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ABSTERACT

A comparison of the statistical propertiss of low altitude
atmospheric turbuvlence and the characteristics of presently used
simulation techniques shows that these techniques do not satis-
factorily account for the non-Gaussian nature of turbulence. A
non-Gaussian turbulence simulation, intended to ke used in con-
junction with piloted flight simulators, is developed.

The simulation produces three simultaneous random processes
which represent *he three orthogonal gust components. The proba-
bility distribution of each component is characterized by the
modified Bessel function of the second kind of order zero, X,
and the power spectral densities suggested by H. L. Dryden are
used in a slightly modified form. The rms intensity and scale
length of each component are independent parameters. A general

method of introducing cross spectra between components is demon-
strated.

The multiplication of independent random processes is used
to generate each orf the gust components. Gaussian white noise
generators, analog multipliers, and linear filters are used

throughout the simulation. A complete analog circuit diagram is
presented.
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SYMBOLS

Random function of time

Constant

Random function of time

Constant

Correlation function (See list of definitions)
Constant

Frequency (cps)

Impulse response function
Transfer function (the Laplace transform of h)
Imaginary, /-1

Constant

Scale length of turbulence (ft)
Random function of time

Random function c¢f time

Random function of time
Probability density function
Probability distribution function
Random function of time

Random function of time

Laplace transform variable

Time (sec)

Time (sec)

Longitudinal gust component ~ aligned with mean wind -
positive in the direction of the mean wind (ft/sec)

Mean wind speed {ft/sec)
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Operators

E{}

*

SYMBOLS (Cont'd.)
Lateral gust component - forms right handed system with
longitudinal and vertical gust components (ft/sec)
Vertical gust component (ft/sec)
Dummy variable
Dummy variable
Dummy variable
Dummy variable
Dummy variable
Dummy variable
Dyrac delta function (See list of definitions)
Gaussian white noise signal with zero mean value

Modified Bessel function of the second kind of order
zero (See list of definitions)

rms intensity (See list of definitions)
Correlation varizble (sec)

Cross spectrum (See list of definitions)
Power spectrum (See list of definitions)
Cospectrum (See list of definitions)

Normalized power spectrum (See list of definitions)

Expected value (See list of definitions)

Convolution (See list of definitions)
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SYMBOLS (Cont'd.)

Subscripts

t Function of ¢t

T Function of 7
Superscript

= Complex conjugate

Analog Symbols

:::> Summer

Integrator

Multiplier

(::) Potentiometer
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DEFINITIONS

The following functions appear repeatedly throughout the
following report. Their mathematical definitions are collected

here for convenient reference.

A. Convolution

p(t} = q(t) = [ p(7lq(t - 7)dr (DEF-1)

v
-

B. Correlation

The general correlation tensor is defined by the relationship

Cpq(xy &%, y, by, 2, 82, t, T) =
(DEF-2)

(p(x, Y, z’ t)q(x + Ax’ y + Ay} z + Az’ t + T)>

where <) denotes ensemble average. .

If the processes p and g are stationary, C can be
written P4

Cpq(x, rx, y, Ay, 2, bz, T) =
(DEF-3)

. T
Lin Lt p(x, y, z, B)alx + ox, y + &y, 2 + fa, €+ )dt
~T

In this report spatial separation (Ax, .y, Az) will not be
considered, and turbulence will be assumed homogeneous in the

X - y plane. Therefore C will not be a function of x,

AX, ¥, AY, or Az. Dependence upon height 2z will be expressed
as a depzndence upon scale length L. Finally, the formal
listing of the argument L will be suppressed.
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c.

DEFINITIONS (Cont'd.)

The cross correlation of P and q is then defined

B T
_Lim ] —
cpq(v) = e o7 l‘ pit)a(t + 1)at (DEF-4)
where (1) is understood to POssibly be a function of

scale 1 th L .

If p and q are 1dent1ca1 (DEF-4) becomes the auto-
correlatlon (1) .

. T
_ Lim 1 _
Copl™ = pn 37 ITp(t)p(t + 1)dt (DEF-5)
Implementing the expected vaiue notation of (DEF-8)
Cpq(T) = Efp(t)q(t + +)3 (DEF-6)

In terms of the power Spectral density

i2nfq
= f -7
Cpp(T) ipp( e af (DEF-7)

| &—x

Expected Value

=p()} = 277 L j p(t)at (DEF-8)




DEFINITIONS (Cont'd.)

D. Fourier transform

Transform

-i2-ft

R(f) dt (DEF-9)

fr(t)e

Inverse

x

rr (£) eizﬂft

R(t) af (DEF-10)

v

R(f) exists if:
P 2

1. "r(t)“dt exists
—co

2. All discontinuities of r(t) are finite

3. r(t) has bounded variation.

E. Modified Bessel function

Ko (%) = Iexp[-x cosh (y) Jdy |arg xI < % (DEF-11)

s}

F. Probability

Probability distributicn of a function g

n’q(x) = {[probability that q < x] (DEF-12)

Probability density distribution of a function ¢

Pq(x) = % []Pq(x)] (DEF-13)

X1




DEFINITIONS (Cont'd.)

