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ABSTRACT

Based or a generazl mathematical model of a
techuology, Implyiny certain properties for the
production function, weak and strong forms of a
physical law of diwinishivng returns are derived,
It is also shown that the classical forms of thi
law hold if the technology is homogeneous (degree
one) and the nroductinn possibility sets of the
technology ave strictly convex, but the latter
property violates an egsential property of a
technology, namely that these sets have bounded
efficient subsets.
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PROOF OF THE LAW OF DIMINISHING RETURNST

by
Ronald W. Shephard

Professor of Engineering Science
University of California (Berkeley)

1. INTRODUCTION

For 200 years, since it was first expressed (for land) by fhe French
economist Turgot (1767), [1l3], a law of diminishing returns in the physical
output of production has played a central role in the marginal analysis of
economic theory, stating in some fashion that the output from production will
eventually suffer decreasing increments or decreasing average return if the
inputs of some factors of production are fixed and the others are increased
indefinitely by some equal increments. Divorced of its reference solely to
agriculture, diminishing returns are taken as a fundamental law for technology
to suppert economic theories of equilibrium and price determination.

Thirty thre: years ago, in two papers published in the Zeitschrift fiir
Nationaldkenomie [6] and subsequently re-issued in english in Economic Activity
Analysis (1954, edited by Oskar Morgenstern), K. Menger gave a penetrating,
albeit entertainiig, discussion showing that there has been considerable confusion
in the statements of the law and the arguments adduced for it, involving such
emminent classical economists as Wicksell (1909), Boehm-Bawerk (1912) and
L. V. Mises (1933). 1In recent times, well-known economists (e.g., Samuel-on
in Economics, McGraw Hill, 1964) refer tc the proposition as a '.undamental law
of eccnomics and technology' on the one hand, and also describe it as an
"important, often-observed, economic and technical regularity,” implying on the

othe: hand that it is not a law but a statistical phenomena.

‘Dedicated to my friend Oskar Morgensteru who called this Issue to my attention
and urged me to work on it.




With the advent of the noti-n of a producticn function (circa 1910),
deductions {explanations) of the law have followed from mathematlcal properties
assumed for the production function, and most recently by Eichhorn {5] in the
Zeitschrift fiir NatjonalSkonomie. Since the law of diminishing returns is a
statement concerning technelogy, from which the prodmnction function is a derived
cbncept, a study of the lngical relationship between statements of the law and
basic concepts in the theory of production should start with a definition of a
technology.

A technology 1is given precise mathematical definition as a family of sets
T:Lu), uve [{0,+) 1in the nonnegative domain of an n-dimensional Euclidian
space, with certain properties which are presumed to be generally aonplicable,
The members of this family are indexed by a real, nonnegative variable u ,
denoting output rate, ard each set L(u) specifies the set of input vectors
X = (xl,xz, ey xn) yielding at least the output rate u . The production
fuaction ¢(x) of the technology is then defined on this family of sets for an
input vector x as the maximal output rate obtainable with x , giving to it
L2 classical meaning, and the properties of the production function are derived
from those of the sets L(u) . These formu..tions permit substitutions between
the factors of production, both as alternative and complementary means of production.
The substitutions of primary interest are those on the boundaries of the sets
L(u) which are technologically efficient, i.e., input vectors for ~u outbut u
such that a decrease of any of thé inputs without increasing an input will fail
to nroduce the output rate u .

One importani property {premise) for the input sets L(u) 1in the definition
of the technology 1s that the efficlent subset for each value of u 1is bounded,

i.e., technologically efficient production of an output rate u 1is not made with

an input vector which has infiniteiy large application of any factor of production.




Strangely, the production functions in common use which exhibit diminishing
returns, e.g., the Cobb-Douglas and CES functions, violate this propérty and
strictly speaking they are not production functions.

In this conceptual framework, it is clear that diminishing returns are not
obtainable by fixing the inputs of any arbitrarily chosen subset of the factors
of production. For this reason, a definition of an essential combination of the
factors of production is introduced, as cne for which positive output canuot be
obtained if these factors are not used in producticn, and it is premised that &
technology has at least one essential cowmbination of the factors of production.
Then it 1is shown, by purely mathematical deduction from the general properties of
a technclogy, that there exists a positive bound upon the inputs of the factors of
an essential combination such that output is bounded when the inputs of the factors
of the essential combination are restricted to this bound and the inputs of the
remalining factors are increased indefinitely.

It is shown by counterexample satisfying the properties assumed for a
technolog: that essentiality of a combination of the factors of production does
not imply that output s bounded for any positive bound upon the inputs of the
factors of an essential combination, when the inputs of the remaining factors are
increased indefinitely. An essential combination is called strongly limitational
if output is bounded for all positive bounds upon the inputs of this combination,
{.e., "nbounded output cannot be obtained under any bounded inputs for an essential
combination,

Two weak forms of the law of diminishing returns, one for product increment-
and one for average return, are deducrd for a technology. These expressions of
the law are of the form described by Menger as “intersecting assertions,' as
distinguished from the tradirional forms which imply strict concavity of the
production function in sutiiciently large variable inputs when the inputs of some
factors are held fixed. Two corresponding strong forms of the law hold if an

cssential combination of the factors is strongly limitational,
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The properties of a substructure (i.e., realization of a technology w.th
positive bounds upon rhe inputs of a subset of the factors of production) are
investigated. If the subset of the factors is not an essential combination, the
resulting substructure is a techn~logy :hen these bounds are zero, of more limited
alternatives but nevertheless one with the same general properties, and nc law
of diminishing returns can be deduced.

The traditional forms of the law cannot be obtained without assumptions on
the fine structure of a technology which are contrived to obtain the result.

It 1s not infrequent in economic studies to assume that the production function is
positively homogeneous of degree one, i.e., AL(u) = L(Mu) for the technology.

It is shown that this assumption leads to nonincreasing returns over the whole
range, i..., not merely for sufficiently large variable inputs. If it is assumed
further that the input sets are strictly convex for positive output, a proposition
of diminishing returns is obtained over the whole vange of variable inputs, but
this assumption implies that the efficient subsets of the technology are unbounded
and each factor of production is essential. These properties, i.e., homogeneity
of degree one and strict convexity of the input sets L(u) for u > 0, generalize
the assumptions of Eichhorn and they are possessed by *he Cobb-Douglas and CES
production functions.

The term "proof” used in the title of this paper is intended to
sequence of logically valid statemeuts for technologies defined by the input sets
L(u) with the properties stipulated.

The mathematical treatment of the structure of production used in this paper
is an extension of the work of the author provided in (a) Unternehmensforschung,
Vol 11, 1567, No. 4, "The Notion of a Production Function,” (b) Theory of Cost
and Production Functions, book manusaript submitted to Princeton University Press

AR

June 1969.




2. _DEFINITION OF A PRODUCTION TECHNOLOGY

A production technology consists of certain alt:rnative means and arrangements
by which goods or gervices are produced, not all possibilities of which need be

realized in practice. The distinct goods and services which way be uged as

inputs are the factors of production, and free goods or services are not excluded,

since the market price of a commodity has no bearing upon the technical roles of
the fa.tors of productica. The technology exists independently of the political
and social structure in which it may operate and also of the scarcity of the
inputs, i.e., it is a blueprint for production.

It is assumed that a single good or service is obtainable as an output of
the technology.f Let u ¢ [0,+») denote the output rate, and take
X = (xl,xz, cees Xn) to denote the input rates of the factors of production
with x restricted to the nonnegative domain of a Euclidian space " , denoted

by R: . It is not assumed that x must be strictly positive for u positive,

i.e., some of the factors may be complete substitutes for others.

Definition 1: A production input set of the technology, denoted by L{u) , is

R n
the set of all input vectors x ¢ R+ ylelding at least the output

rate u = [0,+x)
Clearly not all input vectors x belonging to an input et L(u) are
techunologically efficient. Those which cve efficiert are given by the followving

The cfficient subset E(a)  of an input set

vl 1 NS A AR Y S 1 Y ~
Pne lav classicaliv refers to tiis situation.




-f.
E(u) = {x | x e L(u) , y<x= y¢T(}.
Then, a production technology i1s defined as follows:

Definition 3: A production techrology 1s a farily of production input sets

T : L(u) , ue [0,+4®) satisfying:

P.1 L(0) = R" , 0 £ L(u) for u=>20.

