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A New Estimation Theory for Sample Surveys, II

H. 0, Hartley and J. N. K. Rao

Texas A & M University

1. Introduction.

This paper is a sequel to an earlier one (Hartley and Rao, 1968) on the
same topic. Accordingly, it will be necessary to briefly recall the basic re-
sults of the earlier paper and relate that paper to the present ome. Our first
paper was predominantly concermed with sirple random samplirg (with or without
replacement) from a finite population. In the present paper we are concerned
with examining the relation of our.findings to the more complex sampling pro-
cedures such as unequal probability sampling as well as stratified and rulti-
stage sampling.

The basic feature of our theory was a special parametrisation of a finite
populatign of N units with k characteristics attached to each unit. Denote by
s the k-vector attached to the i~-th unit. We assume that all elements of the
Xi are measured on discrete scales ard that only a finite set of T me&surement

vectors Vi (t = 1, 25...,1; are possible for the Iie Denote then by

Nt = no, of units in the population having Yy (1)

satisfying the conditions

T
Nt 20and TN

= N. (2)
t=1 €

Henceforth, sums and products for t are over 1, 2,..,T.

The parameters Nl,..,NT completely describe any finite population. The

nurber T is usually large although sometimes occasions arise when T is small
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or moderate and the estimation of the Nt is of intrinsic interest, as for
example when the Nt represent a frequency distribution such as the number of
householis in the community comprising t persons. However, in most cases we
shall be concerned with the estimation of a few simple parametric functions
such as the piynulation moments and not with the separate estimation of the
excessively large number of parameters Nt'

Finite population sampling will normally consist of (a) the sample design,
i.e., the procedure of drawing a sample of n distinct units (vhere n may be
fixed or random) and with measuring the yy for these units, (b) the use of

the measured Vi to compute estimators of the population parsmeters,

In our previous paper we restricted (a) to simple randcu sampling and we
confined the computation of estimators (b) to whet we termed 'scale-load’

estimators, These vere defined as mathematical functions of the scale vectors

Vi and of their ssmple loads (frequencies) n, = no. of units in the sample
having Ve Thus &ny identifying labels, i, that may be attached to the units
may or may not be used for the implementation of the sample design; however,
labels are not directly used in the computation of the estimators. Neverthe-
iess, in situations where the labels, i, are observable characteristics of the

units and are considered informative observables, the labels may be adjoined

to the vectors y. as « (k + 1)~th component.

We were able to show that within the class of 'scale-lcad' estimators
many of the estimators in current use possess interesting optimality propertics
(wbiased minimum vari-
in simple random sampling. Specifically the estimators are either UMV or ance)

maximum likelihood estimators or both, Some of these results gre briefly re-

stated in Section 2. In the remaining sections of the present ypaper ve are
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concerned with the role these results play in the more camplex sampling proce=-
dures. Briefly our findings ere: (1) The above parametrization of finite
populations will continue to yield useful likelihood formulations for sampling
designs providing maximum likelibood and Bayesian estimation procedures, UMV
property will be the exception rather than the rule.(2) We consider that iden-
tifying labels of primary units (or all but the last stage units) will often

be available as well as informative., There are, however, situations in which
higher stage units are not labelied as is the case, for example, for certain
subsets of machine parts produced in bulk, the water supply of water works
produced during certain time periods,ete, Certain situations where labels of
higher stage units are not informative also exist, for example identifiable
subsets of certain lists. Both 'scale-load' and labei-dependent estimators

are therefore required. As would be expected, there is usually no UMV estimator
in the class of label-dependent estimators. {3) A particular problem arises
when label dependence of estimators is used in conjunction with Bayesian concepts
and separate prior distributions are allowed for the individually identifiable
units., The resulting posterior distributions and hence Bayesian inferences do
not depend on the survey design which in the frame work of Bayesian theory be-
comes a randomizaetion procedure irrelevant in making posterior inferences.
However, the absurd result that Bayesian theory leads tc when applied tc simple
sampling or ultimate-stage unit sampling (Godambe, 1966) is perhaps our strongest
point in favor of examining estimators that do not depend on the labels of the

ultimate-stage units.,

2. Simple random sampling,

If & simple random sample of fixed size n is drawn without replacement
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from the population of N units, the likelihood of the n, is given by
Ay
% - \
L\ﬂl""’NT) = n\nt)/cl/ (3)

where n, 2 0 and Ent = n. We confine ourselves here to the case of a single
character y attached to the units (i.e., ¥ = 1). In our previous paper we have
shown that any function of the n, is an UMV es*imator of its expectation.
Specifically some of the more important parametric functions and their UMV esti-

matars are given below:

Parametric function UMV estimator

Nt/N nt/n

- r - r
TS s % m, = 0 En.y, (4)
0,2 = Pvé - uiZ n(N-l) (mé - miQ)
N(n-1)

Notice that the estimators do not depend on T or the non-observed yt. Vhen I\I/n
is am integer, n, /n and m;, are also the :aximm Zikelihoed estimators (see the
Appendix), When N/m is not integral, the maximization of (3) over the integral
grid Nt can be achieved by the algoritlm given in the Appendix; however, since
UMV estimators exist, the maximum likelihood e¢stimators may not have particular
merit for small samples. The possibility of using maximum likelihood estimators
of the Nt vwhen T is small and the Nt are parameters of interest is being exam-
ined by a Monte Cario study.

Turning now to Bayesian estimation, we have used in our previous paper
the mathematically convenient prior distribution suggested by Hoadley (1968)
and given by

(1\1t + Vg = 1)}

NoseoasN,. ) = I v> 0, 5
‘P( l’ ? T) Ntﬂ.(\)t R l): ] t ( )




The 'Bayes estimator® of u; is the posterior expectation of u; and is given by

E (u )=(1 - -)[wm + 01 . w)M ] +»§ m; (6)
vhere
w=nf/(n+v), v= Zv, (7)
and
Hy = vigvy? (8)

It :hould be noted that the estimator (6) only requires the knowledge of

M; (the prior mean of u') and v, i.e., in the case of r = 1 the knowledge only

of the pricr mean Ml and the relative weight v of the sample and prior infor-
mation, Moreover, althougzh the vt are akin to a prior sample frequencies, the

posterior mean is not simply the mean of the Pooled 'sample! vt +n It duly

t‘
Tecognizes the fact that, as n - N, the sample mean m) will tend to u end
that the prior is ignored,

The expected loss which the decision maker faces by chosing the 'Bayes

il R T W NN AN

estimator' is given by the posterior variance

V'(u;) _E:Ellﬁizl [wmér + (1-w)M.ér - {ﬁm; + (l-W)M;}e]

N (n+th)

The 'Bayes estimator' of o is given by

(%) « VD) oy o -1+ 0DawPEad)?] . (o)

(1+v/nN)

It should be noteqd that, if the prior information is solely based on a pilot

sample, M and VvV would roughly Tepresent the r-th sample moment based on the

Pilot sample and the Pilot sample size respectively,
Turning to simple random sampling with replacement, suppose a random sample

of fixed size m is drawn with equal Probability and with replacement., ,Let--
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n denote the number of distinct units in the sample and n, the number of distinct

units having the value Yy in the sample. The total likelihood is given by
t
L(Nl’ oo ’NT) = P(n) EN) (ll)

vhere the pr(bability P{n) is a function only of m and N. For this sample de-
sign no UMV exists, but the meximum likelihood estimator of u; is m; = n'lZntyi
provided N = ex least common multiple of 1, 2,...,m (c = integer). In particuler,
the maximum likelihood estimator of the popuiation mean ui is the sample mean
based only on the distinet units in the sample and il is uniformly more efficient
tban the customary sample mean based on all the sample draws., With the prior
distribution (5), the 'Bayes estimator' of w. , the posterior variance of u;

and the 'Bayes estimator! of o° are respectively given by (6), (9) and (10),

where n and the nt ar2 as defined above.