G. RMS intensity
rms of a function p(t)
Lim 1 s 2
"o T Tea \ 27 ‘[Tp(t) dt (DEF-14)
H. Spectra
The cross spectrum of two functions p(t) and q(t)
2 -i2rf7T
fy = ¢ C T)e drT DEF-15
qu( ) ‘o pq( ) ( )
The cospectrum of p(t) and g(t) is the real part of qu(f)
. (f) = Reiépq(f)} (DEF-16)
Pa
That is, Qc (f) is obtained by Fourier transforming the
q
correlation tensor.
The power spectral density or power spectrum of p(t)
pp( ) i_mcpp(” d (DEF-17)
(1)
& (f) = _22_2_. (DEF-18)
pp GP
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SECTION

INTRCDUCTION

The development of a new aircraft, particularly one of the
V/STOL variety, is greatly facilitated by a piloted simulation of
the vehicle. 2 simulator permits pilot evaluation of handling
gualities, operating procedures, and other important factors
before the vehicle itself has been constructed. Of course the
simulation must be as realistic as possible if the results are to
be trustworthy.

Atmospheric turbulence is a particularly important effect in
low altitude operation. Consequently, a random external distur-
bance which simulates atmospheric turbulence is frequently used in
low altitude simulations to present the pilct with a more realistic
control task. Though the benefits to be derived from a realistic
simulation are worthy of considerable effort, little attention has
been given to the realistic simulation of turbulence.

The object of this report is to review the characteristics of
low altitude atmospheric turbulence, compare the characteristics
of presently used turbulence simulations to those of real turbu-
lence, and finally to suggest a simulation which is more realistic
than those presently used.

The following development is divided into four parts. Section
I1 considers the characteristics of real turbulence and the impor-
tance of those characteristics to simulator realism. The proba-
bility distribution, rms intensity, power spectral and cross spec-
tral densities are discussed and suggestions for analytical forms
to be used in simulation are made.

Section III presents a summary of presently used turbulence
simulation techniques. These are discussed in view of the char-
acteristics of real turbulence described in Section II.

Section IV formulates an analog circuit which produces a non-
Gaussian turbulence simulation. A complete mathematical develop-
ment is presented, beginning with the derivation of necessary sta-
tistical relationships. The result is an analog circuit which pro-
duces outputs statistically similar to the three components of
atmospheric turbulence occurringat a point in space. Conventional
analog equipment and ordinary Gaussian white noise generators are
used throughout.

Section V summarizes the results of Section 1V for those read-
ers who wish to omit the mathematical development, and discusses
the simulation in some detail. Complete analog circuit diagrams
are presented.




SECTION II

STATISTICAL CHARACTERISTICS OF LOW ALTITUDE ATMOSPHERIC TURBULENCE

Okviously the characteristics of real turbulence must be known
before a turbulence simulation can be specified. Unfortunately,
the mechanism of turbulence and the effects of changing atmospheric
conditions upon its structure are not understood now and will prob-
ably remain so for some time. Any description of turbulence is
therefore restricted to a discussion of its experimentally deter-
mined statistical properties.

This section will not attempt to review the tremendous amount
of data which has been published on the subject of atmospheric
turbulence. Instead, some typical statistical properties of turbu-
lence will be considered in view of the problem of realistic
simulation. Only neutral stability conditions will be investigated
since the greatest problems in vehicle control, and therefore the
greatest need for a realistic simulation, result from high wind
conditions.

This section is divided into seven pecrts and considers the
homogeneity, stationarity, probability density, rms intensity,
power spectra, and cross spectra of atmospheric turbulence. The
final section summarizes these points.

A. Homogeneity

To say that atmospheric turbulence is homogeneous implies that
its statistical properties are not functions of the spatial coor-
dinates. Unfortunately low-altitude turbulence does not demon-
strate this property.

Chapter 5 of Reference 1 presents data showing that the scale
length of the vertical gust component varies proportionally to
altitude. This effect will be discussed more completely in part
D below. Reference 2 reports that the terrain underlying & turbu-
lent region can strongly affect its intensity. Thus the tuv bulence
encountered by a vehicle can be expected to vary as the vehicle
moves over different surface features. A similar effect, the
"patchy"” structure of turbulence which will be discussed at length
in Part C below, implies that a variation of intensity with spatial
location is an intrinsic characteristic of turbulence.

Of these inhomogeneous effects, only those due to altitude
variation and the "patchy" structure appear to be intrinsic to
turbulence and therefore necessary features of a realistic simula-~
tion. Though the influence of terrain may be required for the
simulation of certain flight tasks
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(see for example Reference 3), it will not be considered here as a
typical feature of turbulence.

B. Stationarity

Atmospheric turbulence is a stationary process if its statis-
tical properties are independent of time. This is, of course, not
true if very long time periods are considered because changing
large-scale meteorological conditions are likely to introduce
changes in the turbulence structure and intensity. However, few
simulations operate continuously over such 2 lengthy period. Most
regquire only a few minutes of operation, during which the turbulence
can be assumed stationary. Therefore nonstationary effects need not
be considered in a typical simulator application.

