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1. Introduction

The dynamic environments to which weapon-vshicls systems, such
as those modeled by Andrews [1], are sihjected include steady siate
harmonic excitation, shock and rendom excitation. Thess occur as a
result of external stimuli auch as atecspherically borne disturbances
(vind, wake acoustic noise, rotor tip vortex loading) and threugh
various weapon-vehicle interactions. In the problems of this project 4
random excitation is the rule rathar than the excaption. Thus this
report summarizes the probability techniques necessury for and their
application to the development of analytic methods for obtaining the

response of linear elastic structures to certain classes of random

axcitation.
This random vibration response analysis employs the normal 1

modes of a lumped parameter representation of a complex system, The j

random forcing functiors at each mode (ir terms of wxpected valus

and power spectral density) a:s transformed to a set of modal forcing

functions. Then the response of each mode to & random forcing function

can be obtained usiig the modal transfer functions., Finally “he aodal
responsss are transformed back to the physicai plane, The results are
the statistical expected values (mean, root mean aquare, power spectral
dengity) of the displacements, velocities and accelerations of the

physical system,
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Basic Probability Concspts

(a) Random Variable

Let x be a real muaber resulting from a mesasurement and define

4n event E as "x is less than or squal to X" where X is a fixed

real number, Let the number of irials, out of the £irst N, in
which £ is obaerved, be Dy If the relative frequency nN/N tends

to a iimit, whatever the value of &, that is

lim

Pr[x:x]-u_“;l;_ (1)

exists for every roal number X, then x is called a random variable,

Of the multiplicity of random varizble classes two are presently

of considerable use. These ars discrete and continuous random

variables. Our interest herein will be confined to the continuous
randcm variable which we conceive ss having the possibility of taking
any value over some interval., More precisely we want to be able

+0 svaluate the probability

Pr [X) <x < X,] = F(X) | - F(x) | (2)

%=X, x = X,
aud we say x is a continuous random variable if F(x) is contimuous.

Noto that since F(x) is continuous then lim Pr [X, <x < X)) =4,

X%,

that is continuous random variables have the "odd" property that the

probability of taking any one specified value is zero.

The function F(m) is called a cumulative distridution funotion.

Thess funntions have the following commpn properties (a) 0 < F (x) < 13




(b) F is a nondecreasing function of xj (c) (almost all)

,Jei*gr(x) = 1,%&?{ ) = 0,

If the function F(x) is differentiable we define the probability
densitr function p(x) by

p(x) =L [F(x)] (3)

and note that p(x}, like F(x), representa a proparty of the random
variable x. Indeed without knouledge of p(x) (or F(x)) the random
varizble is computationally sssantislly useless.
From the definition of p(x) it follows that
x2
PriX, «x<Xx,] =1, plx)dx (»)
p -2 Xl

where Xl < )(2

If x and y are *wo random variables the probabilities
Pr [x < X] and Pr [y < X] each exist. If Pr [x < X, y < Y] exists

for all X and all Y, the joint cumulative distribution function of

X &nd vy is defined by the « uation

Fix,y) | =Pr[x <X,y <Yl (5)

X=X, y*7X
If both x and y are continuous variables ws define their joint

probabil ity density function p (x,y) by

I3/ p(x,y) dx dy = Pr [{(x,y) in R]. (6)

Here R is any simply connected region of the x, y plane and

2
plx,y) = %{eg-"l (7)




(b) Basic Properties

Two rendom variablex x and y are mutually independent if the

dis*ribution of values of x is unaffected by the value of y, and

vic4 versa, As a consequence of this one finds that
F(x,y) = F(x) F(y), p(x,7) = p(x) p(y) (8)

for independent random variables x and y. This "product" property
greatly simplifies the computationsal details for indspendent
processes,

One of the principal features of a random process is its
non-repeatability, Therefore, for exampls, a time history of the
response of a vehicle to a random excitation is not very meaningful.
Of more intarest is the probability >f the severity of the structural
response to a given input occurring throughout the time interval of

interest. For a random process we seek the mean or expected valus

of the reaponse, If x is a continuouc random variable with probability

density fun..ion p(x) the expected value is defined by the equation

E(x) = f: x p(x) dx (9)

whers A and B define the range of valuss taat x can assume, This
range is often (-=, =) or (0, =), It ies clear that E(x) i{s not a
function of x!

