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1. Introduction
The evolution of dimcontinuities in solutions of nonlinear

hyperbolic equations pcssessing smooth initial data was first examined

in a simple problem by Riemann [1], His conjecture concerned the
conditions for a simple wave to develop a discontinuity., Ludford

{2] re~examined this conjecture in the context of the initial value
problem for unateady isentropic flow of a perfect gas, This unfolding
procass, in the hodograph plane, provides an asymptotic astimate of
the time to breakdown of the solution. Zabusky [3] employed the
unfolding method to determine an estimate of the time to breakdown

for the transverse osécillations of a nonlinear model string. The

work of Lax (4] and Jeffrey (5] also employs the Rismann invariants to
develop comparison theorems which provide upper and lower bounds for
the critical time of singularity occurrence, An alternate method,
characterized by its simplicity has been introduced by Ames [6]. Large
classes of quasilinear equations can be obtained by differentiation

of first order equationa, The general solutions of these are also
solutions of the corresponding second order equaticns. These solutions

display a critical time of singularity occurrence.




This critical time analysis is applied herein to nonlinear wave
equations which result from rubber-like materials characterized by
Mooney~Rivlin and Neo-Hookean bodiea, The times to discontinuity
evolution from smooth initial data are computed and used to ascertain

the region of validity of the generalired Ligrange series solution,

2, Fundamental Equations

The present investigation pertains to straight bars or wires
with negligible transverse dimensions and posseseing a uniform croas
section of finite arsa., In agreement with Nowinski [7] we make the
following additional assumptionsi

(i) Transverse inertia during the bar motion is neglectad.

(ii) In compression and tension zones the bar does not experience
material instability,

(iii) The material is perfectly elastic and incompressible,

(iv) The bar is subjected to simple uni-directional atrain in
the sense that the only identically nonvanishing atress
component is the longitudinal normal stress component which
is uniformly distributed over the cross section,

(v) The effect of strain-rate on the constitutive equations is
neglected and the static stress-strain relations are uxtended
to the dynamic case,

(vi) The bar is infinitely long so that ﬂo reflections of waves

occur and other possible wave interferences are discarded,
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Adopting the Lagrangian formulation let both the material

i i coordinate X and spatial coordinate x be referred to the same fixed

i . Cartesian system, one of whose axas coincides with the axis of the
bar. Let Po anc.l p be the mass densities in the stress free configur-
ation (associated with the X coordinate) and deformed configuration
(associated with x = x (X,t) ). If t is time, o, the normal stress
referred to the undeformed cross gsection of the rod, and u the particle

] displacement, then Cauchy's law of motion bacomes (James and Guth [a])

30, dNu
- (1)
Y AT
Since X = X 44U the stretch (extension ratio)
A= % can be written as
= R 17
A=y X L (2)
Consequently, Eq. (1) becomes
Sx _ padx
3t T C Y & (3)
or in terms of the stretch,
A -3 {< AA}
3tr  dX 3X ()
where
o=
Cl"ﬁ;%}'g’ o"ozo;(X)
(ve assume d TG /A\ >0 ) (5)
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Equations (3) and (4) are special cases of the general forme treated
by Ames (6],

Under the assumption that the strain energy exists the theory of
finite elastic deformations (Truesdell [¥], Eq. 42.1)) furnishes the

stress-stretch relation

ag = 2[%% + -,\L%](x—-';.) (6)
for an incompressible body in simple extension, Here W is the
elastic strain energy function and for an incompressible material the
strain invariants are

I=2X'+X, L= 2x+X", M~ 1. 1)

From the experimental results of Rivlin and Saunders (see Truesdell
[{8], r.(2l4) experimental data is well approximated by

W= «(1-3) + (X -3) (8)
where a is a constant and f is an arbitrary function to be obtained,

The expanded form
W= «(L-3) + kz (3“(]1-.3)‘) (%)
=

with B, constants, has been employed. Retention of only the linear

term leads to (10)

W=all-3) + g(w-3), (x,3>0)

corresponding to the Mooney-Rivlin material, 1If 8+#0 we obtain Rivlin's
Neo-Hookean material.

