AN ENERGY APPROACH TO THE DYNAMIC STABILITY OF ARCHES

Maxwell C. Cheung and Charles D. Babcock, Jr.

Research Supported by
Air Force Office of Scientific Research
Office of Aerospace Research
United States Air Force
Grant AFOSR 68-1424

Graduate Aeronautical Laboratories
California Institute of Technology
Pasadena, California

September 1969

This document has been approved for public release and sale; its distribution is unlimited
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PART</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td></td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II ANALYSIS</td>
<td>2</td>
</tr>
<tr>
<td>A. Symmetric Equilibrium Positions</td>
<td>4</td>
</tr>
<tr>
<td>B. Antisymmetric Equilibrium Positions</td>
<td>7</td>
</tr>
<tr>
<td>C. Potential Energy of the System</td>
<td>8</td>
</tr>
<tr>
<td>III EXPERIMENT</td>
<td>9</td>
</tr>
<tr>
<td>A. Initial Imperfection Measurement</td>
<td>10</td>
</tr>
<tr>
<td>B. Static Tests</td>
<td>10</td>
</tr>
<tr>
<td>C. Dynamic Tests</td>
<td>10</td>
</tr>
<tr>
<td>IV TEST RESULTS</td>
<td>11</td>
</tr>
<tr>
<td>V CONCLUSIONS</td>
<td>13</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>15</td>
</tr>
<tr>
<td>TABLE</td>
<td>16</td>
</tr>
<tr>
<td>FIGURES</td>
<td>17</td>
</tr>
</tbody>
</table>
AN ENERGY APPROACH TO THE DYNAMIC STABILITY OF ARCHES

by

Maxwell C. Cheung and Charles D. Babcock, Jr.

Graduate Aeronautical Laboratories
California Institute of Technology
Pasadena, California

September 1969

Qualified requestors may obtain additional copies from the Defense Documentation Center; all others should apply to the Clearinghouse for Federal Scientific and Technical Information

Reproduction, translation, publication, use and disposal in whole or in part by or for the United States Government is permitted
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PART</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td></td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II ANALYSIS</td>
<td>2</td>
</tr>
<tr>
<td>A. Symmetric Equilibrium Positions</td>
<td>4</td>
</tr>
<tr>
<td>B. Antisymmetric Equilibrium Positions</td>
<td>7</td>
</tr>
<tr>
<td>C. Potential Energy of the System</td>
<td>8</td>
</tr>
<tr>
<td>III EXPERIMENT</td>
<td>9</td>
</tr>
<tr>
<td>A. Initial Imperfection Measurement</td>
<td>10</td>
</tr>
<tr>
<td>B. Static Tests</td>
<td>10</td>
</tr>
<tr>
<td>C. Dynamic Tests</td>
<td>10</td>
</tr>
<tr>
<td>IV TEST RESULTS</td>
<td>11</td>
</tr>
<tr>
<td>V CONCLUSIONS</td>
<td>13</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>15</td>
</tr>
<tr>
<td>TABLE</td>
<td>16</td>
</tr>
<tr>
<td>FIGURES</td>
<td>17</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENT

The authors wish to express their appreciation to Dr. E. E. Sechler for his advice. The support we received from Mr. George Carlson of the Aeronautics Shop and Mr. Marvin Jessey of the Electronics Laboratory is gratefully acknowledged. They also want to thank Miss Helen Burrus and Mrs. Betty Wood for preparing the manuscript.

