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ABSTRACT

For linear stochastic systems with time delay, the optimal control is
derived that minimizes the ensemble average of a quadratic (in states and
control) performance measure. The optimal control obtained is functionally
dependent upon the expected values of the state variables conditioned on
the measurements. It is shown that the optimal control and estimation can
be performed independently; i.e., the separation theorem holds for the
class o-" problems considered. The optimal control is linearly dependent
upon the best estimates which minimize the expected value of the estimation
error squared. -

IThis work was supported in part by National Science Foundation Grant
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Introduction

The well-known separation theorem states that the combined problem of

optimal control and estimation can, under curtain conditions, be treated

as two independent problems. It holds, for example, when the state transition

in the plant and the observation equations are linear in the state variables

containing additive white Gaussian noises and when the performance criterion

is quadratic in state and control [1,4,5,6]. A more rigorous treatment of

these conditions is presented in [5] for continuous-time stochastic systems.

The separation theorem for discrete-time stochastic systems is given in [l].

The purpose here is to present the separation theorem for linear stochastic

systems described by linear differential-difference equations of retarded

type when the performance measure to be minimized is a quadratic function of

the state variables and control.

A differential-difference equation is an equation which contains an

unknown function and its derivatives which are evaluated at the values of

the arguments differing by some specified amount. Such mathematical models

appear commonly in aerospace application as well as in in.ustrial processes.

The state transition in these systems is a function, say, of state x(t)

evaluated at time t and state x(t-r) evaluated at time t-r, where T represents

the time delay.

Necessary conditions to determine the optimal open-loop control for

systems with time delay is fairly well established [e.g., 7]. More recently

a feedback solution to the optimization of a system with linear plant-

quadratic criterion has also been attained 2,8). A solution to the

optimal filtering in linear systems with time delays was proposed in 3]

using the principle of orthogonal projections in Hilbert space. The

optimal control is derived here for linear stochastic systems with time

delay by means of the dynamic programming. Then, the known results of [3]

I-
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to the optimal filtering problem are applied to the ease which results from the

application of the optimal control in the stochastic system with time delay.

Statement of the Problem

The state transition of a plant is governed by a stochutic differential-

difference equation

dx(t) - AI(t)x(t)dt + -A,(t)x(t-r)dt + Bu(t)dt + D(t) dw(t) (1)

vhere t ft, T3, T < ; x(t) - colfxl(t), ... ,xn(t) ] represents the system

state at time t, and x(t-r) at time t-r, where I is a constant; Al(t), A2 (t),

B(t) and D(t) are bounded matrices with elements in CO for all t; w(t) signifies

a Browmian motion process with covariance (the superscript denotes transposition).

Ef[W(t 2 ) - W(tl)] [w(t 2 ) - w(tl)]') . Ql(t1)[t2 -tl], t2 > t, (2a)

R[w(t 2 ) - v(t1 )J o (2b)

The initial function represents a Gaussian process specified by

Z[X(t)] - i(t), to-T < t < to  (3a)

if[x(t +e) - ;(t +0)) [x(t +C) - i(t +0))') F(t,0C) (3b)

wher -T <e, cr<O.

The observations are performed according to

dz(t) - C,(t)x(t)dt + C,2(t)x(t-T)dt + dv(t) (4)

where CW(t) and CM(t) are bounded and continuous matrices of proper dimensions,

¥ t C fto, T] and v(t), t E [to, T] is a Brownian motion process with the

covariance

E([v(t,)-v(td)] tv(tl)-v(t,)]'] -Q (YN)tlt], t2 > tl (5a)

[v(t )-V(t )i - 0 (5b)

It is also assumed that x(t), t E [to- ,to) and v(t), v(t), t E Eto, T)

are independent random processes.



The control problem is to determine the deterministic optimal'control

u*(ti") so as to minimize

J U) I t [x'(t)W(t)x(t) + u'(t)R(t)u(t).dt) (6)

where W(t) and R(t) are continuous matrices which are positive semidefinite

aid positive definite, respectively, Vt. The operator E signifies a

conitional expectation, i.e., "Ez t  0 <-- < -

Before solving the stochastic optimum control problem, some preliminary

material to first presented.

Introductory Material

Suppoee we are given the following differential equation of retarded

type:

X{(t) =Fl(t)x(t)+F2(t )i(t-.T) + f F3(t,r-)i(t+s)d a  7

-1*

where tcfto,T; Fl(t), F 2 (t) and F,(ts) are bounded matrices with elements
0

in C for all t. F 3 (t,s) signifies the kernel of the equation. The

initial function for system (7) is given by i(t), t -r C t < t

Iet A(t,s) represent an (n x n)-atrix, which satisfies

- Fl(t)#(t,s)+F2()(-,) F3(t,*)#(t+C,s)d (8

wheoe tf[t T]; t(t,t) = I, *(t,s) - 0 for t < s. It is noted that (t,s)

eorres Is to the fuamental mattrix of the ordinary differential

equations. Also, #(at), > t, satisfies the adjoint equations relative

to the second argument:

- (a,t r~)F(t+,r+a.-a-,r)da to < t < T-r m



-T

where the bounday conditiona are provided by *(n,s) I I and #(s,t) - 0

for a < t.