If W takes the general form, Eq. (8), then Eq. (4) becomes

-3 -4 3f . 5294 ] )
Séi-{—%; [0((01-&)‘ ) +3) L "3(“)“) T&}*—} (11)
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Alternately, we may write

b_z_

at?
- 2 a
S (efotl") o -y
For the lloomy-Rivlin matorhl Eq. (12) becomes

a -
%=&{ ['*2' ax +3P6L)*} X (13)
And for the Neo-Hookean matarial, Eq. (12) becomes

£ {2 15 - 42 av

In Eq. (14) 2a has been replaced by E/3 a value which is suggested by
the desireability of obtaining the familiar infinitesimal strain
relation G =E€ from Eq. (6).

From his own theory of finite elasticity Seth [9] obtains the

corrosponding equation

-3 2 A
oX d X - é?l
po {' + 3X} azl Y X (15)

which differs fundamentally from Eq. (lu).

3, Reduction to First Order guatiom

Equation (11) and its specializations are of the general form
given by Eq. (4) while Eqs. (12-15) are of the general form specified
by Eq. (3), As previcusly observed both are special cases of the general

qQuasilinear equation
Upo -~ (Ff/':*)z Unn + (F\* /F;)(F} Wy - Fp “h)

+-('/r;)(!=tL Fo = FuF) =

(16)
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treated by Ames [6], In that work it is shown that Eq, (16) results if

one calculates r and s derivatives of the general first order equation
F(n') 4,4, P/S) =0, f’zu"'; ?= Ue Qa7
and sliminates the cross partial derivative term Ugt Equations of
the form
2
Uee —{P(w) “n},ﬁo (18)
A 2
are obtained if F = F(“)P/j) , and (F'/F,,) = ¢ (w) . In
that case the two equations for F become F’, t Plu) F;} =0,
Clearly F= Z, ¥ ¢(uj' are solutions for F, Upon integrating F=0,
wa obtain the general solutions
H[M.J ht @lu "_J =0 (19)
and
Glu,n-bw)a] =0 (20)
respectively, where H and G are arbitrary.

Alternatively, equations of the form

Use — P (Un) Unp =0 (21)
are obtained if F= F(p)x) and U:P/Fz )3 - ¢z(f)
(the assumption (Fp/Fa)A = ¢’(a,) generates a similar
form with ¢a(a‘) appearing). Consequemtly, the equations
for F bacome Fp + ¢(,,) ;:" =0 .+ Solutions for F are
F-: ? F 3(’,) , ?’ =@ and upon integrating F=0 we obtain

Hun, n+ 2P(un)] =0 (22)

and

G[uu,k-bcﬁtu,\)]:o. (23)
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4, Calculation of Breakdown "Tima"

The finite "time" to the evolution of a discontinuity in u_ or
higher order derivatives can be calculated from Eqs, (19), (20),

(22) and (23), For example, from the total r derivative of Eq. (20)

we obtain
Gn + Gy
Uy = = W=a=h=-QPu)a (2u)
~ Ge -G, P’ P

which becumes arbitrarily large when
A= % ¢’(u_) . (25)
Since the !nitial "time" of this occurrance is usually of most

interest we write

A = i S (26)
Gy Plu)
where the minimum is estimated over the appropriate ramge of the

quantities in Eq. (26). (For real problems we are interested in
positive values A/c‘ )« On occasion the goneral solutions are
employable in simpler forms, For example, in some problems the
general solution may be used as

w=Afn+ Pw o] (27

instead of Eq. (19). In this case the r derivative becomes

4 (w)

= ws A+ dlu)s (28)
Un = TTRTa)glenr o/ /
which is unbounded when
- i
A = /KI(U) ¢u)
and the critical (minimum kime is
. !
- (29)
A/ S /MMaen 7
e Alw) ¢'Cu)