This study was supported by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force under Grant No. AFOSR 68-1424.
ABSTRACT

Concentrated static and step loading were applied to circular arches with geometric parameters $7 < \gamma < 20$. The static equilibrium path and the dynamic response at the loading position were recorded. Dynamic buckling is distinct. Supercritical and subcritical response were separated by 0.5 per cent of the total load. The sensitivity of the arch to offset loading was studied. The effect was pronounced in the static tests but moderate in the dynamic case. An energy approach was used to determine the lower and upper bound for the critical step load. The lower bound agrees well with the experimental results.
NOMENCLATURE

A Cross sectional area of the arch
b Arch width
E Young's Modulus
h Arch thickness
H Central arch rise
I Moment of inertia
L Arch length
\(\Delta L \) Distance between load and center of arch
N Axial force
P Concentrated load
\(\Phi \) Nondimensional load = \(\frac{PL^3}{16EI} \frac{A^{1/2}}{I} \)
R Arch radius
S(t) Heaviside step function
t Time
V Potential energy of the system
\(\bar{V} \) Nondimensional potential energy = \(\frac{L^3A}{16EI^2} \cdot V \)
w Arch displacement
\(w_o \) Initial arch shape = \(H(1 - \frac{4x^2}{L^2}) \)
x Arch coordinate
\(\bar{x} \) Nondimensional arch coordinate = \(\frac{2x}{L} \)
y Nondimensional arch displacement = \(\frac{w}{\sqrt{\frac{A}{I}}} \)
\(y_o \) Nondimensional initial arch shape = \(\frac{w_o}{\sqrt{\frac{A}{I}}} \)
NOMENCLATURE (cont'd)

β Arch half angle

γ Geometric parameter \[= \frac{L^2}{4Rh} \]

ε Percentage of eccentricity \[= \frac{\Delta L}{L} \]

μ Nondimensional axial strain

p Mass density

τ Nondimensional time \[= \frac{4}{L^2 \sqrt{\rho A}} \cdot t \]

\((\cdot)' = \frac{\partial}{\partial \xi} \)

\((\cdot) = \frac{\partial}{\partial \tau} \)

Subscripts:

\[\text{cr} \quad \text{Experimental critical value} \]

\[\text{cl} \quad \text{Classical theoretical value} \]

\[\text{max} \quad \text{Maximum value} \]
1

I. INTRODUCTION

The stability of shell type structures under static loads has attracted much attention in the past few decades. The stability of the same type structures under dynamic loads is currently the subject of much investigation. However, considerable difficulties are encountered. First, the definition of dynamic stability is not as straightforward as in the static analysis. Secondly, the appropriate equations are now time dependent in addition to the spatial dependence of the static problem. The procedure most commonly used to solve these equations is to eliminate the spatial dependence by finite elements, finite difference, energy or Galerkin techniques and integrate the resulting time dependent equations numerically. The integration usually required exceedingly small time steps and convergence is a continual problem. In order to find the dynamic buckling load, the loading parameter must be incremented and the integration performed again until some type of critical load is found.

The establishment of a lower bound for the dynamic buckling load may prove to be a useful alternative to the above procedure. Analytical work along these lines has been carried out by several investigators (Refs. 1-5). In this method the knowledge of the static equilibrium positions for the structure is utilized to predict a lower bound on the dynamic buckling load under step or impulse loading. Unfortunately, the usefulness of the lower bound has not been demonstrated by comparison with experiments. The work reported in this paper is an effort to help fill part of this gap. Towards this purpose, the energy analysis and experiments have been carried out on a clamped
circular arch. The arch was chosen as a model structure because of its simplicity and the fact that it has many of the nonlinear characteristics of more complicated shell structures.

II. ANALYSIS

Using an energy type analysis, the dynamic stability of nonlinear elastic bodies subjected to step loading has been previously discussed by several authors. In order to clarify the concepts, the following discussion of a simple system is pursued.

First consider a nonlinear one degree-of-freedom system with a static load deflection curve of the form OABC as shown in Figure 1a. OA and BC represent stable branches while the AB branch is unstable under dead weight loading. Starting at the origin the maximum undamped dynamic response under a step loading is shown by the dotted line. The intersection of this curve with the branch AB is significant because this determines the load at which the undamped system will snap under step loading. This is easily seen by examining the potential energy curves for various load levels as shown in Figure 1b. Visualizing the system as a ball dropped from the origin of these curves, it is obvious that the deflection will be limited to a region near the origin as long as \(P \leq P_D \).

