special cases of tree 

acceptors. It turns out that many of the results of finite automata theory 

remain valid in their appropriately generalized forms. 

v 
Section 1 Includes the definitions of trees and tree acceptors, and the 

development of some of their basic properties. The properties of the sets of 

trees accepted by tree acceptors are investigated and an alternative characteriza- 

tion of those sets is obtained. An application of the results in Section 1 to 

the theory of context-free languages is given int Section 2. In Section 3, we 

give a positive solution to a problem of Buchi [1]: Is the weak second-order 

theory of two successors decidable? Applications of this result to decision 

problems of weak second-order logic appear in Section k\   for example, we show 

that the class of order types with decidable weak second-order theories contains 

u), every finite type, and the type of rationals, and is closed under the order- 

type operations of addition, multiplication, and converse. Finally in Section 5, 

■ 

3 

Research sponsored in part by the Air Force Cambridge Research Laboratories, 
Office of Aerospace R«.   ch, USAF, under Contract FI962867COOO8, and by the 
Air Force Office ofScienLific Research, Office of Aerospace Research, USAF, 
under AFOSR Grant No. AF-AFOSR-I203-67. 
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i 

« result of Buehi [2] and the generalised products of Fefermsn end Vsught are 

utilised to extend the decidability result of Section 3 to a more general 

case: the weak second-order theory of locally free algebras with only unary 

operations. 

Many of the results In Sections 1 and 3 of this paper were also obtained 

by J.W. Thatcher and J.B. Wright [28], who use a different, but essentially 

equivalent, fornulatlon of generalised automata. In fact, Thatcher and Wright 

were very close to obtaining the decision result In Section 3 when they were 

notified by Addlson (personal ccmmmlcatlon) of the present author's success. 

The characterisation of context-free languages given in Section 2 is basically 
4S \ 

that given by J. Mssei and J.B. Wright [IQ], in a different formulation. 

The author wishes to thank Professors J.W. Addison and Alfred Tar ski for 

many stimulating discussions and useful suggestions. 

RBLIMIN4RIES 

We shall employ standard set-theoretical notions: fl,  U,  €> ate. A -B 

denotes the difference of the sets A, B, i.e., A ~ B ■ {x: x £ A and x ^ B}. 

Bach ordinal number is defined as the set of all smaller ordinals; 0, the first 

ordinal, la equal to the empty set 0.   Thus, the < relation among ordinals 

coincides with the membership relation £.    Finite ordinals 0,  1, 2,  ... are 

called natural numbers and the set of all of them is the first finite ordinal 

us.    Cardinals are initial ordinals,  i.e., ordinals not set-theoretically 

equivalent to smaller ordinals.    The cardinality of a set A is denoted by A. 

:: 
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If a function f Is defined for each element of a class K and A c K, then 

f(A) - {f(x) : x f A}. The domain of a function f Is denoted by dom(f). 

Assertions of the form "C Is the class defined by the conditions..." or "C 

is the least class such that..." are to be Interpreted to mean that C Is the 

Intersection of all classes satisfying the stated conditions. 

Our notation for automata, words, languages, etc., Is, for the most part, 

adapted from [21] and [Ik]»    An alphabet E Is a nonempty finite set of symbols 

(or letters). Unless otherwise stated, the letters £, A, TT* £', A1, ••• will 

denote alphabets. A word over L,  or simply a word when £ is understood, is a 

finite sequence of elements of Z. A word with only one letter a is identified 

with a  itself; € denotes the empty word, and concatenation of words is indicated 

by Juxtaposition. (To facilitate the use of these conventions, we implicitly 

rule out various "pathological" cases, e.g., we do not admit e as a possible 

element of an alphabet.) Usually, the small greek letters a,   %,  \i>,  v are used 

for single elements of an alphabet, and small Roman letters u,v,w,x,y,z for words 

over an alphabet. The length of a word w is denoted by | w| . If A, B are sets 

of wordy then A * B ■ {xy : x ^ A and y £ B}. A " {e}, and for each finite  ' 

n, A   "A 'A; the union U <-  A is denoted by A . In particular, if A 

is an alphabet, then A is the set of all words over A. 

A set of words A is regular if for some alphabet £, A is a member of the 

last class C such that: (l) every finite subset of £ belongs to C, (li) C 

is a Boolean algebra of sets (i.e., if X, Y £ G, then X fl Y, X U Y, X ~ Y are 

also members of C), (ill) if X, Y £ C, then X ' Y £ C, and (iv) if X £ C, then 

X € C 
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If £ li an alphabet, then a Z-autooaton la a Intuple II - <S,t,so,D> where 

S !• a nonempty finite set (of states), t Is a napping of S X £ into S (the 

transition function), s € S (the initial state), and DCS (the designated 

states). We associate with 91 the function t, defined recursively: t(€) - s , 

and for any w £ Z and o € Z, t(wa) ■ t(t(w),a)> 9J accepts a word w £ £ if 

t(w) £ D; T(ll) denotes the set of words accepted by 91. We note the well-known 

result of Kleene: 

A set of words A is regular if and only if A - T(ll) 

for some Automaton 91. 

Throughout this paper we accept as given a fixed infinite list of distinct 

lettera a f a , ... . Thealphabets {a ,...,a }, p < u), will play a special role. 

The symbols a 1*1**0 wil1 *^so be denoted by a, b, c respectively. 

o 
I 
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SECTION 1. TIKE ACCEPTORS AMD RECOGNIZABLE SETS 

DEFINITION 1.1» A L-tree, or « tree over L,  of order p, p > 0, U • function 

T : A -• £ where A U • finite subset of {•,...,« ^j closed under the Inltlel 

segment relation (!•••« if uv € A, then u ^ A). 

The smell Greek lettere r, rr,  p, T',... will be need for trees. We adopt 

the following special notation for trees: The value of a tree T at a word 

w f dom(T) mey be denoted by T as well as T(W). 

Figure 1 presents graphic representations of two trees over the alphabet 

[a>l>v-)V]'    In each of the diagrams, the value of the tree at e appears at the 

apex; below and to the left of the epex is the value at a, below and to the 

right of this, the value at b, etc. Thus Figure 1(a) is a diagrem of the tree 

T where T€ ■ o, T^ • u, T^ - ||f T^ -5, Tb - v, Tbb - »A, and T is undefined 

elsewhere. The treee in Figures 1(e) and 1(b) are of orders 2 and 3 respectively. 

O  ■  T 

V V 

K«) Kb) 

) Figure 1.    TWO Trees Over the Alphabet [a,l,\i,v]. 
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The class of «11 E-tre«s of a glvsn ordtr p will bt donotod by £ ; vhon 

wo use this notation,  the number p will always bo either dettrained by the 

context or understood to b« arbitrary.    In most of this section, we shall 

reatrlct our consideration to trees of order 2, i.e., trees which are functions 
» 

with domains Which are finite aubaets of (a,b}  .    This ia done mtrtly for 

notational convenience; and, uaual'.y,  Che reader will easily bo able to supply 

the rather obvious modifications to our definitions,   theorems, and proofs which 

ar« required for the transition from order 2 Co any finite order p.    Following 

Theorem 1.16, ve shall make some further remarka concerning Che relationships 

between aets of trees of various orders. 

The empty tree,  i.e., Che function wich domain 0,  is denoted by A*   A 

convention of considerable convenience which we shall «dopt is Che following: 

for any Cree T and word w, we write T   ■ • if and only if w ^ dom(T).    Thus, 

A could   be defined as Che unique Cree satisfying Che equation T   a c*    If 

o € £> we Identify Che £-tree T such that T   " o and T   ■ « for all w ^ c wich 

Cha symbol a itself (of course, a is also identified wich Che one letter word 

a; nevertheless, no confusion will result from those conventions). 

A terminal of a tree T Is a word w € dom(T) auch that no extension of w ia 

also in dom(T).   The set of all terminals of T is called the frontier of T, 

denoted by fr(T).    The "subtree of T beginning at w" is rf^w* Formally,  if T 

is a I-tree and w € L ,  then T^ w ia the I-tree TT auch that TT   - T     for each 

€{a,b) .    IC r, T* are Z-trees,  Chen T[W/T] is Che resulc of replacing Che 

subtree of T beginning at w with the tree T', i.«.,  TCW/T'] is the function TT 

such that 



24 July 1967 9 TH-738/035/00 

n^ - T^ for all v 6 {•,»>]* 

TTU   - Ttt for «11 u € {«,b)* - ({v)-(«#h)#}. 

Node« that TCV/T1] is a L-tree only in cast v g {ua, ub  : ue dom(T))u (c). 

For a € I and T, T* c I#, we put OCT,!1] • (aCa/r]) [b/r*].   Ihua OC^T'] la 

th    unique tree n auch that n    - c,  nf^a ■ T, and n^b ■ T* .    Every tree except 

A can be axpreaaed in the  form a[T,T'] for tome a,  T,  T1 * 

The notation OCT^T'] facilitates • form of proof which we call "tree 

Induction"; namely,  if for a given proposition P(T), where T ranges over I-trees, 

we can prove 

(1)      P(A) 

(ii)    ii P(T) and PCT'),  then rialr,^]) for every a € I, 

then we infer P(T) for every T £ £  .    Corresponding to the principle of tree 

induction is a form of definition,  "tree recursion." 

The depth of a tree  T is  || T || - 1 + n, where n is the length of the longest 

w jrd in the domain of T.    An alternative definition of depth is by tree 

recursion: 

lUII -o 

||a[T,T']l| -1 +n>ax(||T||,  ||T'||). 

Proofs by tree  induction are,  of course,  simply inductions on depth; a similar 

remark applies to definitions by tree recursion. 

I 
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The concept "I-tree" may be regarded as generalising the concept "I-word." 

The practice of defining sequence« as functions of a special kind is comnon in 

mathematics: when we construe a E-word as a function with range L  and with domain 

a finite set consisting of all initial segments of some words in [a] , the 

generalisation to Z-trees becomes obvious. 

Other representations of trees than the one we have given in Definition 1.1 

are more common in the literature. Salient among these is the definition of a 

tree as a partial ordering satisfying certain conditions. This definition does 

not lend itself to our purposes, since we wish to maintain the distinction 

between left- and right-branching. 

Another approach, quite equivalent to ours, but which we prefer not to 

adopt here, represents trees as terms in a formal language: The elements of L 

are construed as 2-place function symbols (or p-place function symbols for trees 

of order p) and a new symbol, X, which serves as a constant, is introduced. 

The empty tree A is represented by the term \, and for any a € £ and T, 

T* € £* If i)  V ere the terms representing T, T' respectively, then a(t|t, V) 

is the term representing a[T, T1]. Thus, the tree in Figure 1(a) is represented 

by the term 

(1)  a(n(n(X,\), ?(\,\)), v(\,^(\,\))). 

(Notice that the notations we have adopted enable us, in effect, to sometimes 

make use of the "term representation of trees"; in line (1), we have only to 

replace the round parentheses (, ) by brackets [, ] and the symbol \ by A to 

obtain a correct expression for a tree of Figure 1(a).) 

• 

f 
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The representation of trees as terms in a fennel language has Its advantages 

In certain contexts.    It Is essentially the approach used by Thatcher and Wright 

In [28]—their "generalized finite automata" have terms as Inputs, and using 

these,  they obtain many results closely related or Identical to those which 

appear in Sections 1 and 3 of this paper. 

Most of the remainder of this section will be devoted to the development of 

a generalized notion of finite state acceptors, or finite automata, which admits 

trees rather than words as their Inputs.    It turns out that a large part of 

conventional finite automata theory continues to hold In the generalized context. 

Thus, our general approach and most of the theorems and proofs In this section 

(and In Section 3 as well) are rather natural adaptations of material found In 

the literature on finite automata.    We are particularly indebted to Rabin and 

Scott [21], and to Elgot [10].    Occasionally when a proof U very similar to its 

corresponding version in one of these papers, we will mfe*«ly sketch it or omit 

it entirely. 

DEFINITION 1.2.    A £-tree acceptor is a 4-tuple 81 - <S,t,s ,D> where 

(I) S is a nonempty finite set (of states); 

(II) t is a mapping of S x S x Z into S  (the transition function); 

(ill)    8o G S (the Initial state); 

(Iv)      DCS (the set of designated states). 

Associated with 91 is the function t  : Z* -♦ S defined by 

t(A) - 8o, 

t(a[T,T']) - t(t~(T),  t(T'), a). 



24 July 1967 12 TM-738/035/00 

for all a € 2 and r,  T1 ^ I •    81 accepts a tree T f Z^ if t^j) f D.    T(«) 

denotes the set of Z-trees accepted by 91. 

DEFINITION 1.3.    Let «I ■ <S,t,8 ,0)    be M Z-tree acceptor and let T € Z  -    The 

S-tree TT tt-compatlble with T (or simply compatible with T when It Is understood) 

is defined by 

(I) dom(TT)  - {c} U (dom(T)  •   {a,b}), 

(II) TT    ■ f(T^w)  for each w f dom(n). 

The tree TT compatible with T might also be called the state tree of T. 

Notice that ||TT|| ■ 1 ♦ I|T|J.    This is analogous to the situation with finite 

automata, where a sequence of states compatible with an input word is always 

one term longer than the word. 

LEMMA l,k*    If H ■ <S,t,s ,D> is a £-tree acceptor,  T f I ,  and TT is compatible 

with T, then T € T(ll) if and only if TT   f D. 

DEFINITION 1.5   A set A c Z^ is recognizable (over Z) if A - T(«)  for some 

Z-tree acceptor U. 

LEMMA 1.6.    If L.f Z2 are alphabets and Z.  c Z.,  then a set A c Z^ is recogni- 

sable over Z.   if and only if A is recognizable over Z«. 

THEOREM 1.?.    The class of recognizable sets is a Boolean algebra;  i.e.,  it is 

closed under finite unions, finite intersections,  and differences. 