P.2 x € L{u) and x' > x 1imply x'" € L(u) .
P.3 If (@) x> C , or (b) x > 0 and there exists a real number
X > 0 and output rate u >0 such that (x+x) e L(u) , the

ray {A-+x ] A 0} intersects L{u) for all u e [0,+=)

P.4 dy 2 Uy 2 0 implies L(uz) « L(ul)
P.5S ! L(u) 1is empty.
ue[0,+)

= L(u ) - >
P.6 n L(u) L(LO/ for ug 0

O<u<u

= o)
P.7 L(u) 1is closed for all wu ¢ [0,+)
P.8 L{u) 1is convex for all u - [0,+)

P.9 E(u) is bounded for all wu : [C,+v)

P.10 For » - 1 , u e [0,+=) , “+Lqu) <~ Lgiu) and

iy

The Preperties UL, oL, P10 are taken as valid or genevally acceptable

tor any technology. Froperty Tl states merely that any nonnegative input

vector vields ar least aull cutput, and pesitive cutput cannct be obtained from a

.o et . L R -~ - Seyis Tl 4o o= e
N NN Naeans A SN s L0 1_,~, ceey o, MO RUG I Vo= X

s veay 0oy excluding vo=ox
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~ut veccor. Property P.2 implies disposability of inmputs. For example,

cal fertilizer is used as an input with land to produce a crop and

e amounts of the former are available relative to land, in an input

x , not all of the fertilize: has to be actually used to decrease the
merely disposcs cof the excess fertilizer. Fortuitous events, such as

are ot jncompassed. Thus, the technology is regarded as a rationail,

able process.

-perty P.3 states first that any output rate u ¢ [C,+=) can be realized

r magnification of a positive input vector, although not necessarily in
ient way, «and second that, if a pesitive output rate can be obta%ned by

~ -~

agnification of a semi-positive input vecto. x , any null inputs of x
&

required for production and the same attainability of all positive out--t

lds by scalar magnification of the semi-positive input vector x . The

f .nput sets L(u) defines the input unc-nstrained technical possit’lities.

lity of output rate is not implied, but disposability of outputs is

perty P.4 is clearly appropriate, since an input vector x yielding an

ate wu, also yields any ‘utput rate not exceeding u

9 and Property P.5

y a precise way of stating that an unbounded output rate cannot be attained
aded input vector.,

perties P.6 and P.7 have only mathematical significance. Property P.6 is
in ovder to guarantee the existence of the production function ¢(x) as
wm ooutpur rate attainable with an input vector x . Property P.7 is

in o© »r te be able to define the production isoquant for an output rate
subset of the boundary of the input set T(u) relative to R" .

serty P.8 1s valid for time-divisibly-operable technologies. For example,
v(u) , v e L(u and 8 ¢ [0,1] , the input vector [(1 - 8)x + gy] ay

wweted s an operation of the technology a fraction (1 - 8) of some




unit time interval with the input vector x =2nd the remaining fraction & with
y , assuring at least the output rate u .f Nothing is implied abeut the
efficiency of such an operation.

Property F.§ is imposed as an obvious physical fact that no output rzate is
attained effjciently (in a technological sense) by an unbounded input vector.
This property, freguently ignored by the production functions in common use, is
essential fcor the arguments to follow. It also assures, for any semi-positive
price vector p <£for the inputs X , that an optimal input vector x* can be
realized to minimize costs. Note that free goods are not excluded from the
iaputs X .

Property .10 is taken valid for the following reasons. If x e L{u) (i.e.,
X realizes at least the output rate u) and X > 1, then (x+*x) may realize at
least the output rate {iu) , merely by a time-divisible replication of the
arrangement with x >prbducing u , but A*L{u) may be a proper subset of

L(x*u) , since, 1f x ¢ E(u) is an efficient input vector, (A*x) may not be

efficient for L{A*u) . For the same reasons, if x é L(%) and A > 1, then

(A+x) will yield at least the output rate u , whence x ¢ % L{u) and
u\ _ 1 Tt
u 1

L(A) C'A L(u) .

In the foregoing definitinn of a technology, nothing is assumed which is

O
n

peruliar to any particular physical system of producticn. One consequence
Propecty P.10 is that, with no limitations on the inputs of the factors of
production, average costs are nonincreasing with respect to scale of output.

For u > 0 , the minimal cost rate of production for a price vector p of x |is

.i. .
Indeed, the input [(1 - 6)x + 6y] may have no meaning unless so interpreted.

T e . : ,

Diminishing returns from extensive application of a factor like land does not
contradict Property P.10, since we are concerned with the unconstrained technical
alternatives.

N T T iyey )

Frimat w e Qi Bl
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Q(u,p) = Min {p°x | x e LCu)} ,
x

and, for A > 1, Property P.10 implies ' i

Q{Au,p) = Mia {p°x ! x € L(Au)}
x

Min {p-x i x € AL(u)}
x

A Min {p(%)l % 3 L(u)}

X

nA

A Q(U’P) ’

whence

for any XA >1 and u>0.

Y T
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3. THE PRODUCTION FUNCTION FOR A TECHNOLOGY

The production function ¢(x) for a technology I : L{u) , u c [0,+m)

is defined by

(1) 3(x) = Max {u { »e L)}, x ¢ RZ '

as the maximum output rate attainable with an input vector x .

The existence of the production function ¢(x) and its properties implied
by Properties P.1, ..., P.8 of the technology T are proved in [11] and [12],
but will be repeated here briefly for completeness of discussion. Also, the
properties of ¢(x) implied by the Properties P.9 and P.10 will be stated and
proved,

Let x > 0 be arbitrary. Then x e L(0) due to Property P.l. Also there

'

exists a finite output rate u' such that x ¢ Liu) ifor u > u' , due to

Properties P.4 and P.5. Consequently,

Sup {u | x € L(w} = u, (finize) ,

and x & L(u) for u e [O,ue) . But, due to Property P.6, {u ] x € L(ul} = [O,uo]
Hence ¢(x) exists for any x ¢ R: and %(x) 1is finite for auy bounded input
vector x . Thus, the existence of the productioﬁ function o(x) with ¢(0) = 0
follows only from Properties P.l, P.4, P,5 and P.6 of the technology T .

Property P.2 implies ¢(x') > #(x) for any x' > x , since {u ( x € L(u)}

< {u , x' € L(u)} . Property P.3 implies: (a) 1f x> 0, ¢(Ax) » +® as A = +» ,

(b) if x>0 and ¢(X-x) >0 for some A > 0, then @(Ax) > +» as X » += ,

Property P.7 implies ¢(x) is upper semi-continuous, because L(u) = {x | ¢(x)

v
[=4
——

is closed for u > 0 and {x l d(x)

v

u}l = R: (closed) for u < 0 , and the

closure of the level sets {x | ®(x)

v

u}l of ¢(x) for all u e (-»,+») 1{is an

if and only if condition for the upper semi-continuity of &(x)
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Froperty P.8 implies that the production function is quasi-concave, i.e.,
for x 20,y>0 and 0 ¢ [0,1} , 8((1 - 8)x + 8y) > Min [¢(x),2(y)] , because
letting 1 = Min [8{x),%(y)] , x € L{1) , y € L(1) and the convexity of L(x)
implies [{(1 - 8)x + 6y] ¢ L(1) .

For the implication of Property P.9, suppose ¢(x) = u . Then ¢(x) = u
with ®(y) <u for y < 0 on the bounded subset E(u) of L(u) . If &(x) = u

and x ¢ E(u) , there exists a point vy < x such that ¢(y) > u . Hence, &(x)

takes a constant value, with &(y) < ¢(x) for vy < x , on bounded subsets of Rz

Property P.10 implies that the production function ¢(x) is super-homogeneous,

i.e., for A > 1 ¢(Ax) > Ab(x) and ¢(§

€ L{u) and (Ax) € L(iu) dimplying ¢(ix) > AP (x) , while if §'= ¢(§) then

) < %’¢(x) , because if u = ¢(x) then

x
f‘e L(%) and x € L(u) implying ¢(x) > u = k¢(§) .

Finally, Properties P.8 and P.10 imply that the production sunction is
super-additive, i.e., if x ¢ R: s ¥ E R: then o(x + y) > o(x) + ¢(y) . To
prove this statement, let ¢(x) > 0 and ¢(y) > 0 and let u = Max [¢(x),0(y)]

Then, since Property P.10 implies that @¢(x) 1is super-homogeneous,

dit) 2ol 2o

u “x u
¢ (x) 7o (y)

of L(u) , i.e., proverty P.8, then implies that

implying that the ipput vectors ‘y belouny to L{u) . The convexity

Gy S8 U,
¢((1 T Ty y) =0

®
Take o = —(¥)

T T00 4 ¢(;; and use the super-homegeneity of ¢(x) to obtain

T e

Hx) + i (y) H(x) + :(y)'(x + y)) = Y




whence ¢(x + y) > #(x) + ¢{y) . I1f either &(x) or ¢(y) or both are zero,

the same inequality holds,

In summary, the following proposition haolds:

Provosition 1: The production function ¢(x) defined bty (1) on the technology

T : L(u) , ue [0,+) has the following properties:

A.1 ¢(0) =0.

