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Separation Theorem in Linear Stochastic

I
b k Systems with Time Delay*
i

AO J' KOiVO
i Electrical Engineering
ik Purdue University

b o L

N ; ABSTRACT

U For linear stochastic systems with time delay, the optimal control is
N derived that minimizes the ensemble average of a quadratic (in states and

h control) performance measure. The optimal control obtained is functionally
S dependent upon the expected values of the state variables conditioned on

N ] the megsurements. It is shown that the optimal control and estimation can
' be performed independently; i.e., the separation theorem holds for the
class o:' problems considered. The optimal control is linearly dependent
upon the best estimates which minimize the expected value of the e¢stimation
error squared.

T

fThis work was supported in part by National Science Foundation Grant
No. GK-1970 and in part by Air Force Office of Scientific Research Grant
No. 69'1776
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i Introduction

The well-known separation theorem states that the combined problem of

optimal control and estimation can, under curtain conditions, be treated

ag two independent problems.' It holds, for example, when the state transition
in the plant and the dbservgtion equations are linear in the state variables

containing additive white Gaussian noises and when the performance criterion

LTI T T T e

is quadratic in astate and control [1,4,5,6]. A more rigorous treatment of

these conditions is presented in [5) for continuous-time stochastic systems.

- e TRy
TR T

The separation theorem for discrete-time stochestic systems is given in {1].

s sty it

The purpose here 1s to present the separstion theorem for linear stochastic

'
i
i
)

systems described by linear differential-difference equations of retarded
type when the performance measure to be minimized is a quadratic function of

the state variables and control.

A differential-difference equation is an equation which contains an

‘E@ unknown function and its derivatives which are evaluated at the values of

; the arguments differing by some specified amount. Such mathematical mecdels
}ig appear commonly in aerospace application as well as in inlustrial processes.

" ? The state transition }n these systems is a function, say, of state x{t)

| evaluated at time t end state x(t-t) evaluated at time t-T, where T represents
; the time delay.

;i Necessary conditions to determine the optimal open-loop control for

! systems with time delay is fairly well established [e.g.,, 7]. More recently

a feedback soluticn to the optimization of a system with linear plant-

P quadratic criterion has also been attained -[2,8]. A solution to the
optimal filtering in linear systems with time delays was proposed in [2)
using the principle of orthogonal projections in Hilbert space. The

. optimal control is derived here for linear stochastic systems with time

' delay by means of the dynamic programming. Then, the known results of [3]

'l

|

L — e e




l St s = e meEmmmimi el L e e e [P . s =

i to the optimal filtering problem are applisd to the casé which results from the

application of the optimal control in the atochastic system with time delay.

i Statement of the Problem

The state transition of a plant 13 governed by a stochastic differential-
difference squation

ax(t) = Al(t)x(t)dt + A, (t)x(t-T)at + Bu(t)dt + D(t) aw(t) (1)
vhere t € [to,T], Teco; x(t) = col[xl(t),...,xn(t)] represents the system
! state at time t, and x(t-7) at time t-T, where T is a constant; Al(t). Az(t),
B(t) and D(t) ere bounded matrices with elements in C’ for all t; w(t) signifies

s Brownian motion process with covariance {the superscript denotes transposition).

B{[w(ty) ~ wliy)] [w(t,) = w(t;)])’} = @ (t))e,-t.), &, > ¢ (2a)
Elw(t,) - w(t,)] = 0 (2v) )

The initial function represents a Gaussian process specified by

Elx(t)] = x(t), tTEtCt (3a)

E{[x(t+6) - x(t+6)] [x(t to) - X(t +0))’} = P(t,6,0) (30) ‘
where -T <€ 6 CS_O.

] The observations are performed according to

dz(t) = € (t)x(t)at + C,(t)x(t-T)at + av(t) (k) :

where cl(t) and Cz(t) are bounded and continuous matrices of proper dimensions,

¥te [to,'l‘] eand v(t), t € [to, T] is a Brownian motion process with the

covariance
B{[v(ty)-v(tp)] [v(ty)-v(t,)]') = @ (¢,)(t,=t,], t, > ¢ (58) "
Blv(t,)-v(t )1 = O (5v)

It is alsc assumed that x(t), t € [to-‘r,to) and w(t), v(t), t € [to,'r]

are independent randam processes.
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The control problem is to determine the deterministic optimal:control
u*(t,*) so az to minimize

Sl e £ o0 f B MLIR(E) ¢ ' (OR(ENa(E) ot (6)

vhere W(t) and R(t) are continuous matric2s which are positive semidefinite
and positive definite, respectively, ¥t. The agperator Ez,t signifies a
conditional expectation, i.e., E, (') = E(+]2(8), t, < § <t

Before solving the stochastic optimm control problem, some preliminary
material 1is first presented.

Introductory Material
Suppose we are given the following differential equation of retarded

type:
x(6) = B (8)X(e)4F(0)R(6-1) + f Fy(t,8)%(tredas ()
where te[t o,r]; Fl(t), Fa(t) and F3(f.,s) are bounded matrices with elements
[
in C for all t. Fs(t,s) signifies the kernel of the eguation. The
initial function for system (7) is given by x(t), t-t <t <t .

Lat ¢(t,3) represent an (n x n)-matrix, which satisfies

2t - g (6)4(e 0 Ey()4(e-m,0)s O By, 00t (9)
-T

vhere te[to,'r]; $(t,t) = I, #(t,8) = 0 for t < g« It is noted that ¥(t,s)
corresponds to the fundamental matrix of the ordinary differential
equations. Also, ¥(s,t), s > t, satisfies the adjoint equations relative

to the second argument:

MLL) o y(s,t)F, (8] ~4(s,t+7)F(t47)

- _['o t(s,t+‘r+a)F5(t+1'+a,-a-1')da; ty, <t < T-r (9)
-T

~——— et a




g%ﬁl = -g(s,t)rl(t)- Jﬂ ¥(s, trra)F (St w-t)d, T-T < t'< T (10)
-1 -

where the bounda'y conditions are provided by ¥(s,s) = I and ¥(s,t) = 0
for g <t.

