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AN APPROXIMATE METHOD FOR DETERMINING STRESSES IN AN ELASTIC
ANISOTROPIC PLATE NEAR AN OPENING WHICH IS ALMOST CIRCULAR

S. G. Lekhnitskiy
(Saratov)

The two-dimensional problem of the theory of
elasticity for an anisotropic plate with an opening
has only been solved for the case of an elliptical
or circular opening. All other shapes of openings,
includéing many of practical importance, as yet have
not been sufficiently investigated. In this paper
an approximate method 1is suggested for solving the
two-dimensional problem for an infinite,
anisotropic plate with an almost circular opening.
The method is based on the introduction of a small

\ parameter (characterizing the deviation of the
opening from circular), the highest powers of which
{(beginning, for example, with the third or fourth)
are discarded during the investigation. The

- problem is reduced to the well-known one concerning '

the equilibrium of an anisotropic plate with a
circular opening. Chief attention is given to an
opening having four axes of symmetry (with the
proper parameter selection it can differ only
slightly from a square with rounded corners).
Approximate solutions for a plate with such an
cpening are derived for both the general case of
loading and for two particular cases when the plate
is orthotropic and is deformed by: 1) tensile stresses
and 2) bending moments in the middle plane.

i. General equations for the two-dimensional problem of the

theory of elasticity of an anisotropic body. In this and the

following paragraphs we shall use the common designations for
component stresses, projections of displacement, elastic constants,

B RDEnT-2 - 35759 1
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W2 shall recall the basic equations of a two-dimensional
problem for an anisotropic body. Let an elastic homogeneous
anisctropic body be found in a generalized two-dimensional stressed
state or in a state of two-dimensional deformation relative to the
plane xy. It 1s assumed that three-dimensional forces are absent,
deformations are small, and the material follows a generalized
Hooke law, with which at each point there is a plane of elastic
symmetry parallel to the xy plane. Thenr, as 1s known, the component
stresses which are parallel to this plane are expressed through '
stress function F(x, y):

_o'F R @F

T G =gt =gy (1.1)

Tne general expression for the stress function has the form
F=2Re[F, (') + Fy ()] (1.2)

where Re is the designation for the real part of the complex
expression; Fl and F2 are arbitrary analytic functions of the complex
variables; zi = X + Hyy and zé = x + HoY s while My and B, are complex
parameters, i.e., roots of .equation

St —20p% 4 (2812 +Baa) BT — 28341 +Pgy =0 (1.3)

In the last equation Bij = aij for a generalized two-dimensional
t d st = . = a. : -
stressed state or 813 3 5 al3aJ3/a33 for a two-dimensional
deformation (i. j = 1, 2, 6; a, 4 are the elastic constants of the
equations expressing the generalized Hooke law!).

Let us introduce the new parcmeters:

)‘1=1_T S, A= (i=V=T1) (1.4)

Here Al and A2 are real or complex numbers, in absolute value
less than unity (or, at least, equal to 1). Instead of the complex

variables zi and zé and functions Fl and F2, 1t 1s convenient to
introduce

1
i and z,
1 and z,, respectively). '

'See [1], pages 16, 27, 31, 34 (in our book variables z
are designated by z

FTD-17-23-367-69 2
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z,==z+)‘,-5, z,=z+)‘,-z-. 2=+ iy, T=z—iy (1.5)

6;(z) = Fy (%), ~ B4(2) = Fa(z) , (1.€)

DU A1

Then instead of (1.2) we shall have

A et A

F =2Ro [0, (z;) + 6s(z)] . (1.7) !

Designating : 1
SR ds, - do; * .

iz ={+h2= W)=t (=12 (1.8)

we shall derive the following general expressions:

L 2Re(0, () + Oy ()], g =2Re [0y (2a) + 3 s (3] (1.9)

“gg = 2Ro [y (1 + &) O3 (z1) + e (1 + 1) O5 ()]
o, =2Re [(1 + 1) Oy’ (z) 4 (1 +)y) Oy (24)] (1.10)
tgy =—2Ro[p; {1 4+ 1) 1 (2;) + b2 {1 4 )) D3 (2y)]

Knowing how the component stresses are expressed, it 1s easy to
find from the equations of the generalized Hocke law (by integration)
the general expressions for the components of the displacemenst.

They have the form:

u=2Re [p, D, (2)) + s Qa(2)] — 0¥ T 4

1
"’=2R°[‘I1‘D1(zx)+‘Ia®a(%)]+‘°x+"’o (1.11)

Here

Pi=3upd + 313 — B bi 9g=.8xﬂ*i'+ g:—"—ﬁge i (c"s= 1,2) (1.12)

the integration constants which characterize "rigid displacements"
in the plane parallel to the xy plane are designated by w, u
v

0° and

OI

In studying the stressed state of a plate with an opening,
of greactest interest 1s the stress 0g near the opening on the

small areas normal to its contour. It is determined by formula

FUD-lT=23-307-09 8




3y = 95 c08? (i, ) + ¢, cos* (n, x) — 214, cos (1, Z) cos (n, ) (1.13)

Ex~ressing the cosines of angles, formed by the normal n to the
contour of the opening with the coordinate axes, through derivatives
of the coordinates of contour points x and y along its arc s and
using formula (1.10), we derive

o= 2Te (1 4 1a) (2 — 1 SV 0 (20 (0 (3L 1y $E )04 (2 (1.14)

s

Let the components of internal forces Xn and Yn be given on the
contour of the region occupied by the body (first basic problem).
We shall take counterclockwise stress as positive,

Then boundary
conditions will have the form:

8
or ,
-"?=SY,.ds+cl, g-f:—gknds-i-c,
0 i

0

(1.15)

~rc¢ of the contour s is calculated from a certain point on
the contour, which is taken as the initial point; cy and c, are
integration constants whizh can be assumed to be arbitrary in the case

of a simply connected region, Considering (1.9), we shall write the
boundary conditions as:

2Ro[®; (2,) + Oa(z)l = { Yads + ¢

0

. : (1.16)
2Ro[p, Oy (3)) + 13 Dy (2)] = “&Xn ds+ ¢,
0

The two-dimensional problem is reduced to a determination of

two functions ¢l(zl) and ¢2(22) in the region of body S, which
satisfy (at prescribed internal forces) conditions (1.16), do not

have singularities within region S, and give single-valued

displacements and stresses. In other words, these functions must be

determined in regions Sl and 82 obtained from S‘by affine

transformation.’ Naturally, a solution found for a plate can be

transferred to the case of two-dimensional deformation.

'See [1], pages 35-38.

FID-1iT-23-367-69 4
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2. in approximate method of solving a two-Jdimensional problem
for an infinite plane with a notch.

Let the reglon of the body be
an infinite plane with a notch in the form of a figure which closely

resembles a circle with radius a. We shall give the equation for

the contour of the notch the following form:

y :
x=a[cqs&+a Z(a,.cosn&-{—@,,sinn&)]

n={

| = . o (2.1)
y=a[siu{) +& _2 (—ansinnd + By cos n&)J

Nexi

where € is the small parameter and o, and Bn are constants; during

one complete passage along the contour 6 changes from 0 to 2.

When € = 0 we obtain the equation of a circle. Finding a precise

solution for an anisotropic plate with an opening bounded by a
contour in the form of (2.1) involves considerable difficulties and

has not, as yet, been accomplished. However, making use of the fact

that € 1s small, it is comparatively easy to find an approximate
solution, considering this quantity as the small parameter. The
"small pérameter method" has been used by many authors to construct
approximate solutions for various problems of the theory of

elasticity (for example, G. Yu. Dzhanelidze, N. V. Zvolinskiy,
A. I. Lur‘ye, D. Yu. Panov, and P. M. Riz).!

