KOLMOGOROV-TYPE TESTS FOR EXPONENTIALITY
WHEN THE SCALE PARAMETER IS UNKNOWN

BY

M. A. STEPHENS

TECHNICAL REPORT NO. 154
JANUARY 15, 1970

THIS RESEARCH WAS SPONSORED BY THE ARMY RESEARCH OFFICE,
OFFICE OF NAVAL RESEARCH, AND AIR FORCE OFFICE OF
SCIENTIFIC RESEARCH BY CONTRACT NO.
Nonr-225(52) (NR-342-022)

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
KOLMOGOROV-TYPE TESTS FOR EXPONENTIALLY
WHEN THE SCALE PARAMETER IS UNKNOWN

by

M. A. Stephens

TECHNICAL REPORT NO. 154

January 15, 1970

PREPARED UNDER CONTRACT Nonr-225(52)
NR-342-022 FOR
OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted
for any purpose of the United States Government

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
KOLMOGOROV-TYPE TESTS FOR EXPONENTIALLY
WHEN THE SCALE PARAMETER IS UNKNOWN

by

M. A. Stephens*
McGill University and Stanford University

Summary.

This paper shows how four statistics (Kolmogorov-Smirnov, Cramer-von Mises, and the Kuiper and Watson extensions) may be used to test whether a given sample comes from the exponential distribution with unknown parameter. Simple modifications of the basic definitions make it possible to use each statistic with only one line of percentage points: in turn, these may be reduced to chi-square points. The tests are powerful than the usual Pearson chi-square test, and are very well adapted for use with a computer.

1.1 Introduction.

Suppose a random sample consists of n values \(x_1, x_2, \ldots, x_n \). We wish to test the null hypothesis \(H_0 \); the sample comes from the exponential distribution, with distribution function and density:

\[
F(x) = 1 - e^{-tx}, \quad f(x) = re^{-tx}; \quad x > 0.
\]

* This work was supported also by the National Research Council of Canada.

1
The parameter \(\theta \) is not known, and will be estimated by the maximum likelihood estimator \(\hat{\theta} = 1/x \). The tests given will use Kolmogorov-type statistics, i.e. those based on a measure of the difference between the sample (or empirical) distribution function \(F_n(x) \) and the hypothesised distribution function \(F(x) \). We shall consider four of these statistics, usually known by \(D \) (Kolmogorov-Smirnov), \(W^2 \) (Cramer-von Mises), \(V \) (Kuiper) and \(U^2 \) (Watson); customarily, they are given a suffix \(n \) to show the dependence of their distributions on sample size, but this will be omitted.

1.2 Null Distributions of Kolmogorov-type Statistics.

Kolmogorov-type statistics are used to test whether a random sample comes from a given distribution; let the distribution function be \(G(x) \), to distinguish from the special \(F(x) \) defined in (1). By null distribution is meant the distribution of the test statistic when the null hypothesis is true. It is well known that when \(G(x) \) is completely specified, the null distributions of the four statistics above do not depend on \(G(x) \), but only on sample size \(n \); these distributions have all been tabulated, so that the goodness-of-fit test is available. Further, the statistics have recently been modified to remove the dependence on sample size (Stephens, 1970). When \(G(x) \) contains one or more parameters which must be estimated from the sample, the null distributions are changed, and the standard percentage points of \(D, W^2, V \) and \(U^2 \) do not apply. It has been shown that, for certain types of parameter, and for certain estimators, the null
distribution will depend on the family of distributions specified by \(G(x) \), but not on the specific true parameter values (Darling, 1955). This will be so for the situation treated in this paper, where \(\theta \) in (1) is a scale parameter and \(\hat{\theta} \) is the maximum likelihood estimator. Nevertheless, the exact null distributions of the test statistics are still difficult to find; this paper gives Monte Carlo results for the percentage points. Modifications of the test statistics are also given; the modified test statistics each require only one line of percentage points, independent of \(n \). These in turn may be reduced to values in a chi-square table. Results for the statistic \(D \) have been given also by Lilliefors (1969).