The solution to equation (7) can nov be written

o, .
x() = #e )k (to)e [ Wbt rreolile rodao (11a)
wiere
v , 4
\y(t.t°+-r+o) = t(t,to+1+a)l-‘2_(t°+7+o)+ i Tt(t,t°+'r+a)l"3(to+'r+a,-a.-r+c)da (1)

The solution to the process x(t) in cquation (1) iz defined as

0

x(t) = (bt )x(t )+ [ Fegyereodx(t ro)ao +

T

¢ [S4(t,008(0)ule)ac + fv(m)n(o)av(a) (12)
to (o]

where ¥(t,*) is determircd by equation (8) with Fj(t,s) s 0 (null-matrix)e
Cne observesthat the process x(4) is Gaussian since x(£), t -7 < £ < tyr
and {aw(t)} nre Gaussian(il.

Having presented ihe preliuinary material, the optimization problem

can now be solve! by the method ot the dynamic programming.

Solution tc the Stochastic Control Problem

The cptimal control to the stochastic syutem with the time delay is
determined by the dynamic programming method. As usual, one assumes that

the system starts evolving at time te [to,T] trom state x(E), t-1 < § < t.

The minimum value of the functional specified in equation (§) is denoted

by v&t,tl, i.e4,

T
VG, e) = ma B (] Ue)fegy + o)l s (13)
where ".x(s)lﬁ(s) = x'(s)W(s)x(u)-

"

Tl w1
W‘.cll)ni.inn|;ml.uw-ﬂlw.o.....m\.m..-. . .
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The first ter~ on the right of equation (13) can be exyressed as

3

T . T
T el 1. 1= it n Y .
Ez,t { % :.\:(s),,w ds] = : x(3) g(s)ds +  tr4(s)p(s,0,0)]cs

a
A"

3

r(s,0,0) = Ez,t {De(s) = x(s)IMx(=) - ()21}

If the states of a system evolve in time accorling te equation (

(1h)

(15a)

(15v)

),

equation (1lla) can be s:bstituted for i(s) in equation (14) (naturally,

after changing % to s and t_ to t in eguation {11s)). Then, we can write

T _ 5 -, - -, .2 -
{ ?&(s)’;;(s)ds = X (t)f{o(t)x(i.) + 24%) {Tgl(t,o)x(h-c)dc +

0 : o 0
(,l i'(tw)?{(t,a)do/&(t) w0 2{ee)R (8, c,a)x (L) sda
-7 ot o7 <

where

m
A

¥ (s, )W(s)i(s,t)ds , t <t <7

K (t) =

ten,
o

it

‘\T ~
K (t,0) t (s, e M(s)i(s,tevec)ds; -7 <020, stz

Laal

Ké(t,a,c) = ?-2(‘&;5;0) = .j" ’;I(S;U 1<>0)W(s):;(s,tf T+ )ds

One observes that equations (16), (17) and (18) at time t = T btecome:
RO(T) = 9) Rl(T,O) = 97 RZ(T:Q)U) = 9
for «1 <0 <0and -1 < <O0.
Suppose now that x(t) evolves in time according to equation (1),

where u(t) = u[it,t3 is speci.'ed by

c
u[}'ct,t] - -a'ls’xo(t)fc(t)-k"ls’ J i’.l(t,c):'c(tw)da
: -T

(1)




where the continuous matrices Ko(t) and xl(t,o) are to be determined. Then,

x(t) is goveried by

X(£) = A (0)R(E) + A (£)R(67) + B(£)uly t] (22)

Now it follows that the performance criterion can be expressed as (aee

appendix)

B TP
%mi{rmhwww*““”@uud%

T
) { {1y + tdrerpts00) ]+ Ity a1y} as

0
= IREIE oy ¢ [ TRK (4 0)R(t0) « ¥ (r0)K] (1 0)3(1) ] do
o -7 =

Y
$ {1 (o), (te, R (ta) doax + S(t) (23)
-7 =T

where Ko(t), Kl(t,o) and Kz(t,a,a) ere continuous (mxn)-metrices end S(t)
is a continuous scalar function dependent upon the covariance of the plant
noise. The functional equations (given by (26), (A7) and (AS) in the
appendix) can be shown to be cquiveient to the rollowing set of partisl
differential equaitions:

dxo(t) s . -lB' .,
= - !-l(t)!(o(t} - X (t)a () + K (%)BR k (t) - hl(t,o)

- K’ (£,0) - u(t) (24)

3k, (t,0) K, (L,0)
1At ’ - Klac ’ = - A{(t)Kl(tyG) + Ko(t)BR-lBKl(t,a) - Kz(t,O,a)

(25)

3K, (L, me) AR (t,%0) K, (t,%0)
i S - Kzaa - sz =xi(t,a)nn'la’x1(t,c) (26)

T

%»
:
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Equations (2k), (25%) and (?6) can be derived {after some tedious manipula-
tions) by substituting equation (12) intc eguation (14), ~ollecting the
terms for Ke(‘), 1(1(-,.) and K, (s, +,+) in the resulting equation, differ-
entiating their expressions and meking use of equations (21) and (22). A
more detailed discussion is_given in the appendix. A more direct derivation
of equations (24), (25) and (2€) cen be based on equation (29), whirh s
obtained in the sequel.

The boundary conditiona associated with equetions (2L), (25) and (2€)

k() =0; K(he)=0; KnHae)=0; K (L)) =K(t-1);

Kz(tﬁ "T!O) = Aé(t)xl(t’c) H Kz(t,lo) = K?f(t)a)‘)") (‘?7>

Bquation (27) can be verified directly from the defining expressions
of xo(t), xl(t,o) and Kz(t,a,c).

Now it can be geen that u(;t,t) in equation (21) is the optimal contrsl.

{4). Namely, one covtains for t=t, by writing L(t,x,u) for the integramd inr
equation (6) and obeerving Vf;.r,ﬂ = 0:
T dV[i: t)
* _ ’
LEWUR LD SN j't —
o]

T dv[" t)
g 4vixe, + %
<- xz,t-‘f‘t { —— + Lltx,u") - Lit,x,u)} at
0

T
-gz,t Jt L{t,x,u) dt - (28)

o

Hence, a sufficient condition for the optimality is determined by sclving
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aviz,, t] .
Min {"'E""’ 1 L(t.x,u)} =0 (29)
u

vhere the expression for V[.,.] iz specified by equation (23). (In equation
(23), 8(t) depends implicitly on the plant covariance but does not depend
upon u(.,. )b Btreight forward calculations show that if the comtrol in
equation (21) is chosen, equstions (28) and (29) ere fulfilled, Thus, the
optimal contiraol u*(it.t) is given by equation (21). It indicates tbat (i)
the optimal contral ir gzenerated linesrly by the expected values of the state
variables conditioned on the measurements; (1i) the feedback gains are
independent of the observations and can be computed in edvance ("off-line").
The estimates or the state variables needed are the optimal estimntes that
ninimize the conditional mean of %iue squared cstimation error [3].