However if \(P \) is increased above \(P_D \) the ball (i.e. the nonlinear system) will cover additional territory. \(P_D \) is, therefore, defined as the critical dynamic load. The response histories at a supercritical and subcritical load level are illustrated at the left part of Figure 1a where time is plotted as the third axis perpendicular to the \(P-q_1 \) plane.

When a multi degree-of-freedom system is considered, the potential energy is no longer a single curve but a multi-dimensional
manifold in a generalized coordinate space. In this case, the energy method fails to yield a unique critical condition. The alternative is to obtain the lower and upper bounds. The ideas can be adequately illustrated using a two degree-of-freedom model.

A typical static load deflection curve is shown in Figure 2a. The broken line OED is the \(q_1 \) component of the maximum dynamic response. The elliptic path between points A and B is the bifurcated branch. Therefore, there are always five equilibrium positions at the level \(P_B < P < P_A \). These positions can be easily identified in the energy surfaces. Two such surfaces are illustrated in Figures 2b and 2c. The characteristics of the equilibrium positions are as follows: The center one is unstable (hill), the left and right ones are stable (depression), the upper and lower ones are unstable (saddle).

Figure 2b shows the constant load energy surface through D, the intersection of the dynamic and static deflection curve. At this load, the potential energy at the hill (center equilibrium position) is equaled to that at the origin. An infinitesimal increase of the load lowers the potential energy at the hill to below zero and allows the system to go over the large displacement region. Therefore this load level is the upper bound for the dynamic load.

The lower bound is shown in Figure 2c where the energy at the saddle points is zero. An infinitesimal decrease of the load causes the zero energy level contour to become multiconnected and the system does not have sufficient energy to go between the two regions.

The bounds discussed above are for elastic structures without damping. Should damping be present, the picture would be different. The lower bound is not affected because energy is needed to account for
dissipation. If the undamped system can not escape from the near stable region, the dissipative system also will not escape. However, the upper bound must be reconsidered. The amount of energy dissipated is a function of the dynamic path and thus depends on the initial conditions. An upper bound similar to the undamped case seems to be meaningless unless one can find a monotonically descending path on the energy surface that connects the origin to the far stable region. This is exactly the case for the static critical load where the saddle points merge with the near equilibrium position. Therefore, the static critical load is the upper bound for the damped system.

In order to calculate the upper and lower bounds on the dynamic buckling loads using the energy method, the static equilibrium positions must first be determined. For the shallow arch this can be accomplished in a straightforward manner as shown by Schreyer and Masur (Ref. 6). The analysis, including the potential energy of the arch, will be presented here for completeness.

A. Symmetric Equilibrium Positions

Using the coordinate system shown in Figure 3, the equation of motion of a shallow arch can be expressed in terms of the displacement as derived in reference 1.

\[
E I \left(\frac{\partial^4 w}{\partial x^4} - \frac{\partial^4 w}{\partial x^4} \right) + N \frac{\partial^2 w}{\partial x^2} + \rho A \frac{\partial^2 w}{\partial t^2} + P \delta(x) S(t) = 0
\]

(1)

where

\[
N = \frac{AE}{2L} \int_{-L/2}^{L/2} \left[\left(\frac{\partial w}{\partial x} \right)^2 - \left(\frac{\partial w}{\partial x} \right)^2 \right] \, dx
\]
Substituting the nondimensional quantities,

\[y = \frac{w}{2} \sqrt{\frac{A}{I}} \quad \tau = \frac{4}{L^2} \sqrt{\frac{EI}{pA}} \cdot t \]

\[y_0 = \frac{w_0}{2} \sqrt{\frac{A}{I}} \quad (') = \frac{\partial}{\partial \xi} \]

\[\xi = \frac{2x}{L} \quad (\cdot) = \frac{\partial}{\partial \eta} \]

\[\bar{F} = \frac{PL^3}{16EI} \sqrt{\frac{A}{I}} \quad \gamma = \frac{L^2}{4Rh} \]