The function which maps conformally the exterior of a unit
circle found in the plane of complex variable ¢ = peel on an infinite
region with notech (2.1) has the form:

z=(-)(()=a[C+S?(C)1 (2.2)

Here

N
2Q = S on + i3t (2.3)

n={

1A brief survey of works of this nature performed before 1948

and other related literature can be found in reference [5]
(pages 182-190).

Fl0~HT-23-367-65 5




Branch points are determined from equation
7ol 4e' {)=0; (2.4)

they must all be within the unit circle or inside the notch on
plane z; otherwise the mapping will nct be one-to-one. This imposes
certain conditions (bounds) on the guantities of coefficients o,

n
B> and parameter €; we consider them fulfilled.

Passing to plane g, we replace z and z in the arguments of
functions ¢1 and ¢2 by w and w. It is easy to see by simple checking
that function

D, (2;) =D, [0 (C) + )1;@)] (2.5)
satisfies equation
— 7 0
o O 5—v 0 F =0 (2.6)

(in which T and T are considered independent variables), or, in
greater, detail, equation

i [t + 6 @1 55 — [+ o7 Q1 5 = (2.7)

If we take p and o = e for the independent variables,

equation (2.6)-(2.7) assumes the form
rrd a(b 1

o Q=2 N3 —[sw © + 20 @14 5t =0 (2.8)

o?

We shall seek an expression for Ql in the form of a power
series of e€:

Py=t+ ey 42Dy ... (2.9)

where ¢, does not depend on €. Substituting (2.9) into equation
(2.7) and equating to zero terms which do not depend on € and
coefficients at various powers of €, we derive an infinite system
of recurrent equations:

D‘(’

Y =iiT-23-3867-69 6

ey
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i Tt s

, Oy 0Dy e NN T (2.10)
Iy ‘.g—-7§-+n«(~)——f———«() =0 k=123,.)

Integrating successively these equations 1n partial derivatives,
beginning with the first, we obtain:

D= frot+ 7.,C—).
= it 10 + (3O + 1 7 G0 €+ 10 (2.11)
D= fraC+ M)+ 2@ + o @ €+ 1T+

““’(c)“"x?(c)]’f 10(C+71~)

etc., where the quantities flk are arbitrary analytic functions of
the argumeht ;g + AlE, and the derivatives of these functions
throughout the argument are designated by primes. Consequently:

O, =fo+elfu+t(o+ °)f’10]+32[f12+(°+’1”)f’u+
+57 , (2 + 2002 fil+ o+ [fre+ (2 +09)f 1 kit (2.12)
N CE Y AR PR e L

Here, for the sake of brevity, we omit argument 7 + Alc of
functions f( n) and arguments ¢ and T of functions ¢ and b.

A fully analogous expression is also obtained for ¢2, repl-cing
the first subscripts 1 in (2.12) with 2 ancd Al with Az. We shall
note that expression (2.12) is an expansion in power series of a

function depending on parameter e:

@, (z) =f, (—f,'—: 8= €+ 0l oo + 17 @lie) (2.13)

When argument ¢ passes along the contour of the unit circle,
argument g, =g + Alf passes along the contour of a "unit ellipse"
obtained from the circle by affine transformation, while argument
L, = ¢ 7 Azf passes along the contour of another "unit ellipse"
which correspends to parameter Az. Consequently, the regions of
variation in functions flk(cl) and fzk(gz) are infinite planes with

FT0-i17-23-367-669 7
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notches in the form of "unit ellipses™ and the prcblem is reduced
to determining these functions based on the prescribed boundary

conditions on the contours of the notches, in other words, to a
well-xnown problem.

Let us examine an infinite anisotropic plate with an opening
whose contour is determined by equation (2.1). We shall assume that
internal forces Xn and Yn are distributed along the edge of the
opening, their principal vector being zero.! Obviously Xn and Yn
will be periodic functions of 6. Assuming that they can be expanded
in a Fourier series, we, under the limitation taken, derive the
integrals which go into the boundary conditions (1.16) in the form
of Fourier series. Let us assume that the forces also depend on
parameter € and can be expanded into an € power series. Integrating
them along an arc of the notch's contour, we derive: ‘

L)

Yads+ ¢ = }_‘,.3" [;I:o 5 _3 (Bkm 3™ -+ Gkm 3"")]
Rwnl) me=i

= .
Xnds 4¢3 = }_}e" [:"‘ko"f‘ 2 (Bxm 3™ <+ Biem 5—'")]
k= e .

Caanrny G0

»x ©

(2.14)

[ g

Here Orem and Bkm are known coefficients; Oem and Bkm are

conjugate quantities; Eko and Eko are constants which can be
considered arbitrary.

In th;; case, functions @l and ¢2 will be holomorphic and
unigue? in their regions Sl and Sé. Substituting their boundary
values into (1.16) and equating coefficients at identical powers of
€ in the left and right sides, we derive an infinite series of palrs
of conditions, each of which corresponds to a certain power €,

We shall write them in abbreviated form, omitting the boundary
values of the arguments

;r;-:o!. _C'=":—..C1.-"=°'i“>‘":' Ca=‘?.+ %‘; (2.15)

1 ks . A .
This limitation is not essential, but we assume it in order not to
write out elementary, but very cumbersome expressions.

’See [1], page 37.

SLL=iT-23-367-69 8
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e S S = T ——

we have
. fro '.*"fa'i"fx'o.'.i' 7:0 ’=:oo+ i(adm-c"‘-i-:mc"") ’

P¢f|o+ szzo + 1 fro+ pafae = Poo + E("om LAl “om °""“)

Mme]

fll: 'r'f:t+(?+'1‘)f| ot @+ 9 st ---+“ (?+)x°)k

l (o + ).zo)ki(k) + oonj. quantities = a;.o + 2. (B4m c"‘ + Tim6—™)
meq

F;iu +P,lz§ c‘,("*"l?)fl.k—l +l",(° + 'z?)/lz.g_i +.0n
o A B MR+ B (o + 29 ) 4 sond. quemtities,

=.§k0 +E(§km°“+§km°-m) ’ (k.-l,z, 3,...)
mes{ .
This problem was reduced to the problem concerning the elastic
equilibrium of an anisotropic plate with a circular opening. Its
solution is known. Functions flk(cl) and f2k(c2), which correspond

to the case when forces are applled to the edge of the opening and
their principal vector is equal to zero, have the form:!

m

= 2
fix =4k + Z Akm(m—TT:/

Nles]

. (2.16)
RPN A
: e} G+ V E— 2y
On the contour of the opening
fue = Ao+ Z Ar o™, fk = Bro + ) Bamo™ . (2.17)
me] Mmam})
Substituting values (2.17) into the first pair of bouadary
conditions (k = 0), we find coefficients Koo and By easily (AOO’

BOO remain arbitrary and do not influence. the distribution of stresses).

'See our work L1], page 90 (the designations which we use here
differ somewhat from the designations in the referenced work). If the
principal vector of forces Xn and Yp does not egual zero, expressions

(2.14) will contain components in the form of A 1ln o; according to

this, logarithmic terms with undetermined coefficlents must be added
to functions (2.16).




Derivatives from the found functions flc and f20 muliiplied,
respectively, by ¢ + A1¢ and ¢ + A2¢ enter into the second pair of
boundary conditions (k = 1). These derivatives will contain both
negative and positive powers of o. Substituting boundary conditions
fll and le into conditions corresponding to k = 1, we find A1
B1m by a comparison of coefficients in the left and right sides;
they will be expressed through ®1m> Blm and through AOm’ BOm found
earlier., -Functions flO’ f20, fll’ and f2l determine the solution
to the problem in the first approximation., Desiring to obtain a

m and

second approximation, we keep two powers of € in the expressions for
¢1 and ¢2. Functions f12 and f22 are determined from the third pair
of boundary conditions corresponding to k = 2; their coefficients

are expressed through A B A and B found earlier and

Om? "O0m? "1m? lm

through Ao and B2m‘

Proceeding this way, we can construct (at least formally) any
approxi&ation. Let us mention here that we are not studying the
question of the convergence of a process of successive approximations,
bus &2 ilimltirng oniselves to particular cases by the second and
third approximations. It also remains unclear what the highest
value of € is which can still pe considered small in each particular
case of opening. A comparison of the numerical results found in
the second and third approximations furnishes a basis for concluding
that thes=z approximations are sufficiently accurate for practical
use even when the parameter € is not very small in comparison with
unity.