8ince the optimal cantrol u'(;.t,z] given by equation (21) is deter-
ministic, the optimai control and the optimal Tfiliering can be salved
independently. Thus the separation theorem for stochastic linear systems
with time deley 13 estadlished.

Separat! n Theorem: For stochastic linear gystems vith time delay
describved by equation (1) through (S), the opiimal control that minimiges
performance criterion (5) is specified by equaticn (21). The optimal “eedback
gains and the optimal estimates x(t+e) = E{x(t+o)|z(B), t,<Bet t-1<
t+a € t] car be determined independently.

One observes thatlthe feedback gains in equation (21) are deterministic,

and they do not depend upon the statistics of the noises. Moreover, the

optimal comtrol (21) 4s the same as the optimal control of a deterministic
system obtained by replacing the random varisbles in equatioms (1), (i) and
(6) vy their average values; i.e., the certainty-equivalence is valid for tha

class 0 problems considered here,

.
S TR T TR e IR e e B oo g SOy Trmiertaiy STy TRIMIARA S |
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An alternstive formal derivetion of the dynamic programming equation is

presented in Appendix B by using the principle of the optimality.

Optimal Estimation

*,.
In order to apply the optimal conrtrol u (xt,t) in equation (21), the
optimal estimates X(f) = E, t[x(g)} for t-1 < € <t (the conditional mean
“

value of x(f))mst be generated. When the system moves under the influence

*,.
“of u (xt,t), the plant eguation is

ax(t) = {a (0)x(t) + A (6)x(t-1) - BRB K (£)R(s) +

0 ‘
J l&(t,o)i(tw)doj I at+D(t.) aw(t) (30)
-1

and the observations are performed according to equation (L),
The optimal estimation eguations can be written by applying the results

of [3). The estimates of the state variables that minimize

3y )
' < t)>;-1 <o0<0 (71)

E {[i(ue) - x(t+9)], ii(ua) - x(me)] fz(2), t<

ave deterrined by equations(32) and (33).(formally)

e + - - -1 . - r\o P
—a&;-é-) = l(t)x(t) + Ay (t)x(t~7) - BR "B'on(t)x(t) + {T K (+,0)x(t+c)ac ;| +

- 6°{t.0,t) {i(t) - cl(t)i(t) - Ca(t)i(t-‘r)] ; 6=0  (32)

(t40) | B(0) | (Ory,0,4) [3(t) - ¢y (LR(E) - Cylt)i(t-m) |

- T<8%50 (33)

The gain of the estimator is specified by

6%(t,0,¢) = [P(¢,6,0) c/(t) + B(t,0,-7) cl(t) ] &(t) (54)

i
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where P(.,.,.) signifies the error cavariance

rr

P(t,98,0) - Ez,t { Li(t+e)-x(t+e)] [2(t+o)-x(t+a)j'} »~d €9, 0<0
(35)

This covarianece is voverned‘by the *ollowing set of partial differential

equations

3P(t.00) A (£)P(£,0,0) + 4,(t)P(t,7,0) + P(t,0,0) A (t)
. P'(t,O,T)Aé(t) + 0 (t) - p(t,o,o)cl'(t)q;l(t)cl(t)y(t,o,o)
) P(t,O,O)Ci(t)Q;l(t)cgp(t’T’o) - P(t,O,T)Cé(t)Qél(t)cl(t)P(t,O,G)

- B(£,0,1)C5(£)Q;M(£)C, (£)P(, 7,0) (36)

ﬂ&%ﬂ+ﬁ%ﬁﬂ=gwmmM+%uMwm)

-P(t.0,0)C{(t)Q;l(t)Cl(t)P(t,o,o)-P(t,0,0)C{(t)Q; Ca(t)P(t,T,c)
-B(£,0, )5 (:)a3 (8)c, ()8(5,0,0)-P(t,0, M)t ) (e) -

C,(t)P(s, 7,0) (7

apgtsezdl . BP%EGJG) : BP%‘,’B,O) - -P('(,,G,O)C]’_(t)QélCl(t)P(t,L, )

-P(t{5,o)c£(t)Q;lc2(t)P(t,v,a)-P(t,e,f)cg(t)eglcl(t)P(t,o,o)

-p(t,8,7)c (t)es e (4 )R, 1,0) (30
2 2 T2

Equations (22) through (33) establish the solution to the optimal
estimation. Equations (2€) through (38) are independent of tne observations,
and can be computed "off-line". The¢ computaticnal difficulties involved arc

presently being explored.
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The eque*ions for the solutlon to the combined problem of the optimal
c¢.tral wnd eati?at_icn is now furnished. The block diagranr: in fig-ure 1
displays tas optim+l gy~.em. The main difficulty in the “oneline" irplermen-
tation is due to {.e realization of the tern -BR']?'(t)foxl(t,o)i(t*a)da,
which requires the s lutiun of the optimsl. smoothing aa-;ell. As a first
'cpprgumtion, the ‘.Ln‘.egv?a.l can he replaced by a finite sum. Then the
des.ner au uée e; ﬂnite number of controllers to operate ou the optimal
amoothed esti.mai.els,_ vhich cen be computed (by means of a " xed-lag szocihe
ir, procedure)., The p-oblem of implementing the optimel solution for timc

delay system: is curreritly being investigated.