Eq. (1) can be written in dimensionless form as follows,

\[y^{iv} + \mu^2 y'' + \bar{F} \delta(\xi) S(\tau) = 0 \quad (2) \]

where

\[\mu^2 = \int_{-1}^{1} \left[(y_0^2 - (y')^2) \right] dx \quad (3) \]

The corresponding static equation is

\[y^{iv} + \mu^2 y'' + \bar{F} \delta(\xi) = 0 \quad (4) \]

The solution of (4) is

\[y_1 = A_1 \sin \mu \xi + A_2 \cos \mu \xi + A_3 \xi \cos \mu \xi + A_4 \xi \sin \mu \xi \quad [-1 \leq \xi < 0] \quad (5) \]

\[y_2 = B_1 \sin \mu \xi + B_2 \cos \mu \xi + B_3 \xi \cos \mu \xi + B_4 \xi \sin \mu \xi \quad (0 < \xi \leq 1) \]

The boundary conditions for a clamped arch are:
\[y_1(-1) = 0 \]
\[y'_1(-1) = y'_0(-1) = \sqrt{3} \gamma \]
\[y_2(1) = 0 \]
\[y'_2(1) = y'_0(1) = -\sqrt{3} \gamma \]

The continuity conditions and the jump in shear at the point of loading \((\bar{x} = 0)\) are expressed as follows:

\[y_1(0) - y_2(0) = 0 \]
\[y'_1(0) - y'_2(0) = 0 \]
\[y''_1(0) - y''_2(0) = 0 \]
\[y'''_1(0) - y'''_2(0) = \bar{F} \]

Substitute (5) into (6) and (7), and provided that \(\tan \mu \neq \mu\), the unknown constants are found as follows:

\[A_1 = -\frac{\bar{F}}{2\mu^3} \]
\[A_2 = \frac{1}{2\mu \sin \mu} \left[2\sqrt{3} \gamma + \frac{\bar{F}}{\mu^2} (\cos \mu - 1) \right] \]
\[A_3 = \frac{\bar{F}}{2\mu^2} \]
\[A_4 = \frac{\bar{F}}{2\mu} (1 - \frac{\sin \mu}{\mu}) - A_2 \cos \mu \]
\[B_1 = \frac{\bar{F}}{2\mu^3} \]
\[B_2 = A_2 \]
The constants A_1, A_2, \ldots, B_4 are functions of μ and \overline{P}.

The $\mu \sim \overline{P}$ relationship can be found by substituting (5) into (3).

$$
\mu^2 = 2\gamma^2 + \left(A_2^2 - A_1^2 + B_2^2 - B_1^2 \right) \frac{\mu}{4} \sin 2\mu
$$

$$
- (A_1 A_2 - B_1 B_2) \mu \sin^2 \mu - 2(A_1 A_3 + B_1 B_3) \sin \mu
$$

$$
+ 2(A_2 A_3 - B_2 B_3) (\cos \mu - 1) - (A_1^2 + A_2^2 + B_1^2 + B_2^2) \frac{\mu^2}{2} - (A_3^2 + B_3^2)
$$

The roots of this transcendental equation correspond to the value of μ at the equilibrium positions under the specified load level \overline{P}.

B. **Antisymmetric Equilibrium Positions**

In evaluating (6), (7), the following algebraic equation must be solved

$$
\begin{bmatrix}
- \sin \mu & -1 \\
\mu \cos \mu & 1
\end{bmatrix}
\begin{bmatrix}
A_1 \\
A_3
\end{bmatrix}
= \begin{bmatrix}
\frac{\overline{P}}{2\mu} \left(\frac{\sin \mu}{\mu} - 1 \right) \\
\frac{\overline{P}}{2\mu} (1 - \cos \mu)
\end{bmatrix}
$$

(10)
If \(\tan \mu = \mu \), \(A_1 \), \(A_2 \) cannot be determined uniquely as in (8). The lowest possible \(\mu \) that satisfies this condition is \(\mu = 4.492 \). In this case, only one of (10) is independent.