If £f(x) is integrable tiie expected value of f(x) is defined as

E(£(x)] = ff £(x) p(x) dx. (10)
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Some elementary but useful propertiss are immediatsly obvious, Thus
b a) if a is constant E{af(x)] = aE[£(x})J
and E[£(x) + a] = E[£(x)] + a
) E[g fj (x)] = g E[fj(x)] (11}
3=l =l
In particular we eamploy the results
B

B
p ()= S Y p(xyy) dy, p (y) =/ % p (x,y) dx. (12)

A A
y x

Some less obvious properties include tha following:

o 2

c) if the Xis i=1, 2,.4.y n are mutually independent

then E[}} xij +} E (x3).
i=1 ix)

d) E [(x-A)"] is the rth moment of x about A, If A = 0,

E (xr) is the rth moment about zero, If A = E(x) then
E [(x-A)v] W, (x) is the »th central moment. In terms

of this notation and E(x) we have

W, = var (x) = o° (x) = E[{x - E(a)?]

2
= ¥ x2] - [E(0)]° (13)

9) %, measures the “"variability of x".

3 .3/2
u pa/,p2 measures the skewnesg of the distribution of x.

uq/u22 measures the kurtosis ¢f ...e distribution

Additional definitions will be given where needed in the discussion.

Details of analysis and background are available in Rller [2] or Parzen

(al.




3. Multi-degree of freedom System

Tae governing squations of a linear lumped parameter physical
system are
MK + CX + X = F(t) (1n)

vhere

x
]

= [Hji] is the matrix of masses and inertias,

Cc= [Cﬂ ;J is the matrix of dissipation,

= D(ji] is the stiffness matrix,
X = [xiJ is the displacement column vector,
F = [I‘j] is the cclumm vector of forcing “unctions, and

i, 3 2 4y £4eeey W
Ad is well known these equaticas can be decoupled with the
result that
X = @x (15)
where
¢ = [Oij] is the matrix of normal modes (each mode is a columm),
and x = [xj] is the column vector of normal coardinates. Upon introducing
Eq. (15) into Eq. (14) and premultiplying by 7 w, have
oTuox + 07cox + #TKex = oTF (16)
vhere OTHQ and OTKO are diagonal and OTCO is diagoiwl if the dax-~ing forces
are proportional to either stiffness or msss. In such cases the equation
of motion, Eq. 14, can be written in the uncoupled form
mX * ok + kx = £ (17)
T

where m, c and k are diagon&l matrices and f = ¢'F,

The response of an n degree of freedom system becomes the problem




of finding the solutions xj of the n uncoupled linear differential
equations. If the individual recponses are desired it is debatable
whether the computation should be carriad out in thi~ form or in the
original form, Often kmuwledge of the nortal modes is highly desirable,
in which case the computation as ocutlined here is required.

4. Response of Single Normal Mode to Deterministic Fomcing

The equation for the jth normal mode x, is

3
. » 2 . .
xj + 2uj wny X *"nj xj fj (t)/mj (18)
where
) /2 2
206 = ogf Oegmgl™s iy = Ky/mye

Next a(transfer) function Hj relating the modal forcing function

to the modal displacement x, is sought in the form

3
xj Hj fj (t). (19)
If £, (1) = et then
o -l
Xy » gy i o vt . H, (w)e¥t, (20)
thnj -w 4+ 2iaju~njl

The utility of N, (&) can be generalized to any farcing function that

3
can be obtained as the superposition of a number of harmonic forcing

functions, Thus if Fj (w) is one of the components c¢f the Fourier Series

representation of fj (t) defined by

¥j (w) {j:: fj (t) o-i.tdt (21)
£hes the response ton (w) is
ij(u) = Hj(uG fjfua.tnd the total response ia
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] - iwt
Ry (t) = 3; J:. X (w) e de
= ;; J:: ﬂj (0) it dm‘/:: Fj (1) o Wt 44 (22)