Conelusions
The optimal fec. bacr control is determined for stochastic line: -
aystems wii» tiwe-invariant time delay so that the aversge value of a
quadratic cost fun.tional is minimized. The optimal control depends iinearly
on the expected values of the state variables conditioned on the measure-
ments. They sare the best estimates of the states which result
in the minimua of the eptimation error. The optimal feedback control

and the optimal estimates can be determined independently.
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Amndiz A
Derivation of Equaticns(23) through (26)

Suppose that systems (1) and (22) move under the influence of the control
- - - -7 Y -
ulxy, t] = - BBk () R(1) - KB’ [ K (4,0) X(tro) do (a)
-7

where Ko(t) and xl(t,a) are gain matzrices to be determined. The tagk is
nov to express V[it,t] in equation (13) in terms of x{£), t-7 <t <t, the
initial function. One cbserves first that the sclution, i(s) at time 8 > ¢,
to equation (22) can be written by means of equations (1la) and {(11v).
0~
x(s) = y(s,t)x(t) + 5 ¥(s, trreo)x(tre) do (a2)
-
when‘:(.,.) is specified by

o
V(s tr1rg) = 0(8,t+’r+o)A2(t+'r+a) - j‘ v(s, ’(.f-'r+c+a)BR'lB'(t+1+a+a) .
-T.c

Kﬂﬁﬂwﬂpmr ) aux (AR)

Before substituting X(s) into equation (13), relation (1k) is ueed
in equation (13). The resulting equation camn be rewritten by means of

equation (A2):

T
Wipt] = | (& () per (5)8R7TB (oK (8)] () +

Q
%/()K,{s)BR7B(s) [ Kyls,0)%(av0) do +
T
0 _(Ab)
[ %*(s+a)K{(s,0)d0 BR™IB! (3)K_(8)i(s) +

-T

0 0
I i'(si-a)!c_{(s.c)BR'lB’(s)Kl(s.a)i(a'ra)dada +t2[W(s)P(s5,Go) } s
-T =T P

§ .
£
¥
&
&
E;
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Bov equation (AL) can be expressed solely in terms of x(t+f), -1 < € <0,

by substituting equation (A2) into (Ah). Tt results in

0. )
VIR 6] = ROCOK(DR(E) + [ TR (6)R (6 @)X (tro )X (t+0)K] (4, 0)x(¢) | a0
-

00
5 S [ ®(e ) (10, )x(ra)doc (A5)
I A

where xo(t),xl(t,o) and Kz(‘t,c. «t) are specified by

: o LI PPN o etk (o))

N K (t) = { ds (¥’ (s, t)] W(sPK (s)BRTB (s)K,(+) | ¥(st)
j + Q'(s,t)Ko(s)BR-lB'(s) j" K (s,0) #(evcpt) au
L . -T

} .
. o I ¥ (e t)K! (s, 0)BR 7B (s)X_(5) ¥(s,1) an
L -1

oo ’ Ao o \ )
+ ‘[T ‘[T ' (”Urt)KI(SDG)BR i (“")&l(s.‘ )t(%(‘?t)dadaj (A“)

T . ~
K (t,0) = [ ae {4/(s, ) Mok (sIBETB (o) (5) ] Wla, tovrodea (o, LK (o0
t
0 - 0
| BR7B/(s) [ Ky (5,8) ¥(avp,trrodag + [ v/ (s+8,0)K (s, 8) ar
-1 -T

dﬁ;v ') ¥ +T+g) + 0O ¢ K .
BR (u)KD\S) (s, t++g) f £ L (9+E»t) 1(5,5)

»l -

BRB/ (8)K, (5, 3) ¥(s+3 v 10) dardn (»7)
T 7 o~
Ky (t,0,3) = [ a8 {¥(s, br1ea)| W(a3ro(s)BR 1B’ (8K () | T(s, toercr) +
/ .
~ . .0
1/ (s, t+5+0)K ()BR B’ (s) [ Ky (s, B)¥(e+s, tr7ea) ap +
X

¥ (a0, t+7e0)K, (5, B)dp BR—JB'(S)KO(S)T(s,t‘i-THI) +

At
o

o ATy, caaaE o e
S N .
o EE R g e Y s e
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¢ 0 '
+ [ [ T(ere, vmea)r] (s, €)BR 13’ ()K, (5, B)¥(e+ B, t4 7+ )dgan)
I
(A8)
vhere § (s, t+Tg) is defined by equation (A3), and ¢(s, t) satisifes equations
T

(9) and {10) with respect to +. Moreover, S(t) = tr{ w(z)P(s, 0, 0)ds.

Bquations (A6), (A7) and (A8) yield directly that

K (4, -7) = K (£)A,(t) | (a9)
Ky (t,0,0) = K.S(t,a,:r) } s1<@<O (A10)
Ka(t,c, -7) = K{(t,o)Ag(t) ; ~T<cacgo (A11)
Ko{T) = 0 (null-matrix) (Ar2)
(o) = 0 (A13)
K, (T,0,) = O (A14)

Equations (A9) through (Al4) establish equations given by (27).

If equation (Af) is differentiated with respect to %, one can obtain
equation (24) by making use of equations (9), (1C) and equations (A6) and
{A7). Moreover, if equation (A7) is used to generate aKI/at - axl/ao, one
obteins equstion (25) by means of equations (9), (10) and (AB). Similarly,
equation (A8) yielda'equation (26) after some tedious manipulations.

It is noted that equations (2h) through (27) can also be cbtained

directly by means of equation (29).
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Appendix B
Formal Derivation of Kquation (29)

A formal derivatica for the optimality condition (29} is presented here.

io =pply the dynamic progremming, let the minimm value of the performance
indax (PI) for the process starting at time t from ctate x(g), t-d<fF <t

b2 denoted by
.
v[Ept] =g, J [ [y« e, ] e}
u t
(B1)

T

bl
= Min Ez + { J L{t, x,u] dtf
u ’ t

vaere ﬂ-" signifies a Buclidean norm; X, emphasizes the functionel dependence
of Von x; and E t{'} = Ef|z(t),t] represents a conditional expectation
4

cperetion.
The epplication of the principle of optimality leads to

t+A

v [it,t] - H\ixn Ez,t { { L(t,x,uldt + v [(xf-Ax)t_._A,'b!-A] } (B2)

There X = E, t{::]; Ax(tre), =T < ¢ < 0 15 a smooth displacement about some
»

given z(t) corresponding to a fixed control u; and the conditional expecta-

tion operation 13 performed on x under the condition that Ax is determinate.

I% now follows thet for some semple functioms of the x-process

jH

2
- - av-, . a°v 2 3
g [(”A")ua’”b] v [xt,t:]+ T3 :1?5 A" + ofA”) (B3)

Best Available Copy

Teern Syt dird partisl derivetives of Y[.,.] are ssxumed to be bornded;
a¥/&: im the total derivative of vi.,.] with respeet to t evaluated



slong & smaple trajectary x(t) for some fixed control; similarly, 42V/at?;
1 0(83)/a% = ¢ as 4 spprosches to serse The expectation (the ensemble
average) 1s Yo be taken over all x-trsjectaries.