\[
A_3 = \frac{P}{2\mu} (\mu - \sin \mu) - A_1 \sin \mu
\]

(11)

Substitute (11) and (5) into (3). A quadratic equation for \(A_1 \) is obtained.

\[
\begin{align*}
(s^2 \mu - \mu^2)A_1^2 + \frac{P}{\mu^3} (\sin^2 \mu - \mu^2)A_1 \\
+ \left[\mu (\sin \mu \cos \mu - \mu) A_2^2 + \frac{P}{\mu^2} (\sin^2 \mu + 2 \cos \mu - 2) A_2 \\
+ \frac{P^2}{\mu} (\sin \mu - \mu) + 2\gamma^2 - \mu^2 \right] = 0
\end{align*}
\]

(12)

The \(A_2 \), \(A_4 \), \(B_1 \), \(B_2 \), \(B_3 \) and \(B_4 \) will be determined according to (8).

C. Potential Energy of the System

Let \(V \) designate the potential energy

\[
V = \int_{-L/2}^{L/2} \frac{EI}{2} \left[\frac{\partial^2(w-w_o)}{\partial x^2} \right]^2 \, dx + \frac{1}{2} \frac{EAL}{AE} \left(\frac{N}{AE} \right)^2 - P(w_o-w) \bigg|_o
\]

(13)

The nondimensional potential energy \(\overline{V} \) is as follows:

\[
\overline{V} = \int_{-1}^{1} (y'' - y_o'')^2 \, dx + \frac{1}{2} \mu^4 - 2\overline{P} (y_o - y) \bigg|_o
\]

(14)
Substitute (5) into (14), we obtain

\[\nabla = \mu^3 \left[\frac{\mu}{2} (A_1^2 + A_2^2 + B_1^2 + B_2^2) - \frac{1}{4} (A_1^2 - A_2^2 + B_1^2 - B_2^2) \sin 2\mu \right. \\
\left. - (A_1 A_2 - B_1 B_2) \sin^2 \mu \right] + 2\sqrt{3} \gamma \mu \left[(A_1 - B_1)(1 - \cos \mu) \right] \\
\left. - (A_2 + B_2) \sin \mu \right] + 6\gamma^2 + \frac{1}{2} \mu^4 - 2 \sqrt{3} \gamma - A_2 - A_4 \]

The results obtained above were evaluated numerically on an IBM 360/75 computer. The numerical results for the critical static load agree with the results obtained by Schreyer and Masur (Ref. 6). The values of the upper and lower bounds were numerically calculated and are compared with the experiment in Section IV.

III. EXPERIMENT

The arches used in the experiments were cut from 1/16 inch thick 2024-T3 aluminum sheet and were rolled to approximately 30 inch radius in a three roll roller. They were then heat treated for eight hours at 375 degrees Fahrenheit. The arches were mounted into a heavy steel frame for testing, the ends being secured using Devcon B. The geometry of the tested arches is listed in Table I.

There were three main steps in the complete testing of an arch. Namely, they were an initial imperfection measurement, a quasi-static test and a dynamic test. The arches were reusable and were reloaded at different locations, including from 0\(^\circ\)/o up to 6\(^\circ\)/o offset from the center. In between tests, imperfections of the arch
shape were measured in order to assure that the arch was not subjected to excessive plastic deformation.

A. Initial Imperfection Measurement

A pendulum like apparatus was built to measure imperfections of the arch. It consisted of a fixed center and rotatable arm which could be adjusted in length. A dial gauge was installed at the tip of the arm (see Figure 4).

The measurement was made by first adjusting the arm to the appropriate radius. Starting from one end of the arch the dial gauge readings were taken at half inch intervals along the arch. This measurement gave the deviation of the arch shape from the preset radius. Applying the "Least Square Method" to the measured data the "best fit radius" and the "best fit imperfection" can be found.