A.2

®(x)

(x'")

> o(x)

is finite for bounded

for x' » x .
=

n
X € R+ .

If (a)

x>0, or (b)

X

0 and

¢(xex) >0

A>0, 8(Ax) > +» as A > 4+

¢(x) is upper semi-continuous in x € R: .

$((1 - 8)x + 0dy) > Min [¢(x),0(y)] for x , ¥y

¢ (Ax) > AP (x) and @(5) ; %‘@(x) for x ¢ RV

A +

®{x) takes constant values, with &(y) < ¢(x)

on bounded subsets of Ri .

d(x + y) > $(x) + 2(y) for x , ve R: .

Note that the technology T . and its related production function Y({x) are

expressions of the unconstrained technological alternatives. Restrictions on

the input vecters x  are to be handled separately and not incorporated into

the definition of (he production function ¥({x)

One consecuence of Froperty A9 is that the unconstraines minimum cost of

yielding at least an output rate u by combining two operations of a t o chaology

is equal to eor less than the sum of the minimal costs for the two separaste operations
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to yleld in at least the same cutput rate, since

{x+y) | ox+y) 2ul 2 {x+y) | () +a(y) 20},

and

Min {pr(x +y) | ®(x +y) > ul g Min {p-(x+7y) | 0(x) + &(y) > u} .
X,y X5y "

If a production function @(x) is given, the level sets of this function

satisfy the following proposition.

Propositicn 2: The level sets L¢(u) = {x l ¢ (x) >2u, xe Ri} , U g [0,4x)
for a nonnegative single valued real function ¢(x) defined on
Ri with the Properties A.l, ..., A.9 possess the Propefties
P.1, ..., P.10, and the production function defined on the sets

L®(u) is identical to ¢(x) .

A proof of Prop-=ition 2 is given in [11] and [12] for the Properties A.1, ..., A.6
and P.1, ..., P.8, and th. extension to A.7, A.8, A.9 and P.9, P.10 1is direct.
It is convenient at this peint to introduce a definition of the production

isoquant for an output rate wu , and to state two propositions concerning the

efticient subsets E(u) of the productien isoquants.

Definition 4: The production isequant for an output rate u e [0,+*) 1is the
boundary of the set L(u) , excluding those points which are not

X at minimal ray distance frem the origin.

- - : , , n c s .
It pare of the boundary of L{u) relative to R coincides with the beoundary

of R, those points  x on such commonpart for which (A+x) ¢ L 1) for 1

are nat facluded in the production isoguant, becaus., macroscepically, thev cannot
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be efficient input vectors.

Two prcopositions hold for the efficient subsets E(u) :

Proposition 3: E(u) 1is nonempty for all u e [0,+=) .

Proposition 4: L(u) = E{u) + R: , u e [0,+=) .T

The proofs of these two propositions are given in [11] and [12]. One cannot
conclude that E(u) is clesed--see the counter example in [1]--and, although
L{u) = E(u) + Ri , 1t is sufficient for our purposes tc work with the closure

E{u) of E(u) .

. . . . n . - . _
The suts A+ B of two sets A and B in R+ is the set of polnts of the

fors (¥ + yv) where x - A and v o B .




Y
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4. LIMITATIONAL FACTORS OF PRODUCTION

15

1ne general definition of a technology given in Section 2 permits substitutions

between the faciors of production to attain efficiently any given ouiput rate u

(f.e., the alternatives E(u)) and it is not assumed that positive inputs of

any particulor factor of production or combination of factors are required for

positive output, nor that a positive bound upon the inputs of a factor or combin-

atjon of factors limits the output which may be realized under increasing applica-

tions of the other factors. 1In a word, we have been concerned with the unconstrained

alternatives of a technology.

For the investigation of a law of diminishing returns we must turn our

attention to the possible limitatiornal character of the factors of production.

Let

o
"

———
>
%
\%

o
X

Then

R, = {0} U
The boundary points ¢f R relative to
D, , are classified further by

by
A

Dq(vl,vz. e, vk) = Jx © x ¢ D

IO 1ntegets « sUV Ul 1 - (x.

el

n

x, =0, xeR

1
D D,

1 2

LN 1o v .

R excluding the null input veotor, i.e.,
x =90 for i=1,2, ..., kl




Definition 5: The combination (vl,vz, ceny vk) , 1 <k in-1, 1is essential *] '
and only if Dz(vl, cees V) N L(u) is . pty for all u > 0 ,

or equivalently ¢(x) = 0 for all x ¢ D2 (vl, ceey vk) .

Two propositions clarify this definition of the essentiality of a combination

of the factors of production.

Proposition 5: If x e interior of Dz(vl, ceny vk) , 1.e., x, = 0 for

i
ie (1,2, ..., k} and X, > 0 for 4§ ¢ {1,2, ..., k} , and

d(Ax) = 0 for A e [0,+~) , then ®(y) = 0 for all

']

y € Dz(vl,vz, cee, vk) and the ccmbination (vl,vz, cee, vk) is

essential.

Proposition 6: If x & interior of Dz(vl,vz, ey vk) and ¢(X-x) >0 for
some scalar A > 0 » then for all input vectors y € interior of

D,(v,, ..., v.) there exists a csitive scalar ) such that
281 k P y

(A ry) > 0
(y>)

PropositionsS and 6 follow directly from Properties A.J and A.4 of the

production function  1(x)

Thus, either a combination (covvyy ooy w) of the factors of sroduction
2 K
s essential by 1(x) = 0 for all x - DLy vy, , ), or for all
20102 k
yooodnterior of  Do(vo, o0, ..., v.) there exists a positive scalar sach that
P S K A
positive culpul may be obtained with the input (A -y) . If a combination
/- T PSS 1 St it i o ( . 3 taor
Sy Ny , 18 ess¢ lda, Cleariy ar couitingation ( Y. > IoT
( K - ‘\ l -~ 8
fe)
{ - 1) 3 Tl wice pagenrs 31 Thoa . ~ NIt Gl Ty e
s a [ 2 1= SROWINE QSsenilag NESY S DIALIY s lsting O )
o = y .
Tact SLopreduction ds obvionsly essential by virtue of ropertices DL and a.l,
but this goes not d Iy that aow factor or lesser comhinatien of tavtors tAasential
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In fact, the Properties P.1, ..., P.10 used in Section 2 to define a technology

do not imply the existence of an essential combination (vl,vz, ees vk) for

l<k<(m-1).

Now suppos~ for a combination (vl,vz, «e.y v. ) of the factors of pre’..iion

k

that a positive bound (xg ’XS y ey xz ) is imposed on the input of these
1 72 k

factors. How may this bound impoée a limitation (if at all) upon che outputs which
may be obtained under unrestricted application of the other factors? Fer the

investigation of this question twc definitions are introduced:

Definition 6: A combination (v,,vz, ey vk) of the factors of production is

Weak Limitational if there exists a positive bound xo ,xo s seey xo
vl vz vk

such that &(x) is bounded ‘or x > 0 and X Xy eee, X
- Y102 Yk

Definition 7: A combination (vl,vq, cea s vk) of the factors of production is
e 2
o I . P - 0 o o
Strong Limitaticnal if, for all positive subvecters X O ,N ., ..., X ,
Y1 Ve Vi
${x) 1is bounded for x - 0 and X ,X , ..., X
- \_‘ ‘\,‘_ ‘\:
1 2 K
J) 0 o\
< \ =X, » X ) .
= v .
l + 1
- N
Clearly, i: a conbdination | R , v, ) ds stroag Limitational it is
< n
weax Himitariondl Alse, it would seem that if a cembination (0,0, v, ) s
72 K
rot essential it woutd not be Iin cither sense.  To pursue this issue,
suppose that o coshipario G . ) is nol essential Then, {t Tolicws
n
from Proposit & orhat for oail fnput veotors Interior of  3o00 ey )
1 N
there exists a poxitive sorla such that YU ) O, and o ofoilows e
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Property A.4 of the production function that, for any input vector y e interior

of Dz(v o vk) , $(Ay) 1is unbounded for A e [0,+») Consequently, due

1!\)2)

to Property A.3, the combination (vl,vz, ceey vk) is not weax limitat{onal,

and the following proposition holds:

Proposition 8: A combination (vl,vz, RN vk) of the factors of production

is limitational (weak or strong) only if it is essential.