The term recognizable was introduced by Mezei and Wright In [19]* 

( 
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PROOF.   Let A,  B be two recognizable sets;  In view of 1.6, we may assume that 

they have a common underlying alphabet Z.    Let 9J ■ (S,t,s ,D) and 

8 ■ (S^t'^s'^D1 > be Z-tree acceptors such that T(8l) - A and T(8) - B.    We 

shall construct acceptors £, S' S"  such that T(S) - A U B, T^') ■ A fl B, 

and T((JM)  - A - B.    Let 

S - <S X S',r,<so,8^>,E) 

where 

) 

r(<81,8p,<82,sp,a) - <t(a1,i2lCT), t^s^s^a)) 

for all s., s^ 6 S, s'  s' ^ S1, a 6 Z, and E-SxD* UDxS'. The acceptors 

S'; £" are obtained from S be replacing E by D X D' and D X (s* -- D'), 

respectively.  It is easy to verify (e.g., by tree induction) that S, C, C" 

possess the desired properties. 

Note that in the proof of Theorem 1.7, the construction of £, Qf*,  SM from 

the given acceptors 21, 0 is effective. 

The concept of "nondeterministic automata" has proved useful in finite 

automata theory; although nondeterministic automata are equivalent to ordinary 

automata with respect to sets of words accepted, they nevertheless are often 

considerably more convenient to use In the course of proofs. An entirely 

analogous situation exists in the context of tree acceptors. 

DEFINITION 1.8. A nondetermini8tic Z-tree acceptor is a 4-tuple 91 - <S,t,I,D> 

where 

(l)   S Is a nonempty finite set (of states); 
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\ 

(II) t Is a mapping of S X S X £ Into the nonempty subsets of S (the 

transition function); 

(III) I Is a nonempty subset of S (the Initial states); 

(Iv)      DCS (the subset of designated states). 

When It Is necessary to emphasize the distinction, we shall refer to the 

tree acceptors of Definition 1.1 as deterministic tree acceptors. 

DEFINITION 1.9»    Let SI ■ <S,t,I,D> be a nondetermlnlstic Z-tree acceptor. 
■ 

The relation of compatibility between E-trees and S-trees is defined by the 

following two conditions (i) if s 6 I,  then s is compatible with A;  (11) if 

TT, TT'  are compatible with T,  T'  respectively,  and if a ^ Z and s £ t(TT ^n'^a), 

then s [TT^TT1 ] Is compatible with CTCT^T'].    at accepts a tree T € £    if there 

exists an S-tree TT compatible with T such that TT   ^ D. T(5U)    denotes the set of 

E-trees accepted by SI. 

Just as with finite automata,  it turns out that the class of sets accepted 

by nondetermlnlstic tree acceptors is the same as the class of sets accepted by 

deterministic tree acceptors,  namely,  the recognizable sets.    Specifically, by 

means of an entirely straightforward generalization of the well-known "subset 

construction" used In the proof of Theorem 11 of [21], we obtain 

THEOREM 1.10.     If 81 is a nondetermlnlstic E-tree acceptor,  then a deterministic 

E-tree acceptor 91'  such that T(2l) > 1(31') can be effectively obtained. 

The following theorem and its corollary are also analogous to corresponding 

results of automata theory.    Their proofs, however, although based upon ideas 

similar to those in the proofs of the corresponding results, do entail some 

additional technicalities. 
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THEOREM 1.11.    Let W - <S,t,8o,D> be a 2-tree acceptor.    Then T(8l) J1 <J    If 

and only If there exists a tree T 6 T(3I) such that ||T|| < S. 

PROOF.    We need only establish the "only if" part of the equivalence.    For any 

T € £ >  let n(T) be the cardinality of the set of w ^ dom(T) with |v}   2 S. 

We wish to show that if T(U) t (J,   then n(T) "0 for some T € T(3l).    We shall 

give a procedure which, when applied to any given T ^ T(SU) such that n(T) > 0, 

yields a tree T'  € T(8l) with nCx') < n(T).    Applying this procedure finitely 

many times leads to a tree T''   C T(3I) such that n(T")  = 0. 

Accordingly,  let T € 1(81) be such that n(T) > 0,  let w be a terminal of T 

such that |w| 2 S, and let n be an S-tree compatible with T.    NOW wa ^ dom(Tr) 

and |wa| > S; hence,   there exist words x, y,  z such that y j1 e, wa = xyz, and 

TT   ■ n    .    Let x       xy 

TT1    "  TT[X   /   TT^Xy], 

T*   ■ T[X /  T^xy]. 

Then TT1   is compatible with T1 ,  TT'  ■ TT ,  and hence T' € T(y).    Because y I* e, 

we have w ^ dom(Tl), and since dom(Tl) C dom(T),  it follows that n^') < n(T). 

COROLLARY 1.12.    If 31 is any tree acceptor,  then it is effectively decldable 

whether 

(i)        T(ll) - 0; 

(11)      T(80 is finite. 

I   ) 



24 July 1967 L6 TM-738/035/00 

tlLOOF.    Part (l) Is inmediate from Theorem 1.11,  since the set  {T :  ||T|| < S] 

Is finite and It Is effectively decidable whether T € T(2i).    We shall establish 

part (11) by showing that T(5l)  Is Infinite If and only if the set 

A - {T :  ||T|| i S and T e T(8I)} 

is not empty and that It is effectively decidable whether A ■ 0. 

Clearly, if T(3l) is infinite, then A ^(0. Now assume that AM. Let 

91, T| TT, x, y be as in the proof of Theorem 1.11, and note that T £ A. We 

define trees T   e % , n       € S^ for each finite n by recursion: 

(o) (o) 
TN ' - T, nV ' - TT, 

(n+1)  .    r       .    (n).    .. (n+1) t    r       ,    (n)i    , Tv ■ T[xy / T      |> x] Trx      ' ■ TT[xy / nv    |\xj. 

Then, for each n,Trn' Is compatible with 'r , n^n' ■ TT , and hence T   £ T(8l). 

This shows that A )* (} Implies T(9I) is infinite. 

Our demonstration that A j4 (J Is effectively decidable involves a modification 

of the construction In the proof of 1.11. Without sacrificing the essential 

properties of the procedure given there, we may add the requirement that x be 

of maximal length in 

{x1 : TT , " TT , , for some y1, z1 such that x'y'z' ■ wa and y' j* e). 
x   x y , 

From this maximallty condition on x It follows that |y| ^ S. Now suppose that 

the transition from T to T' is the last application of the procedure in the 

proof of 1.11, viz.. 

•   | 
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T, T' € T(8I),  ||T|| i S,  T' - T[X / TJ xy],  and ||T'I| < S. 

Then ||T|| - IJT'II + )y| and hence S £ ||T|| £ 2 • I.    Thus, A t 0 if A'  t i, where 

A'  - {T  :  T € T(8l) and S s ||T|| ^ 2  • S). 

Clearly,  It Is effectively decldable whether A'  t 0» 

Many characterizations of the regular sets are known in the literature« 

The earliest, due to Kleene,  states that a set of words is regular iff it 

is the set of words accepted by some finite automation.    Among the others, we 

have,  for example, that the regular sets coincide with the sets generated by 

right-linear grammars (Chomsky and Miller [6]), with the sets definable,  in a 

special sense,  in a formal language (Buchi [1]; Elgot [10]), and with the sets 

which are the unions of some of the equivalence classes of a congruence relation 

of finite  index (Myhlll [20])*    In this paper we shall add two new characterisa- 

tions of the regular sets to the list;  these are Theorem 1.16 and Corellary 3.11. 

It seems natural to inquire whether some of the characterizations of the 

regular sets can be generalized to characterizations of the recognizable sets. 

This is indeed the case.    Thatcher and Wright in their paper [28] give such a 

generalization of the "•,  * characterization" of the regular sets.    Here, we 

shall develop    a characterization of the recognizable sets which generalizes 

Theorem 3*6 of Elgot [10]; many of the ideas involved are closely related to 

those of Medvedev,  [18].     It turns out that this particular characterization is 

well suited to our later work in Sections 2 and 3. 

(   ) 
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If L is any alphabet and a, o', a" € £ U {*],  we denote by ^{0,0*,a") 

the set of all Z-trees T such that, for some w,T ■ a, r     ■ a', and T . ■ a''. 

Note that In particular, EL(e,e,c) *lft while if one of a
1, a" is not e, then 

E-Ceja'jC1') " 0* For 7 € £, the condition that 1 ■ a for sons w £ fr(T) Is 

expressed simply by T £ E-(a,c,c). 

Given two alphabets I. and L ,  we say that a mapping g : £* -«i;| is a 

projection (of Z* into z|) if g(A) - A and (g(T))w ■ g(Tw) for all w. (In 

other words, a projection is the natural extension of a mapping of Z. into Z2 

to a mapping of z| into z|.) If we are given a mapping of Z into Z-, we speak 

of the projection defined by this mapping, with the obvious meaning. 

Let R be any ternary relation on Z 1 j [e}. We say that a tree T f Z* is 

R-consistent if R(T ,T *T . ) holds for every w £ {a,b} . 

DEFINITION 1.13« The class R is the least class of sets containing each 

£-(0,0',a") end closed under the Boolean operations (i.e., \j,n.  and ~) and 

under arbitrary projections. 

LEMMA l,lh.    Let Z be any alphabet, A c Z*, and B c Z. 

(i)   If R is a ternary relation on Z ij (c], then the set of R-consistent 

trees is a member of ft. 

(ii)  If A < u), then A £ ft* 

(ill) If A e R, then {T : T € A and T € B} € ft. 

(iv)  If A € R^ then {T : T £ A. wi T   f B for  every w e fr(T)} 

is a member of ft. 

i  I 
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To prove (l), w« let C be th« union of th« Mtt 8^(0,a*a*  ) such that 

RCo^o'a'*) doe« not hold, and find that £*~-C la the Mt of R-contittant trees. 

(Of course, £* 6 d, since, as noted above, £* ■ E-U,£,€).) 

To establish (ii),  it suffices to show that (T) € ft 'or every T € £*•    If 

T ■ A, then {T} ■ Z* — LLgr ^(o»8*«)»   ■■» suppose T ^ A.    For each if € dom(T), 

let S^' be a distinct new lyobol, and put 5^"'  - c for each v ^ doin(T).    We let 

TT - [Vv'  : v 6 dosi(T)}, and defines the relation R on TT u {<) by 

R(l      ,5       »?       ) for every w.    There is Just one R-coneistent tree n € TT*, 

and, by (i),  (n) (ft.    Let g : TT# - £* be the projection defined by g(5^W0 - T 

for each v ? doa(T).    Then g((n}) • (T), SO (T) f ft. 

Next, assume that A £ ft. Let ^ be a symbol not in £, and put £' - I U {5}« 

Let R - (£' U ((}) x (£ u (c)) x (£ u {c}), and let C be the set of R-consistent 

Z'-trees.    Then r <: o by (i), end for T £ C ve have r   m % only in case w ■ e. 

For each a € £, p   ie the projection of Z^lnto £*defined by p (?) ■ cr and o o 
p (pi) " n for all |i ^ £.    We then have 

[T :  T € A and TC € B) • U^Cp^C - £#) n A]. 

This proves (iil). 

Finally, to establish (iv) we merely note that 

A n CE# -LUj^jEj.Ca,«^)] - {T :  T 6 A end TW 6 B for every v e fr(T)}. 

TigOBEM 1.13«    The class ft coincides with the class of recognisable sate. 

1 
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PROOF.    We btgln by »bowing th«t ft contains «very r«cognli«bl« set.    Let 

H - (S,t,a .D> by any Z-tree acceptor.    Putting TT - S x E, we let R be the 

ternary relation on TT u (c} auch that, for a,  a1, ■" c S and a, a', a" f L, 

»(<■,a>,<•^a•>,<a•^a•,» Iff t(a',a",a) - •, 

HiV.ahcC'^a")) iff t(ao,a",a) - a, 

»(<•,»>,<•',a'),«) iff t(a',ao,o) - a, 

and 

»(<»,a>,€,€) Iff t(ao,8o,a) • a. 

Let C be the set of R-conaiatent trees; then C c R by l.lU (i).    Let 

p    : TT*- S*, p.   : TT^ - £* be the projectiona auch that,  for any <»,o) e n, 

p (<a,a» - • and p1(<a,a» - a.    Mow for any p f 8*,  let f(p) be the tree p* 

auch that domCp') ■ {e} IJ {wa,wb  :   t £ doB(p)} and p'  - a    for each 

u ^ domCp') ~-doa(p)      The following three propositions can now be proved 

sloultaneously by tree induction: 

(I) p^C)-^ 

(II) if TT £ C,  then n^w c C for any w, 

(III) f(p0(n))  la tt-c<»patlble with p^r) £ C; 

We omit the tedious but entirely routine argument required.    The subset C of C 

conalatlng of tlvose trees n mach that f(p (n))    € D(i.e.#  auch that n   f D x C, 

or TT - A in case s    .   D)  la a aaa^er of ft by I.Ik (ill); we then have 

p^c«) - T(«), and hence t(M) f R. 

o 
f 
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To complete the proof of Theorem 1.15, ■;-e «uet show that every element of 

ft is recognisable.    In view of Theorem 1.7,  it suffices to show that each 

E_(a,a^a") is recognisable,  and that the projection of a recognisable set is 

again a recognisable set. 

Let Z be an alphabet, and o, a', a'' € £ U U}«    We first assume that 

a l* £•    For each v. € L u U],  l*t s   be a distinct new symbol, let s. be another 

symbol not among these, and put S ■ {•_} u {■    : (i € ^ U (O}«    ^ function 

t  : S  xSxZ-Sia defined as follows:    for p, ^ £, ^i', (i" ^ £ y {e}, 

'(• •»•j|«i#l*) - «JJ if I* - a, ji'  - a", and ji"  - a". 

- s   otherwise. 

end 

) 

Putting U - <S,t,s >{•.}/ we have that II is a I-tree acceptor and T(II) - 

£-(0,0',a"); thus,  E^{a,a',a") is recognisable whenever ff * €•    In case a ■ e, 

then E_(a,o',oM) is either £* or 0; both of these are recognisable sets, since 

if 11 - <S,t,8 ,D> is «ny Z-tree acceptor such that D • S, then T(U) - Z*, 

whereas if D - 0,  the T(JI) - 0. 

Finally, we assume that Z., Zp are two alphabets and that g is a projection 

of Z* into z|.    We wish to show that If A c Z* is recognisable, then g(A) is 

recognisable.    Let M - <8,t,s ,D) be a Z-trea acceptor auch that T(Jl)  ■ A. 