Equations (B3) is now substituted into the right side of equation (B2).
Since V[X.,t] does not depend explicitly onm u(.), it can be taken outside
the braces in the resulting equation; it then cancels the term an the left
side. One thus obtains

2
av  a° oy, .3
0= o £ {AL[t,x,u] Y- 2R - o(a )} (2%)

In order to demonstrate the implicetion of equation (Bk) and of the
functional dependence of V upon x, the problem is considered in which the
plant 1s linear with additive nolse terms and the ensemble average of the
perforsance criterion is quadratic in comtrol and state variableg. In such
& case, the functional expression of V[.,.] can be written as

i

0 0
VEpt) = 5, {IE o)+« 2'00) [ B (hadx(eralao v [ xo(ema) -

¥ -7

(35)
0 0

Pl(to)o x(t)+ [ [ x(tro)p,(t,a a)x(tra)ao aa+ 8(t)}
»T =%
vhere P (t), Pl(t.c) u:u Py(t,0,0) are matrices to be determined; 8(t) is
¢ soalar. lu,m exprassiap of av/u for a semple function and some
m-&u B(t) ean be writhen
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0 |
g A= %% A+ ax’(t) P (t)x(t) + x'(t)Po(t)Ax(t) + u'(t)_j; Pi(t,c)x(ﬁ-c)da
° 0
+ x’(t) { P, (t,0)ax(tra)de + [ Ax’(t+o)P{(t,0)do x(t) +

o 0

L]
+ [ 2 (o)P{(ts0)a0 ax(t) + [ [ :-Ax'(tﬂ-a)Pz(t,c, a)x(t+a)
T . -l =1 ~

+ x(th0)B,(t, 0, @)ax(tra) | 4o dz + B(t) a} (86)"

Similarly, a°v/at? can be obtained.

It is now coserved that Ax(t) is actuslly & random variable. In order
to0 Getermine the expression in the braces of equation (Bk), both A dv/dt
and Az azv/eez wust be aversged (ensemble) over all possible Ax(t+f), -7 <
€< 0. Nowv, &%) and Ax(t) are Geussian processes. Moreover, Ax(t) evolves
in time according to equation (B7):

ax(t) = [Alx(t) * Ax(ter) + m(t)]A + D(t) aw(t) (87)
he sversge value of Ax(i) for a given ssmple function x(t) evolves in time
according to

BR(e) = [Ay x(8) + Ay x(t-7) + Bu(t) ] & (28)

since z"tt;}-x:, (Bl |x(t)]] wbere E signifies the ensesble average with
respect to Ax.
It follows that the probability demsity functions p(.) of dv and ix ere

p(&n(t)) = coost exp [~ § (@n)'(3,8)  an)] (29)

“In this sppendix, Ax(t) 1a writtem for ax(t).
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» [kfﬁ)lz(t),x(wo).t. -t<co< o] - (B10)

- comst. @p {- £ [Bx(e) - Bi(wro) [TV [mx(iom) - (0o ] }

vhere [l = ()'57(-); w0 = D(tro)gy D" (two).

Since the probability density functions of dw and AX are known, the
engemble avernge (with respect to Ax) of the expression in equation (Bk)

2an be evaluated by means of equations (B5) through (B1l):

B‘v(xb,t)

z:,t {AI.(t,x,u) + A - +!z't[Alx(t) + Azx(t-f) + su(t)] a.

Y 0
[e(e)x(e) + { B (t, @)x(tvalde |+ [x*(2)B (8) + ] x* (t+g)P{(t,0)d0 | -

(o}
Bes rAlx(t)mzx(t-r) + su(t)} s+ [ rx'(t)Pl(t,a)E(b*a) +
-7 =

o 0

Ix“(w)pi(t,a)x(t)] @+ [ [Kx"(ua)Pz(t,a,a)x(v«a) + x'(vro) °
T T

Pz(t,a,a)'&i';ua)] dc dmg tr [Po(t)min'(t)» %Pl(t,o)mlb’(t) + |

.0 ..
3 PU(4,00000* () + [ B,(%,0,0)D(t+0)Q; D’ (tro)do J* e S(e) s o(a®)} (1)
£ 4

Expression (Bll) can nov be substituted into equation (BM). Dividing

chrough by 4 in the resulting equation and letting A approsch to gzerc, ome
obtains:

T T

R

.,
Lot
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O=Mabk . {L(""'“) + 3 [ﬁx(t) + AX(t-T) + nu(t)] [P (t)x(t) +
u

0
f (t,c)x(b'-c)da] [x'(t)P (z) + f x’(ﬁ-a)?l(t,a)dc] LA x(t) + Aax(t-r) +

Bu(t) ] + Ln I [xormy (e o) B) 4 BE0) gyt 0)e()] 0o +

+ 1lim [ -+ﬂ Pz(t,a, a)x(t+a) + x'(t+a)P (t,0,q) —aﬁi@-] do 4o +

A-o -1 -f

+ s(t)‘ﬁ tr[_(ap (t)rpl(t,o)r (t,O)) DQ,lD'(t)+ 2J‘ P (t,o,c)DQlD (t-!-a)do] I

(B12)

It is noted that in expression (B12), the term Ax(*) is given by equation

(88).

Since E[ax|z(t)] = B{E [ax|z(t),x(t), t, < t]} it follows thet

ginottﬁlz(t),x(t), t, < t1/a = ax(+)/at exists for all sample functions

of the x(+) process.

Since 3x(t+o)/dt = ax(t+g)/30, an integration by parts in equation

(R13) leads to

00
)
T T

o-Mnz {x'(eyx(t) + u(e)mae) + 3E v A x(epaxt-rimu(e)] -

0 0
[B,(62x(6) + [ By (todxtmadao] « [x*(0)e,(8) « [ x(wa)py (b, 0)ac ] -

3P, (t,0) 3F(t,0)

0
[Alx(t)i-Azx(t-T)o-Bn(t)] + £ [x'(t)

x(tro P x’ (t+o)

x(t)}!a +

3P, (t,0,0) 3P, (t,0, @)

x(i»a)O-i'(tn-a) x(ﬂa)] do da +
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+ x’ ()P, (¢, 0)x(t) + x’(t)Pp] (%, 0)x(t) - x/(£)P, (t, <1)x(t-7) .