1.3 Practical Considerations.

It has been well known that Kolmogorov-type statistics possess good power properties compared with the Pearson chi-square statistic; difficulty of calculation, together with the fact that \(G(x) \) had to be completely specified, has presumably inhibited their use until now. For the present application there are several merits to the statistics:

(a) the difficulty of estimating the parameter has been removed;
(b) the power properties will still be good (see section 2.9); (c) with a computer routine, the statistics are easy to calculate, and, with the modifications removing the need for long tables of percentage points, the tests become extremely easy to apply. Similar remarks apply to testing for the normal distribution when parameters are not known; recent work on this subject is in Lilliefors (1967) and Stephens (1969a).
In section 2 the test of H_0 is set out. The formulas given for D, W^2, V and U^2 come from their definitions, with the estimate of θ used in $F(x)$. The modifications are then given, and the percentage points of the modified forms are in Table 1. These percentage points are the points for the asymptotic distributions of $\sqrt{n} D$, W^2, $\sqrt{n} V$, U^2, assuming H_0 true and the estimate of θ used. It is possible to get some theoretical results on the asymptotic distributions of W^2 and U^2 and these are used to give χ^2 approximations to the percentage points; similar χ^2 approximations are given also for D and V. A short table of smoothed Monte Carlo points for the unmodified statistics is included; comparison may then be made with the results, for D, of Lilliefors (1969).

2.1. The test is of H_0: that a given random sample of size n comes from $F(x) = 1 - e^{-\theta x}$, θ unknown. For all the four statistics we first follow these steps.

(a) Assume the x_i, $i=1,2,\ldots,n$, are in ascending order.

(b) Calculate \bar{x}, the mean of the sample, and the values $y_i = x_i / \bar{x}$, $i=1,2,\ldots,n$.

(c) Calculate $z_i = \log(1 - \exp(-y_i))$, $i=1,2,\ldots,n$.

The four statistics are calculated from the z values.
2.2 The Kolmogorov Statistic \(D \).

(1) Calculate \(D^+ = \max_i \left(i/n - z_i \right) \), \(D^- = \max_i \left(z_i - (1 - 1/n) \right) \) and
\[
D = \max \left(D^+, D^- \right)
\]

(2) Modification. Calculate
\[
D^* = (D - 0.2/n) \left(\sqrt{n} + 0.26 + 0.5/\sqrt{n} \right)
\]

(3) Test of \(H_0 \). Compare \(D^* \) with its upper tail percentage points given in Table 1: if \(D^* \) exceeds a given value, reject \(H_0 \) at the corresponding significance level.

2.3 The Cramer-von Mises Statistic \(W^2 \).

(1) Calculate \(W^2 = \sum_i \left(z_i - (2i - 1)/2n \right)^2 + 1/(12n) \).

(2) Modification. Calculate \(W^* = W^2(1 + 0.16/n) \).

(3) Test of \(H_0 \). Compare \(W^* \) with its upper tail percentage points, given in Table 1.

2.4 The Eulpe Statistic \(V \).

(1) Calculate \(V^+, V^- \) as in section 2.2, and \(V = V^+ + V^- \).

(2) Modification. Calculate
\[
V^* = (V - 0.2/n) \left(\sqrt{n} + 0.24 + 0.35/\sqrt{n} \right)
\]

(3) Test of \(H_0 \). Compare \(V^* \) with its upper tail percentage points, given in Table 1.
2.5 The Watson Statistic U^2.

1. Calculate W^2, as in section 2.3, and then $U^2 = W^2 - n(\bar{z} - \frac{1}{2})^2$,
 where \bar{z} is the mean of z_i, i.e., $\bar{z} = \sum z_i/n$.