Without loss of generality, wa say assume that g maps Z    into Z  .    Let 

• ■ <5,f,{so),D> where 
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t^SjB'jcr) ■ {s" : a" ■ 1(8,8',^) for some p, auch that g(|i) ■ a}, 

for each c ^ Z . Q la a nondeterminlatlc Ep-tree acceptor. A atraightforward 

argument by tree induction ahowa that an S-tree TT ia IB-compatible with a 

Zg-tree T iff TT ia 21-compatible with aome £.-tree T* auch that g(T') ■ T. 

From this it follows that g(A) ■ T(8) and hence that g(A) ia recognizable. 

Aa a conaequence of Theorem 1.15, we have that all the propertiea of ft 

given in Definition 1.13 *nd Theorem I.Ik apply to the claas of recognizable 

sets. We shall often make uae of thia fact without explicitly citing 1.13, 1.14, 

and 1.1?. 

( 

THEOREM 1.16. A aet X c {a,b}* ia regular if and only if X - U ^  ^(T) for 

some recognizable set A. 

FROOF. Assume that X is regular and let 91 " <S,t,8 ,0) be a {a,b}-automaton 

such that T(ll) "> X. Let J be the subset of S x (S (j {e}) x (S U {e}) 8Uch 

that <8, a'^a") £ J  iff either a* - € and a" - t(a,b), or elae a" - e and a1 

a1 B t(8,a). Let A' be the aet of J-conaiatent S-trees T auch that T ■ a ; 

A* is recognizable by 1.1k  (i), (iii). A simple argument by induction shows 

that every w £ {a,b}  is a terminal of some member of A*. Now suppose 

T £ A* and w £ dom(T). We shall prove by induction on |w| that t(w) ■ T . 

If w - e, the t(w) »a ■ T . If |w( > 0, aay w ■ ua, and t(u) ■ T , then, by 

the J-conaiatency of T, we have T  ■ t(T ,a), and hence, t(w) " t(t(u),a) ■ T • 
US      u w 

Now let A B {T : T £ A and T P D for w f fr(T)}; then A ia recognizable, and 

from the remarks above, t(w) £ 0 iff w £ fr(T) for aome T € A. It followa 

thatUT6A fr(T) -T(II) -X. (  ) 



24 July 1967 23 TM-738/035/00 

Conversely, assume that A Is recognisable and X "U .^(T)* Let 

TfeA 

91 ■ <S,t,s ,D> be a Z-tree acceptor such that T(Sl) ■ A.    We define a sequence 

of sets D , w £ {a;b} , as follows: 

D-D, 

D
M " f8  : '(•*'(T)ia) € Du for some r £ L* *ni a £ Z), 

M 
D .   ■ {s  :  t(t(T),s,a) ^ D   for some T ^ Z   and a € £}' 

Now let «w - <S,t,8o,Dw> for each w ^ fa,b} .    Then T(8^) - {T^w : T g T(«)}, 

so that w ^ U ^ fr(T) iff Z D T(a^) >M.    Let « - <B,r,D,F> be a {a,b}-automaton, 

where 

B - fS1   : S' c S and S'  >» 0], 

and for each S*  ^ B, 

r(S,,a) - {s  : t(s,t(T),a) € S1  for some T f: Z* and a € 2}, 

r(S,,b) ■ {s  : t(t(T),8,a) € S    for some T <: Zff and a € Z]> 

and finally, 

F ■ {S*   : S' c S and t(8 ,s ,a) ^ S1  for some a € 2}. o'  o' 

Let w ^ {a,b} ;  it follows, by induction on (w(,  that r(w) " D , and since 

w e T(*) iff t(8o»80^) € r(w) for some CT 6 2* we then ^v« that w ^ T(*)  iff 

Z n T(^) fi 0, i.e.,  iff w e UT6Afr(T). 

The construction of the automaton 8 from the given tree acceptor II in the 

proof of Theorem 1.16 may be made effective; we need merely note that there 

exists a tree T such that t(T) ■ s iff there exists such a tree depth < S. 
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Except In Definition 1.1, we have so far restricted consideration to trees 

of order 2.    The modifications to our development required to effect the 

transition to trees of any finite order p > 0 are entirely straightforward:    for 

example, the notation OCT, T1] is changed to,  for any n < p, 

a[T,T',...,T(p)] - (...(a[ao / T]) [»J / T'])...^ / T(P)]; 

in Definition 1.2,  the transition function t has domain S^p' x L instead of 

S^2' X L (where S^1' - S and S^    J ■ S^ x S); and in Definition 1.13, we 

replace ^(a,^ ,0'') by 

\iot90f»ta   y) - {T : for some w, TW ■ o, Twa   ■ oo,..., T^   - a   j). 
j p 

With these modifications, we can extend our concept of "^^cognisable set" to 

apply to sets of trees of any given finite order p. 

In the remaining sections of this paper, we shall assume that these 

modifications have actually been carried out.    Thus, we shall k ■ -.v of tree 

acceptors of order p and recognisable sets of order p, end we shall cite 

theorems of Section 1 with the understanding that, if necessary,  they are to 

be modified to apply to trees, acceptors, etc., of arbitrary finite orders. 

A E-tree of order 1 is essentially the same as a finite sequence of 

members of I, i.e., a E-word.    Consequently, one may identify tree acceptors 

of order 1 with ordinary finite automata and the recognisable sets of order 1 

with the regular sets, so that automata theory becomes a special case of the 

theory of tree acceptors. 

' 

(   ' 

m&m 
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It is an easy consequence of Definition 1.1 that a tree T of order p Is 

also of order p* for any p1 > p. We nay naturally Inquire whether a recogni- 

zable set of trees of order p remains a recognizable set when it is regarded 

as a set of trees of order p* > p. This is indeed the case; in fact, by simple 

constructions of tree acceptors we obtain 

LEMMA. 1.17. Let SI be a tree acceptor or order p > 0. 

(i)   If p* > p, then there is a tree acceptor IT of order p* euch that 

T(il) - TCJI'). 

(11)  If p > p' > 0 and every tree in T(SI) is of order p', then there is 

a tree acceptor IT of order p* such that T(JI) ■ 1(11'}. 

(ill) If p' > p > 0, then a set A of trees is a recognisable set of order 

p if and only if A is a recognizable set of order p*. 

As a consequence of Lemma 1.17, we have that Theorem 1.7 holds even if 

no restriction is placed upon the order of the recognisable sets involved. 

Lemma  1.17(111) states, roughly speaking, that recognizability is a property 

independent of order, so that we may describe a set as recognizable without 

specifying its order. 

Notice that Theorem 1.16 may now be improved as follows: It places no 

essential restriction on the regular sets to assume that their underlying 

alphabets are always subsets of fa. : 1 - 0, 1, ...}, and under this assumption 

we have that 

A set X is regular if and only if X - \J -Jt^-r)  for some 

recognizable set A. 
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SECTION 2. A CHARACTERIZATION OF CONTEXT-FREE IANGUAGES 

In this section we shall give an example of the application of the 

results of Section 1 to the theory of algorithmic languages; namely, we shall 

characterize the context-free languages by means of recognizable sets. These 

results were first obtained by Mezei and Wright [19], although their formula- 

tion is technically different from ours. Ginsburg [Ik]  is our principal source 

for notation, terminology, and results concerning context-free languages. 

A context-free graamar is a U-tuple G - <V,Z,P,U> where V and Z are 

alphabets, £ c V, P is a finite subset of (V-Z) x V*, and u ^ V. Elements of 

V-Z are called variables, elements of Z are constants and elements of P are called 

productions; a production <§,v> $   P Is denoted by § -. v. For u, v f V#, we write 

u *. v (or simply u =* v when G is understood) if for some u , u., v* ^ V#, 

and 5 q   V, we have u ■ u 5u , 5 -, v', and v ■ u v'u.. We write u =»_ v 

if there exists a finite sequence of words u , .... u c V   such that o     n 

u - u .u ■ v, and for each i < n, u. *„ u...; the sequence u , ..., u is then on ib XT 1 o n 

called a derivation of v from u. The language generated by G, L(G), IS the 

set of words w f Z such that u »» w. Of course, if u ^ Z, then L(g) - {u}. 

A set of L is a context-free language if L - L(G) for some context-free grammar G. 

A gramnar G - <V,Z,P,ji> is called €-free if it has no production of the 

form 5 -* e. Theorem 1.8.1 of [lU] states that for any context-free language 

L there exists a e-free grammar G such that L(G) ■ I — {e}. Another result we 

require from the theory of context-free languages (c.f. [ih],  Lemma l.k.6)  is 

the following: for any 5 g V - Z, and u ^ V , 5 •* u iff either 5 - u, or there 
I 

m:, 1 
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ii a production § -• J ••• Cn.i in p* *nd *••*• u0* •••! un»i € 
v *uc^ t^t 

for 1< a, ^ • tt1# «a« u - tte ••• u^. 

Given an e-free graonar 6 ■ (VfZ,f,^),  V-irees can be associated In a 

natural way with derivations 5 - u «• .. • * u ,, where 5 f V. In fact when- 

ever £ * u £ V , there Is at least one such V-tree T such that T ■ ^ •nd 

u ■ T •••1«. i where w , ..., w are the terminals of T In lexicographical order. 
o   n 

The formal details of the correspondence between V-trees and derivations are 

set forth In the following definitions end lemma. 

DEFINITION 2.1. The operator Q on arbitrary trees is defined by tree recursion: 

(I) Q(A) -£, 

(II) Q(a[T(0), ...,T
(P)

]) -alf T(
0)-....T(P)-A, 

-Q(T
(O)

)...Q(T
(P)

) otherwlee. 

Q(T) IS simply the concatenation of the symbols appearing at the terminals 

of Ti taking the terminals of T in lexicographical order. 

DEFINITION 2.2. Ut G - <V,Z,P^> be an c-free graanar. CG is the set of 

V-trees defined by the conditions 

(I) VCCC, 

(II) if T(O), ..., T(n) € V and 5 ^ T[O) ... T^n), then 

5[T(0),...,T(n)] ^CG. 

The order of the trees in C. is the maximum of the set 
G 

{1} U i|u| : F - u is in P for some ? P V}. 
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LKMMk 2.3. Let G - <V,£,P,U> be an e-free greaner, 5 g V end u <: V . Then 

§ «* u Iff there Is « T € C. auch that T • 5 and Q(T) ■ U. 

Proof. First, assume g ** u. We proceed by Induction on the length of the 

derivation establishing | =»*" u.  If this length Is 0, then g ■ u and 

5 £ C-.  Otherwise, there are r , ..., C« ^ v ■"^ u0' •••> un ^ 
v 8uch 

that ? -• Co *** Cn'0"" ***u J *nd for each 1, (. *   u. by means of a shorter 

derivation. Applying the Inductive hypothesis, we obtain trees T  £ C„ such 

that T^ - d A
1
«
1
 QCT)^

1
^) - u1. Putting T - §[T^, ...,T^] we find 

T £ Cc and Q(T) - u. 

Conversely, assume T £ C-, T " |i and Q(T) ■ u. We proceed by tree In- 

duction, T " A Is impossible. If ||T|| " 1, then T ■ ? ■ Q(T), and § s>* §. 

If ||T|| > 1, then T - §[T^,...,T^J for some T^0^...,T^n^ p CG and 5 such 

that 5 -. T, •••Tj"'. No T^1^ Is A, so Q(T) ■ Q(T^0b-"Q(T^n^). But by the 

Inductive hypothesis, T^ •* QCT^O, for 1 s£ n. Hence, 

§**Q(T(0))...Q('-(n)) -Q(T) -U. 

The set of trees T f C- with T " u and Q(r) ^ Z , where G - <V,Z,P,p,) 

Is a €-free graamar. Is simply the set of "derivation trees" for G, a concept 

well-known In the literature. This set will be denoted by A . The impact of 

Lemma 2.3 Is simply that Lee) - Q(AG). 

IJSMMA itk*    If L Is a context-free language, then L " Q(A) for some recognisable 

set A. 

PROOF. Let G be a grammar such that L ~ {e} - L(G). We will show that AQ IS 

recognisable. Let p be the length of the longeut word u which occurs In a 

production 5 -• u In P. The p + 1 place relation R on £ U {c} Is defined as ' 

:,■-■ 
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follows: for any §; J / •••; {_> "» < P* R(5iC '•••'0,,,'€^ if Änd only if 

5 -. ^ ...r is in P. Then A Is the set of R-consistent trees T such that 

T " M> 
and T € z for every w frCr)* Thus, A. Is a recognizable set. The 

desired result now follows, since we have either L ■ Q(AG) or L - Q(A- U {A}) 

according as e ^ L or e ^ L, while both A and A \J  {A} are recognizable. 

Lemma 2,k may come as no surprise to those familiar with the theory of 

context-free languages. Somewhat less obvious is the fact that the converse 

of 2.4 also holds—that Q(A) is a context-free language whenever A is a 

recognizable set. 

THEOREM 2.^. A set L is a context-free language if and only L - Q(A) for some 

recognizable set A. 

PROOF. The "only if" part has already been established as Lemma 2,k.    We shall 

show that if 21 ^ <S;t,s ,D) is a tree acceptor (of order p) then Q(T(ll)) is a 

2 
context-free language.  Let y, be a new symbol not in Z or S x (Z (J {€})> end 

let G be the context-free grammar 

G - <Z U (S x(Z U l€})),Z,P^> 

where P contains the following productions: 

H -♦ <r*8) for Boa* r ^ D and S ( Z U {e). 

o 
The author would like to express his thanks to the referee for suggesting this 

proof, which is considerably simpler than the original. 

i   ) 
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<t(iol...,io,a),a> - for «11 a € Z| 

<t(s1,...,«p,a),a> - <■,«!> ...  <Vöp^ f0r *11 "i * l' 

ftnd 6. £ Z U CO with 6
1 ^ € for •t 

least one 1. 

First we shall prove 

(1)    <t(T),T€> *   Q(T) for «11 T r 2 

by tree Induction.    If T ■ A, we have t(T) m *0*  T€ ■ €, Q(T) ■ «I *nd need 

merely note that <e0,e) -« €.    If T ■ 9 € Z|  th,n '(T) ■ t(eo,...,so,a)l 

and T   - Q(T) - a.    Then <t(eo,...,so,a)iff> -Q(T) by definition of r.    Finally, 

suppose T ■ a[T     ,...,T     ] with at least one T       ^ A.    By the inductive 

hypothesis,  <t(T(l)),T^l)> •* Q(T(i)), for i - 1,  ..., p.   Now tCt) - t(t(T(,)), 

...,t(T^P^),a), and since at least one -r ' is not h» we have 

<t(T),a>- <t(T(1)),T|l)> ...  (tC^^),^) 

by definition of P. Since Q(T) " Q(r10.*.Q(T^P /, we have shown 

<t(T),o>a.#Q(T). 