0

2’ (t-7)P] (t, -1)x(t) + J‘r [x'(t)?z(t, 0 a)x(8+a) = x’(t=1)B,(t, -1, a),(bm)}m
0

+.£ [:'(‘b"O)Pa(tpa) O)X(t) - x'(‘b‘-a)Pa(t,c, -'l’)x(t-‘l')] a0 +

. C
B(¢) +,1;tr[@l=o(t)*?1(t,0)+P{(t,o))m1n’(t)+2 [ B (to000,0"(sva)as ] }
-T

(B13)
In equation (B13), the terms 8(t) and tr{-] do not depend upon the
comtrol. Hence, the optimal control can be cobtained from equation (Bl3)
by expressing the control u as & complete square., When the optimal comtrol
u is then substituted back into equation (B12), equations for determining

Po(t). Pl(t.o) and Py (t,0,q) are obtained.




PART II

On Certainty-Fquivalence and Certainty-Difference

In Stochastic Linear Systems with Time Delay
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ON CERTAINLY~FQUIVALENCE AND CERTAINTY-DIFFERENCE
IN STOCHASTIC LINEAR SYSTEMS WITH TIME DETAY

A. J. Kolvo
Purdue University
Lafayette, Indiana
The optimization of ~tochastic linear smystems with time delay ia

pregented in the framework of the dynamic programming method, A sufficient
condition for .Le optimality ie cbtained by applying the principle of
optimality. An example i3 presented to deaxonstrite that the certalnty-
equivalence is velid in (ptimi.ing & class of stochastic linear systems 7
vith time Zalay. Its validity, however, i3 quite restricted. Anuiher
exsmple in whish tha ~variance of tine additive ncise in the differential-
difference equation depends upon the cantrol illugstrates that a coftainty-
difference muy be as woll encountersd.

Totroduetion
‘It is fe.sidble that the optimel soluticn or o stochastic dynsmical
system agreeg vith that of the deterministic dyramical system obtained by
formally replacing the random veriables im thc stochastic system by their
expacted values. Such & coincidence is usually called certainty equivalence
[1,2). It iv xnown to hoid, fcr example, if (i) the plant dynamics is

dsseribed by a stockaslic linear {ordinary) differential equation containfng *n

This work was surporied in part by Natitnal Science Foundation Grant No.

@X~-1970 and in part by Air Force Office of Scientific Research Grant No,
69-1TT76.
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additive Geussian noise; (ii) the covariance of the plant noise {s
independent of the control and state variables; and (1ii) the expected
valus of performance criterion to be minimiged is a quadr-tic functional
in contiol and states. However, the certainty equivalence is not valid
in stochastic linear (ordinary) differential equations if the covariance
of the plant noise depcn&a upon the rontrol. In fact, in such e case,

a certainty-difference is encountered [1].

The purpose here is first to present the optimization of stochastic
linear syatems with.time delay in the framework of the dynamic progreamming
metbod. Then, it is demomstrated that the principle of  certainty-
equivalence as well as the“principle. of certainty-difference are

encountered alao in optimizing linear stochastic systems with time delay.

P.oblem Statement

The state transition of a gystem is governad by a stochastic scalar

(for couvenience) differeantial-difference equation 1

dx(t) = [m (t)x(t) + a,{t)x(t-7) + B(t)u(t)]at + ag(t)agit) (1) !
where t € [to, 7], T <o x(t) represents the system state at time t and
x(t-) at time t-t (time-lag T = const); a, (t), 8, (t), a3(t) and b(t) are

bounded C’-functions of t; £(t) is a Brownian motion process.

The cbservation equation is

as(t) = [cl(t)x(t) + cz(t)x(t.«)]dt + dan(t) (2)

where el(t) and cz(t) are bounded and continuous in t and N(t) is &

Brownian motion process.
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The initial function for equation (1) ir determined by a Gausaian
process specified by

Elx(tro)] = x(t o), -t<e, 620 - (3)

R

B[(I(toﬂr) - ;c(t;+c)) (x(t°+o) - i(to+9))] - C(to.c,e) (r) g
The Z(t) and %(t) processes sre rero-mean processes with variances, i
respectively, §
E(€(t,)8(t,)] = Q, (t,)8(t,-t,) (5) :
E[N(%yIN(t,)] = Q;(ty)8(t ~t,) (6)

where ql(.) and Qz(') are given.

It is also assumed that x(t), t €t - tc), g(t), and 7(t), ¢ e[tﬁ,r]
represmt independent random proceases.

The problem is to determine the deterministic optimal comtrol u (t,E)
30 a8 to minimize

T
stu) « £ { [ [w(e)x*(0) + r(ah’(o)10} M
to
vhere T is given, w(c) and r(c) are poeitive for all o, and E., 1;{.] a
B.(s(t), ¢ 0SS TS t} signifies the conditional expectatiom.

The optimal control problem posed is solved by the application of
Bellman's principle ef qriimlity. Sufficient equations for the optimality
are first presented. Then, these equationa are applied to two examplas.
The one demonstrates a case in which the'principle of  certainty-
equivalence is valid; the other illustrates =  certainty-@ifference in'

stochastic systesus with time delay. For the former case, it 1z shown that




P,

¢

g

0

-27-

the resulting optimel control is the same as the one obtained in-the
dsteruinistic provlem by minimising

T

Tl e [ (n(0)if(o) + r(o)u?(0)) do (8)
t .
(-]

subject to the constraint
L E(t) = (£)E(E) + ap()R(-a) + B(t)u(t), t €[t T)  (9)

where x(t) = K, ({x(t)]. Equations (8) and (9) have been obtatned by
ssbstituting the mean values in equatiom (1) and (7) for the random

~ wariebles. For the latter cese, it is shown that,if the variance Q,l(.)

in equation (5) depends upon the control u(.), the optimal control that
minimiges (7) subject to the constraint equation (1) is not 4he same as
the optimal control that minimizea (8) subject to the constraint equation
(9).

Preliminary Material

Some introductory material on the linear differential-difference
equation ie first presented [2,3). whern the state of the system is
governed by the differential-difference equation (1), the evolution of the
process x(t), t > t, is defined by

0
x(t) = o(tt )x(t) + J #(t, t pa)a, (£ +rea)x(s +a)da
) -t
t t
o[ wtam@uaas [yt e ()08 (10)

t, t

where ¢(t, to), t >t 1s the solution to the homogenous part [u{t) = 0]
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of equation () with the boundery condition ¢(t,t) = 1 and ¢(t,s) = O,
itt<as.