C. Probability Density Distribution

The probability density distribution of a random process,
more commonly called its probability density, is a measure of the
likelihood that any particular state will occur. For example, the
probability density of the vertical gust component describes the
likelihood that a vertical gust velocity of any particular magni-
tude will occur. A mathematical definition is giver in the list
of definitions. Note that the continuous velocity time history is
to be considered, not merely peak gust velocities,

Despite considerable amounts of data describing gust exceedence

probability based on total flight time (see for example References

4 and 5), there is little data on the probability distribution of
gust velocities in continuous turbulence. A Gaussian distribution
has been widely assumed in the past because some data did seem to
indicate a normal distribution and because of the great statistical
simplifications which result. Unfortunately there is mounting evi-
dence that turbulence is not a Gaussian process.

Reference 6, for example, presents a computer analysis of
measurements taken by a hot wire anemometer in a wind tunnel. The
results indicate that grid generated turbulence is non-Gaussian.

Reference 7 contains an analysis of all three gust components
at both high and low altitude showing that atmospheric turbulence
is definitely non-Gaussian. The results indicate that low-altitude
turbulence is more nearly Gaussian than that at high altitudes, but
at all altitudes the probabhility density exceeds that of a Gaussian
distribution for both small and large absolute values of gust veloc-
ity. Figure 1 indicates a typical result.

A study of peak accelerations reported in Reference 8 leads to
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conclusions similar to those of Reference 7. Based upon a large
number of four and one-half minute samples of acceleration data
recorded during flight below 5,000 feet, the report finds that
atmospheric turbulence is characterized by an exponential proba-
bility density distribution of peak gust velocities. This leads
to a gust velocity probability density characterized by the modi-
fied Bessel function of the secend kind of order zero, %, .

P(x) = :10-}%(%‘) (II-1)

This function is tabulated in many publications (see for example
Reference 9). An integral representation will be found in the list
of definitions. Figure 2 compares the Gaussian and K, distribu-
tions. Note that the modified Bessel function exceeds the normal
curve at both large and small gust velocities.

The discontinuity of ¥, when its argument becomes zero
presents some difficulty. An experimental verification of this
feature would require an infinitely long turbulence time history,
or an infinite number of ensemble records. Such an analysis is,
of course, impossible.

There is, however, an argument based upon the "patchy" nature
of turbulence which leads tc the choice of ¥, to characterize
its probability density. Turbulence apparently has a patchy struc-
ture. That is, regions of intense turbulence are surrounded by
areas of relatively calm air. Evidence for this structure is pco-
vided by References 8, 10, 11, and 12. References 8 and 10 refer
specifically to low-altitude atmospheric turbulence. 1If one
assumes that the turbulence within each patch is Gaussian and that
the intensity of the turbulence varies from patch to patch in a
continuous Gaussian manner, then the turbulence time history
encountered by an aircraft flying through the region is actually
the product of two independent Gaussian random processes. Part C
of Section IV of this report demonstrates that the probability
density of such a time history is characterized by the modified
Bessel function ¥, .

If a patchy structure is assumed, the more nearly Gaussian
nature of low-altitude turbulence reported in Reference 7 can be
attributed to the influence of surface roughness in producing a
more homogeneous turbulent field. In this case longer samples
might produce a more non-Gaussian result. It should be noted that
the low-altitude data presented in Reference 7 have been filtered
to remove wavelengths longer than 7,000 feet.

The "patchy" structure of turbulence thus sugyests a modified
Bessel function probability density as shown in Figure 2. This
distribution will be adopted as descriptive of atmospheric turbu-
lence.
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The above arguments are independent of gust direction, there-
fore the ¥, distribution should be appled to all three gust com-
ponents. Ideally there should be some definition of patch size as
a function of altitude, but these data are presently unavailable.
The assumed probability densities are expressed in Equations (II-2),
(II-3), and (II-4) below.

R ST < | -
P, (x) = o, Ko(ou) (11-2)

= Ay -3
P, (x) = moy, KO(”V) (11-3)

= Ly (x -
P, (x) = no,, o(qw) (13-4)

D. RMS Intensity

The rms, or variance, of a random disturbance is a measure of
its intensity. A mathematical definition of this quantity is given
in the list of definitions.

Reference 1 indicates that the intensity of turbulence at low
altitude in neutral conditions is influenced by both the mean wind
speed and the surface roughness. 1In general therefore, the absolute
intensity chosen for a particular simulation must depend upon the
environment being simulated.

The ratios of the individual gust component rms values have
been measured by several investigators. Typical results are:

ou/ov/ow = 2.5/2.0/1.05 (Reference 1) (1I-5)
= 2.8/2.0/1.3 (Reference 13) (11-6)
=1.0/1.16/.75 {Reference 14) (11-7)

There is apparently not much agreement on these ratios. Chapter 4
of Reference 1 contains a complete discussion of the problem.

The question of rms ratios is further complicated by human
sensitivity. Reference 15 reports the results of an airborne
simulation which indicates that pilots are strongly influenced in
their handling qualities judgement by the rms of an external dis-
turbance. It is therefore necessary that truly representative
values be chosen for use in such research.




In view of pilot sensitivity and the spread of available data,
it seems best to allow a free choice of the rms value of each gust
velocity component.