The solution to equatioA (7) can rcf be 6-ritton

;(t) *(tto);(to)+ S *(t,to+, =)i(to+a)da (1a)
-Tj

*(tito+T+O ) - (t't +, aO)F .'to+T+c), *(t,to+-r {z)F)t o r ,-cx-,+a)do (llb)

-T

The solution to the procens x(t) in equation (i) is defined an

x(t) = (t,to)X(t 0 )+ J *(t,%+ . c)x(t 0 +oc)do +

+ Sft*(t,0)B(0)u(C)d0 + ', ( (12)
to o

%tere t(t,-) is determined by equation (8) wth F3 (t,s) a 0 (nul1-mtrix).

One observsthat the process x(t) is Gaussian since x(t), t o  < t

and (dw(t)) m~re Gaussian[4].

Having pres,-nted the -.-eliinary material, the optimization problem

cEn now be -solvc, by the method of the dynamic programming.

Solution to the Stochatic Control Problem

The optimal control to the stochastic sy-tem with the time delay is

determined by the dynamic programming method. As usxal, one assumes that

the system starts evoling at time tEct 0 ,T] froa state x(Q), t- < C < t.

The minimum value of the functional specified in equation (6) is denoted
by VIRtl, i.e.,

T

V .,t) - 1.Ln E~~ 4: Ud(1)

Z'A'

where~~~-~ NI~~)X(M W )



The first te r-. )n the righL of equation (15) can be e>pressed as

Thl/owe

~t T T
J J jx(s) d. ; ,., ( r 2 s + tr[W(s)P(s,O,O)Sds (14)
ttt

where i(s) Z , (s)l (15a)

P(s,O,0) = Et {F.(S) i(s)J[x(z) z)2'} (15b)

If the states of a system evolve in time aac .xinL tc equation (7),

equation (la) can be ssb z'ituted for 7(z) in equation (l14) (naturally,

after changinC t to s and t to t in elat.ori (*, .)). Then, we can writeo

T 0
liJ s :W(S) d xL +  '(t) " 1R(t,O)i(t+C)dC +

, x(t+c) R_(t, O)dc ( ' +- ,, t+a)Ko)(t, C,a)xi ) 1-dc (I6 U.

where2

. 4.

Robe thate(s,t)W(s) (st)d t < t< T (170 t C -- -

T(t, C) <

One observes that equations (16), (17) and (38) at time t T become:

o(T) = O, T ,(T,T,Uo) a R (20)

for - <a < 0 and -'r < a< 0.

Suppose now that x(t) evolves in tir;ie according to equation (1),

where u(t) = u[ t,t] is spec.- '.ed by

u t) -R-IB'K (t)0(t)-R'IB' j(t,C) (t+O)dc (9-)

ti



- -- -- a, . " • . : .

where the continuous matricea K (t) and Kl(t,a ) are to be determlned. Then,
o4

X(t) is goveried by

;(t) h_()(t) + 2(t) 1(t-) + B(t)u[it,t] (l) d

Now it follows that the perfo--nance criterion can be expressed as ( ee

appendix)
T

j T

i() -(t) t)K~ 4-tA~t + K (t1~P'K(t) -K(t) d
t

0

x t-0) -St) (23)
+, J

where X t), Kl(, ) and t,,)are continuous (mm)-matricesand S(t)

is a continuous scalar function dependent upon the co-veriance of the plant

noise. The functional equations (given by (P6), (A7) and (AQ) in the

appendix) can be shmmn to be equivalent to the l'ollowing set of partial

differential equations :

-K (t),o '()

I.~tC (t,1K W r WA W(t + K(t)BR-B (t) -.(,O )
dt 1_0 0 "

(25)

?_(t' "'2(t,._ - (- 1 x{(t"))r'K'(t,o) (6)

•A ,, a



Equation, (2k), (25) and (,P6) can bt derived (after some tei1iou.9 manipula-

tioni) by substItuting equation (1.2) into equation (1h), ollecting the

ter=a for K C(), K. 9 j, -) and K.(,,)in the resulting~ equation, differ-

entlati g their expressions and making use of equations (21) and (22). A

mre detailed discussion is given in the appendix. A more direct derivation

of equations (24), (25) and (26) can be based on equation (29), whir.h !s

obtained in the sequel.

The boundary conditions associated with equations (2L), (?5) and (26)

are:

K (T) -0 ; K.I(T,) -0 ; Z K(T,a o') K W X(t)(t) t'SIK(t,-'r,e) = A(t)KL(t,o ) ; x (t,.cO) = X (t,c,"z) (27)
(n7)

Squatiom (27) can be verified directly from the defining expressions

of i 0 (t), 111(t,a) and K,2 (t,crc).

Now it can be seen that u(-t,t) in equation (21) is the optimal contr-s.

r. Umamly, me obtains for t-t by writing L't,x,u) for the integrand in
0

equatiw (6) and observing V ~T) .0:

T dvr4,t]
I.,-- dt t d

a

rT rdV4,t)
- t dt + ,(t, uu) -,(t,x,u) t

T
ort L(t,x,u) dt (28)

ie, a sufficient condition for the optimality is determi.ned by solving

_____________ _______________________ _____________ _____________



drift, t]

-~ n - ..-- -- - ---------

Min ft, 4 L(t~xiu)} 0 (29)

where the expressior. for Vf., .3 is specified by equation (23). (In equation

(23), s(t) depends implicitly on the plant covariance but does not depend

'Jp= u(.,, Straight forward calculations show that if the control in

equation (21) Is chosen, ejuations (?8) and (29) ar* fulfilled. Thus, the

optimal control n*(itot) in given by equation (21). It indicates that (i)

the optimal contral it generated linearly by the expected values of the state

variables eonditizned an the measurements; (i) the feedback gains are

independent of the observations and can be compted in advance ("off-line")

The estimates oL' the state -mariables needed are the optimal estimates that

adiniAz* the conditional mean of t;* squared eatimation error [13].