3. Estimation with concomitant variables,

In our earlier paper we have considered a situation customarily dealt with
by ratio or regression method of estimation in which two variates y and x are
attached to each of the units and the population mezn Y of 'target variate' y
is to be estimated utilizing the available information about x. Assuming that
only the population X of x is known, we have shown that an approximation to the
maximum likelihood estimator of Y is closely related to the customary regression
estimator, provided the sample size n is moderately large. In this section we
extend this result to multiple concomitent variables X se0es¥,, assuming that

only the population means il,...,i are known. We show that, for moderately

k

large n, an approximation to the maximum likelihond estimator of Y is closely

T R B R R 0. B W I SR o
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related to the customary multiple regressicn estimator.
As before, we assume that a finite set of T distinct, known values ¥, are

feasible for y Likewise, we assume that I, distinct, known values x are

i
J J j
feasible for x, (J = 1,...,k). Let N, 4 denote the nuzber of units ir the
J el
population which have X)gseees xkik and Yy attached to them. Let n, "ikt
1 ]
the number of urits in the simple random sample of size n (drewn without replace-

ment) which have x_ .

111,...,xkik

and Yy attached to them.

We consider caly the multinomial situation in which N- o and

N, . . /N-P. .
11..1kﬁ 11..1kt
by the multinomial distribution with probabilities Pi ikt.
l.l

vhile n is held fixed. The likelihood L is then given
The restrictions

on the P, . , are given by
ll"lkt

P>0,P'i=1andP'2= (12)

13-

vhere P' is the nxl veetor of the P, 5 4» 1 is the lxn vector of 1's,

"I_- - _ (o* * LI ™
X = (Xl""’xk) and Z = (fll..lgk) vhere P §J

previous paper, it can be shown that for moderate sample sizes n the global

= ij (j = lyeeesk)s As in our

maximum of the multinomial likelihood can only be ettainea if P, ikt = 0 for
l..
A O, and P, ., > 0 for
11"1kt 11..1kt
the remainder. Confining then the maximization to the latter P lkf nly
l..

and introducing the Lagrangian mul :ipliers A and u' = (ul,...,uk), the maxi-

all those variate combinatiuns for which n

mization of log L subject to (12) is attained for P= P vaere

n,
ﬁ ) ll"ikt {
iltolkt n

k
1
;E: _i - X )] (l.'))

Expanding g'i = 1 to first three terms we obtain
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nE - 0)' = w'XMLy (14)

vhere % = (il,...,ik) is the vectur of sample means and X*'X* = s* = (s;p)

where

s* =n"g..on. (x - X )x.. -X).
jp ll"ikt ;]ij 3 plp P

It is readily seen that the solution of (14) is given by
b = a@*' ") - X). (15)
Fow using (15) and expanding (13) to the first two terms we get
a 1 trektokr=lis = .
-llpoxeee-p ()

vhere n is the 1lxn vector of the n,

+ . gt ¥ *
Lit and X' is given by y'X = (Sly’"’sky)

vhere g'z =Y and

S-x.' = n-]I:- eell

Jy- -Xj), j =l’o.’kc

A ¢
ll"lkt t ,ji;j
An improved approximation, along the lines of our previous paper, can be ob-
tained by expanding (13) to the firs: three terms.,

Using (16), an approximation to the maximum likelihood estimator of the

population mean Y = 1:' y is given by

[-] "~ ) o ~ -
T-fyeys @-0'87gy ()
vwhere S*y is the k-vector of the s‘:]fy. The customary multiple regression

estimator is given by

L =7+ E-0's (18)

where S = (s, 8 __ is the k-vector of the s. and
e =(s5)s 5y iy

=] S*.' - (;(J - i.’])(;p - }-(p)

5,
JP JP
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* = = -
. = S = . - x .
S5y = Syy = T - %)
Although (17) differs slightly from (18), the above development clearly shows

that, at least in large samples, the customary multiple regression estimator

is essentially the maximum likelihood estimator,

L, Stratified simple random sampling without replacement.

4,1 UMV Estimator.