E. MNormalized Power Spectral Densities

It is best to begin this part with a clarification of the term
power spectral density as used in this report. Many writers use
what might be called a "one-sided" power spectral density, a func-
tion of only positive frequencies. In this report a "“two-sided"
power spectral density, an even function of frequency, is assumed
ir order to ease the mathematical manipulations which follow. A
description of the power spectral density is to be found in the list
of definitions.

The normalized power spectral density can now be detined as
the power spectral density divided by the mean square of the
process. Thus the integral over frequency from minus tc plus
infinity is equal to unity. In the remainder of this report the
term power spectral density will be shortened to spectrum or power
spectrum.

Experience has shown that atmospheric turbulence has reason-
ably consistent normalized spectra, but there is a considerable
spread in the data. Many mathematical forms have been advanced,
each supported by some experimental evidence, to describe these
spectra. In particular, Reference 16 suggests the following normul-
tzed expressions for isotropic turbulence.

2
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Reference 17 presents the results of an analysis of low-altitude
turbulence irdicating that these expressions fit the data very well.
Unfortunately the fractional expcnents present considerable practi-
cal difficulty. As Section IV of this report will show, the turbu-
lence simulation technique proposed here requires that linear filters
be used. No such filters could be found which produced the spectral
shapes of (II-8) through (II-10).

However, Reference 18 reports that pilots seem to be insensitive
to small changes of the normalized spectra. Thus any rational alge-
braic form which reasonably approximates the data can be chosen for
piloted simulator work.

H. L. Dryden proposed in Reference 19 a set of rational spec-
tral shapes which have been widely used in past aeronautical work.

(D)

=] )

> (11-11)
uu M (2ﬂLf) ]

-+

<iLh) ) _
5 (11-12)
(ZWLf) ]2
U

=
+

34

$ (f)

f
e

Y
-
+

=
[
+

U
4 (f) =
2t %
uE)

3 (2Lf, 2]
(11-13)
2

e

1 + (

.

These spectra are derived from observed exponential auto-
correlations of the longitudinal gust component measured in a wind
tunnel. The extension to three dimensinns was carried out by apply-
ing the von Karman-Howarth relations for isotropic conditions
(Reference 20). Reference 17 investigates these shapes and finds
that they do not fit observed data very well due to the use of
integer exponents. However, these expressions permit use of linear
filters; and, in view of pilot insensitivity to changes in spectral
shape, they should provide a realistic simulation. It is also
important to note that in non-isotropic turbulence these spectra are
strictly valid only for flight parallel to the mean wind vector.

The agreement with experimental data can be improved by intro-
ducing two modifications. Reference 13 indicates that at low




altitude the normalized spectrum of the lateral gust component
matches the longitudinal spectrum much more closely than it matches
the vertical spectrum. An obviocus change is therefore a substitu-
tion of the longitudinal spectrum (II-11) in place of the right-hand
side of (II-12). The discussion in Part F below will indicate that
the lateral gqust component is independent of {i.e., uncorrelated
with) the other two camponents. Therefore the lateral component can
be modified without interfering with other parts of the simmlation.

Another problem with the Dryden spectra is that the scale
length I, is the same in all three expressions. This does not
seem to be verified by experimental evidence. Chapter 5 of Refer-
eince 1 presents data indicating that the scale length of the verti-
cal gust component varies proportionally to altitude above the
surface. Reference 21, on the other hand, finds that the scale
length of the longitudinal component is proportional to the 4/5
power of height. Therefore the two lengths cannot be equal at all
altitudes. The results of Reference 13 also seem to indicate a
difference in scale lengths. 1In view of this uncertainty it seems
wise to allow the scale l2ngth of each gust component to vary
independently.

wWhen these changes are made, the normalized spectra become:

Lu 2
) (£f) = — (11-14)
Mau U 2nLuf 2
1+ (%) ]
Lv 2
] (f£) = — (X11-15)
nW U 21’7va 2
[ + ¢ o ) ]
[ 2anf 2
L [1 + 3¢ ) ]
g, () =2 v (11-16)
wwW 2rL £ 2
1+ —9) 1

U

These expressions will be assumed “0 represent the normalized
spectral densities of low-altitude atmospheric turbulence adequately.
Equations (II-14j, (IT-15), and (II-16) are plotted in Figure 3 in a
form permitting direct comparison with most meteorological data.
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F. Correlation Tensor and Cross Spectra

Having discussed the characteristics of individual gqust comgp-
nents, it is now necessary to consider the relationship between
components. This relationship is expressed in its most gen.ral form
as the correlation tensor, complete discussions of which can be found
in Relerences 1 or 22. This tensor expresses the correlation of gqust
time histories m.:asured at different points in space and thus de-
scribes the three-dimensional distribution of turbulence. If the
rorrelation tensor is known, then such effects as rolling due to
the distribution of vertical gusts along the wing span can be inclu-
ded in a simulation of flight through turbulent air. U €fortunately,
very little is known about the form of the tensor in non-isotropic
turbulence. 1Its full evaluation will require a tremendous amount
of work, almost none of which has been carried out. There is very
little information on spatial distribution in other than the down-
wind direction. More data, particularly dealing with the lateral
distribution, must be collected before spatial distribution effects
can be included in a turbulence simulation.