Sinc theoptimal control u o.tt] given by equation (21) is deter-

ministic, the optimal control and the optinal filtering can be solved

independently. Thus the separation theorem for stochastic linear systems

with time delay is established.

SZaat i Theorem: For stochastic linear systems vith time delay

described by aquatios (1) through (c), the optimaJl control that minimizes

perfonsnce riteriom (5) is s-ecified by equaticn (21). The optimal feedback

gains and the optimal estimates i(t+v) - Ex(t+)Izr(), t ( p t, <- <

t+V < t) car be determined Independently.

One observes that the feedback gains in equation (21) are deterministic,

r and they do not depend upon the statistics of the noises. Moreover, the

optimal control (2i) is the same as the optimal control of a deterministic

system obtained by replacing the random variables in equations (1), (4) and

(6) by their average values; i.e., the certainty-equivalence is valid for the

class oP problems considered here.



An alteriwtiv* formal derivation of the dynamic programing equation is

prwesmn in Appendix B by using the principle of' the ortimality.

.Otimal Estination * ..

In order to apply the optimal control u (it,t) in equation (21), the

optimal estimates i(.) = Ft(x(!)l for t-r < F < t (the conlit.-inal mean

value of x(l))must be generated. When the system moves under the influence

of U (;t), the plant eq" ation is

dx(t) - {A,(t)x(t) + A(t)x(t- ) - BR' tLK (t)i(t) +

0 (t,U)x(t+O)d J j dt+D(t) dw(t) (30)

and the observations are performed according to equation (4).

The optimal estimation equations can be written by applying the results

of [33. The estimates of the state variables that minimize

E {i(t+s) - x(t+9)] Lx(t±B) - x(t.+)] z( ) t< , < t ,-. < 0 < o

are determined by equations(32) and (33).(formally)

= Al(t)i(t) + A2(t)i(t- ) - BR -B'LKo(t)R(t.) + 2 (t.,o)x(t+c)ac +

SG(t. ' (tt) (t) (t) - C2(t) -(t-r)] (t 0 (32)

- , e~o ("3)

The gain of the estimator is specified by

o(t't) =P(tO) Ct 't,-)C2(t)] (t) (34)

1'(t)+ P~'e'-r) C



* where P(.,.,.) signifies the error cz'variance

P(t,9, o) -, +a { [t +C-xrte, [~.a.xt~J -d <e, r< 0

(35)
I This coveariance is coverned iby the f-ollow-ine set of partial dirfferential.

I equations

a rto 22. = +-") + P(t,O,O) (t)

+ PO (t,O, r)A'(t) + Q1(t) - P(t,O),o)C;(t)Q1  C(t)P(t,0,O)

- (t,O,0)C,(t)Q2-l(t)C P(ti ,0) - P(tO,,r)C()QtC(tpto)

- P(t',cr)C,'(t)Q1 (t)C(t)P(t, r,O) (36)

6Lp.2Lo~ + ~t0±22 = A,,(t)P(t,O,cl) + A,(t)P(t,ra)

1 2

IC C(t) P(t, T, ) 7

esti to. EquJA 3tn e( ) through (3)acidpneto n bevtos

an cnbecmptd of-ie" h Pczrxttoa dificlt iesino lved r
p-e tl e3e& explored
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The equelions for the solution to the combined problem of the optimFl

cc'.trol und eatilmatinn is now furnisheI. The block disgraxi in figure I

displays taP optfrvL ,y- .~em. The n~ein dlc .lty in the "on-line" im-plearen-

tation to due to (.I realizatior of the tei-m -B '(t) tl) (to d,
-T

Which requires the s ilutiun of the optiml, smoothing as well. As a first

dppro:ine-oi the in'.eg-al can be repl aced by a finite sum. Then the

deesT"r !au use L, finite number of controllers to operate on the optimal

smoothed estimaLes, which can be computed (by neans of a f xed-lag n.ooth-

it, procedure). The p:oblem of imple .enting the optimal solution for timc

delay system i ii vc"jrertly being investigate.

Conclusions

The optimal fe.CbacY control is determined for stochastic line;-

system. wiW, time-invariant time delay so that the average value of a

quadratic cost fuji.tional is minimized. The optimal control depends Lincarly

on the expected values of the state variables conditioned on the measure-

ments. They are the beat estimates of the states which result

in the minimum of the estimation error. The optimal feedback control

and the optimal estimates can be determined independently.
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AppendiX A

Derivation of Nquatlons(23) through (26)

Suppose that systems (1i and (72) move unler the influence of the control
0

u[ -t, t] - Y ' 0(t,'(t) - R- -B, K I(t, a) i (tq) dac (A.1)
-T

where Ko(t) and Kl(t,o) are gain matrices to be determined. The task is

now to express VC P t ] in equation (13) in terms of x( ), t-r < c t, the

initial function. One observes first that the solution, i(s) at time a t,

to equation (22) can be written by means of equations (Ila) and (11b).