In a perfectly analogous manner we can construct approximate
solutions for an infinite plate with an opening closely resembling
elliptical, the equation of whose contour has the form: '

N
£=a {cos% -+ e Z‘, (ancos nd + B, sin n&)]
Nn=]

L (2.18)
Y= a[csinf) 4+ ¢ 2 (=—ansinnd + 3,cos n{))]

Nea]

FID-HT-23-367-69 10
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Here a and b are semi-ares of an ellipse; ¢ = b/a. PFunction ¢
represented in the form of series (2.9), will have the form (2.12)

only when the following expression is the argument of function flk:

1’

{4+c, {f—ec i . [A4e
ARETSPTIRINY Y

P

+57 %) (2.19)

The problem is reduced to a determination of the pressure
distribution in an anisotropic plate with an elliptical opening
(with semi-~axes 1 and c), the solution of which is known.

3. Coefficlents of boundary values for functions ¢1 and ¢, for
a plate weakened by an opening with four axes of symmetry. Let us

examine an infinite anisotropic plate with an opening whose contour
is determined by equation '

z = a(cosd 4 ecos 39)
¥ = a(sin® —2sin 30) (3.1)

=
a
b
3

f,' \

1 b i
/7

i

N

\

] .

N

L)
R
- -1
]
t\ ;
\
&

ig. 1. Fig. 2.
Here € is the small parameter (in any case |e| < %).

The opening is-a figure with four axes of symmetry; when e is
positive it is located, with respect to the coordinate system, as
in Fig. 1, and when negative as in Fig. 2. When [e] = % or [e| = %
this figure will have the shape of a square with rounded corners
and slightly curved sides.! In this case

'Solutions to certain problems concerning the elastic equilibrium
of an isotropic plate with an opening bounded by a contour such as

(3.1) can be found in the work of M. I. Nayman [3] and in the boox
of G. N. Savin [4&].

S Nl

FUO-UiT-23-3387-65 . 11




=%,  e@=0(t+3F) (2.2)

Owing to the simplicity of function'¢, it is easy to set up here
the structure of boundary conditions of products
Lo+ me) ¥ (3.3)
in the left sides of conditions (2.15) for any n and k and determine
all coefficients at various powers of o depending on coefiici...vs
Ayn OF the same function fy, [see (2.16) and (2.17)]. Formulas
for coefficients of expression {3.3) are necessary when we determine

the first, second, and third approximations (and also higher
approximations which we are not considering in this work).

The boundary value of the derivative of the n-th order of
function flk is derived on the basis of the boundary value of n — its

s

Iirst derivative according to formula

w df oy ARV
( — ——,
f‘,’:)— fld\3+ dl)— de 1—2a /e (3.4)
or
n=1)
iy A A
= (1ot (3.5)

Assuming n = 1 and using the first expression (2.17), we find
fli’ and then based on the first derivative we find the second;
pased on the second, the third; etc. Multiplying the derivatives
by the corresponding powers ¢ + A1¢, we arrive at the conclusion

that the product (3.3) has the following structure

n--1

(2 F RN = (4 ) W= 3 AR+ S e (3.6)

m-o Mmemi

FT0-H0-23-367-69 12
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Formulas for coefficients Azm and AE = will be more complex
>

the larger m is and the superscript n which indicates the order of
the derivative. If we make the stipulation, then they can all be
written in the foru of one

Ay = 2 Ak, miansa—ai Emi® (M) (3.7)

tem)

Here under the summation sign A indicates coefficients of
function flk’ while gmin is an integral polynomial to the power

i +n-1 relative to A,, 2aving the form!®

l,
g M) = -(T‘-}}’)—?l—, (in - 20+ 2 — 20) b1
X {(m 420+ 2—i)(m + 28+ 3—i)...(m +3n—i)i(i+1)...
ce(litn=2)44n(m+2n—41—i)(m+2n—i)...
(A BB i) (i—8) (i—2)... (i 4+ B—5)dyIne 4
+ () (met-2n—bimi) (mt-20—3—i) . . . (m+-31—6—i) (i) (i=5)... (3.8)
it n—8)ym-s 4. 4+ (") m—n+8—i)m—n+9—1i)...
e (mE6—i)(i—3n+8)(i—3n+T)...(i—28+4)1 S+
+am—n+5—i)(m——n+46—i)...(m+3—10)(i—3n+3) X
X (E—3n+4)...(i—2n + 1)1 + (m—n +2—i) (m—n+3—1i) ...
cor(m—0)(i—3n)(i—3n+1)...(i—2n—2)

In order to determine A, with these formulas, at the glven

values for n, k, and m, afte?msubstituting these values into (3.7)
and (3.8) we must discard all A with the second subscript negative
anc all terms with negative powers of Al. The formulss are also

valid for determining coefficients at positive powers of o (m must

be replaced in them by the guantity -m).

Specifically, for coefficients which correspond to derivatives
of the first, second, and third orders (n = 1, 2, 3) we derive from

(2473=(3.8)¢
All:m b 2 A, mea—zi (’" +4 —2i) lti-‘ ()‘1‘ + 1) ( 3.9 )

im] 0

1(2) and others are biaomial coefficients.

e trm -~ z
JUD-IT-23-507-56 13




Ai-m = "!,“’ }_ k, m+g—2i (’n + b—ol)) i-7 X
2

. (3.10)
X [(m 4 6—i)ir® + m+3-—l)(z——3)l, + (m—i)(i = 6))
41,,,, = -—-1—2-._' Ak me-3-2i (m - 8§— 21)) =10 3¢
iml
% [(-+8—i) (1t 9—i) i (i+1) 3133 (et 5—i) (m6—i) (i--3) (i—2) 1s® + (3.11)

+3 (it 2—i) (14 3—i) (i—6) (i—>5) by * -+ (m—Ar-i) (m—i) (i=9) (i~8)] (3.41)

Coefficients Bﬁm are found by the same formulas (.7)-(3.11)
in which we must substitute B instead of A and 12 instead of Al.

Formulas similar to these are also easy to derive for an
opening of another shape in which the contour is given by equation

z=a(cosd +z2cos28), y=a(sind—esin2d) (3.12)

'th the proper selection of € the opening will differ only
slightly from an equilateral triangle with rounded corners, but we
shall not consider this case here.l

4, Approximate solution for an anisctropic plate weakened by
an_opening with four axes of symmetry, with an arbitrary distribution
of forces along the contour. Let us find an approximate solution
to the problem concerning the elastic equilibrium of an anisotropic
plate with the opening whose contour is given by equation (3.1).

Let internal forces Xn and Yn be distributed arbitrarily along

the edge of the opening, but their principal vector be equal to
zero.

From the beginning let us limit ourselves to the second
approximation, discarding the highest powers of € in expression (2.9)
beginning with the third. Then

1 : ] :
Solutions to problems concerning stress distribution in an
isotrnpic plate with such an opening can be found in references

(3, 41,

FU0=1T-23-367-69 14
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®, = Dy + 80, + G"Dn.‘ Qg == Qyq + &Py + 630y, (4.1)

Boundary conditions for functions independent of € are written
in the following manner [see (1.16) and (2.14)]:

. [--]
Pui + Poic + Py + P = R 2 (i 6™ + Ggm —™) -

Mmms]

= R wp (4.2)
1Puk + paPat + 1Bt + 1Pk = B0 + D) (Bum0™ + Famo™) _
. Ml

(k=0,1,2)

Using the formulas from the preceding paragraph, we conclude

that functions ¢lk and ¢2k will have the following form on the
contour of the opening:

Qo= A+ ) Agma=™,  @p=Boo+ D Bomo™™ (4.3)
mam} . . mes} .