If there is no spatial separation between the points at which
gust velocities are to be correlated, the situvation is somewhat
simplified. Even in this special case, however, few pieces of data
are available. Reference 13 presents the cospectral density rela-
tions of the three gust components measured at various heights for
a range of stability conditions. The relaticnship between the
correlation tensor and the cospectral density is described in the
list of definitions. The results indicate that only the vertical
and longitudinal gusts have a significant cospectrum, that it is
negative, and that it is non-zero only at low frequencies. The
data spread is quite broad and no quadrature spectra are presented,
therefore there is little reason to attempt an accurate algebraic
representation. However, some correlation should be introduced
since a general form is known.

Obviously more information is required in this area before a
realistic simulation of turbulence can be formulated. In this
paper it will be assumed that a low-frequeacy correlation exists
between the longitudinal and vertical gust components. No attempt
to simulate the spatial distribution of turbulence will be made:;
that is, only the three gust components occurring at a single point
will be modeled.

G. Summary of Turbulence Characteristics

The statistical characteristics of low-altitude turbulence
which are important to simulator realism are summarized below.

(1) Stationarity

Low-altitude turbulence can be approximated by a station-
ary process for most simulations. Long operating times,

12



(2)

(3)

(4)

(5)

(6)

on the order or several hnurs, require some allowance
for changing weather conditions.

Homogeneity

Turbulence seems to be intrinsically inhomogeneous. A
simulation should include the effects of altitude vari-
ation and the "patchy" structure orf turbulence. Terrain
features may have an influence in some instances, but
this erfect will not be considered here.

Probability Density

Turbulence seems to be characterized by a modirfied Bessel
function probability density as written in Egquations
(I1-2), (II-3), and (II-4).

RMS Intensity

The absolute rms intensity of turbulence is determined
by prevailing conditions, and therefore no particular
values can be specirfied. The rms ratios of the gqust
components are presently not well determined. A simula-
tion should therefore allow the rms value orf each qust
component to be varied independently.

Normalized Power Swectra

The gust components can be characterized by the normalized
power spectra of Equations (II-14), (II-15), and (II-16).
These forms do not rit experimental data particularly well,
but they do permit the use orf linear rilters and should

be surficiently reaiistic rfor piloted simulations.

Correlation Tensor and Cospectra

Very little is known about the spatial distribution orf
turbulence and the relationship between gust components.
A negative cospectrum ofrf the longitudinal and vertical
gust components measured at the same point in space is
indicated, but there are insufricient data to suggest an
analytical form.
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SECTION III

PRESENT TURBULENCE SIMULATIONS

This section briefly discusses the most common turbulence sim-
ulation methods and compares their usefulness. Three basically
different techniques have been found: the filtered white noise sim-
ulation, the recorded time history simulation, and the sum of sine
waves simulation. Parts A through C below discuss each of these
methods in turn. Part D summarizes the results of this section.

A. Filtered White Noise Turbulence Simulation

This technique is by far the most comnon method of turbulence
simulation (see for example Reference 15 and Referencez 22 through
28). Time histories are generated by linearly filtering Gaussian
white noise and amplifying the resultant signal so that the normal-
ized spectrum and rms intensity match those of real turbulence.

This method requires few pieces of equipment and is very versa-
tile. Reference 22, for example, proposes a filtered white noise
turbulence simulation which allows for even the spatial dependeilce
of the covariance tensor. In fact, the normalized spectra, rms
intensitius, cross spectra, and even (with some difficulty) the
effects of inhomogeneity and spatial distribution can all be simu-
lated using filtered white noise. Unfortunately, the time histories
produced have a Gaussian probability density. As discussed in
Section II of this report, turbulence is not a Gaussian process.
Therefore, although the filtered white noise method has many advan-
tages, it must be considered an incomplete simulation because it
does not reproduce the non-Gaussian nature of turbulence.

B. Recorded Time History Turbulence Simulation

This simulation of turbulence uses time histories of gast
velocities recorded during actual flight (see for example Referernces
24 and 29). There can be little argument concerning the realism
of such a technique. However, no allowance can be made for changes
of altitude or different atmospheric conditions without the collec-
tion of a very large number of time histories. Also, extended run-
ning times cannot be accommodated without repetition. Therefore,
while this model is certainly useful in the simulation of special
conditions for which little or no statistical data is available, it
does not appear to be flexible enough to provide a general turbulence
sirulation.
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C. Sum of Sine Waves Turbulence Simulation

Reference 30 reports the use of a turbulence simulation pro-
duced by summing the outputs of ten sine wave generators. This
method seems to offer no advaintage over the filtered white noise
simulation discussed in Part A above unless some specific phase
relationships between frequency components can be determined or
unless the specific frequency content of the disturbance is an
important factor in each test. At the present time there is no
indication of fixed phase relationships in random turbulence, and
most simulations do not require such complete knowledge of the
frequency content. Therefore, this method appears to be inferior
to the filtered white noise technique which produces an infinite
number of frequency components.