i(s) = *(s,t)ix(t) + j *(s,t+T+o)X(t v) do (A2)

when *(.,.) is specified by

0

(,+ ) = #(s,t+ .+o)A(t+T+o) . f ,'(-T*o a)RlB'(•

Before substituting i(s) into equation (13), relation (14) is used

in equation (13). The resultirg equation can be rewritten by means of

equation (A2):
T

v[t, tl -{i '(s)[W). K((s)E-',(s)K(.)] ( +

t0
tO

X (s)K )BR-Y(s) Ka,)(s do +

-T

00
irs,1 )'(scr1dr BR-rw,)Ki(s) +

0 0

fig



Nov equation (A-) can be expressed solely in terms of' x(tit,), -r < r <' 0,

by sebutitu&ting equaation (AP) tnto (A4l). Tt remdts in

0 0

where I (t),K (t,a) anid K~toc)are specified ID,,

T r-V r

0

+ F '(.Ct)K(s,x)R(''(s)K (, )(;tdczo(6

mT da

t

BR''s K,S~) *(~3t-4o)~+ J' '*,tK(.)d

Ir:

.2 (t, , a) rT d *s,t+TC)rW(e)+K%(s)BRH'B'(r)K (S)j *(s,t+Tr+a) +

t

~~ K1 (s,O )*(s.t+r.c) dO +

00

$(3 , t.~c)K1.(sy0) dO BR_ -BP()K(s)*(s, + ce) +
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0 0

(A8)

where (s, t+r4.q) is defined, by equation (A3), and #(s, t) satiaifes equations

(9) and (10) with respect to t. Moreover, S(t) = tr{ W(s)P(s,OO)da.

Duations (A6), (A7) and (Ae) yield directly that

K2 (t,-C) = Ko(t)P(t) (A9)

1 (t,e, -i) -q(t,O)A (t) ; -r < 0 (All)

Ko(T) 0 (null-matrix) (A12)

K1(T,o) -- (A13)

2 (T,a,,") - 0 (A14)

Equations (A9) through (A14) establish equations given by (27).

If equation (A6) is differentiated with respect to t, one can obtain

equation (24) by making use of equations (c), (10) and equations (A6) and

(A7). Moreover, if equation (A7) is used to generate 6Kl!At - Kl/), one

obtains equation (25) by means of equations (9), (10) and (AB). Similarly,

equation (AB) yields equation (26) after some tedious manipulations.

It is noted that equations (2h) through (27) can also be obtained

directly by means of equation (29).
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Appendix B

Formal Derivation of quation (29)

A formal derivation for the optimality condition (29) is presented here

*O7ly the dynamic programning, let the minimum value of the performance

::23 (PI) for the process starting at time t frcm state x(!), t-d < F < t

bu denoted by

T

t 
d

v [It] mE,{fLi~~i, + iu(t)fl(t] t

(Bl)
T

Min 3zt L[t,x,ul dtf

,iere sii eignifies a Euclidean norm; xt emphasizes the functional dependence

of V an x; and Ez,'t(- ] - Ef.Iz(t),t) represents a conditional expectation

cyeration.

The application of the principle of optimality leads to

V[it1] -Kn E ,t {S L(t,x,u)dt + V [(J A7)tet+tA] }(e
t

0. ;,erc x E (x); x(t+a), -r < v" < 0 is a smooth displacement about some

0 given n(t) corresponding to a fixed control u; and the conditional expecta-

tion operation is performed on x under the condition that Ax is determinate.
CU

It now follows that for same sample fanctions of the x-procemn

1 ~ d' 1 d2V '2 +0(,
[ (Y&x)tA t+,5 - V [xt-, t] + A + -d. +0(A 3 ) (B3)

ClOd dt

.... ftwth&m rt 6*.N i SS of Vt.,.. I am axd to be boadmd;

GV/d' is the total derivative of V[... with respect to t evaluated
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61006- £SAMVe trGjectory X(t) for am@ fixed ocatro; sizdilar3y 07/dt2 ;
1A O(A 3 )/h 2 - C as A pro8ches to seg* . ezpectatlo (the emseblO

avere) Is to be taken Over al z-trejectorios.

Nquaticans (33) is ROW substituted into the right aide of equation (32).

since T(~ittJ does not depend ezplcitly onu(.), it an be taken outside
the braces In the resulting equation; it then cancels the term an the left

side. One thus obta 
-

U2 day

o - Kin.t , + A ,&)

In order to demnstrate the imp lcation of equation (B4) and of the

fPneti mal dependence of V upon x, the problem is cousidered in which the

plant Is linear vith additive noise terms and the eusemble averag*e of the

perfurene criterion is quadratic in control ad state variable., In such

a case, the fe ctimnal ecpwessian of V[.,.] c n be ritten as

0 0
Vri , t] ~ {fr(t)ll20(t) +z'(t) JP 1 (tW)x(t~6)d& Jx'(t~a)

-4 -1

*4(tca)d' x(t) + J X(b4+e)P2 (vtu~c)X(t*c)dV da+ S(t)}

whefe Po(t), P1 (t"q) ad P,(to~a) are matrices to be determinet; S(t) is
a softur. 3w#13M ex 1si of dY/At for a saple fitactio and as

•0 41 AK a bt) e -- e ,O



I&A + hi'(t) P(t)z(t) + X*(t)P0 (t.)Ag(t) + AX'(t)f Pj(t.V)X(t4-)dO

0 0
+ x*(tj P1(ta~ax(t+a)da + ji&'(t+oP)P,(ta)do X(t)+

0 0 0
+ fZ'(t q)Pj(tr)dV ~t + J' aX'(t~a)PZ(t~,c)x(t+C1)

+ z(biW)P(tCa)Ax(1*cz)].dk dca+ (t) &}(B6)

Similarly, dF V/ft2 amr be Oftalnd..