Next suppose that a combination {vl,vz, vey vk) is essential. Then

& (x) 0 for all xeD

2(vl,v2, RN vk) For any positive output rate u ,

L ()

fl

E(u) + R: dve to Proposition 4. Since E(u) 1s bounded (Property P.9)

and closed, there exists a hyperplane which strictly separates E(u) and the

n +

closed set {x | x ¢ DZ(vl’ [?]. Because all points

n
\ - -
., vk, , X € R+} of R
of L(u) may be expressed as (x + y) where x ¢ E(u) and vy > 0, there exists

a strictly separating hyperplane

- - : -~ N . -~ ™ i - - - 4 -
for L(u) and }\ X < “2( EAEE - xk) , X ¢ R+} , i.e., 1f x ¢ L(u) then
K 2 !
. , ; f .
E a x >~ x oand it x ¢ 13 LX< n)(hz‘y)' D R$} then
i=1] 7 i -t : o
‘K
CooaLx = Any poine
. i g
i= i
a.
e SRS PPN
T3 N 2
i 2
Ta,
i=1
x, @ ool 2, <
4=




belon: to the hyperplane H ; and hence there exists a bound (xg y ceces xg )
1 'k

A :al,az, ey ak) such that @¢(x; 1s bounded for x > 0 and

k
la,
K ; (x , .y X ) < (xo s sees x° ) , because L(v) € L(u) for v >u implying |
. V. v, J =7V v *
i k 1 k|
'I.‘ ¢(x) - 1 . Hence, the following proposition holds:

Propo: :ion 9: A combiration (Vl’vZ’ cees vk) » 1 k< (n-1), 1s weak

limitational 1f and only if the combination is essential.

' rever, essentiality by itselﬁ does not imply that a combination (vl, oo vk)

is st g limitational, a fact which is easily seen from the counter example of

S Figurc .. There, for u ranging over [0,+») , the efficient subset E(u) = E(u)
 : is the :losed line segment Fa y where P = (O,u) and Q = (u,l - e-u) . The
B famil* f sets so generated clearly satisfies Properties P.l, ..., P.9 for a

techr - gy, and it remains to show only that Property P.10 holds. For this

DULTO: we need only consider the efficient subset E(u) , the points of which

are ; n by:

Xl = f-+u
8 ¢ [0,1] .

X, =0 -e N+ Q- 0u

In o that (Ax) = LWy for x ¢ E(u) and A > 1, it is sufficient to

Y
-
—~
o
{
]
§
c
~r
+
o
~~
i
8¢
~
jasd
3
~~
ot
!
~
~
e

- (1 - 9))u

(SR S




k.

20
*
I
|
a
u ¢
1 m—im—
\/ e e T
- - Qu,1 - ¢ %)
Q1,1 - ety
0= > X
1

FIGURE 1: COUNTER EXAMPLE: E(u) = P_Q s

L(u) = E(u) + {x | x > 0}

e e e e AR g P
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1

FOO =2l -e%) - (1-e™ >0

for all u >0 and X > 1. Clearly, F(1) = ¢ for u=0, % 2>1. Hence,

>
x

take u > 0 and compute

F'O) = 1 - e % - ue™™

F'(A) = u2e~hu .

Since F"(2) > 0 for u>0 and A21, F(1) 1is strictly convex in X for

arbitrary u > 0 . Now, F(1) =0 and

1-+u

u
e

F'(1) =1 - >0

for arbitrary u > 0 . Hence, F(}) >0 for A>1 and u> 0.

Similar’ly, in order that x € %‘L(u) for x e E(%) and X > 1, 1t 7s

sufficient to show that

]

u
109! A(l - e X)- (1-eH20

for all u >0 and A > 1. Since G(A\) =0 for u=90 and A > 1, take

u > 0 arbitrarily - nd

u _u
oy =1-e *-Ye !
u
1+ Y
= ] - u>0
X
e

for all A > 1 . Since G(l) =0 for u >0 and G(X) 1is strictly increasing

in A for i >1 and u > 0, it follows that G(Y) >0 for all X >1 and

e e GRS 27 e
o SR Sy
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Hence, the example cf Figure 1 satisfies a’l the properties required of
a technology. In this example, the factor of procduction with fnput denoted by
X is not essential, while the factor with input X, is essential because any

inpu*~ vector of the form (xl,O) does rot belong to any input set L(u) for

u >0 and @(xl,o) =0 for all Xy > 0 . For any positive bound x0 such that

2
xg <1, #(x) 1s bounded for X2 0 and 0 < X, < x; , while ¢{x) Is
unbounded for xg 22, X502 0 and 0 < %, < xg . Thus, we have a countzy example

against the essentia'ity of a combination (vl,vz, «evy v.) dimplying that the
combination is strong limitacional.
Recall, however, that, if the combination (vl,vq, e Vk) » 1 gk (n-1),

is essential it has been shown for arbitrary u > 0 that there exists a separating

hyperplare
k
) ax, =a,a>0,a >0 for ic{l,2, ..., Kk},
i=1 i |
where in general o may depend upon the ocutput rate u . Let
K
S(u) = Sup E a,x | x ¢ L)y ,
. iv, °
X }1=l i
and consider an increasing sequence of output rates {un} + +eo , If the corresponding

sequence {S(un)} is unbovnded, ¢(x) 1is bounded for any positive bound

Y

o 0 . . . - .
X 3, eae, X on an essential combination of the factors of production.
1 k

Controriwise, if the sequence {S(un)} is bounded, it converges to a limit S

and the hyp~rplane

X
Doax =5 ,a >0 for iril,2, ..., k}

R 2 e

TR W NSNS S ottt e

ﬂ; .




-y

intersects all prcduciion sets L(u) , u e [0,+*) , whence, for any bound

a
X, £X siTiA 1e{l2, ..., Kk

k
i i zaz
1 i

with A > S, > X, 2 0 for j ¢ {1,2, ..., k} , ¢(x) 1s unbounded and the
h|

combination (vl,vz, ceny vk) is not strong limitational. Thus, the following

prorosition holds:

Proposition 10: A combination (vl,vz, ey vk) is strong limitational if and

only if the combination is essential and

iw !

If the second conditioa of Proposition 10 does not hold, it is implied, for some

23

bounded pesitive inputs for an essential combination of the factors of production,

that output is unbounded for unrestricted inputs of the other factors.




24

5. THE PRODUCTION STRUCTURE QOF A TECHNOLOGY WITH PARTIALLY BOUNDED INPUTS

The considerations of the previous section lead one to consider the production

possibility sets of a technology when the inputs of some (but not all) of the

—y

factors of production are limited by some
Let (vl,vz, ceny vk) s L k< (n-
production and suppose that the input- of

bounded by

Let

positive bounds.
1) , be a combination of the factors of

the factors of this combination are

ie{1,2, ..., k} .

denote subvectors of the input vector x , and take x = (xk,yk) since the order

is not important. Define

1) = L 0 07, u e [U,+)

The sets L (u) are the production pussibility sets for the limited operaticon ot

the rechiology when 0 - X X,
- = "k = k

. C o .. 0 .
It {s ratber straightrorward to verify that the sets L (u) , u < [0,+)

satisfv analogues of the Properties PU&

3

., P.8 for the production sots of an

unrestricted technelegy, with Pol oand PU2 replaced by




o]

p.1° 1°0) = 0° .

P.2° 1f «eD° , X' € p° » x' 2 x and x € Lo(u) , then x' ¢ Lo(u) .

Regarding Property P.3, suppose first that the combination (vl,vz, ceey Vk)

o
is nonessential. Then Propositions 5 a:J 6 imply that if ¥y > 0 there exists a i

scalar Au for any u > 0 such that ¢(O,Au-yk) > 0 . Then by Properties A.1l,

A.3 and A.9, it follows, for any x, for which O $x X%

K K S , that

~ ©

o0ty ) = 2((x,0) 4 (0, ty))

= ¢(0!Au'yk) _Z u 3

or for any Ve > 0 there exists & scalar Au (depending also perhaps on yk)

such that (xk,ku-yk) £ Lo(u) . Thus, the following property holds:

P.3O(a) If the combination (vl,vz, ey vk) is nonessential:

(1) Lo(u) is nonempty for all u ¢ [0,+°) .