D. Summary

The most versatile and widely used turbulence simulation is
the filtered white noise method described in Part A above. It
provides more flexibility than the recorded time history technique
and contains more frequency componerits than the sum of sine waves
technique. Virtually all of the statistical properties of turbu-
lence with the exception of its non-Gaussian probability distribu-
tion can be simulated.

In view of the flexibility offered by the filtered white noise
technique, the next logical step toward the formulation of a real-
istic turbulence simulation appears to be an extension of this
technique to include a non-Gaussian probability distribution.
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SECTION IV

FORMULATION OF A NON-GAUSSIAN TURBULENCE SIMULATION

The desired characteristics of the simulation can be summa-
rized in the following points:

l. An analog network is to produce three simul taneous random
processes. These three processes are to represent the three
orthogonal gust components Gccurring at a point (such as the
center of gravity of a vehicle).

2. Each component should have a probability density charac-
terized by the modified Bessel function of the second type
of order zero, ¥, .

3. The simulated gust time histories are to have the same
normalized spectra as were chosen in Section II to represent
atmospheric turbulence. The scale length of each component
should be an independent variable.

4. The rms intensity of each component should be an independ-
ent variable.

5. A negative low-frequency correlation should exist between
the vertical and longitudinal gust components.

6. The analog circuit should be as uncomplicated as possible,

using Gaussian white noise generators and linear filters if
possible.

A. General Approach

With these six points in mind, the following approach is to
be taken. The "patchy" structure of turbulence discussed in Part
C of Section II suggests that the multiplication of two independent
random processes can be used tc provide a realistic simulation of
each gust component. One signal can be assumed to represent the
turbulence within a patch, and the other to represent the variation
of intensity from patch to patch. It will be shown that, if the
two signals are Gaussian processes, then the simulated gust compo-

nerit will have the desired modified Bessel function probability
density.

The concept of multiplying random processes will thus be
central in the following development. Each gust component is to be
produced by such a multiplication. The questions of rms intensity,
power spectral density, and cross spectral density remain, however.
Each of these will be considered in turn.
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The rms intensity of each component is to be an independent
variable. This can always be achieved through amplification, if
necessary; and therefore does not present a problem.

The generation of spectral densities is somewhat more difficult
because both the spectra and probability densities have been speci-
fied (Requirements 2 and 3 above). Spectral shape is easily
changed by linear filtering; but if a non-Gaussian process is
linearly filtered, its probability density will be changed. Since
the ¥, probability density is specifically desired, it follows
that the ¥, process must have the proper power spectral shape at
the time it is generated. As mentioned previously in this section,
it will be shown that a ¥, process can be generated by the multi-
plication of Gaussian processes. This result will be independent
of their spectral densities. Since Gaussian processes remain
Gaussian when passed through linear filters, it follows that any
filtering may be performed upon the Gaussian procasses in order to
shape their power spectral densities without altering the fact
that their product will have a ¥, probzbility density. It will
also be proven in the fcllowing that the power spectral density of
the product of two random processes is a function only of their
respective spectral densities. Thus, it will be demonstrated that,
by means of analog multiplication preceded by linear filtering,
the desired probability distribution and power spectral densities
can be produced simultaneously.

Finally, the possibility of producing cross spectra must be
considered. A full discussion of this problem would bas quite
lengthy and very comnplex. However, the fundamental idea can be
summarized in two statements. First, the existence of a non-zero
cross spectrum between two random processes implies that they are
not independent (i.e., they are dependent). Second, dependence
can be introduced by adding some portion of one signal o the
other through analog circuitry. For example, a low-frequency
correlation between two random processes can be produced by adding
the low frequencies of one process to the other process. The
following derivation demonstrates a very general method of intro-
ducing cross spectra into a turbulence simulation which, hopefully,
will clarify these points. The method is sufficiently general to
allow almost any suggested cross spectral form to be simulated.

Part B, C, and D of this section employ the methods outlined
above to produce an analog turbulence simulation. Part B summarizes
some statistical relations between independent random processes and
their product. Part C applies these equations to the problem cf
simulating the three gust components. Finally, part D describes a
method of introducing cross spectra to the simulation.
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B. Some General Statistical Relationships

The appendix of this report derives the following statistical
relations between independent random processes and their products.
References 31, 32, and 33 may be of some help in reading the deri-
vations of the appendix and this section.

Assume that p(t) and g(t) are independent random processes
which are multiplied to give a new random process, «r(t) . Then:

1. The probability density of r(t) is expressed by Equation
(A-6).

p.t2) = (2 (0)p (B) + P (- x)P, (- &) 3 (1v-1)

oecg

The rms intensity of r(t) is expressed by Equation (A-11).
. = 0.0 (Iv-2)

3. The power spectral density of r(t} is expressed by
Equation (A-19).

f) = -3
er( ) Qpp * Qqq (IV-3)

These three equations will be used in Part C of this section
to formulate analog circuits for the simulation of the three gust
components.

C. Simulation of the Three Gust Components

This part will first demonstrate that a K, process is
produced by the multiplication of independent Gaussian processes.
Then it will be shown that each gust component can be simulated by
employing conventional analog techniques and Gaussian white noise
generators. The three gust components are to be assumed independent
for the time being; the problem of cross spectra will be considered
in Part D below.