(Du = = onlxc —_— 2A02;-1 -{-. Axo -+ Z (Axm +A3m) o=

Me=}

@y, = — B3 — 2Bygdg + By + 2 (Bim + Bim) ™

Me]

(4.4)

O = Agh26® -+ 3A gk + (3Agrty?® + 6dgghy? — Aph) 6 +
+ 84 ® + 10402 — 24300, + Ao + 2 (Agm + Al + Ajm)o™™
M)
<x>zz'= Byih'® + 3Byghy*s® + (3Bohs® + 6Bogde® — Bubgdo + (§.5)
4 8Bosl® 4 10Boihg3 — 2By, + Byo = ) (Bam - Bim + Bim) s~

‘mwa]

Satisfying conditions (4.2) corresponding to k = 0, we derive
equations:

Am + Bom = &;m. Ponm + PzBom =-'50m

(4.6)
(and an analogous system for conjugates KOm and §Om)’ Hence
Sm-n. — o_:t’\m . Bnm _“l;om
Agp = — LT 72 g L P L T
am = =y i 1 B (4'7)
Fl2-HT7-23-367-069 3




Substituting boundary values ¢11 and ®,, and conjugate
functions into conditions (4.2) for k = 1 and comparing the
coefficients at identical powers of ¢ in the left and right sides,
we derive the following system of equations:

T e U

e

(A + Ax) + (B + BY) =y + Auh; + Buks
- - — = e 4,8
p1 (A1 + AL + #a (B + Bu) == By + dup M + .Boxl‘: g ( )

' (Asm + Abn) + (Bym + Bom) =3
(Aim + Aom) + (Bim + Bom) = aym (m=2,3,4,...)

. . - (4.9)
#1(Aim + Adm) + B3 (Bim + Bom) = fam . - -
In solving them we find:
1, 1 _ 5:: - P’-:;n . /_l;l:l ‘l—"-l == [t) + Tibli-‘ ‘&T: — Ha)
A+ Aa bi—p B — 2 (
LI, __En — ey o Aoy Ay {1y — 1) + Bouka (e — 1) 4.10) I
Bu + Box ®17 4 ) Sl Y
.Alm T A 3,.. = _________:’ln;‘_—f‘ihn o
; o (m=2,314,...) (4.11)
Copt o Pam T
”un - Bnm e = 11 — the

Coefficients Alm and Blm together with AOm and BOm determine
the solution to the problem in the first approximation.

Substituting the toundary values of ¢12 and ¢22 into conditions
(4.2), corresponding to k = 2, and comparing the coefficlients at
identical powers of o, we derive systems of equations somewhat
more compleXx than the preceding ones. Without writing them out,
we shall introduce the final results:

Aax - A}l . A&; - 5:1 = P’-a;n s :il':-l ‘_lzl — ) + 7}.,:. (l_‘:z — i) —_
+ + =1

= 4 |23 Rt 1 y \
:‘.lm)‘-’ (S_‘-t — ) + —ﬁmi’ ‘l—L — ) :‘_io:c:l; .\ —ja) == 7;oai:' (;1 - 43) ( * 12 /
-3 —6
B1= t L

dgy Ai.‘ - A§2 - 3::“‘_.#;::: —3 Aaeie? (g — l‘-;) i_lli:::ﬂ (ks = t3) (4.13)
1




e e o

y LS B - . Sz: — P-zaza — ]m.{.‘ (;1 — i) + 730\;::‘ (-l-‘w" i) %
An+ dis =+ Ao S S B e (u'lu)

B"m—' ;em
lomt+ Mt A =22 (el 5,6, ) (4.15)

L S o'}

!
i
|

In accordance with the derived formulas, the boundary values

of functions ¢10, Q’l’ and @12 are expressed through o in the
following manner:

™ = =
oV Bom = Ka%om __
= 2 TR G (4.16)
@ - = = = p e
Bim = Kok Agihy (it — o) + Boghs (o —p3)
Ou= 2 -sz——-_u:al?a—m'*' SRy a7 — Aghy3 + Oy (4.17)
=] .
it .5 —= [, ;
D, = MM em
- _ 12 m§ i s +
+ (ZHN — 30 0F — 64000 ?) (g — 22} [ Biydy —- 3By 2a® — 6Bpgha?) (s — i) g™l—
-z, o e = S (4.18)
-_—3 Aophi® {1y — 19} + Dok (ty — p13) P Ak {1y — s} + Soyrad (25 — po) 3'-3_*_

. by — U'-g 17 M
+ (B4nk® + 6450 — Ayyly) o + 3451, %% 4 Aghy % + €y,

We take the abbreviated designations ClO’ Cll’ and C12 for
constant components which do not affect stress distribution.

The boundary values of functions @20, ¢2l’ and ¢22 are obtained
from (4.16)-(4.18) by simple transposition: it is necessary to
insert B, A, Hos My A2, Al in the written formulas instead of A, B,
His Mo, Al, X2. To calculate stresses in the second approximation

clear expressions for All and B11 are requlred; let us introduce
the first of them:

511 i ;u -;iOl-il (;x - itg) + Ti--l:’:’ (:: — i) s -.
A" = 'r‘-x“’zi‘-n + 23 Sl 23 . + AMA‘2+3A°3A1 ( )-l. 19)

If 1t is necessary to determine stresses not only near the
edge of the opening but alsc at cther points on the plate, then we
e find fficients A4, : Tunct by and £, . Knowing

ust find coeflicients Axm and Bkm of Tunctions 1 and Iy owing
expressions (&.7), (4.10)-(4.15), we can easily do this by using

(3.9)-(3.31) [or, in general, (3.7)1.

FU0-HT-23-367-45 17




For the third approximation we must keep the third power of
€ in (2.9) and find 012 and ¢23. While omitting the operations,
let us introduce the boundary value of ¢13 (the value of ¢

23 is
obtained by transposition):

0 —

‘bl:; - 2 B == Bayn 3

TP
N iR (43

-+ [(sz.'—x T 3:'?‘;‘3 - Gj’i.x:!:;x’ -+ 20:4—09:;5 iy 454, oa:x‘ 3= 35:4—05:’;3) (!-;x —) +

+ (_1}2;2 —3_B-u{,"' i 63‘13133 -+ 20’1—3mf25 + ,‘51—1;;)37-;‘ +

— - o~ -1 —_— = — — - — ,
+ 35 Bosha®) (3 — 12)) mc__ s + [(—3A10h% +20460,* - 2040,%) (1, —ps) +

= _ ol — = -2
4 (—3B1ghg® + 20845 1* 4 208,00) (82— 1ta)] ;’lo_";" + (4.20)
+ [(— Bpuy® + 645,304 + 10A95,) (i, — 1a) +
—_= e p— -3
+ (— Biyhg? + 6B5;hg* -+ 10B344°) (g — 1a)} ‘:6_7:‘;' +
+ 4 :io:il' (i_*.l — ity) + Tioziz' (;3 — fhe) 3¢ L 2m';"l' (;n = ;) + Tiﬂli!' (;3 — i) G- +
LT ik ' g == Py
+(— Ay + 34,,0° + 6‘4“‘,\13 — 2046,4,° — 454 0, — 35‘105;?3) s+
+ (3Axa)‘x’ — ?'OAoz}-x‘ = 20‘404)13) a? + (Au)-x2 “p Gon;-x‘ — 10‘403)‘13) ¢?—

—A4Agh st — A% 1 0y

Here we add expressions for certain coefficients which are
necessary for calculating stresses near the edge of the opening:

e R e VN

1~ g ( l{ 21 )
Ay =Smiln 4o a3 4 34000+ 56 :
#1 7 ke
An T 531 - l‘-:gn + -/-‘n-ix (;r — ) + ?):n:;z (;"" l‘-z) p—
4] i [ . _ _i.‘-x ‘:l‘-a -
— 201:"-1' (;n — [a) + ﬁm"\z. (.Iz — W) . Ags?i? Ly — t9) =+ Boghy® (itg — its)
- B17" ik 6 B — i (14.22)

Ak o+ 34,0 — BAgA S — 154003 — 154,503

Formulas f{or coefficients qu, B13, and le are analogous; we
derive them from (4.21)-(4.22) by transposing letters and subscripts.