2. Modification. Calculate $U^* = U^2 (1 + 0.16/n)$.

3. Test of H_0. Compare U^* with its upper tail percentage points, in Table 1.

2.6 Table of Percentage Points.

The percentage points for each statistic, for values of $n = 6, 8, 10, 16, 20, 40, 50, 60, 80, 100$, were found by drawing Monte Carlo samples from $f(x) = e^{-x}$, and then calculating the statistics. 10,000 samples were drawn for each n. The percentage points for $\sqrt{n} D$ were plotted against $1/n$, and extrapolated to $1/n = 0$ to give the asymptotic points for $\sqrt{n} D_1$; these are the same as those for D^*, quoted in Table 1. Similarly for the other statistics, the points in Table 1 are the asymptotic points for W^2, $\sqrt{n} V$, and U^2. The actual percentage points, at the 5% and 1% level, obtained from the smoothed graphs, are given in Table 2. Those for $\sqrt{n} D$ may be compared with those for D in Lilliefors (1969). They give excellent agreement for low values of n; for higher n, Lilliefors' asymptotic values are lower than those in Table 1, but are based on samples not larger than 35. In Table 3, we give a table of estimated moments of the distributions; for a statistic, say T, we give $m_1 = \text{sum of } 10,000 T\text{-values}/10,000$, and similarly $m_k = \sum T^k/10,000$, for $k = 2, 3$ and 4. These will be of interest if any
attempt can be made on the exact distributions of the four statistics.

2.7 Modifications.

The modifications effectively give approximations for the percentage points of a statistic; for example, setting $D^* = 0.99$ and solving for D, for any n, finds an approximation to the 104 point for D at that value of n. Table 4 compares the approximations with the smoothed Monte Carlo values. If α^* is the true significance level attained by an approximate point calculated for level α, the error $|\alpha^* - \alpha|$ can be seen to be negligible.

2.8 Chi-square Approximations to True Asymptotic Points.

An excellent approximation to the percentage points for D^*, given in Table 1, is

$$(2) \quad D^*(\alpha) \approx 0.017 + 0.9545 \chi_{(\alpha)}^2,$$

where $D^*(\alpha)$ and $\chi_{(\alpha)}^2$ are the upper tail percentage points, at level α, of D^* and of χ^2 with 2α degrees of freedom. Such an approximation is useful for computer work; given a sample, H_0 is tested by calculating D, then D^*, and then $U = (D^*-0.017)/0.9545$; U is then output and referred to the upper tail of the $\chi_{(\alpha)}^2$ table.

Chi-square approximations are also useful in combinations of tests.

For the approximation (2), the degrees of freedom of χ^2 was chosen to give the curvature in the tail close to that of D^*. Strictly, χ_{10}^2 is slightly better, but the D^* is derived from Monte Carlo results.
and χ^2_{19} is often not tabulated, so χ^2_{20} was used. The constants 0.017 and 0.0343 were found by matching the 5% and 1% points.

Table 5 contains the percentage points given by this approximation and those for V, W^2 and U^2 which follow. Comparison with the Monte Carlo points, from Table 1, shows that they are all very good. The V^* approximation, obtained as for D^*, is

\begin{equation}
V^*(\alpha) = -0.336 + 0.0295 \chi^2_{20}(\alpha).
\end{equation}

2.8 For the W^2 and U^2 statistics, further information is available on the asymptotic distributions; the mean μ and variance σ^2 may be found exactly by methods of Darling (1955). Darling gives, for the asymptotic distribution of W^2, $\mu = 0.09259$ and $\sigma^2 = 0.004357$; similar calculations for U^2 give $\mu = 0.07176$ and $\sigma^2 = 0.0019838$ (Stephens, 1969b). This information may be incorporated to give $a + bx^2_p$ approximations in several ways; for a full discussion, see Stephens (1969a), where the technique was applied in connection with tests for normality. We give here the approximations obtained by choosing p as before, and then matching the mean and the 5% point. They are:

\begin{equation}
W^*(\alpha) = 0.0460 + 0.0466 \chi^2_1(\alpha);
\end{equation}

\begin{equation}
U^*(\alpha) = 0.0265 + 0.0266 \chi^2_2(\alpha).
\end{equation}
Percentage points given by these approximations are in Table 4, together with the means and variances. The latter compare excellently with the exact values quoted above.