B. Static Tests

The static point load was applied using a knife edge. The knife edge was loaded through a stiff spring by a dead weight resting on a hydraulic jack. By slowly lowering the jack, the loading on the arch could be very smoothly increased. The load was measured using a strain gaged load link and the displacement of the knife edge was determined using a linear potentiometer. The load deflection curve was directly recorded on an XY plotter. A schematic of the loading device is shown in Figure 5.

C. Dynamic Tests

The dynamic step load was applied by preloading the knife edge that was used in the static tests but restraining the knife edge from
loading the arch with a pin. The pin was rapidly retracted transferring the load to the arch. The effect of the inertia of the weight was minimized by attaching it with a soft spring. With this arrangement, it was found that the variation in the load was less than 10 per cent of the total load. The large variation occurred after the arch buckled, thus its affect was small on the determination of the critical load. A Honeywell Visicorder (Model 1508) was used to record the displacement of the arch and the variation in the load. A photograph of the loading device is shown in Figure 6.

IV. TEST RESULTS

Four arches were used in the test program. These were selected to have the smallest imperfections. In addition, an effort was made to select arches with a minimum amount of nonsymmetric imperfection. The deviation from the best fit radius was less than 0.005 inches in all cases. The arches were used repeatedly until all information was acquired. Between tests, imperfections measurements show a slight plastic deformation around the point of loading. In spite of this, repeated tests showed almost identical response characteristics.

The critical static load and the effect of asymmetric loading is shown in Figure 7. In general, a 10 per cent reduction of critical load was detected when the load was applied offset from the center an amount equal to 6 per cent of the arch length. This effect was especially sensitive in the neighborhood of the center because the curve forms a cuspin \(\epsilon = 0 \). Similar behavior was obtained theoretically and experimentally by Thompson for a truss structure (Ref. 7).
Figure 8 is a comparison of the experiments with the existing analysis. The critical loads are normalized by Schreyer and Masur's classical solution (Ref. 6). The upper curve is the classical solution for a sinusoidal arch (Refs. 2 and 3). The lowest curve is the static energy solution for clamped circular arches (Ref. 8). Experiments performed by Gjelsvik and Bodner are also shown on the figure.

It was observed on the load deflection diagram that the equilibrium paths crossed the abscissa (displacement axis) at no point other than the origin. Therefore, only the original configuration is a possible equilibrium position at the zero load condition.

A typical test result for the step loading experiment is shown in Figure 9. The figure shows the deflection-time traces at the loading point when a step load was applied.

The numbers attached to the curves are the loads expressed in pounds. The closest pair which change in nature defines the critical load. At the critical range, a one-half per cent change of load will result in a factor of three changes in response. The dotted straight lines represent the equilibrium position obtained from the static tests at the corresponding load levels. The subcritical responses were damped to the near equilibrium positions while the supercritical responses vibrated around the far equilibrium positions. If damping were not present, the supercritical response would have completed the bell shape curves as illustrated in Figure 1.

The effect of loading offset is shown in Figure 10. In contrast to static tests, the influence of the loading location is much less and the
reduction of the critical load appears to have a smooth transition near
the center.

Finally, the dynamic critical loads were normalized by
Schreyer and Masur's static classical solution, and are shown in
Figure 11. In addition, the solution obtained by Vahidi (Ref. 5) using
finite differences and direct numerical integration of the equations is
shown in the figure. For these experiments the agreement with either
of the two analysis is good.

V. CONCLUSIONS

Overall, the static tests agree reasonably well with Schreyer
and Masur's solution. The somewhat lower results are probably
caused by initial imperfections. The results are sensitive to the
position of the loading as shown in Figure 7.

The step loading tests showed a very distinct dynamic buckling
phenomenon. The critical load was determined to within 1/2 per cent
for all cases. The influence of a load offset was not as important as
in the static case.