Next we shall prove 

(2) If <S,CT> •* u <: Z , then u • Q(T) for some T with t(T) ■ s and T£ • a. 

This will be done by induction on the length n of the shortest 

derivation establishing <s,o> =» u. n • 0 is imposiible since <s,a> | Z . If 

n ■ 1 then the only possible production is (t(s »•••«■ >a)>o) -* o, so we must 

have u - a «nd s ■ t(s , ...,8 ,a). He merely take T ■ a. If n ■ 1 and u • e 
o    o 

then the only possible production is <■.>€) -• %$  eo take T ■ A» Finally, 

suppose n > 1 and (2) holds whenever the underlying derivation has fewer than 

§*W*tf&0tfa*&*^i-t^* *"*****' 



2k July 1967 31 TM-738/O35/OO 

n steps.   Thtr« is • production <s,o> •• <*x«Ai) ***  ^p'6^ •nd vocda ui'  •••! 

u   f Z    auch thftt <s.,6.> •   u.  (with dsrlvatloos shorter than n) and u ■ U....U . 
p ill 1       p 

By dftflnlCion of P,  a •   c(a1,**>,a .a)» and by tha Inductlva hypothaals, thara 

art trass T^1\ I ■ I,  ..., p.wch thftt t(T^1^) ■ a^  r^ • «^ and Q(T^) - •1. 

Ut T ■ oi-r ',...,rPN.   Thft» t(T) ■ a and TC ■ o»    »Inc« «t laaat ona ^ la 

not c, at laaat ona r*  ' la not A; hanca, Q(T) - Q(T      )...Q(T   ^) - u.   Thla 

conplataa the proof of (2). 

Suppose T f T(ll).    By (I),  <t(T),Tc> •* Q(T).    Sine« T f T(«), 

t{r) ^ D, so u - (t(T),Tc>.    Than ^ •* Q(T), and It follows that Q(T(«)) c L(G). 

Conversely,  suppose u c L(C).    For soaa * c Ü, 6 c I [J (c), a -» <s,ö> and 

<s,6> -* u.   We have fro« (2) that thara la a tree T auch that Q(T) • u, 

t(T) - s, end T   "6.    Since a f D, thla meens that T C T(«l), and It follows 

that L(G) cQ(T(M)). 

) 
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8ECTI0H 3»    DECIDABILITY OF THE THEOKY OF p 8WCCK880K OFWATIOM8 

In this section, we apply the theory of recognisable sets to a decision 

problem of mathsnatlcal logic:    We will show that, for any p < ui, the weak 

second order theory of p successor operations la decldeble (Corollary 3*8). 

This answers la the affirmative a problem of Buchl, atatad In Section 9 of 

[I].    In case pm X$ this result was first reported by Buchl and Bigot [5], and 

published by diem In [I] and [10].   Host of the methods «ployed In this section 

arc generalisations of those used by Elgot In [10]. 

Let B be any set;  let p, q be any ordinals;  for i < p,  let 0. be a m.-ary 

oieratlon   « B; and for J < q let R. be a n.-ary relation among the elements of 

B.    than v* say that the system 

In a algebraic structure of sladlarlty type or " <<m ,...^m.,• • • ^ f 

(nf',n ,...)).    In case p ■ 0, so that there are no operations, 9 Is 

called a relational structure.    B Is the universe of «, denoted by |8|. 

Associated with the similarity type « of 9 Is the following calculus L . 

called the monadic second-order language of type a (or, for brevity, simply 

"the language of 9").    The logical conatants of L   are « (equality), the 

usual proposltlonal connectives (A,v,-i,-*,«»), and the quantifiers V and 3. 

The nonloglcal constants of L   are:    For 1 < p,  e m.-ary operation symbol 0., 

and for J < q, a n.-ary relation symbol R..    (For purposes of clarity, whan a 

structure has an operation 0 or relation R, we endeavor to use the correspond- 

ing boldface letter 0 or R as Its representative In the formal language.   This 
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It not always desirable, and exceptions to this rule will be made clear whan 

they occur.) There are Individual variables x, g, a, •••, and monadic predicate 

(aat) variables X, Y, Z, ... . Quantification over either kind of variable is 

permitted. The notation 2 € X, read "g is a member of X," will be used instead 

of the more usual Xjr or X(^). The notion of a term, or an atomic formula, and 

the notion of a variable being free in a f rmula, are understood in the usual 

way. A sentence is a formula without free variables. If F is a formula of L . 

when we write, e.g., F(£,x), we mean that the variables g, x occur free in F, 

but we do not exclude the possibility that F has other free variables. If g', 

x* are any other variablea, then when we write, e.g., F1 s F^'^x'), we mean 

that F* is obtained from F by substituting y1 for each free occurrence of y 

and x' for each free occurrence of x, while making suitable systematic changes 

of the bound variables of F so as to avoid "conflicts of variablea." 

Relative to a given structure Q of similarity type a and a given in_3rpre- 

tation nf the individual and set variables, the notions of truth and satisfac- 

tion are defined in the usual way. The individual variables will always be 

interpreted as elements of the universe |Q|. We shall consider two different 

interpretations of the set variablea. In the strong interpretation, set 
e 

variables range over arbitrary aubsets of the universe, while in the weak 

interpretation, only finite sets are admitted as possible interpretations of 

the eet variables. The strong second-order theory of 8, SS(Q), is the set of 

sentence» of L which are true under the strong interpretation, and the weak 

second-order theory of 9, MB(8), is the set of sentences true under the weak 

interpretation. An elementary formula ia a formula without occurrences of set 

variablea, and ET(8) is the set of elementary sentences true in 8. 
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If 0 is any class of formulas, we say that a formula F is a Boolean 

combination of members of C if F Is « member of the least class C containing 

C and such that whenever   G,  H £ C, then G A H, G V H, and n G are also members 

of 0'. 

The symbols L, TT are used for iterated disjunction and iterated conjunc- 

tion, respectively; e.g., for X> 0, £.., F   denotes the formula F   v ... v F. i- 

Let F(x,2>X) be a formula of L   with exactly the free variables x, g, X, 

and let x, y € |t| and X c |Q|.    Then F(x,y,X) means that F is satisfied when 

x, £, X are interpreted as x, y, X, respectively.    Of course, we must also 

specify whether the weak or strong interpretation is to be used.    This will 

always be clear from context.    In fact, we shall rarely use the strong interpre- 

tation except in Section 5; thus,  in the absence of specific notice to the 

contrary,  the reader may assume that the weak interpretation is intended. 

DEFINITION 3*1«    Let 0 < p < u).    The algebra of p successors is the algebraic 

structure 

V <Vso""'sp-i> 

where N ■ {a ,...,a .} and for each i < p, S. is the unary operation defined 

by 

S.(x) - xa. for all x ^ N . 
iN '    i        ^ p 

The monadic second-order language associated with 91 , i.e., L,.       .., 

will be denoted by L , and its p unary operation symbols by S , ..., S ,. 

am 
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In the remainder of this section, we shall assume, except where otherwise 

specified, that p Is a fixed but arbitrary positive Integer. 

There are two main steps In our discussion leading up to Theorem 3.7 ani 

Corollary 3.8: First, we develop a normal form for formulas in L , and secotd, 

we correlate a recognizable set A with each formula F In normal form, and show 

that F Is satlsflable In 31 If and only If A ^ 0. 
P 

The terms ^ of L are all of the form ^f " S. ••■I.  (x), k < u), for some p -io  -lk_1 - 

Individual variable x; the Integer k Is the rank of f. We say that two 

formulas F, G of L are equivalent and write F ~ G if they have the same free 

variables and the universal closure of F « G Is In WS(<R )• 
P 

LEtyMA 3.2. Every formula F of L Is equivalent to a formula G which contains 

no occurance of the equality symbol, nor of any term of rank > 1. 

PROOF. By Iterative applications of the two rules 

(1) * «cp~V YU e *«• 9 € Y] 

and 

(2) X « Y -V u[u C X » u (: Y] 

where iy, cp are any terms and X, Y are any set variables, we obtain a formula 

F', with no occurrence of %  such that F ~ F*. 

Now suppose that S. ••it. (x) Is a term of rank > 1 (I.e., k> 0) occurring 
-J0  -Jk - 

In F'; this occurrence must be as a part of an atomic formula S. ...S (x) f Y 
-J0  -Jk - 

for some set variable Y. We note that 
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(3)    Sj  .. .Sj (x) g Y ^ g ^ ... 3 ikiv ZC^ 6 Z « x ^ Z] 

A TT^CV Z[Xj € Z « ^ (J^J) <: Z]) A Xk 6 Y] 

The desired formula G nay now be obtained from F' by repeated applications of 

rule (?). 

DEFINITION 3.3.    A principal n-formula Is a formula in L   of the form 

a5CWpiATTj<PCi,J)h 

where x Is any individual variable, and for some n distinct set variables, 

SQ''"'^-!' ••ch Fi i- •lthar 5 € Xj 0' -1 ÜJ € X^* *nd each C    . Is either 

8.(x) € X. or -1 x ^ X..    A formula 

ttV-^Wi^V-'-'Wi) 
where H Is a Boolean combination of principal n + m-formulas and each (Q X.) 

Is, Independently of J, either V X   or 3 X ,   in normal form. 

IJ5MHA 3'^«    Every formula of L   with no free individual variables is equivalent 

to a formula in normal form. 

PROOF.    Let F(X ,...,X    .) be any formula with exactly the distinct free set —— '—o -n—i 
variables X >««>,X    ,.    By 3.2, F — F* where F'  is a formula with no occurrence 

of M nor of any term of rank > 1.    Note that F* necessarily contains at least 

one set variable.    The two equivalences, 

VxVYH-VYVxH, 

3 x V Y H - 3 X V Y[V x[x e X -. H] A 3 x[x ^ X]], 

n 
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apply to any formula H In which X does not occur free.    By Iterative applications 

of these equivalences we obtain a formula F1' ~ F'  such that no set variable 

quantifier In F*' occurs within the scope of any Individual variable runtifler. 

Now F" Is equivalent to Its prenex normal form,  I.e., 

»,,-«is).-(«sWi'",«s, ?„^i) 
where X . •••^X are all distinct,  each (Q X.),  j ■ n,  ..., n + m - 1,  Is 

either vX. or 3 X., and F,M  (?0; • •'^„^-.i) contains no set variable quantifier. 

To complete the proof, we must show that F* * *  Is equivalent to a Boolean combina- 

tion of principal n + m-formulas. 

Let C be the class of Boolean combinations of principal n + m-formulas and 

atomic formulas jr € X. or S.(^) £ X., where J < m,  1 < p, and jr is any individual 

variable.    Let C be the class of formulas equivalent to formulas in C.    That 

F"'  ^ C*  is shown by induction; we will only discuss the existential quantifier 

step, namely, we assume that G £ C and show that 3 x G £ C'«    Of course, if x 

does not occur in G then 3 x G ~ G.    Otherwise, G may be put in its disjunctive 

normal form, 2    . G ,  and the quantifier distributed: 

3 x G ~EKk 3 x G^, 

where each G    is a conjunction in C*    For each jt < k, all the conjuncts of G 
Jv * 

in which x does not occur free may be passed outside the scope of the quantifier; 

i.e., we apply the rule that for any formula H and any £ >* x, 

3x[HA2€X]~3xHA2(:X, 



< 

21* July I967 38 TM-738/O35/OO 

or the similar rules concerning conjuncts -1 £ € X, S^g) ^ X, or -1 S^g) € X. 

Finally, if for any J < n + m such that neither x ^ X. nor 1 x ^ X. occurs ss 

s conjunct within the scope of 3 x, then x ^ X. vnx ^X. may be inserted ss 

s conjunct and the distributive laws sgain applied; a similar treatment applies 

when neither S.(x) g X. nor -1 S.(x) ^ X. occurs within the scope of 3 x. The 

resulting formula, G' »is in C> G' ~ 3 x G , end the variable x occurs in G' 

only as the bound vsrisble in principal n + m-formulas. Since 3 x G is equiva- 

lent to a Boolesn combination of such formulas G1, we have 3 x G ^ C* • 
*        — 

Lemma 3.k generalizes Elgot's Lemma 1, Secticn 5.5, in [10] to L for p > 1. 

The proof uses essentially the same ideas. We may note in passing that the proof 

of 3.If makes no use of special properties of the operations or 91 • The lemma 

can be proved for any monadic second-order formal Isnguage in which there are no 

nonlogical constants with more than one argument place for individual variables: 

We can even introduce higher-type predicte constants with one Individual variable 

argument place and one predicate variable argument place; the treatment of such 

higher-type constants would be formally similar to the treatment of ll^". 

For each n, let £ be the set of n-termed sequences with terms in the set 

{0,1}; 0 ' denotes the n-termed sequence consisting entirely of O's. 

The order ot trees and acceptors discussed in this section is assumed to 
0 

be p; thus, if TT is an alphabet, Tr is the set of Tf trees of order p. 

DEFINITION 3 »5. Let T € £«, and let X , .... X .be finite subsets of N . r "'        o    ' n-1 p 

Then T represents X >..•, X . if, for each i < n and any w c N , w £ X. if 1       o     n—i "pi 

and only if the 1-th term of T is 1. 

-.:•>, - .■''4i'il' *£■■*■£■": 
saslfew«w.i **■■•"■■ ..-«**- «** 
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Every tree T £ £^ represents exactly one sequence of sets X ;...,X   , c N , 

and every sequence of finite sets X ,>»t,X    . c N   is represented by some tree 

T ^ £^*    The tree t is not uniquely determined by the sets X >•••, X    .f however; 

e.g.,  if T   " 0       for some w ^ fr{r), then both T and T[W/A3 represent the 

same sets.    Nevertheless, there is always Just one minimal £ -tree which repre- 

sents the given sets X , ...;X    «IIt may be obtained as follows:    Let T be any 

tree representing the sets X ,*..,X    ., and put 

T;-Twif  T^W^   {0(n)]#; 

■ € otherwise; 

then T* is the minimal tree representing X ,.*>,X ,. 