ER : 12 o o > O y ' v ~
(ii) For (xk.)k) ¢ D and Yy 0 , the ray {(xk,\)k) [ A > 0}

. . , s o
emanating from the point (xk,O) intersects all sets L (u)

for u ¢ [0,+)

Agsume now that the combination (vl,v7, . vk) is eazsential, Two
situaticus arise, Eit' or the combination is weak limitational or it is strong

Timitational, It it is strong limicational, ?(xk,yk¥ is bounded for

0 Q . .. .
(Xk.yk) D7 and not all sets L (u) are ponempty. If it is weak limitational,

o
h it may happen that  $(x, ,v.) 1is unbounded for X Y v b . Then for vy, >0
y hapy YV ( Yk Yk )
Q . .
:(xk,\vk> s 4 oas v o+ 4+ o and for any u - 0 there exists a scalar such
SR S ! u
4 2N o . . Q . .
that (xk,- -y,} < L7(uY | and the sets L (u) arve novempty for u = [0,40)
, K u Ny ‘
r Hoence, Property U3

takes the following scecond form when the cembination

(v ey v ) ds essential:
“ K




ey
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P.3°(b) If the combination (vl,vz, ceey vk) is weak limitational+ and

@(xk,yk) is unbounded for (x ) € p° :

kK
(1) Lo(u) is ronemoty for all u e {0,+=) .

A

(11) For y, > 0, the ray {(xi,Ayk) [ A > O} emanating from the

pe Int (XE,O) intersects all sets L%(u) for u e [0,4=) |

It remains toc consider Properties P.9 and P.10. The efficient subset Eo(u)

¢f a nonempty limited production possibility set Lo(u) is defined by

>

o = o ' ' 10 : ! ' \
E"(u) {(xk,yk) | (xk,yk) e L (uw) , (xk,yk) £ L (u) if \xk,yk) < (xk,yk,} .

An efficient subset E°(u) 1is nonempty if L) is nenempty (see (11], Section 4,

or [12], Section 2.8, for proof) and Eo(u) C E{u) . Thus, Property P.9 holds for
the limited production sets Lo(u)

Iv is easy to verify that Property P.10 does not hold for the sets Lo(u)
However, a useful modification does hold. Consider the situation where the bound
o . .
X, = 0 and the combination (A v

CEERERE k) is nenessential. The resulting sets

3

FENRY o
L (u}y , uv [0,+=) |, are nonempty (see Property FP.3 (a)) and they represent a

technclogy with the factors veey V) omitted, iLe

(U ) ., one with more limited
& l’ 2! b} k b

alternatives but nevertheless a technolegy. Consequently, for these sets, if

(O’Vk\ ¢ L(uw)  then \(O’Vk) - (O’\Vk) () for V> 1 ., Now return to the R
Y Yy Yo -
i N 0 1 ( ) 1.7 ) i 0 +4 ¥
cas2 where x, > 0 aad suppose  (x,,v s L (u and oy > . o1 a
Kk g A S ‘K
sufriciently large magnification of Y i.e., Su-yk such that (O,fu-yk) <o Lgu) o,
L]

‘Note that eszential and weak limitational are synonymous (see Proposition 9), noet

Un

necessavily fuplying that the combination is stvong limitational.

It the combination ., ., , Ly i fmally nonesseatial, i.e.,
SN i :
. 3. SR I . 11 : Ty M 3V . \ 7\‘,
L.i, cees j) is eswential Yo alt 3 o sk#l, oo, nt o, then &xk,ykz L)
mplivs oy (0
K
t
. N . - — e e e g e




i o

j
3 Turn now to the situation where the combination (vl,vz, che vk) is
essential. Two situations arise. If the combination is strcag limitational, then
for any bound x> >0 , d(x.,y,)} 1is bounded for € < x, < x° and y, > 0.
k k' k ="k = "k k =
Denote this bound by
o f./ o 1 i
uf{x = Su afx, , Ry, > 0 A > 0 v
(k) p \ ( E\’ }\) I yk ] = !
A R
‘e,
/ fo)
0 ) U(Xl :
. C R Qo R N
If L (u) 1is nonemptv (x,,v.) ¢ L (u}y and 1\ » ——~ it follows taat
P -9 k),k u ]
r
S 1 N N R
slx, ,ty sohu oy A (N L,y )
) ( K’ 'k) = ( kK’ x
}
i It the combinatien (wl,xﬁ, ey vk\ ig only wear limitational, theve exists a
) oo ~ N . . . - , ~ . ) \ .-
bound x; >~ 0 such that  {x ,v, ) is bouanded for 0 - x, ~ % , v, >0 ; and, {!
K K™K = ko= K Tkos=
/—0>
TN
Q 0 \7k
- S o Tl e b (v v ! and . S . e it v
L {(u) is non opty, \Nk’}k\ oLy and y . '(Ak"}k) '\x“’}k>
b
! N ; : y . : Dy &Te .y N . v P I
But, in this latter situation, it N, :\‘k y .(xk,yk/ 1S unloounded ol /
hS
Q , . S . , .
0 - x> x] v, 0, and nothing can be safd withour assunptions on the fiove
, = Koz K L = N .
sUooctuyy O” e e ! N T I(l\ , ! {"\‘,‘: )
4
In st v, the rollowing provosicion holds reparding the prodaction possibiliog
O .
sel Ioou?r ot a limite tecimelogy
i
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0 o
(xk,SU-yk) € L (u) 1implies for A > 1 that (xk,keuvyk) ¢ L (Au) , because
(O,Aeu-yk) ¢ L{u) and (xk,keu-yk) £ Lo(xu) due to Property p.2°. Thus, the

following property holds for the sets Lo(u) :

i
i

P.lOo(a) 1f (vl, ceay vk) is nonessential and Yy > ¢ , or the combination
(vl,vz, “eoy vk) is maximally nonessential, then, for a (

sufficiently large magnification eu-yk- such that (G,8 -yk) e L(u) ,

u
o . e}
(xk,eu-yk) € L (u) dmplies (xk,Aeu yk) e L (Qu) for A > 1.




Propositiorn 11:

28 :
;
If a subvector (xv bX s eees X ) =X of a technology
1 2 3
T : L(u) 1is constrained to 0 < X, < xi . xz >0, with
Yy = (xv s orees X ) > 0, the production sets
k+1 n
1
I'4
0 o 0 o
L"(u) =LwnANDdD ,D = i(xk,yk) ‘ X, < X, s Yy > 0} , satisfy
|
(let x = (Xk’yk))
p.1° L°) = 0° .
p.2° If xeD° , x' ¢ D° ,» X' >x and x ¢ L% (u) ,
x' ¢ Lo(u) .
P.3o(a) If the combination (vl,vz, e vk) is nonessential:
(1) Lo(u) is nonempty for all u ¢ [0,+=)
(1i) For (xk,yk) e 0° and Yy 7 0 , the ray
{(xk,ka) Ea > 0} emanating from the point
(x,,0) intersects all sets Lo(u) for
k
v g [0,+=)
(b) If the combination (wl,vz, cey vk) is weak
limitational and ?(xk,yh) is unbounded for
(., ‘) )D
Ak,}k_ L
(1) LO(¢) is neaeppty tor all u ¢ [0,+) .
w N ) H - . /.O U oae ) B C
{ii For i 0, the ray {(ﬂk.~}k L2 0 .
. - H N [ i e - .
emanat iy from the point (xk‘0> {ntersects all
Q0
sets I (u} ror u LQ,+) .
P . O O )
P.s U, Iouy > 0 dmplix L (\1‘)\ CoLo(u )
P35 i }O(u\ is empty )
o 0,4
P.h;: 0 IO\' Yoo ‘u:» ) N u ¢
Q-ueu © -
= - k\




P.7
P.8
P.9

P.10°(a)

(b)

(c)

29

Lo(u) i, closed for all u e {0,+=)
Lo(u) is convex for all u e [0,+)
Eo(u) is bounded for all wu ¢ [0,+=)
If (v;, ..., v) 1s nonessential and y > 0, or the

combination (vl,vz, ey Y is maximally nonessential,

)

then tor a sufficiently large magnification 8 such

u 7k
. o
that (O,eu-yk) e L(u) , (xk,eu yk) e L"(u) implies

(xk,X8u~yk) £ Lo(ku) for X 21

., v,) 1is only weak

If the combination (vl,v K

2!

limitational: then X 0,

Sgp {¢(xk,kyk) ! Ve 0, >0}= U(Xk) is finite,

c fa) U(X“)
L7 {u) is noncmpty, (xk,yk) ¢ L' {(u) and A > a s
imply b(xk,\yk) < \Q(xk,yk)

v, ) is strong

If{ the combination (vl, ay cees Vi
2

limitational: then foi any subv-ostor x> 0,

Sup {${x. A v ) by o~ 0, v 0 = ou(x
\P NALSTER W o= (g

., 0. .
and L () noneopry,  (N.,V

imply  a(x,,Vy ) s vidx, L,y

N ¥ ¥ EN
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6. LAWS OF DIMINISHING RETURNS

The properties assumed for the production possibility sets L(u) of a

technology only macroscopically characterize the production structure. Nothing

has been assumed about the fine structure.