Stress components are expressed through derivatives of functions
@. and ¢2 with respect to their arguments. Assuming independent

- n

. ol .
arlables p and ¢ e ~, we obtain

]

FUO=i7=23-367-65 18
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i I (6D; ] 03) dp + (00, | 3c) da
d-'vi - [66’ (§) + o-* )‘i Y (E” dp + [0 ({)—o~? 7‘; e ((” e ( u . 23)
‘ (i=1,2)

@' (2;) =

Using equations (2.8), 6¢i/6p can be expressed by 6¢i/60 and
vice versa. After this substitution, instead of (4.23) we obtain
two equivalent formulas with which we can find the derivative of
¢;(zi) at point (p, 0):

o, [ dp
) (2) = e o 4,24
) W R+ R) 1,2 .
o _ #7100,/ do ! "
13 (z') — Q' (t) — g3 -A. (;-I (f)' . . ( L] 25)

When the "small parameter method" is used, we derive approximate
expressions for functions ¢1 and ¢é while their precise values remain
unknown. For determining the approximate values of the derivatives

' 1

¢, and ¢, we use formulas (4.24) and (4.25) where, instead of ¢, and
¢,, we substitute their approximate values.

The formula which determines approximate values for derivatives
on the contour is derived in this case from (4.25) where it is
necessary to assume p = 1 and, instead of ¢i, to substitute the
boundary values indicated in this paragraph for the functions
(approximate). For points on the contour we have

O/ (20) = e aft = 2 ks (— ok o 300t (4.26)

Cther quantities which enter the formula for stresses Gg On the
contour [see (1.14)] have the form:

dr = —a (sind 4 3zs5in 30) dd
dy= a(cosd—3ecos3?)dd (4.27)
ds? = a*(1 + 9s* — Be cos 40) dd?

For an orthotroplic plate all formulas are somewhat simplified.
If the opening is cut so that its axes of symmetry, taken as x and

[
Lo
Cin
J
|
(€3
AN
(W)
\0

o
(8]




—>v

vy

y, are normal to the planes of elastic symmetry, then, depending
upon the elastic constants, three cases of complex parameters
LEY and ¥, are possible:

Wom=d, p=l, g=—fi, e i T >0, 3>0
Be pym=mpyosdi, pmpy=—38 e @0y
WL me=mad Bl pp=mRb B, pma—pB, p=—g=B  (8>0)

Next we examine in more detail two cases of elastic equilibrium
in an orthotropic plate with an opening — expansion and btending by
moments acting in the middle plane.

5. Expansion of an orthotropic plate with an opening. Let us

eXamine an infinite orthotropic plate with an opening whose contour
is given by equation (3.1) (the opening is cut so that the x and

y axes are normal to the planes of elastic symmetry). Le: the

edge of the opening be free of internal forces, and at a great
distance from it (in theory — at infinity) there are ftensions
distri uted uniformly with intensity p parallel to the axis of

. symmetry which has been taken as the x axis.

—. iy = = 2 Z
—-— 0] = —— : . 7 = :
L= ANy T T4 0 Az
_— < —_— — 7 7 —
— 4 s — =i
iy ;;; S & lg 6. —
pain % i i ) -
- i3 Exy — -

ey —
Fig. 3. Fig. 4.

The location of the opening with respect to the axes and the
forces is shown in Fig. 3 for € > 0 and in Fig. 4 for € < 0.

It is sufficient to examine only case I where the complex
parameters are purely imaginary; then

b=l k= (5lal)

-
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are real numoers, not exceeding unity in absolute magnitude. The
formulas for the other cases II and III we obtair from the formulas
derived for case I, assuming that 6 = B everywhere in them or

(in case III) replacing B and § by the quantities B + ai and 8 - ai.

Stress distrioution in a solid plate being stretched by forces
p will be:

3.’ =p, 9y =15 =0 £5.2)
The follcwing forces act on the lines corresponding to the
contour of the opening:
. d
‘\.°=pcos(n,:c)=.-—-p£, Y22 =0 (5.3)
Stress distribution in a plate with an opening is found by
applying the solution, to (5.2) and the solution for a case of
internal forces acting on the edge of tne opening and equal to
Xo=—Xs%,  Yu=0 (5.4)
Functions ¢, and ¢, which correspond to load (5.4) satisfy
conditions (1.16) in which
S)’,,ds =0
s o !
- S X, ds=— pa(sin 0-—esin30)'=—".:—"[a-—-§-+e(— ¢34+ &1;)] (5.5)

[}

Consequently, in the £ rmulas of the preceding paragraph which
were found for the arbitrary distribution of forces along the edge
of the opening, we should assume

.§ox=—".:‘l’aiv 513=';‘P‘”. (5.96)

and the remaining _

and all Ekm are equal to zero.

57=E0 21
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The boundary values for the functions which make up the
second approximaticn, on the basis of (4.16)-(4.18) and (4.7), (L.19),
will have the form:

1 s \ ., 3
01:’5(5%5’)’["’;"*‘5("1“"5'%& +%.)"t‘5=(‘-)‘x’“3+"x°+ l;—"l"l-;‘)]'*'cx

(5.7)
pa 1 . . m R I hy g
q’:._2(3_8)[?"3("23‘.‘:;—:"%';;')'*‘52\53%3—"13—'%'_L')} +C,

Here Cl and 02 are constant components which do not affect
stress cdistribucicn, while hl, kl, my, and n, are coelliciurts
expressed by 8 and 6§ in the following manner:

1 ~er L) - 1 N ~
Iy = IR [—3 734190 —53% 41338 — 96* + §® — 193% —

— 502° 4- 88+ 3 (33 — 3126 — &%)  33%% (3 + 50) + 3%

* b ' £ - - -~ (TP
kﬁ=H:ﬂﬁrﬂﬁw_ﬁTza_%H$+&%_y+4&_¢_w;I
i .’\ -
.m1= TTHATH (1—3—2358—23)

—i s ~ o ~ ~
n = (‘—33)"‘(73) (8 —43—& + §*— 833 + p%)

The coefficients h2, k2, Ty and n, are obtained from (5.8)

by transposition of the quantities f and §. On the contour of the

cpening we find the following (approximate) expression for the
derivative

" , '01;'%'5<}'x—%—%)'5'52(-3)-132'5'“1—%"'%‘x)
1= IR % 7 1 (5.9)
1—;‘—-]- ;\1 (—-c-r + 3&‘.3:)

3 -~ 1
and an analogous expression for ®2.