Let us say that two £ -trees are equivalent if they represent the same 

sequence of sets. If A is any set of £ -trees, we denote by cl(A) the set of 

all trees equivalent to some tree in A, and by mnl(A) the set of minimal trees 

in cl(A). 

LEMMA 3.6.  If A £ £ is recognizable, then so are cl(A) and mnl(A). 

PROOF.  Let SI - (S,t,8,D) be a £ -tree acceptor such that T(g() - A. First, 

suppose that A = mnl(A). Let s* be a new state not in S, and put 
ja 

8 - <S (j fi^tSa ,0'), where D1  ■ D (j {s } if s ^ D, D'  ■ D otherwise, and 

t'  is defined as follows: 

t'(s*,...,s*,0(n)) - s*, 

and if either a ^ 0    'or some s.  is not s ,  then 

• 
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t,(8o,...,8p_1,a) - t(8^...,8^1,a) 

where s' - s. if s j4 s end s' - s if s. - s . With A - innl(A), it Is easily 

seen that TOB) - cl(A). 

Now consider the case that A t tnnl(A). Since obviously cl(A) = cl(innl(A)), 

it is, in view of what has already been proved, sufficient to show that 

nnl(A) is recognisable. Again, assume A ■ T(|l), n ■ <S,t,s,D). Let 

«■ <S, t", I,D>, where for all i0,.«^ »^ 6 8, a 6 In, 

tM(so,...,sp_1,a) - {t(»0>...>»p-1>a)} 

and 

I - {s : t(T) - s for some T € {0^}#}. 

ThenS is a non-deterministic £ -tree acceptor with the following two properties: 

(i) every T € Tß) is equivalent to some member of A, and (ii) mnl(A) c T(is)* 

Thus, mnl(A) consists of those T ^ T((S) such that r   t 0^  '  for each w ^ frCr)* 

It follows from 1.1^ and 1.1^ that mnl(A) is recognizable. 

Note that in the proof of 3.6, the construction of the nondeterministic 

tree acceptor s is effective, since in the definition of I we may restrict 

consideration to those trees T ^ (Cr '} which are of depth < S. 

If F(X ,...,X ,) is a formula of L with exactly the free variables 

X , ...,X ,, then we denote by T(F) the set of those minimal Z -trees which 

represent a sequence X ,...,X _. such that F(X ,...,X _.). 

i   I 
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THEOREM 3.7.    T(F) IS recognizable for every formula F with exactly the free 

variables X-,.•«JX   1. 

PROOF.    It Is sufficient, by 3.4, to assume that F Is In normal form.    Our 

proof Is by Induction on the length of F.    In each case of the Induction we 

shall exhibit a recognisable set equal to T(F); the reader should encounter no 

dlfflcullty In supplying the simple argument which establishes this equality. 

If F Is a principal n-formula,  say 3 SC^VöIC'* A ^k^ll^ where *i* Gi* 

are as In Definition 3.3,  let a € £    be defined by the condition 

the 1-th term of 9 Is 1 Iff F,  Is x e X., 
1        -      —1 

and for J - 0,  ..., p - 1 let a. f E    be defined by the condition 

the 1-th term of cr    Is 1 iff G      Is S (x) e X.. 

Now if CT - a0 ■ ... - o .j " 0^n', then T(F) - {A).    But If at least one of 

a» a >   •••> o   , is not 0^n', then we have 

T(F)  -mnlCEj,  (a,  (30>"'><Sp_l))$ 

which is recognizable by 1.15 and 3.6. 

If F is a Boolean combination of principsl n-fomulas, then we need merely 

note that the recognizeble sets are closed under 0*  IJ> and —,  e.g.,  if F Is 

G v H and T(G), T(H) are recognizable, then so is T(F) - T(G) |) T(H). 

Finally,  suppose that F is 3 X       G(X ,...,X ) and T(G) is a recognizable 

subset of 2*    .    Let g be the projection of Z*      into 1^ defined by 

) 
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g(<ko,...,kn» - <V
,,,'kii-l^ £or ••Ch ^o''"'11!^ ^tm*i' 

Than T(P) - flal(g(T(G))), «ud this !■ rccognlsabl« by 1.13, l»15i «^ 3*6. 

Th« characterization of tha rtcognltabla seti developed In 1.13, 1.14, and 

1*19 1« not esientlal to tha proof of 3.7—one can also give direct conetructlons 

of traa acceptors II euch that T(ll) • T(P) for each of tha various forms of tha 

fornula F. 

CQgOLUtftY 3.8. WS(31 ) Is dacldable for every finite p. 

HtOOP» If F Is an arbitrary sentence of L . than, by 3.4, F Is equivalent to 

a sentence F* which Is In normal form. F' has at least one set variable; 

suppose, for example, that F* Is 3 X G(x). (in case F* Is V X G(X), ve consider 

Instead 3 X -1 G(X) --,?'.) Now P' end hence F, Is a member of WS(9t ) Iff -   - p 

T(G) IS not empty. But T(G) m $ ia effectively decldabla by Corollary 1.12. 

We need only verify that F' and T(G) can be effectively obtained. This Is 

accomplished by examination of the proofs of 3.I1 and the results In Section 1. 

We shall devote the remainder of this section to a discussion of applica- 

tions of 3'7> deferring consideration of the many applications of 3*8 until 

Sectiona k and 5. 

Theorem 3.7 has a converse: Roughly speaking, "every recognisable set can 

be expressed in the form T(F) for some formula F." This statement falls to be 

strictly true only because the underlying alphabets of the sets T(F) are not 

arbitrary, but axs always one of the L  . In the following theorem, we restrict 

consideration to the alphabets L   - [0     ),  denoted by A , in order to avoid D 
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dlfflculei«! «Mociated with Cl. aablgultlM In th« repr«s«nUtlon of t ■quaneet 

of sees by £ -tre«».    Th« A   «till provide alphabtts of arbitrarily large finite 

cardinality. 

■   ■ 

( ) 

THEOREM 3.9.    Every eet recognizable over ■one alphabet  A.  n > 0,  can be 

expreeeed in the form T(F) for eooe foraula P. 

PROOr.    Por each 9 ^ 2^, lot f7 ba TT1<n P1, where P   if x 6 ^ if the 1-th term 

of o la 1, and P1 -1 x € ^ otharwiee.   Similarly! lot C^ ba IT      C     where G 

ia S (x) f X   if th« i-th tan of o is 1 and G   . Is -1 S (x) f X   otherwise.    Put 

Hn»^3x[P AnTT^Gj      ]. 

Then H (X0'*">X 1) holds iff the minlaal tree representing X , ..., X , is 

a tree over A . 

Now let A be any recognizable subset of /^. If A " ^ then A ■ T(H ). 

If A - 1. (a,ff0M»«»Of j) for some a, o0>'"> 9   ^  € A^i w« put 

a. 
F 5 H A 3 xif A Tf^ G.J] n   -     yzp    J 

and then we have A » T(F). In case one or more of the a. is e, we need merely 

a.   0(n) 
replace G J by G 

Now suppose that A ■ B fl C for some recognizable seta B, C.    In general, 

the alphabets for B and C may properly Include  A .    However,  it is easily seen 

that we can find m 2 n and recognisable sets B', C over A   such that 

P(A) - B' DC where p is the projection of ^ into A^ defined by 
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for «ach (r^...,^^) ^ A^.    Thtr« «xlac fomuUs P',  F" mteh that TCP') • I* 

and T(P") -C   V Itt 

and obtain A - T(P).    Tha CAM« A-BuCandA*l-Cara kMtfUd la llkt 

Plnally auppoaa Chat A • p(l) Cor aaaa projacttoe p and WMpiMMt Mt B. 

Without loas of t«noraUty( «• aay aaaaaa that tha uodarlyü« alphahat of B la 

MM ^, ■ > n.   Thar« axltta a foimila 6 • G{%o.....tm ^ auch that T(0) • I. 

Lac 1,  ,,,, T   . b« dlatiMt MV varlabUt which M not occur im Q, ami put 

p ■ 1 r ... I X^.WT.,...,^ J A v «(t^ (^(L»*-»!^!) 

(^ ' (V"s*Wl' * r)    (!o',,,'5r ^)))), 

T(P) -A. 

COBOLLABT 

3.9 MV followa fro« 1.1^ 

3.10.   A onhMt '. of ^ ^ • OMCMt-frM lafna   if aM only if 

L -Q(T(P(X ....,X    .))) foi  aoM fomiU P. o mmk 

A aohMC K C ■    U M«k «acond-ordar daf Inabla U «    if for aoM 

f(K), with aiactly tha OM  fra«   Individual varlablt s, K U tha MC of ■ ( ■ 

auch that 7(K) ho Ida uodar tha wMk latarpratadoo.    Ma aay than that I la 

dafioad bjr P ia 1 { aiMUrly, M apMk of auhMta of M    x ■   M dafload by 

formilaa r{*,l), Md ao oa. 

( 
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C0H0UA1T 3.11.    A «ubMt of H    It «Mk ••cond-ord«r d«flnUbl« In 51    If and 

only If it It raguUr. 

WOOy.    In vlaw of 3.7, 3*9,  1.16, and tba raaarka at cha aad of laetlon 1, «• 

aaad only thov chac, for any forwla P with awecly tba fraa variablaa 

?L#"»* L-11 U^r/»\''(T) *• daflnabla U « .    1« fact, If -o -«-i     vci\r) p 

tkaa wT<-T(r> äKT) U daflaad by 

to thit Hpar va hava ftioaclflod ckrta tflaclaec aachoia of dcfioiaf • 

r«cofniMblt §«i A - Vj, ■ > 0:   A aay bo axpraaaad lo toy of cka for«a 

(X)       HW roottlc of a fUica aa^oaaca of appllcotloo« of ^rojoccloaa 

aod loolaoa aot op«rat Ion« •tare In« with oata of th» fora 

^(•»•0,»..»0'   |i» 

(XX)     T(g) for aoaa trao occoptor a. 

(Ill)   T(r) for OOM fofMla jf^,.,«^ |1 of L . 

rs*«« aay bo toinrad with cha follovtof aadwda of doftatot a rogular aat 
• •• 

I C (••••••• .1 "'    < i Bay ho ««prvtttd la «ay of eho focaa 

(I*)       Tba roaulc of o flaita M^yoaco of apfllcacloa« of cho operations 

.   *   .       .   Ä.   •«! • »tartlng with  Unit« oat« of vord«; 

(11*)     X(H) for OOM flaita outoMCoa «1; 

(III')    (a : P(a)1 for aow focaala r(«) of L . 
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Th« aqulvaltnc« of th« ton» of dofUltlon (I), (it), «ad (XII) has boon 

••UblUhod in this popor by 1,1k, I.IJ, 3*7« «ad 3-9, "hilt eh« «qulvaUnc« 

of (I'), (II'), tad (III*) it • coacaquaac« of voll-kaowa rosultt la eba 

lltoratur« and Corollary 3.11.    Exaalnaclon of Ch« proofs of thaaa aqulvalancai 

dlaclosai that aach of thaa la coaplataly affoctlv«. 

LDtU 3.12.    (1)    If a daflaltloa of a racogoliabU aae A c A{« » 0,  U giva 

la oao of tha font (I), (IX), (III), than daflalcloaa of A In aach of tha othar 

tue foraa can ba affactlvaljr obulaod. 

(11)    If a daflaicloa of a raguUr aac I c R , p > 0, U glvoa in on« of 
P 

tha foiM (I*), (U*)( (III*), than daflaltloaa la aach of tha othar mo foraa 

can b« affocclvaly obcalaad. 

la [1] lachl coaaidarad tha "vary waak aocood-ordar thaory** of 9 ,  la 

which tha aat varlablaa ran««, not ovor arbitrary ftnit« aabaata of H , bat 

oaly ovor thoao flalta aabaat* which ar« chalaa with raapact to tha laltlal 

aafaam ralatloa.   Thaoraa 10 of hi« papor atataa that tha claaa of awbaota 

of I   daflaabU la tha vary waak aacoad-ordar thaory colacldaa with tha 

rafular a<baata of ■ .   Tlwa wa M« that, froa tha point of vlaw of daflnlat 

•ubaatt of h     tha waah aacoad-ordar thaory la aa aara powarful than tha vary 

waak Mcoad erdar thaory. 
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SECTION U.    APTLICATIOIIS 

In Chlf MCtlon w« thall apply th« result« of Stctlon 3 to ••tabllah th« 

dectdtblllty of a varloty of w««k Mcond-ordor chcorl«*.    Th« MM general 

method will b« u>«d in n««rly oil CAMS: Che decldablllcy of WS(tt)  !• proved 

by lacerpreting tfS(ti) into U8(9 ) for SOM p (usually p * 2).    This laterpre- 

cation la beeed upon e i«f inition la Wl(9 ) of a substniccure of 9    leoaorphle 
P P 

to ehe given scruccure «.    Per exenple, if *| • (4,0,1) «here 0 is • binary opera- 

tion and I la a binary relation, and there are foneulaa f{K),C(x,jr'£)'  R(s>z) euch that 

• »CASOM«) 

«here 

s C A Iff F{«) holda In S , 

O'U^r) • • 1" C(«,jr,«) holda in Y 

V(Mtf) iff H(K.y) holda in S 

then we aay chat (he crlple (f.C.M) it e weeh ae€ond«order defUltlon of ■ U 

9 .    It followt fro« ehe enlsceoce of euch e ueflalcioo that Ui(«) la lacerpre- 

Cable in «(«  ), end het.ee chac Mi(«)  It decldable.    (for furcher  Infomadon 
P 

on incerprecacIon of cheorlea, ehe reader aey coaeulc [2^]*) 

TWOtm ^»^.    For each finite p > 0, ftla weak eeoond-order deflaehU la 5L. 

ntOOf.    UC A • (1*1 • (L^W1))*.    Then A 1« • reguUr eec, and.  by 1.12, 

e foraula P(x) defining A in ^ can be effecclvely obcained.    Lac Che ce 
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♦ , n < ag^ b« daflMd W rceurilon:    * («) • x,  * ..(x) - 8.(* (x)) for each n • •       •     nTi ■       "i  'n " 

a.   hitting C.Cx,^) " zY50(*4(«))* *• *■•• thÄt <F*c0*'»'*Cp-i> *■ •   *•«•!• 

tlon of 91   la Stg* 

Ut II   • (• »a.»o)^ for x ^ M   and a < 1% Itt 8 (x) ■ xa . and lot 

91   ■ (>.8 .•••)•   Thar« It a foraula P (x) doflalna tht ragular «at 
• v   O u) - 

(I«) *(*>}*)*. ««»d if »• I«1 C.(x,2) bo as In tho proof of k,l, vo find chat 

(F .0 ,C ,...) la a «oak aacord-ordor daflaltloa of 91   la 9L, and hanca, 
IB     O       1 tt) C 

ws(s ) is docldabla. 