Suppose there are L strata in the population with Ni units in the ith

stratum (i = 1l,..,L). Denote by Nit the number of units in the population
belonging to the ith stratum and having the measurement yi 1._’(1:. = 1""Ti) 80
that ‘?Iit = xsri(zmit =), A stratified simple random sample (nl,..,nL) is

drawn without replacement, (Zni =n), and n,, denotes the number of units in

t
the sample belonging to the ith stratum and having the measurement Vi

(Zﬂ.t =n,). Now the likelihood of the n., is given by
t 1 1 1

t

() (i)

L il 1Ti
L(Nu,..,NLTL) = :Ill [ (}) :] (19)

Therefore, the n,, are complete sufficient for the Nit and, hence, the UMV

estimator of the population mean Y = N-]m\lityi is the customary estimator

t
¥ = vl Ly, = NN (20)
it 1 i 11

& _ q q
vhere N, = ‘Ni/ni)nit is the UMV estimator of N+ It also follows that the

maximum likelihood estimators of the Ni and § are the UMV estimators ﬁit and

R t

Y respectively, when the Ni/ni are integral. Notice that each stratum is
described by its separate set of paremeters, i.e., we have an additional sub-

script i to index the strata,
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An interesting special case occurs when the stratification is according
to the size of the units, say X . If ve assume that Xg is constant within
strate and use the allocation proportional to total size, i.e.,

n, = n(Nixi/ZNixi) = N.P, (say) where E%Pi = n, we get

2 1 . DY,

Y =y ieh Ly, = phy AEAE (21)
2Ny Vit 2 —p
it it i

vhich is a 'Horvitz-Thompson' type estimator.

4,2, Bayesian optimization of stratified sampling.

Ericson (1965) has presented a solution to the problem of cptimum allo-
cation when prior information in the fcrm of a prior distribution is available,
He has, however, assumed: (a) N, =@, i =1,..,L, (b) normality of the within
stratum populations and () knowm within stratum population variances 0?.
Assuming that the within stratum population means My have independent normal
priors with means m, and variances vii, he has shown that the posterior variance
of the population mean u = X% ﬁiui is given by

v =g [nz/(-%— + :1-)] (22)
i -1V 6P
i
vhere n is the knovn proportion of the population units falling within the
ith stratum., Ericson has given a computational algcritlm to find ny 20

(i = 1y4.5L) such that (22) is minimized subject to the cost constraint
Zcini =C (23)

vhere C is the given budget.
Recently, Draper and Guttman (1968) have relaxed the assumption (c) and

presented a seQuential. allocation scheme whiéﬁngagﬁmpler than Ericson's al-




gorithm. They have also considered the case of unknown proportions “i' Using
our present approach, one of us (J. N. K. Rao, 1968) has given a solution which
is free from the restrictive assumptions (b) and (c). Extension to multiple
priors and/or multiple characteristics by the use of convex programming was
also considered. In this section we present a complete solution by relaxing
the assumption (a) also.

We assume that prior information on the Nit is available in the form of

(5) for each i and that the priors are independent, Therefore, the prior dis-

| tribution of Nll""NLTi
[

N - 1)
CP(N l’"’NLT ) S ﬂ[n ( it'

(v - i) (24)

> = .
¢ Yig 7 0 IV = Y

Now, since Y = N'lzNiii vhere ii is the 1" stratum population mean, we get
i
using (6) and (9) the posterior mean of Y as

n v 4+ V n Vv,
‘@) o1 myplt e, Lt e )
E'(¥) =N 1?"1 [(l Ni) f vV, Vit TR EV Vit (25)

Hc
o™

and the posterior variance of Y as

= -2 2( ny Vi -1
1 — - o— v—
Vi(Y) = N E N, Ni)(l + Ni)(ni AR 1) .

[z Se T it 2 z it * Vit . ) ] (=)
£ Mty it ¢ B3t Y it
Since the posterior variance (26) depends on the to be observed sample values
n;.» We take the expectation of (26) with respect to the marginal distribution
of the n., . I%t follows from Hoadley (1968) that the marginal distribution of

the n.. is given by




«]2=

n(nit Vi T 1)
o )= n it ] (21)
n11""nLTL - i L o, + v - 1
)

which is identical to that in the case of infinite populations with Dirichlet
prior distributions. Therefore, using the results of J. N. K. Rao (1968) it

follows from (26) that the expected posterior variance of Y is

N? n v, A,

= i i i
v@ -r4(0-FA)0 ) (28)
L N Mg N;i/mg + Y
vhere
A v V. -2
1 Ll (plty )
v, (vi +1) lz v. Wit = \Z 5 iy J ¢ (29)
i t i t i
It follows, using (Q) and (10), that
. . = (L .1
Prior variance of Yi = (Vi + Ni) Ai (30)
and
Prior mean of s? = A (31)