We show only the formula for streasses Gg On the edge of the

opening [see (1.14)] and at specific poilnts on the contour — at
"corners" and on the middles of the "sides" (A, A

2s B3 By, €, €
C,, C3 on Figs. 3 and 4).

l,
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Let us introduce the further designations:

Ad=cosd—33c0s3d,° N=sind 4 3esin3d
C= A+ B =1 4 §:*— Be cos 40
D = — AM5e + A*B? (1 — 233 — §%%) 4 B4 (2— P — §3—-3%)
L=3,, (B + 52 4%) (B* + 3%A%) = 3,0 A + (2313 + Peo) A*B* + By, B

(5.10)

. 8 (1 —E3)
E=arsra+on

b= g T 2@+ 9) (B — 1) + PP 45 4 3 4 5
4 2 ) A=y wrr
T8I+ I=tFpass d—3—0—#)
m = gy [ 9 (1 + 89) — 301 + 3% + 1088] (5.11)

k=

n =

(3 + ) (7 — 1938 = 33%%) — 3 -+ 1733 — 278%2 + 5% +
+ (T ER—5) + P+ )

2
(1+BP(1+6?I

Stress oe on the edge of the opening is determined in the second
approximation by the formula

(0= p g -+ L7 [AD* cos § + BC* (3 + ) sin 9] —

¢ 281 [ ACH 155 (3 -+ ) cos® + 34 D* 0530 -+ BCA (3 +8)(Usin 3+ 3ain 3] + (5.12)
+ a%.f’-i” (2-+9)Cl(—m cosd +3g cos30) 5 + (—nsind +3hsin30) B)

At points A and A1 at the ends of the opening's diameter,
parallel to the forces (Figs. 3 and 4), which correspond to 6 = 0 and
6 = 1, we obtain

(o0)p = 25 m {1 +eB— @+ DA +e*(+2) Bg—m)} (5.13)

At points B and Bl at the ends of the diameter perpendicular
to the rforces (6 = (1/2)7, & = (3/2)7), we shall have the following
expression

(%) = 125 (1 kB + & + <[(3 + (5 — k) — 3] — (B + §)(n-+34)) (5.14)

At points C, Cl’ 02, and C3 at the ends of the diameters,
which are directed at an angle of 450 to the forces, we shall have

FU0-:HT-23-367-69 23
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(so)e = =25 Trmase i Tetre—si+s[3(1—39)—

— (@ +3)(3+ A3 + ] + ¢* (3 + &) [3(h — 38) —mZi—n]}

If we desire to calculate the stresses in the third approximation,

i.e., to preserve the third power of €, then to stress ¢
according to formula (5.12), we must add the quantity A.o
correction for the third approximation.
for this correction, let us state

3 0

Agge = — 2B nﬁ-- (3 + ) C2 (AN, 8% + BM )

Here the designations are:

M, = a; sin & + 3a; sin 3% - 5a; cin 59
N, =a; cosd + 3a; cos 30 + a5’ cos 5

a; = —'— (120 —2in3% (g + &) + 2n (h—1) 4 30 (P + A*33) +
-+ 3"5238 (3 4 8) + 111 (12 — g*3%) — 11gkBe [2k 4 g(8 + 2)]}

ay ='Wl + g3 + 5(* — g%33)),

0 =3 (125 2m{h— I + k(L — §2) + g3 + 0] + 2n(g— k) +.35(* + k*58) —
— 3R +12) [k + (3 + 8] + 1K (W — g8) + Uell-+k(3+3)] [2h+(3+3)]

) =3 {gl + bk + Sg—k) [2h + g B +3)))
a) = 3 [k + g [+ k(G + )]}

a; = —(Id—gk 8)

B, B C and C

Values of A3oe at points A, A 2 3

(Figs. 3 and 4) are equal to:

1°. 12 C) C]_:

(Berala = —p 2 BE2 (0" + 30, + 545
(A375)B "‘—Pi_ (3+°) (a,—3a,+oa5)

’ 2 8 - ’ ’ ’
(Magy)e=—p {5+ é?)(-: _: ) [a;+3ay—5az 438 (a,'—3ay'—5ay’)]

The reduced formulas containing letter designations do not

92 actermined
— the
Without deriving the formu’a

~N
o
L]
[
ul
~

'l

I s

BT e ST

(5.16)

yer

(5.17)

(5.18)

(5.19)
(5.20)
(5.21)

allow us to judge at what points on the contour pressure is highest.

FHowever, when € > 0, i1t is quite probable that ¢
highest values at points B and Bl (although not excluding the

S0D=H0-23-367-69 24
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possibility that at certalin values for the elastic constants the
stress at points A and A;, found by formulas (5.13) and (5.19),
will appear to be greater in absolute magnitude than the stress on
the ends of the diameter at points B and Bll.

For an isotropic plate B = 6 = 1

‘Ax=;.z=0, ‘g—._-h=0,' k==m==1, l=n=—1

The stress at points A and Al of an isotropic plate 1s determined
in the third approximation according to formula (which is derived
from (5.13) and (5.19))

(59)a =1_,.’3¢(—.1;|-e-—2C’—..2¢3) (5.22)

The exact value of stress at these points is equal to

(o = oy AR (5.23)

For the stress at points B and B, we obtain from (5.14) and
(5.19) the approximate formula

(s0)n = 72 (3 + 5¢ + 2¢* + 2¢7) (5.24)

The precise formula has the form

po 342 —=3¢2

Gols = r—3 —1—; (5.25)

Expressions (5.22) and (5.24) are obtained from (5.23) and (5.25),
respectively, if in them quantity 1l:(1l - €) is expanded in a power

series and the highest powers of €, beginning with the fourth; are
eliminated after multiplication.,




~S—

At points ¢, Cl’ C2, and C3 of an isotropic plate the
approxiﬁate formula for stresses coincides with the precise
formula®

1—3z

(@olc = p g (5.26)

We note that for an isotropic plate the errors in approximate
formulas (5.22) and (5.24) are very small even when € is not very
small as compared with unity.

If we keep only the first and second powers of & in the
rackets, i.e., take the second approximation, then error in stresses
at points A and B when |e| < 1 does not exceed 0.5% [as compared

9 .
with quantities found using the precise formulas (5.23) and (5.25)].

Even for |e| = % the errors in formulas (5.22) and (5.24), in

which s3 is discarded, are less than 12.5%; naturally, they will
oe even smaller if we examine the third approximation.

Let us introduce the results of calculations for an orthotropic
plate whose principal elastic constants ocr directions parallel
to the middle piane have the followirz vaiues: Young's modulus —
1.2 x 10° kg cm-2 and 0.6 x 10° kg cg"z, Poisson brackets - 0,071 and
0.036, and shear modulus — 0.07 x 105 kg/cmz. Such elastic
constants (average in thickness) are obtained for one type of
plywood.? If the directions of the coordinate axes coincide with
the principal directions of elacticity then the complex parameters
are purely imaginary:

W = 3" by ™= 85'.

We should distinguish the two basic cases:

1See reference (3], page 54. All three formulas — (5.23),
(5.25), and (5.26) — are derived from formula (80) in this work,
found by the methou of N. I. Muskhellshvill, at particular values of
& 1f we assume there that K= 0, h = -p/A, a = 0, m = ¢,

2See [2], page 133.
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1) a plate is stretched, as shown in Figs. 3 and 4, in directior
x for which the Young's modulus 1is greatest (1.2 x 105), B = 4,11,

§ = 0.343;

2) a plate i1s stretched in direction x for which the Young's
modulus is least (0.6 x 1C°), B = 0.243, & = 2.91.

The formula for stress % at a given fixed point on the contour
is written in the form )

where K is a dimensionless coefficient depending on 8, §, and €.