2.9 *Power of the Tests.*

It has been mentioned that Kolmogorov-type statistics would be expected to be more powerful than the usual Pearson chi-square statistic in the situation considered here. Lilliefors (1969) has confirmed this, for the statistic I, and has also given some comparisons, for D, when the distribution of the sample is actually \(\chi^2 \) or lognormal.

We have supplemented Lilliefors' results by also taking Monte Carlo samples from these two distributions, so that the four statistics may be compared. Samples were also taken from the half-normal distribution; i.e., \(x \) was chosen from a \(N(0,1) \) population and the absolute value of \(x \) used as the sample observation. Results are given in Table 6. \(\tilde{W}^2 \) seems a better statistic than \(D \), and \(U^2 \) than \(V \). Since \(W^2 \) and \(U^2 \) are essentially a measure of the "sum" of the discrepancies between \(F_n(x) \) and \(F(x) \), at every point, they might be expected to detect more subtle departures from the null hypothesis than \(D \) or \(V \); when \(U^2 \) is better than \(W^2 \) is itself an interesting question. There are, of course, many other ways of testing for exponentiality; other power comparisons are being made and will be published separately.
REFERENCES

TABLE 1

Upper tail percentage points of modified Kolmogorov-type statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>10</th>
<th>5</th>
<th>2.5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>D*</td>
<td>0.990</td>
<td>1.094</td>
<td>1.190</td>
<td>1.308</td>
</tr>
<tr>
<td>W*</td>
<td>0.178</td>
<td>0.225</td>
<td>0.276</td>
<td>0.349</td>
</tr>
<tr>
<td>V*</td>
<td>1.527</td>
<td>1.655</td>
<td>1.774</td>
<td>1.910</td>
</tr>
<tr>
<td>U*</td>
<td>0.131</td>
<td>0.162</td>
<td>0.193</td>
<td>0.233</td>
</tr>
</tbody>
</table>
5% and 1% Upper tail percentage points for \sqrt{nD}, W^2, \sqrt{nV}, and U^2
for use in testing for exponentiality when the scale parameter must be estimated.

<table>
<thead>
<tr>
<th>n</th>
<th>\sqrt{nD}</th>
<th>W^2</th>
<th>\sqrt{nV}</th>
<th>U^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5%</td>
<td>1%</td>
<td>5%</td>
<td>1%</td>
</tr>
<tr>
<td>6</td>
<td>1.006</td>
<td>1.174</td>
<td>0.216</td>
<td>0.317</td>
</tr>
<tr>
<td>8</td>
<td>1.017</td>
<td>1.197</td>
<td>0.219</td>
<td>0.325</td>
</tr>
<tr>
<td>10</td>
<td>1.025</td>
<td>1.212</td>
<td>.220</td>
<td>.330</td>
</tr>
<tr>
<td>12</td>
<td>1.033</td>
<td>1.223</td>
<td>.221</td>
<td>.334</td>
</tr>
<tr>
<td>15</td>
<td>1.042</td>
<td>1.235</td>
<td>.222</td>
<td>.337</td>
</tr>
<tr>
<td>20</td>
<td>1.052</td>
<td>1.268</td>
<td>.223</td>
<td>.340</td>
</tr>
<tr>
<td>25</td>
<td>1.058</td>
<td>1.258</td>
<td>.224</td>
<td>.342</td>
</tr>
<tr>
<td>30</td>
<td>1.064</td>
<td>1.264</td>
<td>.224</td>
<td>.344</td>
</tr>
<tr>
<td>40</td>
<td>1.070</td>
<td>1.274</td>
<td>.224</td>
<td>.345</td>
</tr>
<tr>
<td>50</td>
<td>1.074</td>
<td>1.278</td>
<td>.225</td>
<td>.346</td>
</tr>
<tr>
<td>100</td>
<td>1.083</td>
<td>1.291</td>
<td>.225</td>
<td>.348</td>
</tr>
<tr>
<td>Statistic</td>
<td>(\hat{m}_1)</td>
<td>(\hat{m}_2)</td>
<td>(\hat{m}_3)</td>
<td>(\hat{m}_4)</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>(n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.673</td>
<td>0.485</td>
<td>0.375</td>
<td>0.308</td>
</tr>
<tr>
<td>10</td>
<td>0.687</td>
<td>0.507</td>
<td>0.400</td>
<td>0.337</td>
</tr>
<tr>
<td>20</td>
<td>0.703</td>
<td>0.531</td>
<td>0.431</td>
<td>0.375</td>
</tr>
<tr>
<td>50</td>
<td>0.712</td>
<td>0.545</td>
<td>0.448</td>
<td>0.395</td>
</tr>
<tr>
<td>100</td>
<td>0.720</td>
<td>0.557</td>
<td>0.462</td>
<td>0.412</td>
</tr>
</tbody>
</table>
TABLE 4