W(9 ) la not aa rich a thaory aa ona might irlah; for axaapla, avao tba alapla 

ralatloo "K • f (y) for MM a** la not doflnabla la It.   Ha can, howovor, add 

a fnrthar ralatloa to 91   and obtain aoro aatlafaetory raault«     Lat Ia(x,y) 

hold Iff x la aa initial aafptot 0/ f, and put 91* • (M .la^t^t^...)* 

vmOUH k,2   (1) S*  U «oak Mcond-ordar daflnabla In 9^ and hanca us{9'J i» 

dacldabU. 

(11)    for aach p > 0, 9   la voak aacond-ordar daflnabla In 9*. 
P • 

(HI) A aat I c (ao»**.,a    .)* la ragular If aad oaly If It la «oak 

aacond-ordor daflnabla la 9*. 

A daflaltloa of r  In ^ la (F^ l.c^C^ ...) «hara P . 6o> 6l>  ... 

and l(x,z) U 

v ifz € 1 AV ^(a) ^ i v i^a) C!«|C|]-!CI]A rjx) A rj[z). 
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To prove part (ll), It Is sufficient to note that,  for each p > 0, the 

formula 

defines the set  {«,...,«    .}   cm 31 . »• o P~i w 
* # 1 

Let the napping f :  {e ,a.,...}   - fa,b}   be defined by f(s.) - abJ, 

J - 0, 1,  ... and f(uv) • f(u)f(v) for all words u, v.    (f Is simply the 

liomorphism which establishes that 9*  is defined in 9L by <F   T.G ,...).)   Assuas 

p > 0, and let f   be the restriction of f to (a ,...,a    .} .   A generalised 

sequential machine (as defined in Ginsburg and lose [16]), which effects the 

■applng f   can easily be constructed, so that, by a theorem in [16], e set 

X c (e **>.,a    .)    is regular if end only if f (X) Is regular.    Now we note 
o P~» P 

Che fullowing two properties of the definitions of 9* la 5U end of 9    In 9*: 
1 c P • 

(1) if X is definable in 9^, then f(X) le definable la 92; 

(2) if X is definable in 9 * then X is definable in iS 

Suppose thet X c (a »•••»•«) • If X la regular, then X is definable in 9 * 

so by (2), X is definable In 9*. Conversely, if X le definable In 9V, then, 

by (l)t f(X) - f (X) le definable in 92* **c this iapliee that f (X) la regular, 

whence X is regular also. 

Theorem fc.2 (l), in e eomewhet different form, wee obtained by 

J.W. Thatcher [26]. Theorem U.2 (111) improvee 3.11 by giving e single decidable 

theory, Ut(9')» within which every regular set «ay be defined (subject to the 

restriction that the underlying alphabet be e subset of (e ,e.,...0* 
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Let a be any order type.    By WS(a) we mean WS(ll) where 9J - <A,R> ii any 

relational structure such that R Is an order relation on A of type a.   The 

notion of (weak second-order) definability is extended in the natural way, 

i.e., a type a ie definable in 9U 1£ soaM •tructure ll of type a !• definable 

in SU*   All the definitions of order types in 9U we give will be with the aid 

of the following ordering of H.: 

DiraiTIOi U.3.   The left-to-riiht ordering of N» 1« the relation <, defined 

la the weak second-order theory by the foraula 

To understand the neture of the **left-to-right ordering,** it aey be 

helpful to draw a graphic repreeentatio« of IL, siailar to Figure 1.    For 

x, y € ■», we have x < y iff the branch to x procedee leftward fro« soae point 

on the bread« to y (possibly y itself), or, e^ulvaleatly, the breach to y 

procedee righewerd fn» seas point oa the breach to x. 

for any class S of order types let C(3) be the closure of 8 under the 

order-type operations + (addition),   •  (■ultlpllcaclon), ead * (oonvevse). " 

is the type of the retieaels. 

U.k,    If 8 * [mf] u (0*1«.••) ead o f C(8), chea a is weak second- 

order d  finable  in l^, and heace, *%{-,) le dectdable. 

flQOfT    We shall  show how to obtain,   for tech a c C(S),  a regular set 

Ac*   which ie ordered of type o by the left-to-rlght orderlag, <« ead which 

satisfies the additional condition 

(1) if x, y, c A , then x is not an initial segaent of y. 
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For each n < uu,  let A   ■ {b0a, ...,b     A),  let 

A   - {b)    •  {.} end k   - {eb,ebb}    •  {«). 
O) 

If A , A have been obtained, then A   ■ ({*} * A ) tj ({b} • A ) and 

A . " A * A • Ay - f(A ), where f Is the projection of N„ onto N_ euch that 

f(a) - b and f(b) - a. It ia easily verified that if A , A. eatiafy (1), than 
or     p 

A j.^' A    a> •nd Avalto satisfy (1).    The proof is completed by induction, 
ofip     cr* p or 

shoving that each A , or c C(S)> is indeed ordered of type « by < (the condition 

(1)   is needed in the case A    J. 

The Improveracnt aede by Theoretn k.k over results known prior to the 

publication of [7] is simply the tncludion of i\ in the set S« 

Let us say of two order types or,  g that o ■    ß if WS(o), WS(0) contain 

the seas sentences with n or fewer qualifiers.    Thus, US(a)  ■ US(0) iff 
o 

or ■ Mß for every n.    In [9], Ehrenfeucht gave a condition -«we denote it by e — n n 

"The condition e_(o,0) is defined es follows:    We iaeglne a game between two n 
players,  I and II.    In the first aove,  player I selects one of the order types 

or,p and chooees a finite sequence of types which are initial segments of this 

one, and player II responds with en equally long sequence of initial segments 

of the other   of 0,8; e.g.,   Ichooses ß ,...,6.  < 0, and II    responds with 

o ,...,ä < or*    In succeeding moves,  the two players repeat this process, 

extending the »equences slready obtained.    Player II wine if, after n moves, 

the resulting sequences ere order isoaorphlc; otherwise player I wine.    The 

condition e (ar,0) holds Just in case playrr II has a winning strategy n 
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which, whan modified to apply to order typo* Instead of structure!, yields the 

following: 

Vor any two ordinals a, ß, If ß (o^ß), than a ■   ß* 

Ehrenfeucht also showed that If or Is any ordinal than, for each n, there exists 

a* < u? such that ^(a,«').    It is not difficult to show that the operations 

♦,  *, and • preserve the condition t \ naaely, for any order types a, or', 

B» PS « ejof^) «"I Cl|(a
,,ß•) then e^tf^',^'), en(of • «', ß • p«), and 

tAhtf)'    In this way, we obtain 

OOftOLUIY U.J.    Ut Ot denote the claas of all ordlnaU.    If o f C{Ot u (*}), 

then W8(a) U decldabU. 

Corollary U.5 laprovaa a result In the literature (see [3], [11], and 

[9]) hy which M(ar) 1- decldable for every ordinal «.    In [12] It Is stated 

that Bhranfeucht had obtained a decision nethod for the theory of ordinal 

addition; froa this result, the decidability of ws(o) for every ordinal a 

follows at once by Thaorea 10.1 of [12].   Bhrenfeucht never published his proof, 

however; and later, e proof of thaee rseults waa published by Bucht [3]. 

As thle paper waa being written, the author learned (by pereonel coMunice- 

tlon) that N.O. lab in had found a proof of Che decidability of 88(11).    (Thle 

proof tea since been published In [22].)    It is worth noting    thst all 

our thaoreae concerning definability of orier typee continue to held in 
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the context of the strong ••cond-ordor theory. (To ihow this, one het only 

to exhibit e fomule F(X) euch that for X c V2,  F(X) holds In the strong 

interpretetlon iff X Is finite.) Because every denumereble order type can 

be embedded in the rationels, Rabin's result at once yields, as he has pointed 

out, the decidability of the strong monadic second-order theory of countable 

linear ordering!, thus considerably Improving a result of Buchl [k],  to the 

effect that the corresponding theorem holds for countable well-order Inge. 



I 
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SICTMg 5.    DECISION HtOBUBMB OF LOCALLY F1BK ALBEBEA8 

In this MCtlon w« thall apply Corollary 3.8 to prov« th« decidability of 

tha waak Mcond-ordar theory of a gtnaral class of structuras which includes 

tha 9   as particular cases.    We make essential us« of Buchi's theorem on tha 
P 

daeidahility of 88(9.) [2], and of tha generalised products of Pefermen and 

Veught [12]. 

Let 1 a <*»0o*'»'»
0p.i»,l

o»•••»*-.!) *• •" algebraic structure. If 

# ^ A' c A, then Ä^A') denotes the subaliabra of II generated by A*: Maasly, 

^(A*) - U'SO^...^' 1IR^...,K' 1> where A" is the least sat containing A* 

and cloaad under tha operations 0 ,...,0 .. and each of 01, V.  ere the reetrlc- o p-i j     j 

tiona of 0., t.,  respectively,  to the set A".    In cese A' consists of a single 

element, i.e., A* • (x), «a write ^(x) - 6 (A1). 

If Q is eny claee of algebraic etructuree of a given eimilarity type, then 

W8(a) l» the set of weak second-order sentences true in every element of a*   A 

sentence is true in Q if it is true in every meaber of Q.    If T Is any aat of 

sentences in a language    L,  than VS(T) • W(a), where Q ie the claee of structures 

V having the earns type ae L and euch that T c WS(l).    Interpretationa similar to 

these apply to tha notiationa 88(a), IT(T), etc. 

Ut I be any nonamrty eet and let ^ - ^^O^,...^},^0,...,!^), 

i f 1, be algebraic etructuree of the same similarity type, tndeaad by elements 

of the eet I, such that the A'  ' are paiiwiae die joint.    The cardinal sf of 

the ^ is the structure « - <A,0o,...,0   l,t0,...fl^l> where A " H-j^     , 
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I     ) 

the unlvart«! of th« 9L *re not disjoint,  than wo understand tholr cardinal sum 

to ba the cardinal sum of a aat of structures U[,  1 € I, with 11' * 11   for 

each 1, which do have mutually disjoint universes. 

Let p > 0 and let L ba the language with only the operation symbol» 

Jk, ...,0., «hare 0. la n.-«ry, n. > 0, for 1 • 0,   ..., p-l.    In [17], Mal'cav 

considered the tlernentery theory based upon the axloma 

2i(5i''*'»*n ^ 4'2j(Zi'',,»Jfn ), 0 < i< j < p, 

ni 

x 4 ♦(;) for every term ^ with et leaat one occurrence of x. 

Structures satisfying the axioms (I) are called locally free algebraa over the 

qo,   .,., 0 _l Is denoted by x-    Hal'cev shoved that BT(£) Is decldebl«.    On the 

other hand, Tarskl, see [2U], has establlahed: 

If n. > 2 for at least one 1, the   ws(x) le uadecldable. 

In this section we shall coneider MB(£) under the aaaumptlon n. a 1 for each 1; 

I.e., £ Is the class of locally free algebras over p unary operatlona.    Hera- 

after all the operatlona 0. are essumed to h» unary;  to emphasise thla, ma mill 

uae the ayabols 8.  Instead of 0..   Noreo/er, me shell assums p • 2; this la done 

merely for notatlonal convenience, and the reader mill encounter no difficulty 

should he wish to undertaka the tedious Job of revising our theorems and proof» 

ao aa to apply to arbitrary finite p.    The monadic aecond-order language with 
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Just the two unary operation Symbols 8 , S. is denoted simply by L. Under 

these assumptions, X becomes the class of nonempty structures of type <(l,l)v 

satisfying the axioms 

(II-l)   ^x+^jr, 

(II-2) 505«SojrvS1xwS1jr^xwX, 

(II-3) x 4* ♦(«) fo' every term f with «t least one occurrence of x. 

We shall see later that the scheme (II-3) can be replaced by a single weak 

second-order axiom. 

Let X be the class of structures satisfying (II-l),   (II-2) alone.    The 

elements of X will be celled X-algebres.   We shall show that WS(x) is decidable, 

and obtain the decidability of WS(£) as a corollary of this result.   Our first 

step will be to conduct a mathematical analysis of the structures in the class 

X.    This analysis will be ueed in subsequent metamathematical arguments to 

reach the desired goals. 

DEFIHITION $.1.    A K-algebra U is simple if for every x, y £ ||I| there exists a 

z such that x, y £ ^ktCOi  if *>" addition there exists an element c such that 

81 - &.(*)> then tl i* generated and z is called a generator;  if there is no stich 

s,  then 11 is ungenerated.    The class of simple X-algebras is denoted by K > 

and its subclasses of generated and ungenerated algebras by x   and X , 

respectively. 

The term "generated" and "ungenerated" apply only to simple K-algebras. 

To avert confusion, however, we sometimes redundantly refer to X-algebras as 

"generated simple" or "ungenerated simple." 
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THEOREM 5»2.    An algebra is a K-algebr« if and only If it It a cardinal turn 

of simple K-algebras. 

PROOF.    That a cardinal sum of X-algebras is again a K-algebra is immediate 

from axioms (XI-l),  (II-2).    New let U - <A,So,S1> ^ X;  for *, y £ A, we writs 

x — y if there exists z £ A such that both x, y are members of l€L(s)|. 

Clearly, — is an equivalence relation.    For any x c A,  let x be the equivalence 

class of x, and let Ä - {x : x £ A}.    If,  for any x £ A, we let |L. - (x^S'^S') 

where S1, S! are the restrictions of S , S.  to x,  then II is the cardinal sum 

of the SJ-, x £ Ä. 