Og = pK

Table 1. Values of coefficients K x 102 for certain
€. Case 1.
Poinrts lr.x. ° 1 | 8 1 1 1 1 8 ] i 1 1
i N B B Il e el el " Bl Rl ik 7
tion .
| =n]—=m]—st|—o97 —101] —132] —e0 | —63 | —57 ] =55 1'—50
;‘ @) | =71 | =73 | —82 | —i00] —105| —142] ~69 | —63 | —58 | —67 | —54
=01 @ | <71 | —73 | —82 | —100 —105] —143] —69 | —63 | —58 | —57 | —54
B || st5] 5] 40| 1017 | 1006 | 1es6 | 513} 402 | 201 | 270 178
s E| @ | 5451579 | 7371004 | 1079 | 1505 | 513 | 400 | 284 | 261 | 164
=32| @ | 55| 51| 737|1007 | 1082 | 1612 | 513 | 350 | 283 | 260] 156
¢ || sof 38| 30| 2] 20| w] s3] 5] 5] 81 12
=l @ | 4] 38! 30| 23; 2y 6| 23| s5| 7| s 126
Bl 3| 40| 38| 30] 22 20| 15| 43| s3] 77| 83| 120
Table 2, Values of coefficients K x 102 for certain
. eo Case 2.
Ao- | ! l '
- ] 5 1 1 1 H 5 1 1 1
Potntal Bt =0 | ™ | W | W | T | T | " 0] "8 "
tion -
. (1) =141 |—145 |—163 |—194 [—203 |—264 {—138 |—125 |—113 [—111 {—104
A 1 (@) =141 |—145 |—163 |—195 |—205 [—270 [—138 |—126 |—114 {—112 |—103
¥=01 (3) | <141 |—145 |~163 |—196 |—206 |—278 |138 |—126 |—413 |—111 |—100
B | w | #15] 40| s8] 739 792 | 4170 ] 393 | 317 241 227 184
wi (2) | 415{ 430 | 7] 7330 78501146 | 393 | 316 238| 23| 156
b= @ | 415 439 | 527| 733| 786 | 1151 | 393 | 316 | 238| 222 155
C Ll 69| 6! 54| 42| 40| 31} 72| 89| 118| 126} 183
m| ()} 69| 65| 54, 43| 41 32| 72! 89| 119| 27| 187
=% @ | 69| 65| 54| 43| 41| 3| 7| 8| 119 128 189

Tables 1 and 2 give the
found for values of |e]

numerical values for coefficient X

(5.27)

0, 0.01, 0.05, 0.1, /9, 1/6 in the first

(1), second (2), and third (3) approximations for points A, B, and C.
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Zleven values of this parameter are taken in all - zero for a
circu.ar opening, five positive, and five negative.

Two decimal places are preserved throughout the tables in the
firal numbers. The calculation of coefficients K with grezter
accuracy is hardly sensible since the numerical values of 8 and 6,
indicated for cases 1 and 2, are approximate — they are given with
three significant digits [let us remember that £ and § are determined
based on the prescribed elastic constaants from equation (1.3) where

B1s = Bpg = 01

As seen from the tables, for |e| < 1/9 the third approximatiors,
within the accuracy adopted, differ little or not at all from the
second apprcximations. While calculating stresses for such €
according to formulas (5.13)-(5.15), we shall venture to obtain
an error for coefficient K (absolute) which does r.ot exceed 0.03,
and for smaller € in a number of cases only the first approximation
is nccessary. For € = +t1/6 the difference between the third and
seconc approximation is more noticeable; however, in these cases,
it is comparatively smali.

From these same tables it is apparent that at positive € (Fig. 3)
the stress at point B increases with an increase in € (this is
understandable since the curvature of the contour at point B increases).
Simultaneously, the stress at point A increases in absolute magaitude,
while the stress at point C decreases. At negative € (Fig. 4) the
opposite pattern is observed: with an increase in |e| the stresses
at points B and A drop in absolute magnitude, while at point C they
rise. VWhen € > 0 the greatest stress for the entire plate 1s found
at point B (and point Bl). Fcr openings corresponding to negative
€ the position of ‘the point (in the first quairant), where the
stress Oq reaches its highest value, is ceternined by the quantity
€; with an increase in |e| this point moves from B in a direction

toward C.

We shall write out for a comparison the quanties of stress at
points A, B, C on the examined anisotropic and isotropic plates

FIo-HT=23=367-65 28
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with an opening which is characterizzd by parameter € = t1/9
(coefricients K for an anisotropic plate are taken from Table 1 and
Table 2 in the third approximation).

a) gaslfy

Anisotropic plate, case 1:

(©)p =—105p. (0y)p=10.82p, (s,)c=021p (5.28)

Anisotropic plate, case 2:

(6)p =—2.06p, (a,)p =7.85p, MM"‘"-’“" (5.29)

Isotropic plate:

(LR = —1.38 p, (50)3-5.38)», (c.)c-O.Sp

(5+30)
6) s m =1,
Anisotropic plate, case 1:
(Gp)a =—05Tp, (o) =260p, (op)c=0.83p (5.31)
Anisotropic plate, case 2:
(000 =—141p  (6))p=222p, (oy)c=128p (5.32)
Isotropic plate:
(604 =—0.85p, (0,)p=185p, (5)c=2» (5.33)

When comparing these data, we note that at point B of the
examined anisotropic plate the stress is greater than at the
corresponding point on the isotropic plate; on the other hand, the
presence of anisotropy reduces the stress at point C. Generally

the stress Og in the anisctropic plate changes along the contour

FT0-HT-23-36T7-65 26
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of the opening more sharply than the stress in the isotropiec plate,
forming "peaks" at certain points (especially noticeable at pcint B
for case 1 when € = 1/9).

6. The dending of an orthotropic plate with an opening by

noments which act in its plane. Let a rectangular orthotropic plate
be weakened in the center by an opening with a contour of type (3.1);
the dimensions of the opening are small in comgarison with the
dimensions of the plate. It is assumed that the planes of elastic
symnetry are parallel to the surfaces of the plate and the opening

is cut so that its two x and y axes of symmetry are nornal to the
planes of elastic symmetry. Moments M acting in the'middle plane are

applied to the two opposite sides and the edge of the opening is not
lcaded.

iy
T~ S,
% | O //Gﬂc
%4 -4, 4 . 4 4 4
T ( R N
an =i 4 & g &
3L H 4 /% H#
o -
Fig. 5. Fig. 6.

When € > 0 we have the pattern shown in Fig. 5; the case of
€ < 0 corresponds to Fig. 6.

In a plate witiinut an opening, which can be bent by the moments
(pure vend), stresses are determined according to the law:

M
=Ty & =’ =0 (6.1)
rnere ¢ 1s the crcss-sectional moment of inertia.
The following forces act in a line whose equation is (3.1):

ro M J )
A" =7J°05("v1)=_%[-y§{'1 Yn°=0 (6'2)

= S 3 - - ~L o~
o e S SIS =iy 30
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We derive an approximate solution for a plate with an opening
(which does not satisfy the strict conditions on 1ts sides) by
adding to stresses (6.1) the stresses in an infinite plate with an
opening along whose edge are distributed forces

Bomi—%0  Waml® (6.3)

The integrals in the right side of conditions (1.16), in this
case, will be

8.
{ Yads =
1] o
: Mo,
| _§x,.¢zs=_gyz= o : (6.4)
gt 1 1 1 o4
=-8—}[—2+=’+&,-+23(03—a‘+~°—,-—;‘-)+a’(—2+a‘7—?-)]
Consequently,
T Al a® -,:' Ma3 o Ma?
P60 T o 2125 75 P= T (6.5)
F o Ma 5 Ma o Ma >
02_-8_./-' .“i(__vr 26_'87'

The remaining skm and all o, are equal to zero.

When we substitute (6.5) into formulas (4.16)-(4.18), we o.tain
the boundary values for functions of complex variables which
determine the second approximation

i et [ vl 4 AN 2y g0 '."_Ll_'..l.\]'
b= eyt B ) I S ) 6
Mahi [ 4

: (6.6)
2, (Eii —:—‘-) + & (3'1.223’ -+ '%—’- + i.)] + ¢,

dere C, and 02 are constant components which do not affect
-k
0/‘

n.; k., is determined by the second formula (5.8) and
X, 1s obtained from x, by the transposition of 8 and §.

stress distributi
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1
The zpproximate expression of derivative Ql on the contour of
the opening has the following form {see (4.26)1:

0= Mai o= 4 2¢ (6™ — 207%) + 3 (—= N6 + kot +07T) 7
{ L =G —8 T = 3te~% & Iy (— 07 + 7c07) (6.7)
’ The boundary value of ¢2 is found according to an analogous

formula.