1. Probability Density

It is to be shown that the product of independent Gaussian
processes has a K, probability density. Assume that r(t) is
the product of the independent functions p({t) and q(t).
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r(t) = p(t)g(t) (Iv-4)

Let p(t) and g(t) he Gaussian processes with zero mean values;
then:

2

1 1.x _
Pp(X) = op/F exp{ - 2(,‘f) ] (IV-5)
2
= 1 r_olox _
Pq(x) = ‘-’-q73_: expl 2(f’g) ) (IV-6)

Substituting (IV-5) and (IV-6) into (IV-1l) gives

I 1, x 2 1, z 2 dx
P (2) = o= fexp[ -5 - () 0 (IV-7)
Pa, P q
Perform the substitution
2 _pi; Y
X = - |Z| e (IV-S)
°q
The result is
P_(2) v xpl = osh (y) jd (IV-9)
= - J e - CcOSs Y A% -
r Opgqﬂ dpnq

The integral of (IV-9) is a well known integral representation of
the modified Bessel function ¥, , and was used to derine K, in
the definitions section of this report. This expression is derived
in many books dealing with the subject of Bessel functions (see for
example Chapter 6 of Reference 34). After making the substitution

of (IV-2) the final result is

P .(2) = == ¥ol5) - >0 (Iv-10)




Thus the multiplication of independent Gaussian random pro-
cesses always produces a process characterized by a -, prcbability
density. Note that this result is independent of frequency content.

2. Generation of the Vertical Gust Spectrum

Define w(t) , the vertical velocity component, to be the
product of two independent random processes p(t) and q(t) , with
zero meanr values.

w(t) = p(t)q(t) (IV-11)
By ({(IV-3)

tww(f) = ipp(f) * tqq(f) (IV-12)

The desired form of ¢ww(f) is given by (I1-16)

2
R 3(21%3)
tel) = A o (IV-13)
1 2-Lf e
-1+ (_—_U |

Note that the w subscript on L and ~ has been suppressed since
only the vertical gust component is being considered.

Fourier transforming (IV-12) and (IV-13) gives respectively,

CW(T) = Cff(‘.')(_:gg(‘.') (IV-14)
C () = - .:_2_U. (..'—' - ELL-)ex (- HIT]) (Iv-15)
ww T T 2- L ’ U PITL '

Let 3% _(f) and éqq(f) take the forms

A
;P (f) = — (Iv-16)
PP 1 + Bf
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bt e

2

: Uf) = Gi2 33 (IV-17;
EX (1 + DE°)
Fourier transforming (IV-1€) and (IV-17)
pw_ 2--1|
C T) = - Iv-18
pp( ) 78 exp ( 7 ) ( )
= - —_= 2" - X - -
Caq (™) o2 ¢ | |- /Dyexp( =) (1v-19)
Multiplying (IV-18) by (Iv-19),
ACw2 1 i
c -)C Ty = - = 21 _ exp. - 2-17] (= + = IvV-20
pp ()Cqq () E o= L=l - /D)exp! - 2- '+ 21 )
Equations (Iv-15) and (IV-20) are identical if
AC = ~2—2(%)429 (Iv-21)
4 2
~L
B = ( 0 ) (Iv-22)
= (4L _
D = { U ) (Iv-23)

Suvbstituting these results into (IV-16) and (IVv-17), we can write

5 (Iv-24)
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2

ol = e (IV-25)
9 - 4-Lf, <2

1 + (—TF_)

Voo od

The power spectral shapes {IV-24) and (IV-25) are easily pro-
duced by linearly filtering white noise. Assume that white noise
generators which produce power spectra characterized by the constants
¥ and Kq are used; then, since the power spectrum of each process
is given by the squared absolute value of the transfer function
multiplied by the respective K , (IV-22) and (IV-25) are produced
by filters having the transfer functions

Lo2 4/ 2
W g) 2T
. P _
H(s) = s (IV-26)
1 + 0
s [/C
2~/ K
H (s) = 4 (IV-27)
2L s.2
d r1 + w_
| v

The symbol s 1is the Laplace transform variable, equal to i2-f |
and the w subscript has been reintroduced in order to avoid later
confusion. An analog circuit employing these filters to produce the
vertical power spectrum is shown in Figure (4). The diagrams of
Reference 35 were used in producing the analog circuits of this
report.

3. Generation of the Longitudinal Gust Spectrum

Define u(t) , the longitudinal gust ccmponent, to be the
product of two independent random processes p(t) and g(t) , both
with zero mean value

u(t) = p(t)g(t) (Iv-28)
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By (1Iv-3)

bau(E) = 4 () * e (£) (1v-29)

The form of 6uu(f) is given by (1I-14):

2 2

2nLf
U

éuu(f) =0 3 (Iv-30)

L
U

1 + ( )

Note that the u subscript of I, and g has been suppressed.
Following the method of Part (2),

Cuu('r) = Cpp('r)qu('r) (Iv-31)
€,y f7) = o exp(—%l'rl) (IV-32)
Assume
¢ o (f) = 1—%;2 (IV-33)
dq ) = ﬁ—?_- (Iv-34)
Fourier transforming (IV-33) and (Iv-34)
A 27| 7|
Cpp('r) =Eexp(— Vi ) (IvV-35)
D 27| 7|
qu('r) = /TiexP(—?E—) (1v-36)