It Is no observed that A(t) is actually a radom variable. In order

to Gatesulne the emreaia in the braces of equation (Mi), both AdV/dt

an? d2V/dt2 mst be siveraged(cesmble) over all possible Ax(t*9), -,r <5CS0. Nw,, 4W(t) and Az(t) are Geauiani procusses. moreover, Az(t) evolves

Itm according to equation (37):

Az(t) - rAlx(t) + A 2 (t-rf) + Biit)] + D(t) dv(t) (B7)

feaverage value of fix(t) fer a given Buple function x(t) evolves in tim

aordin~g to

Mt [A, x(t') + A2 x(t-1) + Du(t)J a (B8)

snbe r ,~hu~t(3[ (t)] wwe B signifies the enamible average with

isapeet to Ax.

It folow theat the probability denuity functions p(.) of dw and Axar

*In this appendix, hx(t) Is written for dx(t).

~ K~A>i-
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-( 0 O (Ri0)

whee HE Wd E D(t~o)Q 1 D'(t+.q).

Sinme the "roability density fwwctiona of dbv and Ax ame knovn, the

ensemble arerege (with respect to Ax) of the expression in equation (Ilk)

zmn be evaluated by means of equations (E5) th~rough (311):

zz t JL tXU)+) +EtEJA1 Z(t) + AX(t--r) + BU(t)] A

0 0
[P.(t)x(t) + 4' P(t,v)x(t+v)cr] + [x'(t)p0 (t) + 4'x'(t+,o)Pj"(t,a,)da]

0
F F.*t4AxtT + u(t)] A + 4' x*(t)Pi(t,)Axi(t.o) +

WW P~~axt da 4' [Xi'(t+O)P2 (t,',a)x(t~c) + x'(t*)
-T

P2 (t, ora)AIjt+a)] do d~r+ tr [P 0(t)DQ1D'(t>+ !P 1 (t,C-)DQ 1D'(*) +

Eicpresuion (BU) can nov be substituted =.to equation (B4). Dividing

Atroush b~y A in the resulting equation and letting a approach to zero, one



0I 0

If P1 (t~a)X(t4.o)da] + [X'(t)P0 (t) + j' x*(t+or)P{'(t,v)dco] [Alx(t) + A,,x(t--c) +
-T -T

A 0 .~Pjj(ttXCt) da +
0UW + US 0'i& [z#6(t+,) zNO

+~ ais 6 __

+ i A Lta V~~~-p(,ac)x(t~cz) + x'(t+q)p,(t,U,a) do da +
A0 -f -T

+ ~) t{2!P(t).P 1 (tO)+P{"(t,)) DQ't+2f P2 (tcoco)DQ1 D'(t+or)do] j
(D12

It is noted that in expression (BlZ), the term R(o) is given by equation

(38). since Sfax z (t)] I Z3(E fax I z(t), X(t), t_ :5 t]J it foio"v that

lisa ZfIAxz(t),X(t), to <t3/A -di(. )/dt exists for all amuple f~anctions
A-* 0

Sinc tbs (.)proc:;s bit )/ an integration by parts in equation

(113) leads to

o -Mm E2 {~~ t X'(t)WX(t) + u'(t)Tha(t) .- [xt~~->.itj
U

[Po(t)x(t) + f P1(to)x(t4.a)dar] + rxl(t)F0(t) + £x(+) 1 (~~~
-T -T

0 p 1 (t, 0 ) ~ ~ ta
[A 1t)A.,~--xB~) + - () x(t}')x'(t+ar) 1 x(t)jd +

o 0 ~ ~ ~ ~ ) ~ ~ ~ ~ z

i J'[z'(f b) x(t*a)+X'(t+o) x(t+a)] do dca +
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+ z'(t)P1 (t,O)X(t) + zo (t)P (tO)Z(t) z()PtTxt)-

+ f [Z'P~..o)P2 (to ,O)X(t) - X'(t.o)P2 (t,-i.T)X(t-.)] do +

I -' (313)

* In equation (813), the toe B*(t) and tr(.J do not depend upon the

control. Nonce, the optimil control can be obtained from equation (313)

by expresuing the central u s a complete square. When the optimal control

u iit then subtituted back into equ~ation (M1). equations for deterimining

*P(t),jt* and ,taa)are obtained.



PART 11

Ocertn nty-quivalence an Certainty-Difference

In Stochastic Linear System with Time Dela

n ' I



UA

N CERAI'TY-?MIVAL N AND CERTAIUTY-DIERTWCE

IN STOCHAPTIC LIMAR SYSTU4S WITH TIME DXAX

A. J. Koivo
Purdue University
Lafayette, Indiana

The optimization of ztochaatic linear systems with time delay is

presented in the framevork of the dynamic progrmaina method. A sufficient

condition for -Le uptimplity is obtained by applying the principle of

optimality. An example i3 presented to deaonstrte that the certainty-

equivalence is valld in cptimi.ing a class of stochastic linear systems

'ith time '&1ay. Its validity, however, ia quite restricted. An iher

extxple ln whi-h L3h -,-ariance of the additijr nvci-.e in tue differential -

difference equatiin depends upon the ccntrol illustrates that a certainty-

differenee mjy be as well encountered.