As shown in Figure 11, the agreement between the dynamic
critical load and the lower bound was found to be good. The bound
shown in the figure is virtually the same if calculated using the saddle
point or the unstable symmetric position. This is due to the fact that
the asymmetric deflection is not decisive in this problem since it
bifurcates, not from the stable side of the load deflection curve, but
from the unstable side. This has previously been pointed out in
reference 6.
The reason why the lower bound is above the critical load obtained by Vahidi, who used numerical integration is not clear. However, the difference between the results from the two analyses is very small. The experiments are also slightly below the lower bound. While this is somewhat disconcerting, the difference could again be explained by initial imperfections as in the static case. Despite this small inconsistency, the usefulness of the energy method for this simple structure has been demonstrated. This encourages an extension of this type of analysis to more complicated structures where a direct solution of the differential equations is impractical.

Finally, it was found that the original rest configuration of the arch was the only equilibrium position at the zero load condition. This is in agreement with Vahidi's calculation (Ref. 9). Since the existence of other equilibrium positions is a requirement in an energy approach to determine the critical load level, the impulsive loaded clamped circular arch cannot be rigorously classified as a dynamic buckling problem.
REFERENCES

<table>
<thead>
<tr>
<th></th>
<th>Arch 1</th>
<th>Arch 2</th>
<th>Arch 3</th>
<th>Arch 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>b (in)</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>h (in)</td>
<td>0.0632</td>
<td>0.0643</td>
<td>0.0643</td>
<td>0.0643</td>
</tr>
<tr>
<td>L (in)</td>
<td>12.20</td>
<td>10.90</td>
<td>9.50</td>
<td>7.75</td>
</tr>
<tr>
<td>R (in)</td>
<td>31.56</td>
<td>32.09</td>
<td>32.01</td>
<td>31.58</td>
</tr>
<tr>
<td>*γ</td>
<td>18.655</td>
<td>14.395</td>
<td>10.962</td>
<td>7.395</td>
</tr>
<tr>
<td>*H (in)</td>
<td>0.5895</td>
<td>0.4628</td>
<td>0.3524</td>
<td>0.2377</td>
</tr>
<tr>
<td>*β (degree)</td>
<td>11.075</td>
<td>9.729</td>
<td>8.503</td>
<td>7.030</td>
</tr>
</tbody>
</table>

*Calculated
FIG. 1 NONLINEAR RESPONSE OF A ONE DEGREE OF FREEDOM SYSTEM
FIG. 2 NONLINEAR RESPONSE OF A TWO DEGREE OF FREEDOM SYSTEM
FIG. 3 COORDINATE SYSTEM FOR THE CLAMPED CIRCULAR ARCH
Fig. 4. Measuring of Initial Imperfection of a Circular Arch.
FIG. 5 THE STATIC AND DYNAMIC TEST APPARATUS
Fig. 6. Knife Edge Assembly.
FIG. 7 NONDIMENSIONAL CRITICAL STATIC LOAD VS. LOAD OFFSET
FIG. 8 COMPARISON OF STATIC EXPERIMENTS TO THE THEORETICAL STATIC BUCKLING LOAD
FIG. 9 DYNAMIC RESPONSE OF ARCH 1, γ = 18.66, ε = 0
Figure 10: Nondimensional critical step load vs. load offset for Arch 1, Arch 2, Arch 3, and Arch 4.
FIG. 11 COMPARISON OF DYNAMIC EXPERIMENTS TO THE THEORETICAL STEP BUCKLING LOAD
AN ENERGY APPROACH TO THE DYNAMIC STABILITY OF ARCHES

Concentrated static and step loading were applied to circular arches with geometric parameters $7 < \gamma < 20$. The static equilibrium path and the dynamic response at the loading position were recorded. Dynamic buckling is distinct. Supercritical and subcritical response were separated by 0.5 per cent of the total load. The sensitivity of the arch to offset loading was studied. The effect was pronounced in the static tests but moderate in the dynamic case. An energy approach was used to determine the lower and upper bound for the critical step load. The lower bound agrees well with the experimental results.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Buckling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clamped Arches</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step Load</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>