The function H (w) is also the vehicle used to find the response to
a random excitation. Those relationships are mathematically easier to
perform Ly a superposition of elemontal solutions in the time domain
rather than in the frequency domain. The relation Latween tranafer

functions in the time arnd frequency domains is obtained as follows:

Let & (t-t) be the unit Impulse applied at t = T and hj (t-1) be the

impulse response function,Then the toial Tesponse tc a contimuous forcing
function fj (t) is

x (e = f7 £, () by (t=1) dr (23)

Also, we know from the linear theory that the impulse response

function hj and Hj (w) are reiated through

_ 1 - iwt
hj (t) = TR Hj (w) o dw

(%)

i H (o) = [: by (%) o

that is they are Fourier and inverse Fourier transforms of one another.
This is the dasired relationship between transfer functions in the
time and frequency domains, assuming these transforms exist.

Some useful transfer functions are listed here:

(a) Force input, displacement response

-1
»
Hy (0) = — L (25)
[“nj - v+ M_j "nj“]




(b) Force input, acceleration response

N uj -"132

H (26)

(w) =
3 '['u:‘?j - Jf—.’_ 2“:“;]"’:::]"]

(¢) Acceleration input, displacement response

(w) = = (27)
"nj -w + Qmjunju]

Hy

(d) Accaleration input, accsleration response

2
[

(w) = €28)
j z2 . 2.
[unj w® + Qiujunjwf‘

H

5. Response of a Single Hormul Mode to Random Forcing

Since a random vibraiion is not repeatable a time history of the
responsa of a structure to a random excitation is not very useful., Of
wore interest is the probability of the severity of the structural
resnonse to a given input during a time interval of interest., Knowing
the relationship between input and output, !.(w) or h(r), we can calculate
the statistical properties of the response if we know those of the input.

For a random process we seek the expected value of the response

assuning we know the expected value of the Input. Thus we seek, from

Eqe (23), with 6 = t - 1

§lng (U1 = 5L [, (2-0) hy (0) 6]

3 ]

« [T ELf, (t-8)]1 h

- ELE g (8) ao (29)

where fj is the only random variable.
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We now define several terms which are useful in describing rendom
procassas. A staiiomary process x(t) is one having statistics which
do not change with time, If its probability density and all higher
order densities are inuapendent of tiu+, we call the process strictly

stationary. An ergodic process is a random process for which time

avm'sgea

1l AT
. = 30
g(x) m - J‘G glx(t)] at (30)

and ensamble averages (another name for expected values) are equal,

All ergodic processes are stationary but not conversely.
If our random process is stationary then it follows frem Eq. (29)
that

Elxy ()] = EL£; ()] [ by (o) de, (31)

By settiug w=0 in Eq. (24) the value of the integral in Eq. (31) can be

evaluated to cbtain

li:[xj (t)] = Hj (0) Ellfj (t)] (32)
This beccanes
L] E(£
Elx, (1)] T 5] (33)
n

for dispilacement rasponae to force input, from Eq. (25).
The averags value nf the roduct of a function of time with the same

function displaced t sec is called the autocorrelation function

10




R(x) = %, x(t+1) = Lim fT ®{t) x(t+t) 20: ()

to distinguish it from the arcsscorrelaticn function gl(t) g, (t+1),
R(+) is purticulariiy ieportant because it forms the link with the
frequency ~ component methode of description,

For an ergodic process we can also write R(t) a& an ensemble

average (expected value) called the covariance function

R(r} = Elx{t) x(t+1)]., (35)

For an ergodic process R(t) has the following properties: (a) R(0) = x2;