Postulate for Essential Factors: There exists at least one essential combination

of the factcrs of prouuction for a technology,

exclusive of (vl,vz, cees vn) .

If all combinations of k factors are nonesseutial for 1 < k <n- 1 , unbounded
output can be obtained for all bounds on the inputs of any of these combirations
and diminishing returns is not implied in any sense unless assumptions are made on

the fine structure which are contrived to obt=in .e result.

Definition: An essential combination (vl,vz, ey vk) is minimal if the

combinations obtained by deleting any one of the factors

X, ie{1,2, ..., k} , are nonessential.
i

Let h, = fh ,h s ee.y B | > 0 denote a positive increment for the vec’oy

Bet L of Dimd ring Product Jnvrements:  For evory corbination \?1' e y ¥ »
. n
k\ < k < (n - 1) related to a mianimal essential cenbination
L:: =
v 3 b . R s SRR SN H 13 PR ~ s e RN
/ 1P e . ) of the racters o preoduction, there exists o posicive
i - "

\ o

. N R . ) c e . o | )
Bound  x. suoh rhat o oty LY ) 1s bounded for 0 0N, v KD, v, g and

K LN = K o= K B




T T~

of th
of a
this

input

0<x. -1, ¢(x;,x,) = 0 for all 03x, <% ,x

bound

the f
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- - - o
either (a) for every input vector (xk,yk) y 0¢ X <X such that
@(ik,§k) > 0 , there exists a subvector §k such that
~ “ - Al - - \
every y, > ¥ and hk such that @(xk,yk + hk) > @(xk,yk,
ar (b) ¢(;k'yk) = (0 for all Vi N for every input vector ;k

such that ¢(§k,yk) is bounded for Vi 2 Q.

ih  "or part" of this weak law is required, because, although the essentiality

e  mbinations (v],vz, ey vk) , k < k <~ 1) 1implies the existence

[}

poe tive bound xﬁ such that ¢(xk,yk) is bounded for 0 g xk < x§ s yk > ¢,

bou d may be zero. See the example cf Figure 2. The family of production

s s L(u) illustrated satisfies the Properties P.1, ..., F.10, 1If

o
> 0 and ¢(xl,x2) is

2 = 1=

>0 only if 0 <x) < 1.

&

ed or xl

For “he "either part," the weak law of diminishing product increments has
P [

ot chich = nger [6] refers to as an “assertion intersecting" a "proposition of

diminishing nreduct increments," the latter implying that the production function
g P plying P

is a

stri-tly concave function of for the given ;k provided Y is

Yk

snfficic o ly large (i.e., > 7.) , ~hile the "iutersecting assertion" implies
g Yk Jk P

merefv ot if Y 7 Yy the product increment associated with hk > 0 is smaller
when ap. 24 to Y than when applied to ;k . Note that §k depends generally
upon  x. . §k and hk .

A erty of strict concavity (in yk) of +he function @(;k,yk) for
vy o ik mnot be deduced from the properties used to define a techmolugy. It is
an ever wiplified statement of diminishing returns. The weak law cf diminishing
product © rements is not an empty statement, since at lea.t one esseptiai
conbina:r 1 of tectors in postulated for a technology.

N g g

S8 v e oLy
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{0,1+u)

(1,1

v

FIGURE 2: A FAMILY OF PRODUCTION INPUT

SETS: E(u) = PQ , P = (0,1 + &) , Q = (u,1)

FOR

[
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The existence of the bound xk such that ¢(xk,yk is bounded for

0 < xk < xk » Yy >0 follows from Proposition 9. For the proof of statement (a),

let ¢(§k,yk) be bounded for Yy 2 0 and ¢(§k,§k) > 0 for some ;k >0 . Let

hk be a positive increment hk such that <I>(xk,yk + hk) > ¢(xk,yk) . Let

(1) < yfl) + h K < yé < yéz) y < el < yén) én) + hk < e

be a strictly increacing infinite sequence of subvectors. Since the corresponding

infinite sequence

A

(o) s olmon® +n) s e s emm®) < ofmon® )

¥k

is nondecreasing (Property A.3) and bounded, it converges to a limit. Accordingly

this sequence of output rates is a Cauchy sequence [8], and there exists for any

positive € an integer N(e) such that for n » N(g) , @(&k,yé n) + hk}

(XP yén)) . Hence, there is a subvector yk » depending upon the difference
d = @(Xk’yk + hk) - ¢(xk,yk) s such that for Y > Yy o

¢(xk,yk + hk) @(xk,yk) < ¢ (x ,yk + h - ¢( Kk yk .

Statement (b) is merely a statement of the possibility illustrated in

Figure 2. There, for any product increment hk > 0 the product diiferences are

all equal to zero.

Weak Law of Diminishing Aversge Product:

weak limitational there exists a bound xk > 0 such that ¢(x‘,yk) is

0
bounded for 0 < X S X Y 2 0 - Then for every ¥ such that

sup {@(x Ayk) } Yy >0, 1z 0 = u(xk) is finite and,

A
u(x )
and A > ——— _ then
u

0
083 Sx >

if u>0Q, Lo(u) is nonempty, (Xk’yk) £ LO(U)

q’(hk,)\yk) < A (b(xk’yk)

A s s AR e i

If the combination (v 1?V9r cre vk) is

5 i
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This law is merely a restatement of Property P.lOo (b) for the production
possibility sets Lo(u) of 2 limited technology. It has the form described by

Menger [8] as an "assertion intersecting' a "proposition of diminishing average

product,"” the latter implying that beyond some input §k » 1.e., for Ay, > 7§

k
the average return ¢(xkgkyk)/k is strictly decreasing, while the "intersecting

u(x)

assertion” implies merely that for any Yy > 0 there exists a value such

u(x)

that for A > the av cage return is less than the positive output associated

(o}
with (xk,yk) s Wwhen xk does not exceed the bound xk . The existence of the
bound xi follows from Proposition 9. Strictly decreasing average returns for

Ayk 7 is a property of the fine structure of the technology and cannot be deduced

without assumptions contrived to obtain this result.

Strong Law of Diminishing Product Increments: For every combination

(vl,vz, cees vk) , k <k < (n-1) related to a minimal essential

o:

A

combination V.,V

1 of the factors of production which is

20 e

strong limitational,
®(xk,yk +h) - 0Ly ) < o)Ly, R - @ (% 5y)

% v alv v X v v o
if ®(xk,yk) >0, Ly * hk) > @(xk,yk) and Yy 7 Vi wnere‘ Yy

depends upon X 0 Yy and hk .

In this strong law no restriction is put upon the vector x, othe:r than

k

¢(§k,§k) >0, i.e., it is not bounded, because for any fixed input X > 0 the

outpug @(xk ) is bounded for Yy Z 0 , and the proof follows exactly that

,yk
given for the corresponding weak law. The statement (b) is omitted because due

to Property A.4 and the property of strong limitational there exists a vector

(;k,§k) such that ¢(;k,§k) > 0 and ¢(;k,yk) # 0 for i > 0.

e PSP I SN i aa Y o




Strong Law of Diminishing Average Product: If the combination (vl,vz, crey vk)

is strong limitational, then, for every X > ¢, Sup {¢(xk,kyk) | v
A

x>0} = u(xk) is finite and, 4f u > 0 , Lo(u) is nonempty,

U(xk)

u

k

(xk,yk) € Lo(u) and A > . Then ¢(xk,hyk) < A@(xk,yk)

For this strong law, no restriction is put on xk because ¢(x ) is

kK
bounded for Y >0 and X fixed, since the combination is strong limitational.
The foregoing laws are precise laws of diminishing returns for any technology
T : L(u) , ue [0,+4=) , and provable for such structures without assumﬁtions on the
fine structure of T . Nothing is said about any particular physical producticn
system, It 1s presumed, however, that the ideal structure T describes
macroscopically all actual production sysvems. Only in this sense does a law of
diminishing returns have meaning. If an actual physical production system can
be found which violates the laws, excepting situations where the output u for
an Input vector x does not cerrespond to ¢(x) = Max {u l x e L{uw} , i.e.,
inefficient systems, then the properties defining the technology I must be
modified in some way to encompass this critical observation and new forms of the

laws sought which are not contradicted.