Henceforth, when we say that ^ is a term, we mean that ^   is a term in the 

language L.    The rank of \|; is denoted by  \y\.    The composition of two terms 

ijf " S    ...S        (x),  x " S4  •••S.      {%) is denoted simply by concatenation: 
~ o      " n-l " "J0      "Vl 

^ is S    ...S S    ...S        (2).    We say that ^ is a prefix of fg and x l8 a 

o     "n-l ~Jo      "Jm-1 

suffix of 1^.    y    is  t) itself,  and for finite n 2 1,   ^n      « ^n^.    Given a 

structure 9J ■ (A,S  ,S. > and x, y £ A, we write x ■ ^(y)  Just in case F(x,y) 

holds in SI, where F(x,jr} is the formula x M ^(^)« 

LEMMA ^.3 (Cancellation Law).    Let cp, x,   \ji be any terms. 

(I) V x V Ji[cpx(x) * cptCx) - x(*) « *(x)] i« tnuj ln K. 

(II) If I has a prefix \|t' of the same rank as x and ty -  ^ if*',  then 

V x V li\{*) « ♦(x) -* x w ♦' '(x)] is tru« in K« 
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PROOF; From (II-l), (II-2) by induction on the rank of the term cp In (l) and 

LEMMA 5tk»    Let 31 be a generated simple X-algebra. If for tome u ^ |V| and 

some term t of L, |^| > 0 and u - \|f(u) then 

(I) u is a generator of 91; 

(II) If x ^ |9J| *nd x - ^(x) for some nontrlvlal term ^ of L, then 

x ■ t'(u) for some suffix if*  of f. 

PROOF. Let y be any generator of !I, and let cp be a term such that u ■ cp(y)> 

There Is a finite n such that |^ | 2 | cp|. Now, 1^ (u) ■ (p(y) also, so by 

5.3 (11), y - V(u) where ^ Is a suffix of f". It follows that u Is also a 

generator of 91. 

Now consider part (11). From (l) we have that both u, x are generators 

of y. Say u - cp(x); we then have f (u) - cp(x) for every n. If | qrj £ | i|f|, 

then we take n ■ 1 and have, by the cancellation law, x ■ ^'(u) for some 

suffix V of |. If |cp| > |^|, let n> 1 be such that 'it*"1! < |cp| s  Un| . 

Applying the cancellation law to the equation ^ (u) " (p(x), we again obtain 

that x - V(u) for 9ome suffix V of ^1. 

Figure 2 is a tree diagram of an element % m  (A,S ,S ) of X> Here the 

universe Is the set A ■ [e,b] IJ ({a,ba} • {a,b} ), and the two operations are, 

for all x £ A, S (x) ■ xa, S.(x) - xb if x f* b, and S1(b) ■ e. The structure 

91 shown satisfies the equation S.st.(c) = e« 
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Figure 2. Diagram of a K-Algebra. 

If a generated X-algebra also satisfies the axioms (II-3) (I.e., it falls 

to satisfy the hypothesis of 5.4), then it is isomorphic to St,. Thus, the 

Impact of Lenma 5.h is  that a generated K-algebra is either isomorphic to It- 

or has Just one "loop." This is expressed in the following: 

THEOREM 5.5. Two generated K-algebras «I, Q are isomorphic if and only if either 

(I) each of 31, 8 is Isomorphic to 1JL 

or else 

(II) there exists a nontrivial term \|i such that 3 x[x « ^(x)] holds in . 

both S| , 8 > while for any nontrlvial proper suffix f' of \|t, 3 x[x M ^'(x)] 

fails in both 91, 8. 

Notice the one-to-one correspondence between terms and words over {a,b}: 

a term \|r corresponds to its value \|t(r) In the particular X-algebra Dtp. We thus 
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establish a roany-to-one correspondence between words over {a,b] and the 

isomorphism classes of generated X-algebras; the empty word corresponds to the 

class of algebras Isomorphic to UU, and the other classes are determined by 

words distinct from e: given an isomorphism class not containing 9L, let 

V " S. •••>S. (x) be a term such that the condition of 5.5 (ii) is satisfied 
~ o   ~ n "^ # 

by every structure in the class; then the word ^(e) e[a,b} corresponds to 

this class. Two words u, v determine the same isomorphism class if and only if 

there exist words u', u" such that u ■ u'u*' and v ■ u1^'. 

Let pred(x,jr) be the formula 

S0(x) «^ v ^(x) «x* 

If y e |4l| for some K-algebra 31, there is at most one x such that pred(x,y) 

holds in SI (although there may not be any such x, e.g., if 21 ■ Olp and y ■ e). 

If there is an x such that pred(x,y) we denote it by pd(y); otherwise, we let 

pd(y) ■ y« We now put 

pd0(y) - y 

Pdn+1(y) - Pd(pdn(y)) 

for each finite n. 

DEFINITION 5.6.    Let 81 be any ungenerated simple K-algebra.    A descriptor of 

31 is any set M of natural numbers such that for some x p |9l|, 

M-\x - {n : PAX) -So(pdn+1(x))3. 

THEOREM 5.7«    Let Si,  58 be any ungenerated simple K-algebra. 

(i)      If x c  \n\,  then ^(x) a.«Jl2, 

■ 
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(11) If x, y £ |SI| then there exist Integers m, n such ttut, for each k, 

m + k ^ M   If and only if n + k <: M  . 

(iii) 91 ^ S if and only if 91 and S have identical desciptors, i.e., there 

exist x £ |9I|> y € I8| such that M^x - H^y 

PROOF. If x ^ |ai|, then S (x) is a generated simple X algebra. Suppose 6 (x) 

is not isomorphic to Olp. Then by 5.5 (ii), there is a nontrivial term \|r and 

a u c |(S9.(x) I such that u ■ ^(u). Let y ^ |Sl|; then for some z ^ |u|, 

u) V f l&ati2)] •    Since a -  f(u), we have that u is a generator of R (z) by 
'Mi 81 

5.4 (i); hence y f IG,,/11)!*   Since y is arbitrary in |8I|,  it follows that 

Isil c®oi(u)*    But this contradicts the hypothesis that 91 is ungensrated. 

If x, y ^  |9I|,   let z be such that *, y c ^Xz)} say z ■ pd (y).    Then 

pd      (x)  ■ pd      (y)  for every k; hence, m 4 k c M      ,  for k ■ 0,1  

Finally, we consider (ill).    The "only If" part is obvious.    Let x f |9l|, 

y f  jS5|  be such that M        s Mm    '    Now   1^1  consists of the following disjoint 

subsets 

IfiLCOl 

Bx - {pdn(x)   :  n < u,}, 

and for each n. 

.n+1 ex,n- WM»4     W))|    «"<=V 

.n+1 IS9J(So(pdl ^(x)))]    otherwise. 
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• « •   • Similarly, |S| consists of disjoint classes A , B , C  , n - 0, 1 2, 

We then have ^(A^ - ^Ay) and ^/C^) *«^(Cy n), n - 0, 1, ..., since, 

by (l), all of these structures are isotnorphic to OU. Let the function 

f : |9l| -» |!B| be defined as follows. On A , f is the natural isomorphism mapping 

A to A , ard, similarly, on each C  , f is the natural isormorphlsm mapping 
x   y x ^ n 

C   to C  , n *= 0, 1. ...  . On B , we put 
x,n   n,y'     ' ' x'   r 

f(pdn(x)) -pdn(y), n - 1, 2, ... . 

That f Is, in fact, an isomorphism of 9] onto 55 now follows from M   = M  . 

Figure 3 Is a tree-like diagram of an ungenerated X-algebra. The 

descriptor associated with the element x Indicated is (0,3,6,...}. 

Theorem 5.7 shows that each ungenerated K-algebra is determined up to 

isomorphism by a single subset of the natural numbers. Two such sets lead to 

the same algebra if and only if "ultimately, one is a translation of the 

other," In the sense of 5.7 (ii). 

Theorems 5.2, 5.5, and 5.7 provide a comprehensive analytic description 

of the K-algebras. We now turn to the application of this description to the 

decision problem for WS(K). 

LEMMA 3.8. Each of the theories WS(K ), WS(K ), WS(K ), and WS(£) is finitely 

(semantlcally) axlomatlzable. 

PROOF. The required axioms will be formulated with the aid of some special 

formulas (in addition to those already defined, e.g., pred (x,^)): 

Clpd(x,X) H V u[u ^ x A u f X -•» V v[pred(v,u) - v f X]] 

Sal(x,x) s 3 X[X c X A Clpd(x,X)] A V X[x ? X A Clpd(x,X) -* x ^ X]. 

„if... ».'v - > ■ ■ 
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Figure 3.    Diagram of an Ungenerated X-Algebra. 
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Thus, Clpd(x,X) holds in a X-algebra % Just In case the predecessor operation, 

pd, maps X ~ [x] into X. An elementary argument shows that for any x, y f  |9I|, 

Sal(x,y) If and only If y ^ ^X34)* (Notice that this equivalence remains true 

under the strong interpretation.) From this it follows that the class of 

X-algebras satisfying 

(1) vx v 2 3 £CSal(^*) A Sal(£»z)] 

coincides with X . the class of simple X-algebras. The subclasses X . X > of 
8 g   U 

X    are,  respectively,  characterized by the additional axiom 
8 

(2) 3 xvZ Sal(x,Z), 

or its negation. Finally, we note that the axiom schema (II-3) is equivalent 

to the single weak second-order sentence 

(II-U) -1 3 x 3 ^[x ^ 2 A Sal(x>x) A Sal(^*)^ 

so that the class £ of locally free algebras is determined by the axioms (ll-l), 

(II-2),  (II-4). 

Theorem 5.5 and the remarks following it indicate a correspondence between 

words over [a,b}, i.e., elements of N2 and the isomorphism classes of generated 

X-algebras. Our proof of the following theorem is based on an implementation 

of this correspondence in the weak second-order language. Namely, we exhibit 

weak second-order formulas which, relative to any word u in jStpl' define in !Rp 

a simple generated X-algebra belonging to the isomorphism class corresponding 

to u. 

THEOREM $.9. WS(X ) i» decidable. 
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PROOF.    Let 

F(u,x)        ■ -1 Sal(u,x) v -1 3 2 P'ed(£;u) 

G
0(ij^'Z) - F(i^*) A F(ii'y)A C(§0($) 4«H.AZ «§o^-^ 

V (S0(x) w u A -! 3 j pred(z,jr))] 

^(S»«^) - F(H^) A F(^Z) A [(S^X) 4.U A 2 «S^x)) 

V (Sj^x) « u A -1 3 z pr«d(a,2))]< 

(Note that -1 3 z pred(z,y) holds for y ^ N? iff y ■ c). Now let u £ N2 and 

consider the structure W(u) ■ <D,P >?,>, where 

D - {x : F(u,x)}, 

Po(x) « y iff Go(u,x>y), 

P^x) -y iff G^u^y). 

If u ■ c, then 2l(u) is «R itself.  If u j* e, say u ■ ^(e) for some nontrivial 

term ty,  then 9i(u) is a generated X-algebra satisfying the axiom 3 x[x « ^(x)]* 

It follows that every generated X-algebra Is isomorphic to some Sl(u), u ^ Np. 

Let E be any sentence in the language L. Using standard techniques of replace- 

ment of atomic formulas by formulas and relativization of quantifiers (e.g., a 

formula S (x) « g is replaced by G (u,x,j[)> a quantifier 3 X ... is replaced 

by 3 X[V z[z ^ X -» F(u,z)] A ..., and so on), we can effectively obtain a 

formula E'(u) such that E is true in si(u) if and only if £'(11) holds in SU* 

Since every element of X is isomorphic to some 5l(u), it follows that E is true 

in X if and only if V u E'tu) is true in «Jlp. But WS(!n2) is decidable; hence, 

so is WS(xg). 
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Our next fc»i:. tctult will be Chet WS(K ) la decldable.    The principal tool« 

we shall use in the proof at this «re Che generalized product« of Feremen and 

Vaught [12].    Since their result« on generalised product« apply only to elemen- 

tary theories, we «re obliged to replace WS(K ) by an equivalent elemsntary 

theory:    In feet, we shall correlate with each structure tl a structure Jl   such 

that WS(n) is decldable iff ET(si+) i« decldable. 

DEFINITION $.10.    Let M - <A,0 ,.. .,0    .,R .. ..,R    . > be «n algebraic structure, 

and let A   be the set of all finite subsets of A.    Then 

where each 01  is a m.+l-ary relation such that 0!(x ,...,x    ,y) iff 
11 ion. 

0.(x f*««|X    ) " y> «nd e(x,y) hold« between two element« x, y of A   1 A    if 

and only if x f A, y p A , and x £ y. 

LEMMA $.11.    Let 21 be any algebraic structure.   We can effectively   correlate 

with each formula F(x «•••«S    ..X ,...,X    .) in the monadic second-order »-o ^n-l —o -n—1 

language of 4] a formula F'Cx »•••fX    ttZ^f'iZ .1^  in the ele,nent*ry language 

of 91   such that,  for any xo,..., x^, yo,  ..., y^j (?  |II I, 

F'(x ,...,x    ..y .....y    ,/ hold« in U   if «nd only If » o'       ' m-l'^o7      "n-l7 * 

C1)    V-'Vi e W' 

(II) V,,,,yn-l   f '•I* 

and 

(III) f(«0*«««»^1.l#y0*»»«»jra.l) hoW« 1« «• 

n 

tmm 
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HIOOF;    by standard techniques of eliminating terms in favor of relation 

symbols,  replacement of atomic formulas, and relatlvizatlon of qualifiers. 

A given ungenerated K-algebra 9] is determined up to isomorphism by any of 

Its descriptors.    The following definition and lemma provide an explicit method 

for the construction of an ungenerated K-algebra with any given descriptor. 

Some of the technical features of this construction facilitate a later argument 

involving generalized products. 