(b) R(-1) = R(t}, that is R is an even function; (c) R(0) # |R(1)] for
all .
The relationship betwsen R(1) and the frequency - compcnent descrip-

tion of a random function (the spectral density) is developed in the

same manner as that relating h,(t) and H,(w) in Section #, A sufficient

3 3
condition for the existence of the Fourier transfoerm of R(t) is

L: IR(1)| dr < e

The Fourier transforv §(w) of the autocorrelation function of an ergodic

process is called the spectral density defined via

sw) = [7 R(x) &7 4o (36)
(compare with Eq, (24))
and the inversion of Eq. (36) is

RGO = 3 f12 s(w) o™ (37)

Foom Eq. (37) it is clear thac the mear square value of the random variable

1l
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is related to the spectral density by

(01 = R(0) < = [ (o) an. (38)

A nuxber of proparties of S(w) are deducible from ius definitica:

(a) S{w) is even; (b) S(w) ie reai and positive; (c) the average power

dissipated in a one ohm resistor by those frequency components of a

voltage x(t) lying in & band between w and w + duw is 25(w) d»

(the units of S(s) are powsr/cycls/second),

If Sj("') iz the apectral density of the rendom forcing function

fj(t) of Eq. (17} then it follows {see Aseltine (4]) that

sxjw (K |2 50 (39)

for an ergodic pre.ass lj it follows from the previocus remarks

that the Mean square response is

Etxf] s [xjcm’ = R(0)

_1l pe
"f;f... ij(u) du

¥ %—;f_: inj(m)l2 84(w) du, (»0)

The values E[xj]. Eq. (32), and the root mean square respons:
1/2

(x )m = {E[x 2]} define the average properties of .. sesponse,

3 3
The variation of the response from these sverage values is givan by

the variance, Eq. (13),

a*(x,) = Elx, % - {E[xj]}z.

i

whose square root is the stendard deviation,




6, Probabillity Distributions

The complete dez-viption of a . .adom process requires tho
selection of a probabili-y distribution. Thiz is usually done by
prescr!sing the probability demsity functiom p(x). For the vibration
environnsnt of vehiclee the actual distribution could be determined
by sxtensive procassing of recorded operatiomal data coupled with
invastigaticns of the sources of excitation, Invastigations of these
types have not yet led to definite genaral conclusions on the nature
of the prebability distributions. For the puxposs of wost structure
and vehicle vibpation tests and responses to randcs vibration the

Gavssian (Norsal) distribution is most camonly chozen, Its density

fumction is

pix) = #exp[-(x - m)%/20%] {#d)
: 4

vhere m = E{x] and q‘g is the variance.
A distribution which has been extensively used in the past two

decades is the Weibull distribution (see Johnson and Leone [5], p.ll2)

p) = & (3F2)°7 axpl-EH°) (42)

for x>0, b>0, ¢>0, The cumulative distribution is
P(x) = 1 - expl - (T (83)

Note that if as0, cel the Weibull distribution includes the expunential

distribution

p(x) = 6 expl - 6x], 6 = 1/b, (1s1s)

13




Tha general applicability of the Gaussian distribution follows from

the Ceutral Limit Theorem, Omne of many forms of that deMoivre-Laplace

result is as {ollows: "“Let the random variable x be distributed with
mean y and variance o (but with density function unknown). Then the
distribution of the sample mean X is closely approximsted by the Gaussian
distribution with mean y snd variance c2/n when n is large." (Feller
{2]) Thus & process will be approximately Gaussian whenever the prccess
results from thes superposition of a large number of sub-processes in

vhich no single sub-process ¢-~inates zll othars.

If the sxcitation random process (ﬁ) has a Gaussian distribution

then the response ':%r(t) {s aiso Gaussian. With the knowledge of

Gaussian response and the resuiting statistics for xj (t) known the
probability that the response is below any desired level can be calculated
from scandard tables. For axample, the probability that the absolute
valus of the rasponse will not exceed the astanclard deviation o is .68,
that it will not exceed 20 is .95 and that it will not exceed 3¢ is .999,

7. Typical Calculations

We turn now to the evakuation of the mean responsa E(x,], and the

3
mean square response E[xi]. fiod several typical forcing functions,

Commonly, this input is specified in texrms of its frequency limits,

spectral denasity, and mean value.