36

7. THE COBB-DOUGLAS AND CES PRODUCTION FUNCTIONS AND RESTRICTED LAWS OF

DIMINISHING RETURNS

It 1s useful to look at some functions which are commonly used in econometric
studies, i.e., the Cobb-Douglas and CES functions. The Cobb-Douglas function [4]

may be represented by

o]
>

i >
with a; 0. xg

n
0(i=1, ..., n) and E a, =1 . The quantities x; are
1

some positive inputs at a reference point of the set R: » taken to give an
expression which is independent of the diverse physical units of the factors of
production. This function does not satisfy Property P.9 for the implied input
sete L(u) (or Property A.8), and hence it is not a valid production function
over the entire domain Ri of the input vectors x . It has the further
restrictive property that each factor of production is essential, that is, no
factor may be completely substituted for another.

Similarly, the CES f ~tion [2] fails to be a valid production function
over the entire domain R: of the input vectors for significant parameter values.
This function, presented for two aggregate factors of production (capital and

labor) by the expression

1
N -8 . -8} B
d(x) = [élxl + a,x, ] ,

with ay > 0, ay > 6 ,8>-1, 8% 1, is offered as a "new class of production
functions," but the efficient subsets of the implied production possibility sets
are not bounded (i.e., P.9 fails to hold) when B » 0 , the case described by the

authors as the most interesting case, because then diminishing returns helds. Also,

5 Sokiityel @&@
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N ) ..:;,T-ia

when the expression is written for n factors of production and B > 0 , it
has the restrictive property that each factor of production is essential.

For both functions, output is unbounded (when diminishing returns holds)
if a positive bound is put on any factor of production and the others are allowed
ro indefinitely increase, that is the factors are individually essential but not
even weak limitationall |

From three premises concerning the production function: {a) increase in
outpu. for an apprépriate increase of an input xj » (b) positive honogeneity of
degree one, and (c) homogeneity in (n - 1) factors for fixed input of the
remalning factor, all of which are satisfied by the Cobb-Douglas function
(but not boundedness of the efficient subseis), Eichhcrn [5] has deduced that
the preduction function satisfies an over the whole range strictly decreasing
product increments.

For the class of production structures which (in addition to P.1, ..., P.10)

are positively homogeneous of degree one, the following proposition holds.

Proposition 12: 1If the technology satisfies L(Au) = AL(u) for all A > 0 ,

the production function ¢(x) 1s positively homogeneous of

. n
degree one and a concave and continuous function of x on R+

For A > 0 ,

]

Max {u I (Ax) € L(u) , u > 0}

Max {u | x € L(%) , u > 0}

A Max {% ] X € L(%) s

o (rx)

"
N

> e
BV
=

—_—

A (x) .




ey

38

From the homogeneity of ¢(x) it follows that the production function is a
concave and continuous function of x for all x ¢ R: . See [11], p. 226 or {12},
Section 2.6 for a proof of this statement.

Thus, a restricted law of nonincreasing prcduct increments holds:

homegeneous of degree one, then for any input vector x° such that
®(x°) > 0 and arbitrary increment h = (hl’hZ’ cees hn) subject to

h =0 for 1¢ {1,2, ..., k} and h >0 for 3§ ¢ {1,2, ..., k} ,
vy Vj

1<k< (n-1), such that o(x" + (N - 1)h) - ¢(x° + (N - 2)h) > 0

for N > 2 , then

2x® 4 Nh) - oG + (M - 1)eh) < oG + (N - 1)eh) - ¢(x° + (¥ - 2)+h)

for all integers N > 2.

For any 6 ¢ [0,1] , consider X = x + (N-2)h, N> %,and

grx + (1 - 8)(x+ 2n) = x+ 2(1 - 9k .
Then, from the concavity of $(x) ,
O(8+x + (1 - €)(x + 2h) > 88(x) + (1 - 0)o(x + 2n) ,
and for 0 = % |
20(x + h) > $(x) + ¢{x Loy,

whence

$(x + 2h) - +(x + h) < t(x + h) - &(x)
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and

$(x° + N'h) - 06 + (N - 1DR) < 06 + (N - Dh) - ¢(x° + (N = 2)h)

for all N > 2.
u> 0,

Further, if the Property P.9 for the input sets L(u) isdeleted for

and the sets L(u) are assumed to be strictly convex for u > 0 (which is the

case for the Cobb-Douglas and CES functions), the following restricted law for
strictly decreasing returns holds:

If the production structure is positively

Restricted Law of Decreasing Returns:
u > 0 and the

homogeneous of degree one, Property P.9 is deleted for

u > 0, then for any input

input sets L(u) are strictly convex for

@(xo) > 0 and arbitrary increment
.., Kk} and h >0

N

o
vector X such that

0 for ie¢ (1,2,

h = (hl’hZ’ ceey hn) with h\)i

(n - 1) , such that

A

' for 3¢ {1,2, ..., k} , for 1<k

o(x° + (N - n) -

0 for N> 2, then

3

“(x7 + (N - Dh)

CHNh) - 2T+ (N - DR x4+ (N - Dh) - 2T+ - D)

The strict convexity of the input s ts implies that if $(x) » ¢, #(v) = 0
then (x + y) > +(x) + i(y) , i.e., for input vecters x and y yielding positive
that

To see this, note

otly super additive.

output the production function is stri

for any u > 0
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due tc the homogeneity of $(+) . Hence, thc ipput vectors

u__. u
a(x) ¥ ety Y

belong to the boundary of T (u) , because if not, say for the first, then

6 *x € Boundary of L(u)

u
®(x)

for 9 <1 and ¢(8~¢?x)'x> = 8u > u for 6 < 1, a contradiction. Consequently,

L1}

for any 8 ¢ (0,1) ,

"
since the set L{u) is strictly convex and 2z = [(1 - 8) ¢?x)'x + & b?y).yJ is

an interior point of L(u) , implying ¢(z) > u , since 1. ¢(z) = u then for

scme 8 <1, u

H A

$(fz) = 93(z) = du , a contradiction. Take

(v

T(x) + i (y)

’

and v (x + v) 2 Fx) o+ L (v

The validity ot the restricted law of decreasing returas then tollows, becausc

using the homogeneitv, strict additivity and nendecreasing properts of 2 {0)
- , .0
vl x) = Tnor(N) o Ty (x) o
. . Sy - ; A A
SO 2R e o v o L) ook X)) EIN
and
Tus o+ L R U ST U U0 B S BN S |

A Iy e & . == - >

s
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whence

$(x + 2h) - d(x + h) « d(x + h) ~ ¢(x) .

or, since X = xo + (N - 2)h ,

G + Nh) - 3T+ N - Dh) < oix®« (8- 1Dh) ~ ¢(x® + & - 2)h)

for N > 2.,

Note that for any x and y such that o(x) > 0 and o(y) > 0, and
8 ¢ (0.1) , the nrod.ction function is strictly concave, since it is strictly
super additive and homogeneous.

Thus, it is seen that, if boundedness of the efficient subsets E(u) for
u > 0 is discarded and one assumes that the technclogy is positively homogeneous
of degree one with strictly convex input sets L(u) feor wu > 0 , the technology
will obey a law of strictly decreasing product increments over the whole range,
no matter which i{nputs are fixed and which are incremented, explaining Eichhorns
result and the propertics of pseudo production functions like the Cobb-Douglas
nd CES.

The reasons why beundeduness of the efficient subsets E(u) is deleted an'!

v,

each “actor of preducticon is essential, when the producticn pessibility sets  L{u)

are strictiv convex for o > 0, ure explained by the following proposition.
Propoesition 13: A production possititity set L{u) is strictly convex for

PR . .- = ~ NV : - T TN P
u G it and only 15 each factor of praduction is essential
- . 3 SN RS T v ] = vt ¥
and the oliticient subset  EQu) 1s unboundeld.
.
It o3 R ' AR FA S R e et i the Chere eXisUs an inral vedotor
i} 1 v Yo I 1 B
(U, N ) B Lnat voeN G, , ) L) L Ve ol oD Vg T Ui
. N '




boundary of L(u) and likewise all input vectors (0,Xx

h
A

ceny lxn) for

2’
belong to the boundary of L(u)

, implyirg that L(u)

If E(u)} 1s bounded, then for any factor of production, say the f.rst,

{

Min {xl I % ¢ L(u)} = Min \

xl’ X e(E(u)+~Ri)}

= Min {x; | x ¢ E¢u)}

exlsts, where E(u) is the closure of E(u) , since E(u) s a bounded and
*
closed set. Let x yield this Min. Then x ¢ Boundary L(u) , since
E(u) T L(u) because L{u) 1is a closed set and there does not exist ahy [
x, *
such that {x ; Hx ~ x i] < £} € L(u) because x ¢ L(u) {if X; <X and
* & * X
all input vectors (xl,kxz, . Axn> for X > 1 belong to the boundary of

7

L(u) , implying tha: L(u, is not strictly convex.