Using the shortened designations {(5.10) and (5.11), we shall

4 write a Iformula for stress 0g near the edge of the opening in the
following manner:

Ma B

¢ = =~ & (sin ¥ —esin30) -+ Ma 3

57 g [—BC* (3+%) cos 20+ AD4sin 2] +
gt %&%[—BC‘ (3-3) (cos 20—2 cos 40)-+ A4 D* (sin 20>2sin 40)] +

2202 Bu (BC4 (3 4 3) (hcos 20 — cos 69) —

(6.8)

— AC%g (3 + ¢) Zésin 20 +AD‘sm60]

At points A and Ay (Figs. 5 and 6) stress is zero. At point B

(c,)a=,(f’_"3;){11-'°‘”+sr3(+o>—1 225t —n—1]} (6.9)

Scvress at the opposite point B1 is found to be the same in
absolute value but has the opposite sign.

At points C and C

1
(35) M Vi {1 —3842e[1—pe—2(343)]+
W T T T+ +8) V¢ (6.10)
; . + 3R —1—g (348},

At points C2 and C3 we obtalin the same value buf the opposite
sign.

’
LR ]

&
'
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< s point out, without derivation, the error which must
be added to the stress 0, [formula (6.8)] in order to obtain the

SR G R

Aggy = — 8 2‘7’1 3_n_‘_5z"_i’_(,"-‘ (AM,5% + BN, (6.11)

Covu

)

Eere the designaticns are:

My = a,5in 23 - 24, sin 49

6.12
Ny = a,y cos 20 + 2a/ cos 49 ( )

=5 0-T2h+g@+)  -a=—a)
(6.13)

ay = .}‘_ [— Gk + 7 (i — g*32)], a/ =a; .

At points B and C we obtain
2Ma sy :

(85%)8 =aa————.’(l _a3c) ( + ¢) (a2- — 2a,) (6.14)

\ 4YV2Ma b & N /
Bazlo = — F g @aa v oy (@2 (6.15)

(at points A znd Ay A3ce = Q).

With pogitive € it 1s natural to expect that the stress which
is hignest In absolute magnitude is fcund at points B and Bl'

For an isotropic plate A306 = 0 at all points of the contour
we have

(70)B= J 1= 3¢’ (6.16)
\ 25 M
(%/C‘-“"T..“-r_r:-g—c (6.17)

isotropic material, found by the "small
identical with the precise ones.'!

1 - .
See [3], page 54, formula (80), where we must assume the
feollowing:

i
=0, R=ua, A.=—f?l—, =0, m=cg, 5=-?;—1=, 5=~i-ﬂ‘-
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Tables 3 and 4 give the results of calculating first (1),
second (2), z2nd third (3) approximations for the anisotropic
(plywoond) plate examined in Section 5.

The formula for stress at a given point on the contour can be
written as
“o“'J—K' (6.18)

where X, is a dimensionless ccefficient depending upon 8, 6, and €.
The tabies are compiled for the same values of € as were examined

in Section 5 and their accuracy is the same. Table 3 presents the
ru.:rical values of coefficient Kl for case 1 when the direction of
the x-axlis (Figs. 5 and §) coincides with the direction for which

the Young's modulus is greatest; Table 4 presents the same for case 2
when the direction of the x-axis coincides with the direction for
which Young's modulus is the least.

If we want to calculate coefficient Kl with two decimal places,
then Zor |e| < 1/9 it is sufficient to take only the first
approximation; the error which we obtain with this does not exceed
0.02 in the worst case. Even for € = 1/6 the third approximation
differs very little from the first and only for € = -1/6 in case 1
does the difference become somewhat larger. .

Table 3. Values of coefficients Kl x 102 for certain
€. Case 1.
R T - . | ' '
e s riee! O Ne s s | i [ 1l s i 1 i
e S - B I Bl Bl Berall Rl Al s v e Al 3
!1,30n i i i } | ‘ | E
B | (| axa| o 46 6eai 673 ] 1024 | 302 | 231 ] 161 ] 147 89
sl o@ | 323 34 6| 62l em 5016 | 302|261 | 460 446 | 86
"”zl 3) l 323 | 34| 446 | 622 | 672 ) 1023 | 302 | 231 159| 145 | s
¢ Ly =8 Al —s i3l 7| —2f +4; 5! 18 38
7! (2) =31 —n | =8 —12 i-13 l—16| —2| +4| 15| 18} 39
9’4{ @ | =3, 4 —8 | =12 =13 —7T| —2| +4| 15| 18| 40
‘ f |
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Tavle . Values of coefficients Kl x 102 for
certain €. Case 2.

pinlﬁ:ps | s‘ b 1 ﬁ 5!-_L-.l.-_L
g i R R R Tl el e e e )
tion ! . -
B {28! om) milant sl ter] 243) 192] w1 131 89
:(:;i_zsmz?s!w:miswgmz 23} 192| 140} 130, 88
="' 3 | 258 273 37| 474 510 63| 243} 1921 140 130| 88
l“: | i | |
c it 4l 2) —l—t0j—utl—e] 6| 5] 20! H| e
=i {2 | 4l 2 —4;—10!—1i —16 si 15| 30; 34| 64
=T @ | 4 ::i —4 -0}t |47 6] 15| 0| H| 6

With positive € the stress at point B grows, wnlle with negative
€ 1t drops with an increase in |e|. When € > 0 the stress at points
B and B1 is the greatest in absolute magnitude for the entire plate.
In the case of negative £ the point in the first quadrant where

stress oe reaches maximum shifts in direction from B toward C with
a growth in |[e].

We shall write the numerical resuits for an anisotropic plate
with an opening which corresponds to the values € = #1/9, and for
the same type of isotropic plate. '

2) se=lf,
Anlsotropic plate, case 1:
lp =62 (om—013 Tt (6.19)
Anisotropic plate, case 2:
(a0)8=5.10%’1: (oo)c——-ﬁ-iﬁ%ﬁ (6.20)
Isotropic plate:
(o‘o)n-s.ev-‘f-,’l, (y)g = —024 212 Py
0) s==1,
Anisotropic plate, case 1:
(oo)Bu-x./.s—J"-,Q'-. '(oo)c-=o.1s%’—" (6.22)

JU0-0-23-367~56 35
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Anisotropic plate, case 2:

Ma AMa

(6.)3-1.30-:,—- . (o,)c.ao..'V.-T- (6.23)
Isotroplic plate:
M
(“o)n'l ‘.17"‘7&"' (co)c-O.lﬂ-.-’i (6.2u)

Just as in the case of expansion, the stress at point B of a
given anisotropic plate is greater, and at point C is less in absolute
magnitude than the stresses at corresponding points on an isotropic
piate. This is explained by the sharper increase in stress along
the contour of the opening as compared with the isotropic plate.

Received 19 January 1953
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ABSTRACY

(U) The plane problenm of the theory of elasticity for the aniso-
tropic plate with an aperture is solved only in the case when

the aperture has the shape of an ellipse or circle, All the

other cases of openings of another shape, including those of

great interest for practice, up to now have not been investigated,
In this work the author cifers an approximate method for the
solution of thne plane problem for the infinite anisotropic plate
with an aperture resembling the circular., The method based on
the introduction of a small parameter (characterizing the devia-
tion of the aperture from the circle), whose high degrees (beginn-
ing, for instance, with tne third or fouth) are rejected in the

'ﬂ investigation process, Tre problem is reduced to the well-known

i -problenm of the equilibrium of the anisotropic plate with a circular
aperture, The basic attention is given to the aperture, having
four axes of symmetry (during the needed selection of the para-
meter it will be little different from the square with rounded
corners), For a plate with such an aperture are deducted approxi-
i mate solutions for the general case of load, as well as for two
cases. when the plate is orthotropic and is deformed. Orig, art,
i has: 6 figures, & tavles, end 5 Slavic references,
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