Tttroducti:n

It is fe..sible that the optimal solution 4." n a g0ochastic dynamical

aystea agrees Y-itj thM. of the deterministic dY.rical system obtained by

iormally replacing thbi random vkriablea in the stobhartic system by their

exPoetod valuen. Sch a coincidence is unua!.!Y called certainty equivalence

[1,21. It is known to bold, fcr example, if (i) the plant dynamics is

described by a stoch'tic linear (ordinary) differential equation containing

This work vass auported in part by Natitnal Science Foundation Grant go.
GK-1970 and in pat by Air Force Office of Scientific Research Grant No.
69-1776.
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aMitive Gaussian noisel (ii) the covariance of the plant noise in
independent of the control and state variables; and (iii) the expected

value of performance criterion to be minimized is a qusAfrstic functional

in amtvol and states. Hqrever, the certainty equivalence is not valid

Is stochastic linear (ordinary) differential equations if the covariance

of the plant noise depends upon the -ontrol. In fdct, in such a case,

a certainty-difference is encountered 1j.

The purpose here is first to present the optimization of stochastic

inear systems with time delay in the framework of the dynamic progrnming

method. Then, it Is de=sntrated that the"principle of certainty-

equivalence an well an the principle of certainty-difference are

encountered also in optimizing linear stochastic syste with time delay.

P ,blem Statement

The state transition of a system Is governed by a stochastic scalar

(for co ve ence) differential-difference equation

dx(t) - [Ca(t'jx(t) + %,(t)x(t-.) + b(t)u(t)]dt + a3 (t)d(kt) (1)

where t C (ft T], T <co ; x(t) represents the system state at time t and

x(t-r) at time t-. (time-lag r - const); al(t),a 2 (t),a (t) and b(t) are

bonded C '-fUnctions of t; t(t) is a Brownian motion process.

The observation equation in

.dz(t) - [ci(t)x(t) + c,(t)x(t-Tr)jdt +' dfl(t) (2)

where el(t) and c2(t) are bounded and continuous in t and 1(t) is a

Droenaan motion process.

I ---- _____ _______



The initial function for equation (1) is determined by a Ge asion

pzoces specified by

Z(x(t +0) - ;(t0+o), -r< 0, _ 0 ( )

) (t0 +a)) (X(t +9) - g(t+G)) c(te,,e) ()

The J(t) ad A(t) presses are zero-mem processes with variances,

respectively,

stg(tl)n(ty] . %(tl)a(tl-tz) (5)

z(mtlw) (t)] - Q 2(ti)8(t 1 t 2 )

where _() sad Q. ar given.

It in also umnd that x(t), t oto),, 9(t),and 11(t), t E[teT]

rep sent independent random processes.

The problem in to determine the deterministic optimal control u -(ti)

so as to minimise

T

Jfulm {J', rvwqx 2 (a,) + r(v)u2(a)]da'} (7)
t

0

where T is give w(a) and r(a) are positive for all a, and Z, .

f. js(r), to S r < tj signifies the conditional expectation.

The optimal control problem poled is solved by the application of

BeUman 'a principle of optiuality. Sufficient equations for the optimality

are first presented. Then, these equations are applied to two esulMea.

The one demonstrates a case in which the"principle of certainty-

equivalence is valid; the other illustrate@ certainty-difference in'

stochastic syrtemis vith time delay. For the former case, It in shown that
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the remnaltg optimal control is the same as the one obtained in .the

4wtezuxu tlo " oble by minimising

7(3uJ Cv(a)i 2 (a) t r(a)J2(a)] do(8

t
0

sbject to the constraint

) a(t)i(t) + a(t)t(t-d) + b(t)u(t). t e[t0, T (9)

Mbere i(t) a 1,x(t)). Equations (8) and (9) have been obtained by

- bstItuting the men values in equation (1) and (7) for the random

' w-ibles. For the latter case, it is shown that, if the variance

In eqfttion (5) depends upon the control u(.), the optimal control that

nisats (7) subject to the constraint equation (1) is not the same as

the optima control that minimizes (8) subject to the constraint equation
(9).

Preliminary Material

Sow introductory material on the linear differential-difference

equation is first presented [2,31. When the state of the system is

60e6 by the differential-difference equation (1), the evolution of the

procees (t), t > t is defined by
0

X(t). #t )X(to + * (t,t + )ak(t +-r a)x(t +a)da

t t '

t t
o 0

vbere t(t, t), t > t is the solution to the hoogenous part [u(t) a 01

-. 4. 0 0* .
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of eqostion (9) with the boundary condition (tt) - I and (ts) - 0,

If u(.) ii asimied to be linear in the state variable, then equation

(10) can be used to dem, notral. that the finctional in equation (7) in

of the form

0

J[U] - p(t )i (t ).iX(t) J P(t.,)i (t +a) dk +

0 0

were P (to), p(to and P2 (to, a,a) and s(to) an ±ndepwednt, of X. te

form of equation (11) will be used in the sequel to determine the optiml ,

solution. Also, the equations "cif %(t), P 1 (t,a), and (tP, ,)

will then be obtained.