Similar calculations for the equation We, - ¢‘(u,‘) Upan =0 3
can be carried out from Eqs. (22) and (23). A discontinuity in
the firast derivative can be discovered by inquiring when the

sacond derivative becomes unbounded, From Eq. (23) we find

0
Upy = — Gn + Gy : W e (30)
Gu.,,_ - &G, ¢(°‘A)

and, conssquently,

o T b R ML i

G
Un - (31)
G P/ un)
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5. Lagrange Series Solution

While useful for the determination of breakdown times the

implicit nature of the general solutions (Eqs. (19), (2¢), (22) and

B AR ST

(23) ) inhibits their use in the determination of the solutions,

Alternately, we can obtain a series solution to the equations Fa0

which are

Uy, t Plu)u, =0 (32)
in the firat case discussed and

Wa £ %(MA) =0 (33)

in the second case, Lagrange expansions are discussed in various

contexts in Goursat [10], Bellman {11], Banta [12] (for finite
amplitude sound waves) and Ames and Jones [13] (for a Monge-Ampere

squation),
A Lagrange series is now constructed for ud' + ¢(u) Ua =0
as a typical example of the methodology. Suppose u has a Taylor's

series expansion about s=0,

°, m
'-2)("‘) + Z. r/‘\(")f‘, (3n)

-
=\

Wlr, 2)

H

3" uln 2)
d ™

Fm(r\) =

4=0

atbobdit s,
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This form is inconvenient since the derivatives are with respect
to s and not r, Replacement of the s derivatives is carried out
by using the differential equation and an inductive achema due

to Goursat (10, p405] (ses also Banta [12]). If W, +@(u)U,=0

then
Q" 3™ [y
e oo e

Consequently, from Eqi. (34) and (35), for m 2|

(36)

. M=y '
e =en” 3 {27 32

20
a form which contains only r derivatives of u, If the process of
r differentiation and esvaluation at ss0 ars interchangeable the

series takes the form

u(n <) --[(n) + Zr. Y, dn"" i[¢(_;u)) df} (37)

whera Mlnlo) = 'F(n.) s the "initial" condition. This
series is valid out to the first singularity - that is to the
smallest breakdown value 8.
To integrate u, + ?(ur) = Q from Eq. (33) we note that it
becomes
Ugn + §'(up)wnn =0 (38)
“upon differentiation with respect to r. With v = u Eq. (38)

boecomes

N, + ¢(nr) A =0 (39)

V CMELAEN . Mme e A E e bemmmmme i miir L w e o meeme = - e o o




an equation taking the same form previously analyzed. Upon

solving for v, u is recovered by integrating with respect to r.
The Lagrange series, Eq. (37), or its integrated form

describes the waveform in its transition from the amooth initial

form £f(r) to the onset of breakdown,

6. Aggication to Rubberlike Materials

Results of the preceding analyses are applicable to a wide

variety of problems, Herein we will investigate Eq. (4) as it

applies to Mooney-Rivlin materiala, For that application LEq. (%)

becomes

N N -3 13
B gl )

From Section 3 the first order equations generating Eq. (%0) are

obtained by setting W = )\ , A=t ) Az=X
and @ = {%[q(hl;\‘s) +3ﬁA‘*]}V:

vwhereupon

A £ Py =0, ()
If the initial stretch is provided by MX,O) = ‘(X) then

the general solution of Eqs, (41) become (see Eq. (27) )

N= f[X Fpnt] (u2)

1f O < Xo <A\ < >‘i the breakdown time can be

calculated from the positive minimum of

e/
[d(uzi’) + BAX"]
[es X + 12N°] §w)

t=x @AV WK FSOE D
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% T 1 {(w)¢A and the material is Neo-Hookean (g =o)
f then (recall « = &/ )
. '/:. 9 -n'A
| o= (L) Aalirads)
< \3E A

which becomes '
_ L Lo\
te==a (so)

f if Mo =|  -iethe material is always in tension.

The Lagrange series becomes, in this case,

|
k - M8 ~H0)+ 2 5 L [gum)] i)

which can be employed to study the onset of the discontinuity,

Since A= 'g'% =+ du the quantities x and u

k> 4

are recovered by integrations,
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