Meen Value of Response

The mean vaiue of the response x j(t) as a function of the mean value

of the input has been previously established as Eq. (32), Thus we have
a) mean displacement response to a force input:

Ex, ()]s Y E£(t)] (45)

p j

mj Nnj

14
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b) wmean diaplacemsnt response to an aczeleration input:

Elx,(t)] = - EOA(6)] we)
Wy

c) mean acceleration response to sither a force or accelera.ion

input:

Emj] = 0, (47)

Mean Square Response

If L and w, are the bandwidth frequency iimits for a particular
excitation function then the genarsl expression for the mean square

response, from Lq. (40), becomas

E[x:;.l * %? J(82 lﬂj(u)lz ﬂj(u) de (u8)
[
1

2
Por the case 8,(u) = 8,, = constant C1he /cps)

) S' 2 e\
2 (] da
B[xj ]l= - 'Tf 3 (49)

2x ‘j " (“nj -a) ltaj unj »

T

is the mean square displacement responass to a constant force input.
513

Aoj(§1)

If the excitation is o7 the form 85(6)

<w<w, (lblz_bps) then

" <
. B/3
N (~)
1 X » @0‘1 dw
EL¥, SR —-} ——— . (50)
mj lq-+2uj (uj-l)u *.nj

is the wean square acceleration response to a varying force input.

15

SR ST T vy . R s e




Similar expressi~u. are obtainable for other mean square responses.

The integrals can be evaluated in terms of elementary functions.

P C

8. Reaponse of a Complex Structur ' to Randem Excitation

The sclutions of the random rasponsas of each norual mode must now

be combined to vield the random responsa of the multi-degree of freedom

system, Modal (fj) and physical forcing functions (F_)) are related

by the equation (see Eq. (16))

fy = gzz TR

where ¢ 34 are the elements of OT. Thus we have

Bf,] = gﬂl 0, BE, .(52)

3

that is the mean value of the modal forcing function is directly

computable in terms of the mean values of the physical forcing

functions, Equation (52) again follows from the linearity of the

expectation operator,

The relztionship between the physical and modal spectral

From specific

densities, used in our previous work, is more complex,

forms of Eq. (38) the relationship between input force and input

spectral density is

e 2 1 ¥2
L[Fi (t)] = 1 [. '51 (w) dm (53)
1

and in the modal plane
2 i .
F.[fj (t)] = Vol f




Since

2
= 4 [
£ ,«E o=1 Yir Y18 Fr T (55)

then
2, » 2 2 ‘
E[fi 3= k=1 e E[Fr 1+ 2:1 ggl’jg’fg F,Fg (56)

Using Eqs. (55) and (56) it follows from Eq. (40,, for ergodic prcceases,

that
n T (B 1/2
S(u) @ 4 o 04, 94, [5(07,02) B (uie )] (57)

vhere 6 is the phase angle of the excitatiom,

9. From Modal Response to Physical Response

In general X = #x or in component form

= - (58)
Ul ST
Consequun 'y the mean physical response is
n v

El%1 = Fa1 44 sij] (59)

and the msan square response is
2 n 2 2 a
RS RS PR RS B g’%iq by 0 Elxgm 1 (60)

if xj and x, are independent the quantity E[xjxk] = cov (xj,xk) =0,

in which case
2 n 2 2
E[X;"] = BRIT E[xj 1. (61)

D
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This situation occurs suf iciently often to be of interest in

real applications, Finally,
2 2 12
o;" (Xg) = E[x;"1 - {EEX’i]} . (62)
Since the relationship between physical and modal acceleration is
’x‘ = n .
17§ g %

the steps outlined above are repeatable for the acceleration response

of the linear systen,
Other atatistical considerations also play an important role in
this Themis Project and therefore will be the subject of additional

summary reports. These include fatigue damage criteria for structures

under randon: excitation, the response of continuous (rather than lumped)

structurg to random excitation and the optimization of lumped parameter

and continuous dynamic systsms under random excitation.
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