where N,0> = (N, - l)S?.
ii i i

Now (28) is a separable convex functjon in the n; and, therefore, the

values n, which minimize (28) subject to (23) and 0 £ n, SN (i=1,..,L) can be

obtained bty convex programming¥ It is also possible to develop a sequential
allocation procedure analogous to that of Draper and Guttman (1968).
It is important to note that the knowledge of the complete priors is not

essential for the optimum allocation — only that of the prior mean of of and

prior variance of By is needed, If the priors are solely based on pilot samples

within each stratum, then [(vi+l)/vi]Ai and v; would roughly represent the
pilot-samplie variance and the pilot sampie size respectively.

The extension of the arove results to multiple priors and/or nmultiple

*
In our o 'ginal vercion we ignored the restriction ni S.Ni and Ericson has
pointed ' is out,

ST




characteristics follows 2long the lines of J. N. K. Rao (1968) and the

optimum allocation is ottained by convex programming.

5. Sirgle-stage unequal probability sampling.

In the preceding sections we have been ma2inly concerned with sampling
procedures in which all the units hed an equal chance of selection. The
only exception is stratified sampling (Section L4.l1) in which strata allo-
cations n, proportional to the products Nixi gave all the Ni units in the
3™ size stratum an equal inclusion probability of P, = n(Nixi/ZNixi) vhich
was varied from ratum to stratum. While unequal probability sampling by
'size strata' may be satisfactory for many practical purposes, situations
often arise in which we desire to vary the inclusion probability from unit
to unit. However, this type of unequal probability sampling mainly arises
in the selection of primary sampling units in multi-stage sampling which
ve discuss in Section 6. Here we confine ourselves to the {rare) situations
where unequai probability sampling is used in 'single-stage' or ‘'ultimate-
stage' sampling of units which are not necessarily identifiable in advance
of sampling.

As an example of p.p.s. sampling of this kind, we may mention here the
sampling of farm operators in Iowa counties proportional to the land acreages
they operate. If 2 county map can be covered by a rectangle with dimensions
Z by W and (zi’wi)’i = 1,..,r(r > m) denote uniform variables with 0 < Zg
<% and 0w, <W, co-ordinates (zi,wi) can be pinpointed on the map and
the interviever can be instructed to ascertain (in order of draw) the first
m operators whose land acreages contain the pinpointed land marks. This

results in p.p.s. sampling with replacement in which Py = xi/X (xi = land
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acreage of ith operator only known for sampled operators, X = total land
acreage known in advance of sampling) where p; denotes the probability of
selection of ith operator at a single draw., This well-known situation of
'mltinorial sampling' is the only one discussed in this section. We show
that it can be reparametrized in such a way that optimality properties can
be formulated for certain estimators.
Let r, = yi/pi and denote by r, (t =1,..,T) the set of T discrete

scale points feasible for the . Let the score m, denote the number of
times 1" unit is included in the sample (i = 1,..,H; fu, = m). We mow

classify the Ty into the T groups and denote by

p. 1if for the ith unit r, =r
pit = i i t

0 otherwise

y. 1if for the ith uwnitr. =r
yit = 1 1 t

0 otherwise

{m. if for the i™® wnit r, = r
mit = 1 1

0 cotherwise .

The multinomial distribution of scoring m multinomial scores into N

classes with prcbabilities p; may then be written in the form

n! Mg
L(pyyseesByp) = - mitl'intpit (32)
i,t s

and may be reparametrised as follows:

(33)
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so that

Eitpe 3 0 08, = 0 (3:)

Writing m, = Emit’ we may factorize (32) as

im ! -
m t n '
m . Pt) |t it
L(pyyseeesbyp) =| 557 P oy a7 bVt . (35)
Dt S 4t
s

Equation (35) shows that the m, are sufficient for the P, since the latter

are only involved in the marginal distritution of the m, and not in the
conditional distribution of the m, . given the mt.
The meximum likelihood estimators of the p, are given by the ratios

mt/m and, hence, the maximum likelihood estimator of the population total

T =2y, =20y, = oV Ipyy = SOy (36)
i it t i t
is given by
. m y.nm,
t t 4 i Py (37)

which is the customary unbiased estimator of Y in p.p.s. sampling with re-

Pplacement .