Solutioni by Means of M~yamaic Eroming

To determine the solution to the stochastic optim control problm,

* the principle of optiAality is applied. When the systm start. at time t

from tsate x(-c.), -T < a < 0, the minimim value of the return-fuction in

denoted by
T

V[;, ] in-C, If w()X2( + rc)2ajdv (12)

By the principle of optimality, one obtains

t4

vit,J. t Imn % t ,,.w2(c,) + r2 (,)Y,, + vfz.=t+ t++,,j} (13)
U t

bh A reproto a mall time-ineremeit. ehe es sion in the braes



tie t1r t of equatiot (13) i expanded ebomt the function soy senting

the evolutio of the mean value i of the x-process. The term V[i, t)
t

qpemzs now an both sides of the resulting equation. Since it in independent

Man the ontrel , it can be caiseled. By Uauing that the third partial

Gerivatien of Vt.,. I are bounded, and dividing through by & one obtains

0 -K IUL Z. uZ2(t) + ma2(t) + (d-"\ A . +0,) (14i)" i(t)+T'd it

*bere ha o(A)'A - 0 as A approaches nero. Equation (1h) is the basic

eqtion to be used in solving the stochastic control problem.

In the specific case vhere the plant in linear and the return function

qadratic in state- varlables and control, VLit] is asumed to have the

form presented in eqatian (U), where t0 in replaced by t,ad P0o(t),

Pl (tcr), Iw P 2 (t,,ca) are mutrices to be determined. This expre-sion of

V[.,.] is now substituted into equation (14). Forming dV/t and d2V/dt

about the averge trajectory i(t), substituting dz(t) from equation (i),

performing appropriate eapectations in the resulting expressions relative

firtto 4 (or d9) end then tox xgiven a(t), to S t, one obtains

0 -in f 4(t) + uC(t,0,0) + ru 2 (t) + + 2[ai(t)+ai(t-r)+bu

0 0

(p0 (t iwt) J P1 (t'O);(t+CY)dO + 2 fimtp 1 (t'cr) ; (t+cr) dcr +

0 0

+f1 do I: d ZVI P 2 (t, 0,c +a) +. i(t.)P 2 (t'~CY)

0.
+. j[ P0 (tP 1 (t'O)Ia* (t)Q1 + 1 f 2ta,) 2 tc)lv (15)
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Hace, the optima, control in determined by minimizing the deterministic

opresion in the braces of equation (15). The solutions to tw different

optima control problem are nov jiFen the details can be fomd in

the aendi zn the first one, the variance Q, of the plant noise is

costant; in the second one, the same variance is dependent upon the control.

Suppose that the variance 41 of the plant noise is cmtent. --

Equation (15) determine* now the optisel controls

0

u (t,) -) b(t)[Po(t)i(t) + Sr P1(ta)i(t v)dv3 (16)

Hence, the opti al comtrol is linear in the estimated value i of the state

variable. Substituting equation (16) back into equation (15), equations

for daterumning Pe(t), P (t,o), and P(t, q, a) result.

d (T) + 2_(t)Po(t) .. 2p1(t, o) - opt) + .(t). o (17)

-- -. ,... + a (t)P1(t,o) -- ,-,3 Po(t)P1(t,a}4.P2(t,o, ), o

- -s-- ... - - - -f p(t, )p1(t,a) - o (19)

0
a(t) (()c(, 0; 0) ( a) 0 )

2 -(+r .0 (20)

Ii3
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o(T). ; P1 (T, ).o;P 7 ,(T,a,)cx.o; S(T) 0 < < 0

• Y(OPO(t) - Pl(t, -.0 - 0 _T- < a < o0

%(t)Pl(t.V) - P2 (t,-,C) - 0

It is ehao ized that the realization of the optimal control requires

the determination of the'estimates i(t+a) - E t[x(t+-C)], -T < 0 < 0 of

the state variables. The expected values of the state variables conditioned

an the measurements furnish the minimum for the average value of the integrated

estimation error squared. They can be obtained by the application of the

results cm the optimal filtering in linear stochastic systems with time

delay [6]. The feedback gains in equation (16) can be computed "off-line"

before the application of the optimal control. Moreover, they are not

ftutions of the obserlvations z(t) or of the state variables x(t).

Ccesquently, the determination of the optimal control is independent of

the optimal estimation. This statement is known as a "separation theorem"

in ocujvnetion with stochastic otimm control problems.

If the optiumi control problem described by system (P) and (9) obtained

by sabstituting only mean values for the random variables is solved , the

resulting optimal control is exactly the same as the one given in equation

(16). In fact, the feedback gains are also specified by the same equations

((17) through (21)). This coincidence is usually termed the "principle"

of certainty equivalence, which is here established for a class of stochastic

sys~tems with time delay.

eI
I _ _.. .._
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Ce rtainty- Di fference

Suppose the variance q, of the plant noise is dependent upon the control,

sy, v2qlu , where q, is a constant. This situation occurs, for azama1,

if the randomess in the plant is produced by the application of the control.

Hence, the random variable in the plant equaation is zerc if the central is zero.