Comparison of Monte Carlo and approximate percentage points for four Statistics

The values given are for the 5% and 1% Upper tail percentage points

<table>
<thead>
<tr>
<th>n</th>
<th>Statistic</th>
<th>\sqrt{nD}</th>
<th>5</th>
<th>1</th>
<th>W^2</th>
<th>5</th>
<th>1</th>
<th>\sqrt{nV}</th>
<th>5</th>
<th>1</th>
<th>U^2</th>
<th>5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>M.C.</td>
<td>1.025</td>
<td>1.212</td>
<td>0.220</td>
<td>.330</td>
<td>1.551</td>
<td>1.776</td>
<td>0.159</td>
<td>0.227</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Approx.</td>
<td>1.030</td>
<td>1.219</td>
<td>0.221</td>
<td>.343</td>
<td>1.553</td>
<td>1.783</td>
<td>0.159</td>
<td>0.229</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>M.C.</td>
<td>1.052</td>
<td>1.248</td>
<td>0.223</td>
<td>.340</td>
<td>1.587</td>
<td>1.828</td>
<td>0.160</td>
<td>0.230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Approx.</td>
<td>1.055</td>
<td>1.252</td>
<td>0.223</td>
<td>.346</td>
<td>1.590</td>
<td>1.828</td>
<td>0.161</td>
<td>0.231</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>M.C.</td>
<td>1.074</td>
<td>1.278</td>
<td>0.225</td>
<td>.346</td>
<td>1.621</td>
<td>1.868</td>
<td>0.161</td>
<td>0.232</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Approx.</td>
<td>1.07</td>
<td>1.28</td>
<td>0.224</td>
<td>.348</td>
<td>1.62</td>
<td>1.87</td>
<td>0.161</td>
<td>0.232</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>M.C.</td>
<td>1.083</td>
<td>1.291</td>
<td>0.225</td>
<td>.348</td>
<td>1.638</td>
<td>1.889</td>
<td>0.162</td>
<td>0.233</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Approx.</td>
<td>1.08</td>
<td>1.29</td>
<td>0.225</td>
<td>.348</td>
<td>1.64</td>
<td>1.89</td>
<td>0.162</td>
<td>0.233</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chi-square Approximations for Asymptotic Distributions

<table>
<thead>
<tr>
<th>Statistic</th>
<th>μ</th>
<th>σ^2</th>
<th>10</th>
<th>5</th>
<th>2.5</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>D^*</td>
<td>0.70</td>
<td>0.047</td>
<td>0.991</td>
<td>1.094</td>
<td>1.190</td>
<td>1.308</td>
</tr>
<tr>
<td>W^*</td>
<td>0.0926</td>
<td>0.00434</td>
<td>0.172</td>
<td>0.225</td>
<td>0.280</td>
<td>0.355</td>
</tr>
<tr>
<td>V^*</td>
<td>1.14</td>
<td>0.087</td>
<td>1.528</td>
<td>1.655</td>
<td>1.771</td>
<td>1.910</td>
</tr>
<tr>
<td>U^*</td>
<td>0.0718</td>
<td>0.00204</td>
<td>0.131</td>
<td>0.162</td>
<td>0.193</td>
<td>0.233</td>
</tr>
</tbody>
</table>

TABLE 5
TABLE 6

Power Comparisons

The table gives the percentage of 1000 samples significant, when the test for exponentiality was applied at the 10% level, and the true distribution is as shown; n is the number in each sample.