Now suppose that L(u) is strictly convex. Then clearly, each factor of

production is essential. Also, if
n
v . . .
) OPLX, <o vo= {(p., . ) -0 a >0
S T o 71 RN ’
1
is a supporting nvperplane of  Lu) , it contacts the set  L{u) at a unique
* - N -
point = {py of L{u) For o O and p, = p, = =p =0,
. 3 n
. . N } - .y | -
Int pex X i I8 i X E) Rjr = Inl "p'x X E
!. +, ‘ i
X N . X
‘ + - * * *
Coes nel ooocur Lor g bonne x Flu) o, Yooanse then all points (X y N . AX \)
1 2 n 4
Hiiewive bovong to Lu) awd mor over these points belong to the boundary of
u) L thoar Cu) trictiy S Hence the set
. i A IR T A )
i ) P i 1 o ¢ e " = R R v it oIt
i | \ 8 . jool v v 1 ia Pl poin
A
oAy oL, <) an cltioiont mubaet Fiu) o s onot b SIS

>

1

is not strictly convex.

0
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Eir thorn's [5]) assumptions reduce to:

. n
$(xx) = a¥{x} , A 20, x¢ R+ .

~
4

r

i
(b @(Axl, ceey Axi*l’xi’xi+l’ cees xn) =) “<¢(x) ,

"

ie{1,2, ...omn} , A20,0<01, <

~

For » 0 ,41¢{1,2, ..., n} and x ¢ R: .

and, for X > 4+ , it foliows that

w(xl, N xi—l’o’xi+l’

. . . . . . n
since tt roduction function is a continuous, concave function for x ¢ R when
’ +

it is ho >geneov~ of degree one. Thus, each factor of production is implied to be

agcent i, Moreover, for x> ¢ ,
' - ¢ (1 ) = —t——o(x)
"( |x2v » Xﬂ) = Ny )xzﬁ y X = 1-r L0
(x,) 1
1
( 2 L1 1
A (' ,x‘)' > xn (b( ’ 1X3) X ) - l_r Q'(l)xz) b4 X )
L (x,)
2
1
) l»rl 1 r, o),
(x) T (xy)
4
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C e g

and, continuing in this fashion, one obtsins

¢(1,1, ..., 1) =

Bue to Property (a) it follows that:

2 v 2
$(x) = ¢°-n X, ) vy T i,0< vy < 1,ie {2 ¢y vuvy n},
1 1

where ¢ = $(1,1, ..., 1} and v

:(—r\.""‘ i H
o ) 1 (1 ) Thus, his assumptions iwply

‘that the production function I{s a Cobb-Douglas production function with strictiy
convex level sets (production possibility sets), which is a special case of a

positively homogeneous technology (degree one) with strictly convex production

he]

ossibility sets, just 2s is the CES production function, both of which violate
an essentisl property of a cechnelogy, i.e., boundedness of th: efficient subset
for any positive output rate. The proposition described above as the restricted

law of diminishing returns encompasses all cases of this kind.




-y

BIBLIOGRAPHY

[1} Arrow, Barankin and Blackwell, "Admissable Peints of Convex Sete,"
CONTRIBUTIONS TO THE THEORY OF GAMES, Vol. II, Prirceton University
Press, (1953).

{2} Arrow, Chenery, Minhas and Solow, "Capital-Labor Substitution and Economic
Efficiency,” The Review of Economics and Statistics, Vol. XLIII, No. 3,
(August 1961).

[3] Berge, Claude, TOPOLOGICAL SPACES, The Mscmillan Company, New York, p. 163,
(1963). ’

[4] Cobb, C. W. and P. H. Douglag, "A Theory of Production," American Ecoromic
Review, Papers and Proceadings, Vol. 18, pp. 139-165, (1926).

{5] Eichhorn, W., "Deduktion der Ertragsgesetze aus Frdmissen,'" Zeitschrift fir
Nationaldkonomie, Vol. 28, pp. 161-205, {(1968).

[6] Menger, K., "The Logic of the Laws of Return, A Study in Meta-Economics,"
ECONOMIC ACTIVITY ANALYSIS, Part [II, edited by Oskar Morgenstern,
John Wiley and Sons, New York, (1954). Originally published as two
papers: '"Bemerkungen zu den Ertragsgesetzen,' Zeitschrift fiir
Nacionalskonomie, Vol. VII, pp. 25-26, (March 1936), and “Weitere
Bemer'wngen zu den Ertragsgesetzen, ibid, po. 388-397, (August 7306},

[7] Mill, J. S., PRINCIPLES OF POLITICAL ECONOMY, Vol. I, (1848). R
9

ised
Edition, Book ., Chapter XII, Coclunial Press, New York, (1900)

ev

ae).

{8] Rudin, Walter, PRINCIPLES OF MATHEMATICAL ANALYSIS, Chapter 3, MeSraw-Hill
Book Company, New York, (1964).

[9] Samuelscn, P. A., ECONCMICS, Part I, Chapter 2, B, Sixth Edition,
McGraw-Hill, New York, (1964),

{10] Schumpeter, J. A., HISTORY OF ICONOMIC ANALYSIS, Fart II, Chapter 5, 2(b)},
Oxford University Press, New York, (1966).

{11] Shephavd, Ronaid W., "The Notion of a Production Function,"
Unternehmansforschung, Vol. 2, No. 4, pp. 209-232, (1967).

{12] Shephard, Romald W., THEORY OF COST AND PRODUCTION FUNCTIONS, submitted to
Princeton University Press, (June 1969).

[13] Turgot, Anne Robert Jaques, "Observations sur le Memoire de M. Saint--—
Péravy," (1767}, in OEUVRES DE TURGOT, Ed. Daire, Vol. 1, pp. 418-433,
Paris, (1844).

[14] Uzawa, H., "Production Functions with Constant Elasticities of Substitution,"
Review of Economic Studies, Vol. 30, No. 4, (October 1962).

{15] Witrman, Waldemar, PRODUKTICNSTHEORIE, Chapter 1V, Springer-Verlag, New York,
(1968).




Unclassified

Sccunty Classificatio:

DOCUMENT CONTROL DATA.R& D

(Security classification of Hile, cody of abxrraci and indexing annolation nust be entered when the uverall report is rlussified)

1 OHIGINATING ACTIVITY ¢(Corporate suthor)

University of California, Berkeley

28, REFORTY SECURITY CLASBIFICATION

Unclassified

2b. GROUP

ke
3 REPORT TIT_E

PROOF OF THE LAW OF DIMINISHING RETURNS

4 DESCRIPTIVE NOTES (Type of repor! and, inclusive dates)

Research Report

8. AUTHORIS) (First name, miod!e initial, last name)

Ronald W, Shephard

8. REFORT DATE

December 19549

78, TOTAL NO. OF PAGES 7. NO. OF REFS

45 15

Bu. CONTRACT OR GRaANT NO.

GP-15473

b, "ROJETT NO

24. ORIGINATOR'S REPORT NUMBE RIS}

ORC 69-37

ob. OTHER REPORT NOIS) (Any other numbers that may be essigned
this report)

This document has been approved for public release and sale; its distribution is

unlimited.

{3 SUPPLEMENTARY NOTES

Also supported by the
Office of Naval Research under Contract
NC0O014-69-A-C2700~1010.

2. SPOMSORING MILITARY ACTIVITY
NSF-GP-15473-Gale, The National Science
Foundaiion
Washington, D.C. 205.2

13, ABSTRACT

SEE ABSTRACT.

DD WN.1473  tease 1)
S/N 010% 307-6A11

Unclassified

Security Classification




Unclassified

Security Classification

‘e LINK A LINK B Wik €
KEY WORDS
ROLE wT ROLE wT ROLE wT

Production Function
3

Technology

Diminishing Returns

:

Al
.

O o 1473 eack) Unclassified
AN ]

AR I VR IRV INENE B

Security Classification PRI




ERRATA
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Tvpographical Errata:

1) Pg. 35, line 4: replace perioc by couma and caange T in Then to lower case.
2) Pg. 43, line 3: insert A as multiplier for Xipgr voes X in the

arzuments of ¢

3) Pg. 23, Tast line: i1 L%u) .

o
O<u<u
=

Pootnote Insertion: For Property P.i0 | Fg. &

IS
Tnis property 1s not required for the arguments to follow.
sorrection: Pg. 25, lines 3 and 6 should read.

Then by Property A.3 it follows, ...