Finally it should be noted that (35) is the likelihood for the scores

which do not necessarily represent counts of distincts units in the population.

However, it is possible to cbtain the likelihood of the number of distinct

units in the sample with scale ratio Ty which we denote by n,. The distri-

bution of the mt is given by

_ _m! T -
L(DyseesP,) === DD (38)
1l T t

[]
tmtt
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and the conditioval distribution of the n, given the m,_ can be obtained in
terms of the v, from formla (4.3) of Kullback (1937). PFinally tne like-
lihood of the n, car be ottained by summation ci' the product (i.e., the
Joint distribution) over my =0, to e subject to th = m. We intend to
examine this distributicn in more detuil elsewhere.

A. ~hough only one single method of unequa.. pr~hability sampling is
examined in this section and although the method examined is known not to
be particularly efficient, the discussicn clearly indicates the possibility

of deriving concrete likelihoods for other unegual provability sampling

methods with the help of our technique of parametrisation.

6. Two-stagc sampling.

:In ordef to.simplify the discussion ue éoﬁfine ourselves‘to‘two;gtage
sampling in vwhich the primaries are select<d with equal or unequal proba-
bilities. Consider thern a population consisting of L primary units
i =1,..,L of which 4 will be sampled and denote by'Ni tne number of

secondery units in the ith primary. Denote by Ni the number of units in

t
the 1" prinary vhich have the scale value y, (4 = 1,..,T,) so that
iNit = Ni' Let u; = 1 if the ith primary is in the sample and zero other-
wise, Denote by P(ul,..,uL) the joint distribution of the uy corresponding
to the primary sampling procedure adopted and let Ls denote the number of
secondary units to be drawn from the ith primary if it is in the sample,
The n, are all specified apriori for i = 1,..,L. In this paper we only
consider equal probability sampling of secondaries without replacement,

If we denote by n.. the number of secondaries having scale value

yit in the ith sampled primary, then the joint likelihood cf the u, and the
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n.. is given by

1

10D PR

i 1t 1

L(Nu,..,NLTL) = P(ul..uL) I

He <

6.1. Maximum likelihood estimation.

We confine ourselves hzre tc the case of Ni = oy 1 =1,..,L. The

likeiihood (39) reduces to

(n u, ) u.n
it
Toag ol Py | - (10)

L(pll’ .o ,PLTL) = P(Ul, X ’uL) I’[

Maximisation of (LO) subject to Tp;, = 1 for i =31,..,L leeds to
t

~

P, = nst/nS (primary s in the sample) (1)

while any values of pjt are permissible for j not in the sample. The
maximuﬁ iikelihood solution will, therefore, in general not be unique.
Furthermore, we do not have complete sufficiency here and, hence, no UMV
estimator exists., We have not considered here 'scale-load' estimators which

do not depend on primary labels.

6.2. Bawvesian estimation.

Since the complete likelihood is given by (39), the posterior distri-
butior of the N.t is identical to thai in the case of stratified sampling
(section 4) noting that n, = 0 is allowed for the latter. Therefore, the
'Bayes estimator' of ¥ is given by (25) and it may be recast as

v

n
- - ( i\e “it " it i L
2@ « vz e Bty e
i 1 it i
1 "1t
+ NI NE - (2)
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vhere El and 22 respectively the summations over sampled and non-sampled
primaries. It should be noted that we must have a prior distribution from
each primary. If the prior distribution is solely based on pilot samples,
this implies that the pilot sample must include at least one secondary unit
from SEEE primary.

The above analysis clearly shows that the sampling procedure adopted
for selection of the primaries is entirely irrelevant as far as a full
Bayesian analysis is concerned. However, if the likelihcod based on a
selected estimator is used for a (partial) Bayesian analysis based on in-
sufficient statistics, then ihe pcsterior distribution and, hence, the
‘Bayes estimator' would depend on the sampling procedure. These are the
two alterratives available to the Bayesian anelyst and, at this stage, we

do not wish to take sides in this issue.
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