24



Equations (IV-31) and (Iv-32) will be satisfied if

2
AD = 16(2) o? (Iv-37)
2
B = (&b (1v-38)
4]
Substituting (Iv-37) and (IV-38) into (Iv-33) and (Iv-34)
2 2
165
pp'f) = 5 (1v-39)
1 + (4ﬂé.f)
_ D I'é
$ _(f) = {IV-40)
ad 4nLf
1 + (= 7] )

These power spectral shapes are produced by passing white
noise through filters having the transfer functions

(—)/

Hp(s) = 2L - (Iv-41)
U
D
K
Hq(S) = ‘-‘—%E—s (IV-42)
1+ u
8)

Where Kg and Ky are constants characterizing the power spectra
of the white noisé generators and the u subscript has been re-
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introduced. An analog circuit employing these filters to produce
the lorngitudinal gust spectrum is shown in Figure {5).

4. Generation of the Lateral Gust Spectrum

Define v(t) , the lateral wind component, to be the product
of two independent random processes, p(t) and g(t) , both with
Zero mean value

v(t) = p(t)g(t)

(IV-43)
The form of vi(f) is given by (II-15)
s (f) = o2 & Z (IV-44)
v u 2nLf 2
1+ (52

Note that the v subscript of L and ¢ has been suppressed.
This form differs from that of (Iv-30) only in the constant .

The lateral power spectrum will therefore be produced by filters
having the transfer functions

7L s (IV-46)

An analog circuit employing these filters to produce the lateral
gust power spectrum is shown in Figure (6).
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D. Generation of the w - v Cospectrum

To this poirnt in the development, the three gust components
have been assumed independent. Now, in accordance with the fifth
point listed at the beginning of this section, a low-frequency
negative cospectrum is to be generated relating the longitudinal
and vertical gust components. The analog circuits of Figures (4)
and (5) cannot be modified without changing the spectral shapes
produced through the white noise sources. Since an analytical
expression is not available for the cospectrum, the following
development will demonstrate a general technique which can be
applied to any form suggested by future work. In fact, the more
general problem of producing a cross spectrum rather than simply
the cospectrum will be discussed (the cospectrum is the real
part of the cross spectrum).

Assume a filter array of the form shown in Figure (7). The
n's of that figure represent independent Gaussian white noise
generators which produce signals having zero mean values. The
signals are passed through the eight linear filters indicated by
the transfer functions Hj] through Hg . These transfer functions
are related in such a way that the indicated summing points produce
white noise as shown (see Section E of appendix). Since Gaussian
processes remain Gaussian when linearly filtered and the sum of two
independent Gaussian processes is itself a Gaussian process, the
reconstructed white noise signals are Gaussian. If the filters
denoted by Hpa through Hp are those which produce the vertical
and longitudinal gust simulations, then w(t) and wu(t) will be
the desired simulated gusts. The four white noise generators of
Figures (4) and (5) have been replaced by four summing junctions
which produce Na » Mg » Mg s and -

The appvendix considers the reaquired relationshin hetween two
filters such that the sum of their responses to white noise input
will be white noise. The result is stated in Equation (A-34).
wWhen applied to the filters H; and Hy of Figure (7), (A-34)
becomes

. 2 . 2
K = K_ |H, (i2nf + K_ |H,(i2nf) | IV-47
" T]ll 1 ) | T]2| 5 (i2nf) ( )
A similar relationship must hold between the filter pairs Hy - H, ,
H5 - He , and Hoy - H8 o

Note that n3; and m3 contribute to both w(t) and u(t) .
A portion of w(t) is thus added to wu(t) , and because of this
w(t) and u(t) will have a non-zero cross spectrum.
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This cross spectrum will now be expressad in terms of the
filter transfer functions appearing in Fiyure (7). A somewhat
simplified case of this problem is discussed in the appendix, and
the desired result in the present case follows directly frcm
Equation (A-28). fThe cross correlation of w(t) and u(t) pro-
duced by the circuit of Figure (7) is

¢y = E{fLin; #h) 4 (ny + b3+ n] -

[[(ﬁ3 * hy) + {n, + h4)] * hB‘lt :

hg) + (ns = he)l el , o -

—
—
—
3
=
»*

.
[L{ng *hg) + (ng whg)) « hD]t + T} (1V-48)

Since the n of Equation (IV-48) are independent and have zero
mean values,

Cop(™) = Elny # hy #+ b)) (ny #hy +h)y o 0
E{ (T\3 * h3 * hB)t(n3 * h7 * hD)t + T} (IV-49)

This form is essentially identical to Equation (A-23) since
. the convolution of two impulse response functions yields the
impulse response of the two filters in series. Following the
appendix from Equation (A-23) to (A-28) will yield the result, with
® = Ki ,i=1,2,..., 8.
i

@wu(f) = K1K3[Hl(~i2nf)HA(—i2nf)H5(i2nf)HC(i2nf)] *

[H3(-iznf)HB(-iznf)H7(iznf)HD(iznf] (IV-50;
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