The opia oontrol id&andetermined byequation (15) %uQl2qu2 is

substituted into equation (15), the minimization operation yields for the
}1opftimal control 0

t) P0 (t)i(t) + f., p(t,a)(ti+a)da

u (t,it) r+t 0-iiato f h onrl

u (+ t ) -  0, -- <a-Co0 (22)

where i(t+') - %,tfz(t+v)u. It is positive definite; PO(t)

and P,(t,O) are nonegative for t f(toT]; and P2(t,o,o) is no,megtive 15]

in the domain of its definition. Subttuting equation (E2) back

into equation (1), utin for deter Pa(t), p1(t,a) and P,(t,a,a) result.

where ra(t) - r(t}.[Po(t}4-P1(t,o0)) a3(t)q1;

+ z(ta ) p ~ (t)1a) 2 P (t,~ , c) + ( (t )Po(t ,()
-•( r2akl t

(25)
apiP (t, a#, az) ;bP2 (t, a, az)  8P2(t, a, 0) b 2 (OP: (t.. q)P:(t, a') r

- + w(t) c(t,oo) = 0 (z6)

The boundary conditions are the same as those given in equation (21).

____________________



SINe nw that the optial control is detarmined or the basis of the

.u t-e 4ene. The resulting control is given by equation (16). It

does not agre with the optimal control specified by equation (22). Indeed,

the we of the eertainty-equivalence leads to an incorrect answer. The

ecample preented hee demonstratea a certainty-difference in stochastic

l1aner Wstf with time delaM.

Conclusions

A evfercient condition for thi optimization of stochastic linear systems

Witk time delay is formaly derived by means of the dynamic prograing

tho The reault is then applied to a system in which the plant described

by difft etial-dtfference equations is linear containing additive Gaussian

noise. It is demonstrated that the "Principle" of certainty-equivalence holds

whee the varianee of the plant noise is constant. However, the use of the

certainty-eqoivalence leads to an incorrect answer when the variance of the

plant nots*e depends upon the control. In fact, a certainty-difference is

encountered in such an ample.
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Formal Derivation of ftuaticas(15), (16), (n)

By the aplication of the principle of optimality, equation (2) can

be expresed in the fort given by equations (13) and (14). The derivatives

dV/dt sad dV/dt 2 In equation (14) are evaluated about the trijetory i(t).

It Is stipulated that
0

vbit,tJ. po(t)IZ(t) + 2i(t) 1T P5(t, ).(t.o) +

0 0

+ IT do da [i(t+a)p2 (t,0, a)(tic) ] + s(t) (Al)

It follows that
0

)t) - V() + g(dx(t)) [Po(t)i(t) + _, Pl(t,o)r(t v)do] +

0

+ 2i(t) L PI(t,v) (di(t+c')) do + (A2)

0 0

+ 5 do . da [(dx(t+))P2 (t,,c)i(t+a) + i(t4-O)P,(t,o.,a)(dx(t+))]

where dz(t) is considered as determinate. Similarly, d2V/dt2 can be written.

In expression (A2), dx(t) in actually a random variable, which evolves in

time according to equation (1). The expresuion (A?) in then substituted

for (dv/dt)i(t) in equation (1J4). The term (dV/dt2 )i() in eqation (1h)

is replaced in the seie anner. The resulting expression can be written

as follows:



0- m E., {V 2+ruJ+Q'() +(dx(t))EPi(t)4. tc~itc~~

0

+ Ri~t) JPl(t,a) (dx(t+a))dv/f +

0 0

+ 6.(2 V +0o(2t) (AI)

In order to perform the expectation operation, the probability density

functions associated with dg and dz are written:

ibere E(t) ir governed by equation

R(t) - falx(t) + y~(t-1r) + bu(t)] At (A6)

Now, dx(t) fro equation (1) is substituted into eqution (A3). Since

ZIAXISM't ti t - EK[MjX(t), 2(t), t'to < t3 - E2 tE[AMIX(t),tO < t),

cwe amn perform the averaging in equation (A3) (after the uabstitution of

dxt) a the limiting process as At approaches to zero:
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0 M iin jv2t+Ct004r ()fV +2i(t) I ,t()d

0

+ 2[Y~(t)+ai(t-T>4.bu(t)j +P(~ jP(~~~to)

o 0
+ d~dcx -~Gt-~; 2 (t'vC, ")(t+c') +- '(t4.e)P?(tOra) ~2

0

2 (t) + P, (t. 0)ji a (t)q 1 +. P2 (ta'CF)a it+OiQldacj A7

where use has been made of the fact that Jim E[&x(t)ftifx(t), t < t)

lim Ex~t)/A di(t)/dt, and that i(t+a)!/ t

Suppose row that Qis constant. Since C(t,0,0) and Q.do not depend

uponi the control explicitly, and the ters Ai(t+cr)/ a and ;4(t+)/?'a can

be integrated by parts and do not contain the control u explicitly, the

minim=m in expression (A7) is attained for the control specified by equation

(16).

Suppose now that Q, 2u2q. Collecting now the terms in equation

(A7). which contain the control. u explicitly, one obtains the expression

to be minimized:

0

i 2 (t) + 2bu(t) P i(t) + J p(t, O) (t+ a) daj ..4P +P, (t,O0) 2 (t)qlu2(t) +

0

+- J 2( ~q (t+c)qu (t.c.) da (A8)



lq"Mu:en (22). By substitutin the exqpresiton of the optvil control

back into spatiof ( ui), oellectin te, bhe o itulhe e tion yields

the equation gwt.rnin Po (t), P1(t.c) and P2 (t,v, cI).

i

_______________________
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