If u(.) 1+ sasumed to be linear in the stzte variadle, then equation =

J (10) can be used to dem nstreaie that the functional in equation (7) ia
of the form .
0 ,
Jlal = B (6 2P (s ).+ 2E(t,) | Pty a)(t ralda +
i 0o o
S [ ] zgor, it o3t ra)amaa + 5(e ) (1)
g ’ -t «F

| N
P{ where po(to), Pl(to.o) and Pa(to.a, a) sand S(to) are independent of x. The
i form of eguation (11) will be used in the aequel to determine the optimal |,

| solution. Also, the equations specifying P (t), P,(t,0), and By(t,0,@)
will then be obtained.

Solution by Means of Dynamic Programming

To determine the solution %o the stochastic optimom control problem,
the principle of optinsality ig applisvd. When the system starts at time ¢

from state x(t'c), -T < ¢ < 0, the minimm value of the return-function is
denoted by

e e B o b | < i s s x4 e

iz, b - ia £, { j [w(0)x’(a) + r(o)u’(c)ldo} (12)

By the principle of cptimality, ome obtains
T+l

vz, t) =k, { [ 0af(0) « n(o)lar + VIFTEDT,, o teal} (13)
u ? .
f t

e (e e 4 e aet

i vhere A represents a small time-increment. The expression in the braces

¢
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on the right of equation (13) is expanded sbout the function representing

~ the evolwtion of the mean value x of the x-process. The term V[it't]

appesars now on both sides of the resulting equation. Since it is independent
vpon the control, it cam be cauceled. By assuming that the third partial
derivatives of V[.,.] are bounded, and dividing through by A ome cbtains

- u ”{u(twm(t)»f(g)

where 11w o(A)/A = 0 as A spprosches zerc. Equation (1) is the basic

1
+ o(a 1k
i) 2 at’ Lt W@

x(t)
oguation to be used in solving the stochastic control problem.

In the specific case vhere the plant is linear and the return fumction
quadratic in stete varisbles and control, V(%,,t] is assumed to have the
forn presented in equation (11), where t_ is replaced by t,and P (t),
Pl(t,c). and Pz(t,o, a) are mutrices to be determined. This expre:sion of
Vi.,.] {8 now substituted into equation (14). Forming dv/at and dav/dtz
about the sversge trajectory x(t), substituting dz{t) from equation (1),
performing eppropriste expectations in the resulting expressiona relative
first te dx (or df) and then to x given s(t), t < t, one obtains

0= |un { uz(t) + wC(t,0,0) + ru (t) + + Z[alx(t)l-a x(t~THbu)

0
[7,(t)x(tp -,L P, (t,0)%(+0)80] + 2 _L %(6)P, (t.0) 2L a:*raz & +

0 o
+ L ao L da[ ﬁ%ﬂ Pz(t,o,.a)i(wa) + X(t+a)P,(t,0.0) ggg%z)_]

+ § [B (e 1 (1, 0013 (t)0, + g_[ pz(t.a,a>-3(w)e1aa} (15)

——
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Hence, the optimal cowirol is determined by minimizing the dsterministic
expression in the bracas of equation (15). The solutions to tw ;lifromt
optimm control problems are now yivens the detalils can be foumd in
the sppendix. In the nrlt. cne, the variance Ql of the plant noise 1is

constant; in the second one, the same variance is _dcpcndont upon the comtrol.

Certainty-Equivalence

Suppose that the mimcoe,lurtheplmt nolse is constant.

Equation (15) determines now the optimel comtrol:
0

u’(t,it) .- %b(t)[l’o(t)i(t) + L Pl(t.c)i(t*a)ch] (16)

Hence, the optimal control is linear in the estimated value x of the state
varisble. Substituting equation (16) back into equation (15), equatioms
for dstermining P (t), P (t,0), and P,(t,0,a) result.

ap (t) 2
-i’%-— + 2-1(1;)90(1:) + 21:1(1;, o) - 1’;&-} Pi(t) + w(t) =0 (17)

1 ) 1& o, s, ()P, (t,0) - "—r&‘-} P_ ()P, (t,0}¢B,(t,0,0) = 0
(18)

3, (t,0,0) SP (t,0,0) 2P (t,0,0) 2
e -~ -~ - T i tolp (o) =0 (19)

0
§(t) + w(t)c(t,0,0) + 3 [P ()P, (£,0)]05(t)Q, + ¥ [ B,(t,0,0)-
-T

.g(wc)q,_ldu =0 (20)

AL 20 D 1 T

e
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P(T)=0; P(Te) =03 Pp(To,o)w0; S(TN=0; -t<o<O

& (t)P (t) - Py (t,=7) = 0 -T<a<o

(21)

az(t)Pl(t.c) - Pz(t. -1,09) = 0

It is emphasized thet the realizatiom of the optimal control requires
the determination of the estimates x(t+o) = E, [x(t+a)], -7 <0 <0 of
the state variables. The expected values of the state variables conditioned
on the measurements furnish the minimm for the aversge value of the integrated
estimation error squared. They can bes obtained by the application of the
regults on the optimal filtering in linear stochastic systems with time
delay [6]. The feedback gains in equation (16) can be computed "off-line"
before the application of the optimel control. Moreover, they are not
functions of the observations 2(t) or of the state varisbles x(t).
Consequently, the determination of the optimal control is independent of
the optimal estimation. This staterent is known as a "separation theorem’
in conjunction with stochastic optim.cantrol problems.

If the optimum control problem described by system (8) and (9) obtained
by substituting only mean values for the random veriables is solved , the
resulting optimal control is exactly the same as the one given in equation
(16). In fact, the feedback gains are also specified by the same equations
((17) through (21)). This coincidence is usually termed the 'principle”
of certainty equvd;nce, which is here establighed for a class of stochastic

systems with time delay.
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Certainty-Difference

Suppose the variance °'1 of the plant noise is dependent upon the control,
88y, Q1-2q1u2, vhere 9 is a constant. This situation occurs, for cn.ple,(
if the randomness in the plant is produced by the application of the control.
Hence, the random variedle 1n the plant equation is zero if the control is gero.
The optimal control i+ again determined by equation (15). If Q,].-quu2 is
substituted into equation (15), the minimization operation yields for the

optimal coatrol o
P, (t)x(t) + J‘ P (¢, a)x(i»a)da

r+ [P (t)"P (tno)]‘a(t)ql

u'(t,it) - - b(t)

n’(tﬂr,it) = 0, -T<@g<O (22)
vhere x(t+g) = E, t{x(two)}. It is noted that r is positive definite; P (t)
and Pl(t,o) are nonnegestive for t €[t , 7]; and Pz(t.c.c) is nonnegative [5]
in the damain of its definition. Substituting equation (22) back

into equation (15), equations for determining P_(t), Pl(t,c) and P,(t,0, @) result.

av b (¢ p2 t) &
--sé—)- + 2.1(«:)P (t)+2p (t,0) + v - —f-)fn-(-—- a - %] =0 (23)
a
where ra(t) » r(t)*[Po(t)*Pl(t:O)] ‘3(t)q1;
3P, (t,@) 3P, (t,0) v’ (t)p_(t)P, (¢, 0) r’
%f - laa + &, (t)P, (t,a)+P, (8, 0,0)- = TE) Lg‘-} 0
8

(zh)
ape(t,a,a) apz(t.c,a) 3P (t,c.a) v? (t)p (t.2)P, (t,a)

. 2 r(t
at - R - &a T \t)— 2' r‘lts:] =0
(25)
:‘%ﬂ+ w(t) c(t,0,0) = 0 ’ (26)
The boundary conditions are the same as those given in equation (21).
o ) - o B .