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Statistic</th>
<th>Distribution</th>
<th>D</th>
<th>W</th>
<th>V</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>X^2_1</td>
<td>lognormal</td>
<td>316</td>
<td>349</td>
<td>291</td>
<td>302</td>
</tr>
<tr>
<td>20</td>
<td>X^2_1</td>
<td>lognormal</td>
<td>545</td>
<td>599</td>
<td>473</td>
<td>498</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>halfnormal</td>
<td>170</td>
<td>171</td>
<td>155</td>
<td>173</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>halfnormal</td>
<td>266</td>
<td>213</td>
<td>197</td>
<td>229</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>halfnormal</td>
<td>201</td>
<td>216</td>
<td>184</td>
<td>200</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>halfnormal</td>
<td>305</td>
<td>337</td>
<td>257</td>
<td>281</td>
</tr>
</tbody>
</table>
This paper shows how four statistics (Kolmogorov-Smirnov, Cramer-von Mises, and the larger distribution extensions) may be used to test whether a given sample comes from an exponential distribution with unknown parameter. Simple modifications of the basic definitions make it possible to use each statistic with only one line of percentage points; in turn, these may be reduced to chi-square points. The tests are more powerful than the usual Pearson chi-square test, and are very well adapted for use with a computer.
Exponential distribution, Tests of fit, Kolmogorov-Smirnov, Craemer, von Mises, Goodness-of-fit

INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantees, Department of Defense activity or other organization (corporate/agency) issuing the report.

2. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether 'Confidential Data' is included. Mailing copy to be in accordance with appropriate security regulations.

3. **ABSTRACT:** Automatic data retrieval is specified in DoD Directive 5221.18 and Armed Forces Industrial Manual. Enter the group classification by the use of appropriate symbols. When applicable, show that optional symbols have been used for Group 3 and Group 4 as authorized.

4. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a report title cannot be selected without classification, the title classification in all capital letters immediately follows the title.

5. **DESCRIPTION NOTES:** If appropriate, enter the type of contract, cost, target, program, statement, annual, or fiscal year(s) when a specific reporting period is involved.

6. **AUTHORING:** Enter the name(s) of author(s) as shown on the front. Enter the initials, first name(s), last name(s). If there are several initials, show all periods in capital letters.

7. **DATE:** Enter the date of the report as day, month, year, or month/day/year. If more than one date appears on the report, enter the latest date given. This date must be unclassified.

8. **TOTAL NUMBER OF PAGES:** The total page count should follow any preparation procedure. Enter the number of pages containing information.

9. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

10. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the complete number of the contract or grant under which the report was written.

11. **PROJECT NUMBER:** Enter the project number (subject to limited distribution, such as project number, project letter, project symbol, system number, task number, etc.).

12. **DEPARTMENT OF THE NAVY:** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

13. **OTHER REPORT NUMBER:** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter these numbers.

14. **AVAILABILITY/RESTRICTION NOTICE:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1. "Qualified requesters may obtain copies of this report from DDC." (TS)
 2. "Foreign announcement and dissemination of this report is not authorized." (U)
 3. "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through...
 4. "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through...
 5. "All distribution of this report is controlled. Qualified DDC users shall request through...

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

15. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

16. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

17. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (TS), (TS), or (TS).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

18. **KEYWORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, name, military project code name, geographic location may be used as key words but will be followed by an indication of technical context. The assignment of links, rates, and weights is optional.