DEFINITION 5.12.    Let U be any subset of the natural numbers.    Then S(U) is the 

relational structure  (B U B',B,E,T  ,1.) where 

(I) B is the set of all sequences f - (£(0),f(l),...) such that f(i) » 0 

except for one i, denoted by f, and f(f) f N2, subject to the restriction that, 

if f > 0,  then f(f) c [h] ' N2 only if f-1 ^ U and f(f) «r {a)  • N2 only if 

f-1 ^ U; 

(II) B' is the set of all sequences f ■ <f(0); f(l),...> such that f(i) 

is a finite subset of Np for each 1, f(i) t 0  for at most finitely many 1, and 

for each 1 and w f  N?, w f  £(l) only if the sequence g such that 

g(j) -0 if J >» 1, 

- w if j - i, 

is a member of B; 

(ill) E(f,g) holds if and only if f p B, g f B', and f(f) ^ g(f); 

(iv) T (f,g) is defined only for f, g ^ B: in case 

f > 0, f-1 f U, and f(f) - e, 
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then T0(f,g) holds if and only if 

g - f-1 and g(g)  - e, 

and in all other cases,  T (f^g) holds if and only if 
A      A A A 

g - f and g(g) - f(f)a; 

(v)  T-Cf^g) is defined only for f, g ^ B:  in case 

M A A 

f > 0,  f-1 ^ U, and f(f) - €, 

then T.U^g) holds if and only if 

*»       A A 

g ■ f-1 and g(g) ■ e, 

and in all other cases, T.(f,g) holds if and only if 

g - f and g(g) - f(f)b. 

LEMMA. 5» 13» Let U be any set of natural numbers. Then there exist, an un- 

generated X-algebra SI such that 91 5: S(U); moreover, U is a descriptor of 31. 

PROOF. Let !B(U) be as in definition 5.12, and put ai ■ <B,S ,8.),  where for 

each f £ B, S (f) is the unique g £ B such that T (f,g), and S. is defined 

analogously from T.. The verifications that S , S are well-defined, that 

II s- S(U), and that U is a descriptor of 31 are purely routine. 

Figure 4 is a diagram of a structure <B(U) where U = {0,3,...}. Each node 

corresponds to a distinct sequence £ in B, and the value of this sequence at 

the one place where it is different from 0  is indicated alongside. 

He shall briefly summarize the definitions and theorems concerning gener- 

alized products which are required for the proof of the decidability of 

ET(K )• All of this material i. orawn from [12], with some minor changes. 
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f(2) - aa a f(l) - 6 

So f(l) - b 

o  f(l) - bb 

) 
Figure k.    Diagram of a Structure 3J(U) Where U ■ [0,3,...}• 
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mostly notatlonal. The reader should have little difficulty In reconciling 

these differences. (The principal difference Is our use of monadic second- 

order theories Instead of the somewhat more general "subset algebras.") 

Let 91      ,  1 £ I, be a set of relational structures of the same similarity 

type, Indexed by members of the nonempty set I.    Let 6 be any relational struc- 

ture such that  |6j  "1.    Let F be a formula In the monadic second-order language 

of Q, and let G ,,..,G    be elementary formulas in the language of the ST   '.    The 

sequence Q ■ (F,G ,...,G > is called a standard acceptable sequence with free 

variables x .....x    if ■ -o —n 

(i)      The free variables of F are at most the set variables X  .....X ; v  ' -o'       '-m' 

(11)   a variable occurs free in some G    if and only if it is one of 

Let D be the set of all functions f :  I -* (^      |2rl^|  such that f(l) ^ |8I      | 

for each 1^1.    A standard acceptable sequence Q = (F,G »•••;0 ) with one m 

free variable x   defines a set D' c D if —o 

D'  ■ {f  : F(X ,'",X- ) holds in 6 (under the strong interpretation)] 

where for j ■ 0,... ,m, 

X    - {1  : 1 £ I and G1(f(i)) holds in W   '  (under the strong interpretation)] 

In case the sequence £ has free variables x ,...,x . n > 0, we say that £ 

defines a n-ary relation on D, with an analogous meaning.    Finally, a relativized 

.     W, *--:-.,.:. 
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generalized product of the ST     with respect to 6 Is a relational structure 

(D'-R',...,!'  ,> where ^    ' o p-l 

(I) 0* Is defined by a standard acceptable sequence with one free variable; 

(II) each R', J < p, Is obtained by restricting a relation R on D to 0' 

whure R. Is defined by a standard acceptable sequence. 

Thus, each series of standard acceptable sequences £ ,,»,,?   such that £ has 

exactly one free variable defines a relativized generalized product ir>(U,6)t 

(In this notation, 91 denotes the entire sequence of 31  , 1 ^ I; i.e., SI is a 

function with domain I such that each value Is a structure of a given similarity 

type.) If Q, g are classes of relational structures (of suitable similarity 

types) then p(a,§) Is the class of all products <p(9I;6) where ö f g and for each 

if  |S|, w      c- &•    The basic theorem on generalized products (Theorem 3.1, 

[12] states: 

Any set or relation definable In the elementary theory 
of a relativized generalized product can also be defined 
by a standard acceptable sequence; moreover, this sequence 
can be effectively obtained from the defining formula. 

We shall not use this theorem directly, \r*c  rather the following consequence 

of It (see Theorem 5.6, [12]): 

If ET(a) and SS(g) are decldable, then so Is ET(p(a,g)). 

THEOREM g 14.  .et g be the class of all structures (u),<,U), where U c uu. Then 

there 1 \  relativized generalized product p such that p(i!n2},g) Is the class of 

all 9*(U), U c u). 
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PROOF.    We must exhibit a series of standard acceptable sequences £ ,  Q.,  fa 

£ ,  Cli defining the product p.    The  language of % has the constant predicates 

< and U,  and In the language of 9L " (N2 U N ,  N2, e, R , R  ), we use the symbols 

N, e, R ,  R .     In both languages, unsubscrlpted variables appearing in a formula 

denote any variables (of the appropriate type) which do not occur free in the 

formula.    The letters f,  g denote functions from u) to  |!)U|.    We take 

S " <u),<,U) to be an arbitrary element of %, and we let S(u)  ■ 

<B U B'^B^E^T ,T.) be as in Dtfinltion 5,12.    Our definitions of the sequences 

C ''"'Cli will be given in such s way that only a straightforward check against 

Definition 5.12 (which we omit) is required to verify that they do,  in fact, 

define the universe and relations of Q(U). 

Let 

F1(Xo;X1,X2>X3) s V x[x ( Xo - x P Xl] 

A 3 x[x e X0 A V jrCz ^ *„ - * « X^ 

A V x V ^[x ^X    Ajr<xA-i3 «[^ < £ A a < x] 

- (x f Xg - -1 y(z)) A (x € x3 ^ u(z))]. 

Xo - {n : f(n) € Ng}, 

X1 - In : f(n) - 0}, 

X2 - {n : f(n) e {a}  * N2}, 

X    - {n : f(n) € {b}  ' Mg), 

Now if 
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then F.{X ,X ,X2;X ) holds in 6 (under the strong Interpretation) if and only If f Is a 

member of B. We need only define formulas G.  such thac X.  « [n  : G (f(n)) holds in 

3l2], j ■ 0, ...,3.    Put 

G0($0)  
s N(xo), 

G2(xo) s S x 3 liBi*) A -1 3 «[R0(£^) v ^(«^x)] A R0(x;z) 

ASal'(jr,xo)], 

where Sal* is obtained from Sal as in Lemma 5.11, and 

G3(V " 3 5 3 X^(x) A 1 3 £[R0(£,x) V ^(«^x) ] A R^x,^) 

A Sal'(X,xo)]. 

These formulas satisfy the required condition, and hence,  £,   ■ (F ,G ,G.,G2,G ) 

is a standard acceptable sequence defining B. 

The sequence £    must define B ij B',   the domain of S(U).    Let 

Fo(X1,XJ+,X5,X6) - 3 x V Xfx < X - X ^ ifi] A V x[x f X^] 

A V x v Jjfj! < x A -1 3 «[j; < a A a < x]] 

^(x ^ x5 A -. y(jr)) v (x ^ Xg A y(x))]. 

If now X.  is as before,  and 

X,   - {n : f(n)  is a finite subset of N2} 

X5 - (n : f(n) c ({a}  • N2) U le)}, 

X6 - {n : f(n) c ({b)  ' Kg) U  le}}, 
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then Fo(X ,X. ,X ,X6) holds In 6 If and only If f ^ B*.    Thus, we let 

G6^ "" -^ A v sWS'So^ ",■, ^ 5c5o^'JS) v R^x)] v G3(x)], 

and find that 

is a standard acceptable sequence defining BUB*. 

The sequence £_ should define the relation E of S5(u). Let 

then if 

F2(Xo) sa x[x (=Xol; 

Xo - In : f(n) € g(n)}, 

we find that, for f, g C B U B1, F (X ) holds in 6 if and only if E(f,g). Put '2V o 

V^o'^l) - e(*o^i)- 

Then £p ■ (F2,G7) is a standard acceptable sequence,  and E is the restriction 

to B U B' of the relation defined by it. 

Let 

F3(Xo,X1,X2,X3)  = 3 x 3 Z[x e X0 A jr € X1 A 1(3 x'Cx' < x 

A-i3 «[x^ £ A s < x]   A UCx1) A x e Xg] 

AX<5A-i3s[2<£A£<x]  A^fX.) 

A (-1 3 x' [x* < x A -1 3 «[x1 < a A a < x] 

A yCx') A x p Xg] A £ wx A £ e Xj^)}]; 



2k July 1967 75 TM-738/035/OO 

then If 

Xo - In : f(n) € Kg), 

X1 - In : g(n) g Ng}, 

X2 - In :  f(n) - e], 

X3  - [n : g(n) - ej, 

X^ - {n : g(n) - f(n)«}, 

we have that for f, g c B U B',  F(X ,X ,X2,X   X, ) holds  In S Iff T (f,g).    Thus, 

we put 

G10(*o)       ■ N(xo) A -, 1 £CR0(*,xo) v R^«,^)] 

0ii^i)     s Gio^i) 

and have that £    = (Fo>G8,GQ'G10'Gll'C12/N is a standard acceptable sequence and 

the restriction to B n B* of the relation defined by it coincides with T . 
'0 

The sequence £•  defining an extension of T    is similar to Q , and is 

obtained from the  latter by making suitable minor modifications to the formulas 

F   and G    .    This completes the proof of Theorem 5.14. 

COROLLARY $.1$.    WS(K ) is decidable. 

PROOF.    The decidability of WS(X ) is equivalent to the decidability of ET(X ). 

"" "SyTTiebrem 5. lU and the results of Feferman and Vaught,  this,  in turn,  follows 

from the decidability of WS(<)U), which we know from 3.8 and 5.11, and of ss(a), 
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where g Is the class of all  <u),<;U), U c uu.    In [2],  Buchl established the 

decidability of SS(<a),<>).    Now a sentence F Is in SS'g)  if and only If the 

sentence VX F^X), where F^X) is obtained from F by replacing each occurence 

of the unary predicate symbol U by the set variable X,  is in SS((u),<)).  Thus, 

SS(g) is decidable, and hence,  so is WS(Ku). 

COROLLARY 5.16.    The weak second-order theory of simple K-algebras, WS(KO),  is 

decidable. 

PROOF;    by 5.9 and 5.I5. 

Cardinal sums were included by Feferman and Vaught among their examples 

of relativized generalized products.    We cannot directly use this result in 

a proof of the decidability of WS(K),   for the class x    is not the same as the 

class of cardinal sums of members of X •    Nevertheless, we can still use 
s 

generalized products to prove 

THEOREM $.17»    WS(x) is decidable. 

PROOF.    By the Lowenheim-Skolem theorem, as it applies to weak second-order 

theories, we may restrict the class X to contain only countable cardinal sums 

of members of K •    Let g be the class of all structures  <U,<) where 0 ^ U c u) 

and < is the order relation on natural numbers restricted to U.    The decidability 

of SS(g)  follows Immediately from that of SS(<U),<>).    Let 6 ■ <u,<) be a 

member of g,   let ST*' - (t    ',SX    ,B\    ) € K   for each 1 e U, and let 8 be the 

cardinal sum of the SI      .    We wish to define a relativized generalized product 

ip   such that p{3l ,?) % SB ; actually, we shall only give an informal description 
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of p(5l,6),  for the reader who has studied either [12] or the proof of 5.14 

should have little difficulty in supplying the necessary standard acceptable 

sequences,    f, g denote functions with domain U such that for each 1, f(i), 

g(l) € |8l(l)+|. 

The universe of p(8l ,)  is B (j B', where 

(1 ) 
(1)      f   e B iff for some io f U,  f(io) ^ A   0, while for all i ^ 1 , 

f(i) -0} 

(ii) f ^ B' iff for every 1 ^ U, f(i) is a finite subset of A'1', and 

for only finitely many i do we have f(i) ^ 0. 

4. 
The relations of p(9I ,©) are 

(i)  B, 

(ii)    e(f,g), which holds iff f ^   B, g (r B',  and for every i f U, either 

f(i) -0, or f(i) eg(t), 

(ill) Ro(f,g), which hole*-, iff f, g ^ B and for every i f V, either 

f(l) -g(l) -0, or ^i)(f(l),g(i)), 

(iv)    ^(f^), analogous to R . 

The product p,  thus described, establishes the decidability of ET(X ), and 

hence of WS(x). 

A similar proof of 5« 17 which does not use the Lowenheim-Skolem theorem 

can be given.    However, this proof uses the most general form of the generalized 

products, wherein the relational structure over the index set is replaced by a 

subset algebra. 

) 
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It It not difficult to show that Theorom 5.17 cannot be further Improved; 

In the sense that neither of the Axioms XX-l, II-2 can be omitted while 

retaining decidability. 

CCTtOLURY 5.18. Let 5, 5 > and 5 for k < «u be the subclass of X consisting 

of, respectively, the free algebras, the free algebras with Infinitely many 

generators, and the free algebras with k generators. Then each of WS(7), 

W8(5j, WS(7k), k < (4 and WS(x) Is decldable. 

PROOF: Bach of these subtheorles of W8(x) Is finitely (semantlcally) 

axlomat liable. 

As remarked at the end of Section k,  M.O. Rabin has recently found 

a proof of the decidability of SS(S ) for every finite p.  The constructions 
P 

and proofs of this section require only minor modifications to handle the 

strong second-order case.    The proof of 5-17, at leest, becomes simpler, end 

no use of the Lowenhela-Skolem theorem Is required.    Thus, with Rabin's result 

as a starting point, we can establish the decidability of SS(x) and SS(jC). 

*8ee [22]. 

MA« 



) 
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