" Swppoes nov that the optimal control is deturmined on the basis of the
osrtainty-equivalence. %The resulting control is given by oqmuo;: (16), 1t
doss not sgree with the optimal control specified by equation (22). Indeed,
the uwee of the certainty-equivalence leads to an incorrect answer. The
example presented here demonstrates s certainty-difference in stochastic

livesr systems with time delay.

Conclusions

A sufficient condition for the optimization of stochastic linear systems
with time delay is formally derived by means of the dynamic programming
wethod. The result ia then applied to a system in which the plant described
by differential-difference equations is linear contuining sdditive Gaussian
noise, It is demonstrated that the "priaciple” of certainty-equivalence holds
when the variance of the plant noise is constant. Howsver, the use of the
certainty-equivalence leads to an incorrect snswer when the variance of the
plant noise depends upon the cantrol. In fact, a certainty-difference is
encountered in such an exawple.
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Appendix :
Formal Derivation of Bquations(15).(16), (22)

By the application of the principle of optimality, equationm (12) can
be expressed in the forn given by equations (13) and (14). The derivatives
av/at ana a’v/at? 1n equation (14) are evaluated about the trajectory E(t).
It i stipulated that

0
VIZ,t] = B(0)FE(t) + 23(8) [ B (t,0)R(twa) +
-T

0 0

. L do L a0 [&(tra)B, (t, 0, )E(1sa) | + s(t) (a)

It follows that
0

(%v)i(t) 4= (g'g)i(t) A + 2(ax(t)) [Po(t)i(t) + I Pl(t’a);(t+°)dﬂ] .

-t

0

¢ 22(8) [ By (t,9) (ax(t+0)) a0 + (a2)
-T
0 0

. J‘ do J' da [(dx(t+a))P2(t,a, a)x(t+a) + i(tw)?z(t,c,a)(dx(t*a)):]
T -T

where dx(t) is considered as determinate. Similarly, dzv/dt2 can be written.
In expression {A2), dx(t) is actually a random variable, which evolves in
time according to oqn‘ntion (1). The expression (A2) i{s then substituted

for (av/dt);,) in equation (14). The term (dzv/dtz)i(t) in equation (1k)

is repleced in the same manner. The resulting expression can be written

as follows:




Pl

'3,-

0
0-Min, u‘°‘+m2+(%‘{’)i(t)+a(dx(t))[pni(t)r L Pl(t.c)i(‘t»c)da] /A .

+ 2x(t) I P, (t,0) (dx(t+o))do/a +
T .

0 0
[ @[ af(axttonp,inoaitmapilmolr,ito,aaxea)) /o«

2

3 (izg)i(t) b+ ole")) (A3)

In order to perform the expectation operation, the probability density

functions associsted with df and dx are written:
plag(t)] = const. expl- 3(a€)?/(q,a)] (%)
plax(tre)|x(t), 2(t),t,-1 <o < 0] =
const. exp {- 3 lax(to)-EK(t+a)1%/ 14 ag(tm)qll (a5)
where &x(t) ir governed by equation
&x(t) = [ayx(t) + ex(t-7) + bu(t)] & (46)
Mow, dx(t) from equation (1) is substitut2d into equation (A3). Since

Elaxlu(t), t, ¢, < t] = EE[ax[x(t), 2(t), ¢, ¢, < t] = E, (Elax|z(s). ¢ < ¢],

cne can perform the averaging in equation (A3) (after the substitution of

dx) and the limiting procetas as A approsches to zero:




-36-

0
| « Nin fvi? 0, 2oy (N 2x(t) | P, (t,0) 2EL10) 45 .
| 0 ‘u {Y‘ (t)}+wC(t, 0,00 ru (t)t(bt);(t)+ x(t) Ir 1 (ta)

+ ae)aF(t-chouce) | [REL) + i P, (4,0)%(t+0)do | +

} O o - -
+ J_FT do _L da [i’i%—;ﬂ P, (t,0, @)R(t+3) + E(tra)p,(t,0,7) 2RETL 14
. | 0
17 L2 17 2 1
+ 3 (P (t) + Py(£,0) fas(t)y + 3 J, Feltorolag(tola daf (A7)

e e

where use has been made of the fact that %_1‘3 E{lax(t)/a]x(t), t< t] =

1lim
; A=0

Ax(t)/a = dx(t)/d1l, and that ¥x(t+c)/at = ax(t+e)/Ac.

Suppose row that Q, is constant. Since C(t,0,0) and Q, do not depend
upon the control explicitly, and the terms *x(t+g)/3c and dx(t+a)/ax can
be integrated by parts and do not contmin the control u explicitly, the
minioum in expreasion (A7) is attsined for the control specified by equation
(16).

Suppose riow that Ql = 2u2ql. Collecting now the terms in equation

(A7), which contain the control u explicitly, one obtains the expression

to be minimized:

0
ruz(t) + Zbu(t)[Poi(t) * I7 Pl(t’a);(t*a)daj +{P6+pl(t,0)]a§(t)qlu2(t) *
0 )
+ _sz(t.c.c)ug(t'fa)qluz(tw) do (A8}
=% 4 *

Ok ——— e == - e e e -




The minimm of the expression (AB) is achieved by choosing the optimel

cotrol n‘(t,it) and n‘(w,it), T < @ <0 as specified by expressions in
oqwaticn (23). By substituting the expression of the optimsl comtrol
back into equation (15), collecting terms, the resulting equation yields

the equation governing Po(t). Pl(t. o) and Pz(t.c. a).
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